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Abstract

Token embeddings, a mapping from discrete
lexical symbols to continuous vectors, are at the
heart of any language model (LM). However,
lexical symbol meanings can also be determined
and even redefined by their structural role in a long
context. In this paper, we ask: is it possible for
a language model to be performant without any
fixed token embeddings? Such a language model
would have to rely entirely on the co-occurence
and repetition of tokens in the context rather than
the a priori identity of any token. To answer this,
we study lexinvariant language models that are
invariant to lexical symbols and therefore do not
need fixed token embeddings in practice. First,
we prove that we can construct a lexinvariant
LM to converge to the true language model at
a uniform rate that is polynomial in terms of
the context length, with a constant factor that
is sublinear in the vocabulary size. Second, to
build a lexinvariant LM, we simply encode tokens
using random Gaussian vectors, such that each
token maps to the same representation within
each sequence but different representations across
sequences. Empirically, we demonstrate that it
can indeed attain perplexity comparable to that
of a standard language model, given a sufficiently
long context. We further explore two properties of
the lexinvariant language models: First, given text
generated from a substitution cipher of English,
it implicitly implements Bayesian in-context deci-
phering and infers the mapping to the underlying
real tokens with high accuracy. Second, it has
on average 4X better accuracy over synthetic
in-context reasoning tasks. Finally, we discuss
regularizing standard language models towards
lexinvariance and potential practical applications.
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Figure 1. Definition (a) and construction (b) of lexinvariant
language model

1. Introduction
All language processing systems rely on a stable lexicon,
which assumes that a token (a word or subword such as tree)
has a consistent contribution to the meaning of a text (though
of course this meaning is mediated by context). In neural
language models (LMs), this contribution is the token embed-
ding, which stably maps each token into a continuous vector
(Schütze, 1993; Mikolov et al., 2013; 2010; Devlin et al.,
2019; Brown et al., 2020). However, in real language, a to-
ken’s contribution might be determined by its structural role;
in math and code, novel variable names are arbitrarily defined
to carry new meaning, and poems such as Jabberwocky ex-
ploit humans’ lexical flexibility in interpreting novel words
such as vorpal. Besides standard language understanding,
this lexical flexibility also correlates with a stronger in-
context reasoning performance. For example, GPT-3 (Brown
et al., 2020) and other large language models that demonstrate
high lexical flexibility show strong performance on tasks in-
volving in-context reasoning over new concepts and rules.

Motivated by the above, we ask whether we can push this flex-
ibility to the extreme: can we build a language model without
any stable lexical mapping? To this end, we formulate and
study such lexinvariant language models. We define a lexin-
variant language model as a language model that assigns the
same probability to all lexical permutations of a sequence.
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Formally, we define a lexical permutationπ to be a one-to-one
mapping of a set of lexical symbols 1 onto itself. Then the lex-
invariant language model is defined as a language model over
the symbol sequence x1,...,xn with the following property:

p(x1,...,xn)=p(π(x1),...,π(xn)) ∀π (1)

For example, a lexinvariant language model (whose
vocabulary is letters and space) should assign the same
probability to the phrase “a big banana” as “e cop
cekeke” because the two are the same up to the permutation
π={a :e,b :c,i :o,n :k,g :p,···} (Figure 1a).

The central question is: how well can lexinvariant language
models predict the next token given an increasingly long
context? We find the answer is almost as well as standard
language models, both theoretically and empirically. This is
rather surprising given that lexinvariance seems like a strong
limitation (a model doesnt́ know what any individual symbol
means!) However, the intuition is that given longer contexts,
a lexinvariant model can both infer the latent permutation π
(lazily) up to whatever ambiguity is present in the language
model, and do the standard next word prediction task jointly.

Theoretically, we prove that a constructed lexinvariant
language model can converge to the true language model as
the context length increases—that is, the average L1 distance
between the predictions of the two models decreases with
a convergence rate of O

(
( d
T )

1
4

)
, where T is the length of

the context and d is the vocabulary size, and where the big-O
notation hides polylogarithmic factors of d and T and an
absolute constant that is independent of the language model.

Empirically, we train a lexinvariant LM by replacing standard
embeddings in a decoder-only Transformer (Vaswani et al.,
2017) with per-sequence random Gaussian vectors, such
that the same symbols get the same embedding within each
sequence but get different embedding across sequences (Fig-
ure 1b). We indeed see that the perplexity gap between the lex-
invariant LM and the standard LM shrinks as context length
increases, as shown in Section 3.1. With a 150M parameters
Transformer and a small character-level vocabulary (130 to-
kens), the average perplexity gap shrinks from 9X to less than
1X the average perplexity of a standard LM after observing
512 tokens over The Pile (Gao et al., 2020). With a larger
32K vocabulary, the gap also shrinks, especially on the more
structured text like GitHub code, albeit at a much slower rate.

We then explore two additional properties of the lexinvariant
LM: in-context deciphering and symbol manipulation. First,
we show that given a ciphertext generated by applying a
substitution cipher to English text, the lexinvariant LM can
be seen as implicitly approximating Bayesian inference of
the lexical permutation, i.e., cipher key, in-context. We show

1We specifically consider lexical symbols as tokens, not
necessarily words or other linguistic units.

that the accuracy of this inferred cipher key quickly improves
as context length grows, reaching 99.6% average accuracy.
We also show examples in Section G that visualize the uncer-
tainties over different possible lexical mappings maintained
by the lexinvariant LM when the cipher key is ambiguous
and that the semantic meaning of a symbol with very rare oc-
currence can be inferred efficiently relative to other common
symbols in context. Second, we show that lexinvariant mod-
els perform better than traditional models over synthetic pure
in-context reasoning tasks that involve symbol manipulation.
We observe a significant 4X improvement over a standard
language model. Finally, we discuss potential approaches to
integrate the idea of lexinvariant LM into standard language
modeling as a form of regularization, such that the LM as-
sumes some form of partially stable symbol representations.
The resulting LM can improve upon a standard language
model over some BIG-bench tasks (Srivastava et al., 2022).

2. Lexinvariant Language Model
We define a language model as a probability distribution
p(x1, ... ,xn) over input token sequences x1, ... ,xn ∈ Vn,
where V is some vocabulary over symbols. A language
model is lexinvariant if for all permutations π :V →V and
for all token sequences x1, ... , xn ∈ Vn, p(x1, ... , xn) =
p(π(x1), ... ,π(xn)). For example, if V = {a,b}, then the
model should assign the same probability to aab and bba.
One example p that satisfies this could simply be

p(x)=

{
1/2 x∈{aab,bba}
0 otherwise

(2)

Can such a lexinvariant language model predict language
well, even though it can only make next token predictions
based on the structure of co-occurence and repetition of
input tokens in a single context?

2.1. Convergence on Language Modeling Performance

We show that we can construct a lexinvariant LM (as shown
in Figure 2) to model the true language distribution faithfully,
given a long enough context. The lexinvariant language
model can essentially infer back the latent permutation π
as it observes more symbols.

x1
π

π(x1)

x2 x3 xn

π(x1) π(x1) π(xn)

Figure 2. Probabilistic graphical model for the lexinvariant LM
associated with the true language distribution p(x1,...,xn).

As an intuitive example, suppose that V={a,b} and the true
language only contains two sequences babbbb and ababab
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(and their prefixes) with even probability. When given only
the first three letters, a lexinvariant model can’t tell the latent
permutation and can only assign the same probability to a
and b for the next letter: Due to the lexinvariant property,
it assigns the same probability to p(a|aba) = p(b|bab) as
well as to p(b|aba)=p(a|bab). Further, p(a|aba)=p(b|aba)
because the permutations to prefixes aba and bab are equally
probable. In contrast, when considering the prefix abab, the
fourth letter resolves the ambiguity in possible permutations
π. (Since baba is not in the true language distribution, π
cannot map a to b.) Therefore, the model can correctly
predict that p(a|abab)=1 and p(b|abab)=0.

Formally, for a given language model p, we define the
associated lexinvariant language model p′(x1, ... , xn) as
Eπ[p(π

−1(x1), ... , π
−1(xn))]. Analyzing it, we have the

following theorem:

Theorem 2.1. Letx1,...,xn be any token sequence generated
by an arbitrary language distribution p with an alphabet
of size d. Let p′(x1,...,xn) =Eπ[p(π

−1(x1),...,π
−1(xn))].

Then, for any 0<ϵ,δ<1/2,

1

T

T∑
t=1

∥p(xt|x1,...,xt−1)−p′(xt|x1,...,xt−1)∥1≤ϵ

with probability greater than 1 − δ, when
T ≥ d

ϵ4 polylog(d, 1
ϵ ,

1
δ ), where the polylogarithmic

term hides an absolute constant that is independent of p.

This theorem says that this associated lexinvariant language
model converges to modeling the true language distribution
fairly efficiently—with polynomial rate and near-linear
dependence on vocabulary size d. Strikingly, this holds
irrespective of the properties of the language distribution
p 2. In other words, a language model can indeed infer the
operational meaning of the tokens in context based solely
on the structure of the symbols!

We give a complete proof of this theorem in Appendix A.
At a high level, this convergence happens because at most
timesteps t, the new observation xt either provides new infor-
mation about the permutation π, or xt has similar likelihood
under the permutations that are likely given x1,...,xt−1. In
the simplest case, if the posterior p(π | x1,...,xn) concen-
trates on the correct π, then we converge to the standard LM.
But even if it doesn’t, that means the uncertainty about π
should not matter for predicting the next token. We make
this precise by interpreting p′(xt|x1,...,xt−1) as performing
a multiplicative weights algorithm with the Hedge strategy
of Freund and Schapire (Freund & Schapire, 1997), and
then relate the regret bounds to the average KL divergence

2The convergence rate could be better depending on the
language distribution, such as on math and code, where the symbols
should have clear functional meaning in context. We explore this
empirically in the experiment section.

between the predictions of p and p′, and ultimately the
average L1 distance between these predictions.

2.2. Constructing a Lexinvariant Language Model

We now consider how to construct a lexinvariant LM in
practice. A typical neural language model, such as a Trans-
former, converts input tokens to continuous vectors using
token embedding and then passes these vectors as input to
the rest of the neural network. Thus, the language model p it
parameterizes depends on the token embedding E :V→Rd:

p(x1,...,xn)=T (E(x1),...,E(xn)) (3)

To make a neural LM lexinvariant, we can replace the
standard stable token embedding E with a randomized E
and take the expectation over E. Each token x∈ V has an
independent embedding E(x)∼N (0,Id), and the language
model becomes

p(x1,...,xn)=E[T (E(x1),...,E(xn))] (4)

Since E
d
=E ◦π , the right-hand side is the same when xi

are applied with any permutation π, i.e., for any x1,...,xn:

E[T (E(x1),...,E(xn))]=E[T (E(π(x1)),...,E(π(xn)))],

(5)

showing that the Transformer with random E is lexinvariant
as in Eq. 1. Now we can train this lexinvariant LM similarly
to a standard LM. Concretely, we sample a new E for each
training sequence and minimize the standard language
modeling loss as in a standard neural LM. Here we are
stochastically optimizing a variational lower bound of the
standard language modeling loss with this randomized
model by taking the expectation to the outside of the loss
over log likelihood. Effectively, the same token gets the
same random embedding within each training sequence, but
different embedding across training sequences.

In practice, we focus on training decoder-only Transformers
with a next token prediction objective in this work, where the
model directly models p(xn+1|x1,...,xn) instead of the joint
distribution. Our definitions and analysis above still hold
in general. The only modification is that the final readout
matrix also needs to be replaced with the same E, so that
the Transformer can predict the embedding of the next token
based on the embeddding of input tokens.

3. Experiments
See detailed experiment setup in Appendix C.

3.1. Convergence to Standard Language Models

We first show empirically that lexinvariant LMs can mostly
recover the next token prediction performance of standard
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Figure 3. Perplexity over the Pile with character-level vocabulary
(left) and T5 default vocab (right).

LMs after a long enough context. Here, we train lexinvariant
and standard LMs with both character-level vocabulary
(128 ascii characters) and T5 default vocab (32k tokens)
over the three datasets. For each model, we measure the
perplexity of each token in each sequence w.r.t. context
length, smoothed by moving average within each sequence,
i.e. P (xi,...,xi+k|x1,...,xi)

1
k for context length i. We set the

moving average window k=100. We plot results over 100
sequences. As shown in figure 3, the perplexity gap between
lexinvariant LM and standard LM gradually shrinks as the
prefix becomes longer and longer, albeit much more slowly
with a larger vocabulary. This makes intuitive sense since
a larger vocabulary has more possibilities of permutations
and requires many more prefix tokens to disambiguate.
Additionally, we observe that the gap shrinks significantly
faster for models trained over Github than standard English
text like Wiki-40B since code is more structured and it
is easier to decipher the token permutation. We show the
comparison across different datasets in Figure 4 in Appendix.

3.2. Recovering Substitution Ciphers

We show that lexinvariant LM is implicitly performing
Bayesian in-context deciphering by testing its ability to

recover cipher keys (e.g. Figure 5a) from character-level
substitution ciphers. We discuss the intuition about implicit
Bayesian in-context deciphering in Appendix B. To show
this eperically, we train a small MLP probe on top of a frozen
pretrained lexinvariant LM to predict the deciphered token
corresponding to the last seen cipher token. We can then read
out the inferred cipher key with each prefix of the sequence.
As shown in Figure 5c, such a cipher key prediction generally
has increasingly higher precision as the window is selected
later in the context, and it becomes near-perfect by the end of
the sequence. Specifically, the cipher key matrix produced
by the last window has an average precision of 99.6% over
1000 input sequences. We show full analysis and examples
in Appendix F and G.

3.3. Synthetic Reasoning Tasks

As discussed in the introduction, lexical flexibility is
correlated with in-context reasoning performance, as
demonstrated by existing large LMs. Thus, we study whether
the lexinvariant model also learns in-context reasoning
capabilities through the challenging lexinvariant training.

Specifically, we measure the performance of lexinvariant
models over two pure in-context symbol manipu-
lation tasks: LookUp, where the task is to predict
the next token based on the given lookup table, e.g.
A->2 C->4 G->5 C-> (should predict 4 here);
and Permutation, where the task is to permute an arbitrary
subsequence of the given sequence the same way as in the
given few demonstrations, e.g. A 2 C->C A 4 1 D->
(should predict D 4 here). In each of the tasks, the symbols
are randomly sampled from the vocabulary so that we mea-
sure the pure reasoning ability independent from any knowl-
edge of specific words. We measure the model performance
in terms of generated token accuracy over 1000 examples.
The results are shown in Table 1. As shown in the table, the
lexinvariant models achieve drastically higher accuracy, with
an average of 4X improvement. We discuss potential ways
to extend this to more realistic tasks in Appendix I.

4. Conclusion
In this work, we define and study lexinvariant language
models, which do not have stable embeddings and learn
to infer the meaning of symbols in-context. We show
several surprising properties of this model theoretically and
empirically, including convergence to standard language
modeling, in-context deciphering, and better reasoning
capabilities. We also explore a less extreme lexinvariance
regularized language model and demonstrate its potential
for solving more practical tasks efficiently.
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Khudanpur, S. Recurrent neural network based language
model. In Interspeech, 2010.

Mikolov, T., Chen, K., Corrado, G. S., and Dean, J. Efficient
estimation of word representations in vector space. In Inter-
national Conference on Learning Representations, 2013.

Nuhn, M. and Ney, H. Decipherment complexity in 1:1
substitution ciphers. In Annual Meeting of the Association
for Computational Linguistics, 2013.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), jun 2022. ISSN
1532-4435.

Raiman, J. and Miller, J. Globally normalized reader. In
Conference on Empirical Methods in Natural Language
Processing, 2017.

https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture16.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture16.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture16.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture16.pdf
http://github.com/google/jax


Lexinvariant Language Models

Schütze, H. Part-of-speech induction from scratch. In
31st Annual Meeting of the Association for Compu-
tational Linguistics, pp. 251–258, Columbus, Ohio,
USA, June 1993. Association for Computational
Linguistics. doi: 10.3115/981574.981608. URL
https://aclanthology.org/P93-1034.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning rates
with sublinear memory cost. In Dy, J. G. and Krause, A.
(eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan,
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A. Convergence Proof
Theorem A.1. Let x1,...,xn be any token sequence generated by an arbitrary language distribution p with an alphabet of
size d. Let p′(x1,...,xn)=Eπ[p(π

−1(x1),...,π
−1(xn))]. Then, for any 0<ϵ,δ<1/2,

1

T

T∑
t=1

∥p(xt|x1,...,xt−1)−p′(xt|x1,...,xt−1)∥1≤ϵ

with probability greater than 1−δ when T ≥ d
ϵ4 polylog(d,

1
ϵ ,

1
δ ).

Proof. For any desired error 0< ϵ< 1/2 and failure rate 0< δ < 1/2, we will first prove the analogous statement for KL
divergence instead of L1 distance, and then relate a bound on KL divergence back to L1 distance via Pinsker’s inequality.

Throughout the rest of proof, we will work with a parameter ϵ′<O( ϵ
(log(1/δ))1/4

)< 1
2 , and will bound our KL divergence by ϵ′.

To prove the bound in terms of KL divergence, it will be useful to ensure to work with a “smoothed” version of p, which we
denote by p̃, for which every token has some nonzero probability, σ/d, of appearing at each timestep, for a parameterσ=δϵ′/T :

p̃(xT |x1,...,xT−1)=p(xT |x1,...,xT−1)(1−σ)+
σ

d
.

Similarly, let p̃′(x1,...,xn)=Eπ[p̃
−1(π(x1),...,π

−1(xn))]. We use P̃ to denote the probabilities under this change. With
probability at least 1−σT ≥1−ϵ′δ≥1− δ

2 , the realized sequence x1,...,xn drawn under p can be regarded as being drawn
from p̃ (as these distributions can be coupled with this probability).

The key idea is then to show that p̃′(yt+1|y1:t), where yt = π∗(xt) for some ground truth π∗ unknown to p′, is equivalent
to using the multiplicative weights algorithm to predict yt+1 with the Hedge strategy, with the experts being each possible
permutation of the tokens and the cost incurred by each expert being the negative log likelihood of the prediction. We denote
P̃π′(y1:n)= P̃(y1:n|π=π′)= p̃(π−1(y1),...,π

−1(yn)) and show this in Lemma A.2.

With this equivalence, we can then bound the difference between the prediction of p and p′ as the regret of the multiplicative
weights algorithm. Concretely, we show in Lemma A.3 that the regret of p′ to any expert π is bounded as

1

T

T∑
t

log
P̃π(yt+1|y1:t)
p̃′(yt+1|y1:t)

≤2ϵ′2

for T ≥
(
4log2( dσ )log(d!)

)
/ϵ′4.

We can see p̃ as the particular expert/permutation P̃I . And we can further only consider the special case that π∗ is also the
identity permutation, then the same result holds over xt and with P̃π replaced by p̃, i.e.

1

T

T∑
t

log
p̃(xt+1|x1:t)

p̃′(xt+1|x1:t)
≤2ϵ′2

Now we want to convert this bound on regret in terms of log likelihood to KL divergence, and eventually to L1 distance.
To convert it to KL divergence regret, we construct a martingale:

Zi=

i∑
t=1

(
DKL(p̃(xt+1|x1:t)∥p̃′(xt+1|x1:t))−log

p̃(xt+1|x1:t)

p̃′(xt+1|x1:t)

)
.

We verify that this is a martingale in Lemma A.4, with differences bounded by 2log 1
σ , and bound the probability that ZT

exceeds b=log d
σ

√
8T log 2

δ via Azuma’s inequality Lemma A.6: with probability 1−δ/2, we have that |ZT |≤b.
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Therefore, we have that with probability at least 1−δ/2

ZT =

T∑
t=1

(
DKL(p̃(xt+1|x1:t)∥p̃′(xt+1|x1:t))−log

p̃(xt+1|x1:t)

p̃′(xt+1|x1:t)

)
≤b

T∑
t=1

DKL(p̃(xt+1|x1:t)∥p̃′(xt+1|x1:t))≤
T∑

t=1

(
log

p̃(xt+1|x1:t)

p̃′(xt+1|x1:t)

)
+b

Putting this all together, since 1
T

∑T
t log

p̃i(xt+1|x1:t)
p̃′(xt+1|x1:t)

≤2ϵ′2 for T ≥
(
4log2( dσ )log(d!)

)
/ϵ′4, we have the following:

T∑
1

DKL(p̃(xt+1|x1:t)∥p̃′(xt+1|x1:t))≤2ϵ′2T+b.

We now convert our bound on KL divergence to a bound on L1 distance via Pinsker’s inequality:

∥p̃(xt+1|x1:t)−p̃′(xt+1|x1:t)∥1≤
√

1

2
DKL(p̃(xt+1|x1:t)||p̃′(xt+1|x1:t)).

Further, at any given xt, the difference between the redistributed probability distribution p̃ and a unmodified probability
distribution p is at most σ, so

∥p(xt+1|x1:t)−p′(xt+1|x1:t)∥1≤∥p̃(xt+1|x1:t)−p̃′(xt+1|x1:t)∥1+2σ.

We are interested in the average L1 across time steps:

1

T

T∑
t=1

∥p(xt+1|x1:t)−p′(xt+1|x1:t)∥1≤
1

T

T∑
t=1

(∥p̃(xt+1|x1:t)−p̃′(xt+1|x1:t)∥1+2σ)

≤ 1

T

T∑
t=1

√
1

2
DKL(p̃(xt+1|x1:t)∥p̃′(xt+1|x1:t))+2σ

≤ 1

T

√√√√T

T∑
t=1

1

2
DKL(p̃(xt+1|x1:t)∥p̃′(xt+1|x1:t))+2σ,

where in the last inequality we applied Cauchy–Schwarz. Hence for T ≥
(
4log2 d

σ log(d!)
)
/ϵ′4,

1

T

T∑
t=1

∥p(xt+1|x1,...,xt)−p′(xt+1|x1,...,xt)∥1≤
1

T

√
T

2
(2ϵ′2T+b)+2σ

≤
√
ϵ′2+

b

2T
+2σ.
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Simplifying this for b=log d
σ

√
8T log 2

δ , T ≥
(
4log2( dσ )log(d!)

)
/ϵ′4 and σ=ϵ′δ/T , we have

1

T

T∑
t=1

∥p(xt+1|x1,...,xt)−p′(xt+1|x1,...,xt)∥1≤

√√√√
ϵ′2+

√
2log 2

δ√
log(d!)

ϵ′2+
2ϵ′δ

T

≤ϵ′(
2δ

T
+

√√√√
1+

√
2log 2

δ

log(d!)
)

≤ϵ′(1+

√
1+

√
2log

2

δ
)≤ϵ′2

√
2(2log

2

δ
)1/4.

We can bound this average L1 error by ϵ if we set ϵ′ = ϵ
2
√
2(2log 2

δ )
1/4

< 1
2 , in which case our condition that

T ≥
(
4log2(dTδϵ′ )log(d!)

)
/ϵ′4 becomes T ≥

(
512log 2

δ log
2 dT
δϵ′ log(d!)

)
/ϵ4. The theorem now follows by simplifying

this expression. Since log 2
δ ≤2log 1

δ , and log(d!)≤dlog(d), we can relax the condition on T as

T ≥
(
1024log

1

δ
log2(

d

δϵ′
)log2(T )dlog(d)

)
/ϵ4=log2(T )

d

ϵ4
polylog(d,

1

ϵ
,
1

δ
)

To remove the log2T from the right side, note that for any W>10, if T ¿ 10 W log2W , then T >Wlog2T , yielding the further
relaxed the condition on T as

T ≥ d

ϵ4
polylog(d,

1

ϵ
,
1

δ
).

Lemma A.2. Consider an arbitrary ground truth permutation π∗. For all time steps t∈ [1,n], let yt=π∗(xt). Consider the
online prediction game of predicting yt+1 at each time step given previous observation y1:t without knowing π∗ but knowing
p̃. Then, p̃′(yt+1|y1:t) is equivalent to the multiplicative weights algorithm’s prediction of yt+1 with the Hedge strategy of
Freund and Schapire (Freund & Schapire, 1997), where it

• Considers d! experts corresponding to guessing each permutation π′ is the ground truth permutation.

• Maintains a weight w(t)
π′ for each expert at time step t, and the weights are initially as P̃(π).

• Picks a distribution across experts p(t)π′ =
w

(t)

π′
Φ(t) where Φ(t)=

∑
jw

(t)
j .

• Produces prediction of yt+1 as
∑

π′p
(t)
π′ P̃π′(yt+1|y1:t)

• Receives a cost vector of m(t)
π′ =− 1

ϵ logP̃π′(yt+1|y1:t).

• Updates the weights w(t+1)
i =w

(t)
i exp(−ϵm

(t)
i ) and repeat

Proof. We can first see that p(t)π′ = P̃(π′|y1:t) by induction:

Base case: p(0)π′ = P̃(π) by assumption.

Inductive Case:

With the cost vector as m(t−1)
π′ =− 1

ϵ logP̃π′(yt|y1:t−1), the update at step t is w(t)
π′ =w

(t−1)
π′ P̃π′(yt|y1:t−1). Therefore, the
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probability over any particular expert π′ is

p
(t)
π′ =

w
(t)
π′

Φ(t)

=
w

(t−1)
π′ P̃π′(yt|y1:t−1)∑
jw

(t−1)
j P̃j(yt|y1:t−1)

=
p
(t−1)
π′ Φ(t−1)P̃π′(yt|y1:t−1)∑
jp

(t−1)
j Φ(t−1)P̃j(yt|y1:t−1)

=
p
(t−1)
π′ P̃π′(yt|y1:t−1)∑
jp

(t−1)
j P̃j(yt|y1:t−1)

This is equivalent to the update given by Bayes’ rule when plugging in p
(t)
π′ = P̃(π′|y1:t) :

P̃(π′|y1:t)=
P̃(π′|y1:t−1)P̃π′(yt|y1:t−1)

P̃(yt|y1:t−1)

So we can conclude that p(t)π′ = P̃(π′|y1:t), i.e. the process of updating the probability distribution across experts within
the prediction game is equivalent to the process of the language model updating the probabilities P̃(π′|y1:t+1) across
permutations π′. And this means that the algorithm’s prediction

∑
π′p

(t)
π′ P̃π′(yt+1|y1:t)=

∑
π′P̃(π′|y1:t)P̃π′(yt+1|y1:t)=

P̃(yt+1|y1:t)= p̃′(yt+1|y1:t)

Lemma A.3. When using the Hedge strategy for the multiplicative weights algorithm, the average difference between the
weighted distribution across experts and any particular expert π is bounded as

1

T

T∑
t

log
P̃π(yt+1|y1:t)
p̃′(yt+1|y1:t)

≤2ϵ2

for ϵ≤1 and for T ≥
(
4log2

(
d
σ

)
log(d!)

)
/ϵ4.

Proof. Consider an arbitrary expert π.

We first show that the cost vectors are bounded by ρ=− 1
ϵ log

σ
d : Recall we defined m

(t)
π =− 1

ϵ logP̃π(yt+1|y1:t). By the
definition of our redistributed probability distribution, at time step t∈ [1,...,T ],

σ

d
≤P̃π(yt+1|y1:t)≤1

log
σ

d
≤ logP̃π(yt+1|y1:t)≤0

0≤m(t)
π ≤−1

ϵ
log

σ

d

0≤m(t)
π ≤−1

ϵ
log

σ

d
.

By corollary 16.3 in (MW), if we have cost vectors m(t)∈ [−ρ,ρ]d!, then for time T ≥(4ρ2log(d!))/ϵ2 where ϵ≤1,

1

T

T∑
t

p(t) ·m(t)≤ 1

T

T∑
t

m(t)
π +2ϵ.

Note that we can simplify T ≥
(
4log2

(
d
σ

)
log(d!)

)
/ϵ4.
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We can now bound

1

T

T∑
t

(
p(t) ·m(t)−m(t)

π

)
≤2ϵ

1

T

T∑
t

(∑
π′

p
(t)
π′ m

(t)
π′ −m(t)

π

)
≤2ϵ

1

T

T∑
t

(∑
π′

P̃(π′|y1:t)
(
−1

ϵ
logP̃π′(yt+1|y1:t)

)
−
(
−1

ϵ
logP̃π(yt+1|y1:t)

))
≤2ϵ

1

ϵT

T∑
t

∑
π′

(
P̃(π′|y1:t)

(
logP̃π(yt+1|y1:t)−logP̃π′(yt+1|y1:t)

))
≤2ϵ

1

T

T∑
t

Eπ′ log
P̃π(yt+1|y1:t)
P̃π′(yt+1|y1:t)

≤2ϵ2

By Jensen’s inequality, we also have that

1

T

T∑
t

log
P̃π(yt+1|y1:t)

Eπ′P̃π′(yt+1|y1:t)
≤2ϵ2

1

T

T∑
t

log
P̃π(yt+1|y1:t)
p̃′(yt+1|y1:t)

≤2ϵ2

Lemma A.4. Let

Zi=

i∑
t=1

(
DKL(P̃I(xt+1|x1:t)∥P̃(xt+1|x1:t))−log

P̃I(xt+1|x1:t)

P̃(xt+1|x1:t)

)

Zi is a martingale.

Proof. Consider

Exi+1∼P̃I
[Zi]=Exi+1∼P̃I

[
i∑

t=1

(
DKL(P̃I(xt+1|x1:t)∥P̃(xt+1|x1:t))−log

P̃I(xt+1|x1:t)

P̃(xt+1|x1:t)

)]

=Exi+1∼P̃I

[
DKL(P̃I(xi+1|x1:i)∥P̃(xi+1|x1:i))−log

P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)
+Zi−1

]

Observe that Zi−1 has no dependence on xi+1.

Exi+1∼P̃I
[Zi]=Exi+1∼P̃I

[
Exi+1∼P̃I

log
P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)

]
−Exi+1∼P̃I

[
log

P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)

]
+Zi−1

=Zi−1

Therefore, Zi is a martingale.

Lemma A.5. |Zi−Zi−1|≤ci where ci=2|log d
σ |
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Proof. We have

|Zi−Zi−1|=

∣∣∣∣∣DKL(P̃I(xi+1|x1:i)∥P̃(xi+1|x1:i))−log
P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)

∣∣∣∣∣
In our redistributed probability distribution P̃ , we have σ

d ≤P̃π(xi|x1:i−1)≤1 for any π at any time i. Therefore,

log
σ

d
≤ log

P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)
≤ log

d

σ
.

Also, we can find an upper bound for the KL divergence by maximizing P̃I(xi+1|x1:i) to 1 and minimizing P̃(xi+1|x1:i)
to σ

d so that

DKL(P̃I(xi+1|x1:i)∥P̃(xi+1|x1:i))=
∑
xi+1

P̃I(xi+1|x1:i)log
P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)

≤ log
d

σ

We can maximize |Zi−Zi−1| by maximizing the first term and minimizing the second term, or vice versa. In the first case,
|Zi−Zi−1|≤|log d

σ−logσ
d |=2|log d

σ |. In the other case, |Zi−Zi−1|≤|0−log d
σ |= |log d

σ |.

Therefore, |Zi−Zi−1|≤ci where ci=2|log d
σ |.

Lemma A.6. By Azuma’s inequality, with probability 1−δ, we have that ∥ZT ∥≤b where b=2log d
σ

√
−8T log 1

δ

Proof. By Azuma’s inequality, for all positive reals b,

P (ZT −Z1≥b)≤exp

(
−b2

2
∑T

k=2c
2
k

)

P (ZT −Z1≤b)≥1−exp

(
−b2

2
∑T

k=2c
2
k

)

≥1−exp

(
−b2

8
∑T

k=2log
2 d
σ

)

We can rewrite in terms of δ=exp
(

−b2

8
∑T

k=2log
2 d

σ

)
so

b=

√√√√−

(
8

T∑
k=2

log2
d

σ

)
logδ

≤ log
d

σ

√
−8T log

1

δ

Therefore,

P (ZT −Z1≤b)≥1−δ
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B. In-context Bayesian Deciphering
We can see the associated lexinvariant language model as implicitly learning to approximate an in-context Bayesian
deciphering process, i.e. inferring a probability distribution over possible lexical permutations based on seen tokens, with
the language modeling prior:

p′(xn+1|x1,...,xn)

=
∑
π

p(π−1(xn+1)|π−1(x1),...,π
−1(xn))︸ ︷︷ ︸

language modeling

P(π|x1,...,xn)︸ ︷︷ ︸
inferring lexical permutation

(6)

As shown above, p′ can be reduced to two parts, where the first part is normal language modeling and the second part is the
probability distribution of lexical permutations based on seen tokens. So the lexinvariant language model is implicitly learning
to model P(π|x1,...,xn).

We can make this approximate in-context Bayesian deciphering explicit by training a small probe to predict P(π|x1,...,xn)
given the internal representation of the lexinvariant language model. We will show that this indeed recovers π reasonably
accurately in the experiment section.

C. Setup
Architecture. For all experiments, we use decoder-only Transformer architecture with T5 relative position bias (Raffel et al.,
2022). We use models with 150M parameters, with 12 layers, 8 heads, head dimension 128, and MLP dimension 4096.

Training. We use the Adafactor optimizer (Shazeer & Stern, 2018), with a cosine decay learning rate schedule (Hoffmann
et al., 2022) from 0.01 to 0.001 based on preliminary experiments. We train the models from scratch for 250K steps on all
the settings, with 512 sequence length and 64 batch size. We ran all of our experiments on 8 TPU cores. Our models are
implemented in JAX (Bradbury et al., 2018).

Datasets. For datasets, we mainly use the Pile (Gao et al., 2020), a large open-source corpus that contains text collected from
22 diverse high-quality sources. We also run experiments on two additional datasets to explore their effects on the behavior of
lexinvariant models: Wiki-40B (Guo et al., 2020), which contains high quality processed Wikipedia text in 40+ languages, and
GitHub (subset of the Pile), which contains code from GitHub repositories with more than 100 stars and less than 1GB files.

D. Model Architecture Details
In addition, we add a learnable scaling and bias parameter to the result of the embedding layer, so that the model can still
learn to scale it as needed.

E. Convergence on other datasets
Figure 4 shows the perplexity of lexinvariant LMs across the three different datasets. Note that Github converges significantly
faster than standard Engish text like Wiki-40B, since code is more structured and easier to decipher the token permutation.

F. Recovering Substitution Ciphers
Here we show that lexinvariant LM is implicitly performing Bayesian in-context deciphering by testing its ability to recover
cipher keys (e.g. Figure 5a) from character-level substitution ciphers, e.g. uC; kvR5W 4mfzd @f| Svcgn fw;m
uCRmu;;d ]%~} :fBn. For the lexinvariant LM, this cipher text is perceived as the same as the quick brown fox
jumps over thirteen lazy dogs, due to the lexinvariant property. It will then proceed to complete the cipher text
with %d: uC; @f|with the same probability as it will complete the normal text with and the fox.

Because of this, we cannot directly read out the distribution of possible cipher keysP(π|x1,...,xn−1) implicitly inferred by the
lexinvariant LM. To do this, we train a small two-layer MLP probe on top of a frozen trained lexinvariant LM. For each training
sequence, we first embed the input sequence with a randomly sampled token embeddingE as described in section 2.2 and obtain
the hidden activation of the final layer generated by the frozen lexinvariant LM. Then, we pass this activation through the two-
layer MLP probe. Finally, instead of decoding the output activations to classification logits with the sameE as in the lexinvariant
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Figure 4. Smoothed Token Perplexity over the Pile, Wiki-40B and Github, with character-level and T5 default vocab

LM, we instead use another learnable non-randomized token embedding matrixE′ so that the probe can recover the deciphered
token with stable token embeddings. Overall, we train the probe jointly with this embedding matrix E′ to predict the current to-
ken. Effectively, we are training the probe to decipher the current token using the representation provided by the lexinvariant LM.
We train the probe over the same corpus as the original lexinvariant LM for 10k steps. With this probe, we can directly visualize
P(π−1(xn)|x1,...,xn) inferred by the lexinvariant LM, which is effectively one row in the permutation matrix representing π.

Now we can use this probe to explicitly recover the cipher key. An example ground truth cipher key that we want to recover is
shown in Figure 5a. Note that although the substitution cipher is only among lowercase letters, the character-level lexinvariant
model we use assumes that all permutations among the 128 characters are possible , making the deciphering even more
challenging.
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(b) Majority vote prediction
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Figure 5. (a) (b): Cipher key matrix, where the vertical axis shows the cipher characters and the horizontal axis shows the deciphered letters.
The highlighted entries show the correspondences between cipher characters and the actual letters, e.g. % deciphers to l. (c): Cipher key
prediction accuracy, averaged across 1000 input sequences. Context length denotes the start index of the window.
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Figure 6. Predicted cipher key for windows of size 50, at indices 0, 50, 100, 200, and 400. Generated using temperature of T =1.

Concretely, we first input ciphertext through the frozen lexinvariant LM with the probe to produce a deciphered sequence. We
then select a window of size 100 in the middle of the sequence and perform a majority vote over the corresponding deciphered
tokens of each cipher token seen in this window. This essentially produces a predicted cipher key matrix for each window, and we
can measure its precision against the ground truth. As shown in Figure 5c, such a cipher key prediction generally has increasingly
higher precision as the window is selected later in the context, and it becomes near-perfect by the end of the sequence.
Specifically, the cipher key matrix produced by the last window has an average precision of 99.6% over 1000 input sequences.

Finally, we aggregate over the last window of the 1000 sequences to recover a full cipher key, in case certain letters never appear
in the last window of certain sequences. We again recover a full cipher key via majority vote. In Figure 5b, we show the highly
accurate predicted cipher key recovered from ciphertext produced using the example ground truth cipher key in Figure 5a.

To perform a more detailed analysis showing the Bayesian deciphering process of the lexinvariant model, we use the logits
of the probe to recover the predicted distribution of the cipher key P(π|x1,...,xn−1). Instead of taking the majority vote of the
predicted decipher tokens in the window, we take the mean of logits predicted for each ciphered token. This essentially gives
a locally averaged predicted distribution of cipher key matrices. Specifically, the cipher key matrices are generated across
windows of 50 characters, and the probabilities are averaged over 1000 input sequences encoded using the same ground truth
cipher. As shown in Figure 6, the predicted distribution of cipher key matrix becomes sharper as the prefix becomes longer.

G. In-context Bayesian Deciphering Examples
Here, we show several qualitative examples of in-context Bayesian deciphering. We first show how the lexinvariant LM
maintains uncertainty over possible lexical permutations while iteratively updating them at each index, using examples from a
character-level lexinvariant model. Then, we also show an example of semantic in-context deciphering with a 32K vocabulary
lexinvariant model, where the meaning of a novel word is inferred relative to common words in-context.

G.1. Uncertainty over Lexical Permutations

In Figure 7a, we input the following ciphered sequence to the frozen character-level lexinvariant LM with the probe:
“I saw lots of people in town today, walking and talking around me. I greeted my
friend Alice and my classmate Alex. I saw a guy, Joe, walking outside carrying a
zat. Joe’s zat was taken off zy wind. Today’s wind was strong, so Joe’s zat flew
zackward. Joe lost Joe’s zat for good. Joe will miss Joe’s zat.” For each instance of z in
the sequence, we display the predicted deciphering of that instance as a row of probabilities across non-cipher letters a-z.

The lexinvariant model starts off assuming uniform probability for all possible lexical permutations π. After seeing more and
more text, the lexinvariant model quickly realizes that z only has a few main plausible decipherings (b, h, c, m). Eventually,
the lexinvariant model is able to narrow the possibilities down to z maps to b near the end of the sequence. The predicted
probabilities shift with the seen context accordingly, demonstrating an example of how the predicted cipher key is iteratively
updated at each index.

Figure 7b shows another example with a similar set up, but with text: “I saw a man in the pazk with a zat.
The man was walking with the zat zight beside him. I’ve nevez seen anything like
that befoze.” While context initially suggests that zmay be deciphered as c, it becomes clear that zmust correspond
to r after the appearance of “right”. The disambiguation is reflected in the depicted probabilities.

In Figure 7c and 7d, we show two deciphering examples over code. We consider two code examples in which it is initially
ambiguous whether the character z deciphers to : or {. The ambiguity is eventually resolved by the use of Python-like or
Java-like syntax.
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G.2. Semantic Deciphering

In addition to character-level deciphering, we show examples of semantic deciphering with the larger vocabulary of 32k.
Although the lexinvariant LM could not possibly figure out the true lexical permutation among 32k tokens using a small 512
context, it is possible to construct a simple context that repetitively uses simple words so that these words are easier to decipher.
Then the lexinvariant LM can decipher the approximate semantics of the rare symbols relative to other easier-to-decipher words.

One example is the following: given the prompt’crash!’ ’aaah!’ i looked up from my cup of coffee.
’crash!’ - that was the cafe window. and ’aaah!’ [... more text...] what one here is
a drink - restaurants - music - coffee - father the one here that
drink is, where the word coffee, music, and father all only appear once before the question and restaurants
appeared 4 times, the model is able to correctly answer that coffee is drinkable. See the full example in Appendix K.

H. Synthetic Reasoning Tasks
As discussed in the introduction, lexical flexibility is correlated with in-context reasoning performance, as demonstrated
by existing large LMs. Thus, we study whether the lexinvariant model also learns in-context reasoning capabilities through
the challenging lexinvariant training.

Specifically, we measure the performance of lexinvariant models over two pure in-context symbol manipulation tasks: LookUp,
where the task is to predict the next token based on the given lookup table, e.g. A->2 C->4 G->5 C-> (should pre-
dict4 here); and Permutation, where the task is to permute an arbitrary subsequence of the given sequence the same way as in the
given few demonstrations, e.g. A 2 C->C A 4 1 D-> (should predictD 4 here). In each of the tasks, the symbols are ran-
domly sampled from the vocabulary so that we measure the pure reasoning ability independent from any knowledge of specific
words. We measure the model performance in terms of generated token accuracy over 1000 examples. The results are shown in
Table 1. As shown in the table, the lexinvariant models achieve drastically higher accuracy, with an average of 4X improvement.

Table 1. Accuracy over synthetic reasoning tasks.

Dataset Vocab LookUp Acc Permutation Acc

Standard LI Standard LI

Pile char 48.50 91.80 27.66 59.35
32k 21.45 92.10 22.84 55.63

Wiki-40B char 38.25 59.70 20.77 60.51
32k 8.75 59.35 9.94 50.91

Github char 42.40 86.65 21.03 71.59
32k 4.25 80.20 8.59 67.39

I. Regularizing Language Models with Lexinvariance
Although lexinvariant LM has various interesting properties , it is not suitable for practical tasks since it would require the
context to be extremely long so that all required words and knowledge are defined in the context. Here, we explore how to
construct more practical semi-lexinvariant LMs that maintain some properties of lexinvariant LMs via regularization. We

a b c d e f g h i j k l m n o p q r s t u v w x y z

...outside carrying a z
...a zat. Joe's z

...was taken off z
...strong, so Joe's z

...Joe's zat flew z
...Joe lost Joe's z

...will miss Joe's z

Deciphering pred logits for cipher char 'z'

(a) True deciphering: “z” → “b”, T =1.

a b c d e f g h i j k l m n o p q r s t u v w x y z

...man in the paz
...pazk with a z

...walking with the z
...with the zat z

...him. I've nevez
...like that befoz

Deciphering pred logits for cipher char 'z'

(b) True deciphering: “z” → “r”, T =1.

: ; <=> [ \ ] ^ _ a b c d e f g h i j k l mn o p q r s t u v w x y z { | }

       binary_search()z
      ...(high >= low)z
     ...(arr[mid] > x)z

       ...      } elsez
       ...}\n    } elsez
       ...void func2()z

(c) True deciphering: “z” → “{”, T =2.

: ; <=> [ \ ] ^ _ a b c d e f g h i j k l mn o p q r s t u v w x y z { | }

       binary_search()z
      ...(high >= low)z
    ...(arr[mid] == x)z
     ...(arr[mid] > x)z

       ...        elsez
 ..._search()\n    elsez
     ...-1\ndef func2()z

(d) True deciphering: “z” → “:”, T =3.

Figure 7. Probe predictions for deciphering “z” at each occurrence of “z” in context.
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emphasize that this exploration is intended to be illustrative rather than directly improving state-of-the-art.

Instead of using random Gaussian embedding matrices in place of a learned embedding matrix entirely, we can use random
embeddings for only some of the tokens in each sequence, while others use the learned embedding. This means that the learned
LM assumes that certain tokens have stable meanings but not others, which can be seen as a form of regularization towards
lexinvariance. Specifically, we randomly select tokens to randomize based on a Bernoulli distribution, which can essentially be
seen as a form of dropout on token embeddings. On the BIG-bench tasks, we found that a model with dropout rate p=0.2 for
randomization was 25% more likely to improve performance than to harm performance when evaluated with three shots, relative
to a comparably-sized LM, with improvements especially over retrieval type of tasks. See full details in the Appendix M.

More broadly, this regularization view could potentially bring the benefit of lexinvariant LMs to practical applications. For
example, the regularization could improve 1) the robustness of LMs by making them less sensitive to adversarial attacks
or noise in the input data, 2) generalization across different languages or domains by being less tied to specific lexical items
and more prone to learn the shared language structure, and 3) reasoning over more realistic tasks as we have started to explore
with BIG-Bench. These areas are promising directions for future work to explore.

J. Code Deciphering Full Examples
Java:

b i n a r y s e a r c h ( ) z
i f ( h igh >= low ) z

mid = ( h igh + low ) / 2 ;
i f ( a r r [ mid ] == x )

r e t u r n mid ;
i f ( a r r [ mid ] > x ) z

h igh = mid − 1 ;
r e t u r n b i n a r y s e a r c h ( ) ;

} e l s e z
low = mid + 1 ;
r e t u r n b i n a r y s e a r c h ( ) ;

}
} e l s e z

r e t u r n −1;
}

}
vo id func2 ( ) z

Python:

b i n a r y s e a r c h ( ) z
i f ( h igh >= low ) z

mid = ( h igh + low ) / / 2
i f ( a r r [ mid ] == x ) z

r e t u r n mid
i f ( a r r [ mid ] > x ) z

h igh = mid − 1
r e t u r n b i n a r y s e a r c h ( )

e l s e z
low = mid + 1
r e t u r n b i n a r y s e a r c h ( )

e l s e z
r e t u r n −1

d e f func2 ( ) z
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K. Semantic Deciphering Full Example
’crash!’ ’aaah!’ i looked up from my cup of coffee. ’crash!’ - that was the cafe
window. and ’aaah!’ - that was kate. people in the cafe shouted. kate and i ran
to the window. there was no one there. then i turned to kate and put my arm around
her. ’are you all right?’ i asked. ’yes,’ she said. ’i think so.’ ’what is it?’
some one shouted and a short red-faced man ran into the room. the man took my arm.
’matt! what are you doing to kate?’ he asked. ’nothing, papa,’ kate replied. ’it
wasn’t him. it was from out in the street.’ the red-faced man looked at the window
and then at me. he turned to his daughter. ’are you ok, kate?’ he asked. kate
gave him a little smile. ’yes, i think i am, papa,’ she said. then her father
spoke to me. ’sorry, matt. i heard kate and i thought...’ ’that’s ok, paolo,’
i answered. it was ok. you see, this is soho, in the centre of london. in the
day it’s famous for music and films. at night people come and eat and drink in the
restaurants. expensive restaurants and cheap restaurants; italian restaurants and
chinese restaurants. and day and night there are internet cafes like the web cafe.
in soho you can buy any thing and any one. there are lots of nice people in soho.
but there are also lots of people who are not very nice. i know because i live and
work here. i often take a drink to a shop or cafe. i’m not rich and famous. and
i don’t know a lot. but i do know soho. what one here is a drink - restaurants -
music - coffee - father the one here that drink is

Example prediction of the lexinvariant with 32k vocabulary train on the Pile:

- coffee. and i

L. Synthetic Reasoning Task
Table 2 shows a variant of the synthetic reasoning task results in Subsection 1, where the symbols are instead sampled
proportion to the token frequencies. Although the improvement still generally holds, the standard LM with character-based
vocabulary becomes significantly better. We believe that this is because the model can get a significant advantage by guessing
among the most common letter.

Dataset Vocab LookUp Acc Permutation Acc

Standard LI Standard LI

Pile char 72.80 90.95 40.63 60.47
32k 61.20 90.95 40.55 54.55

Wiki-40B char 75.55 63.45 42.71 59.86
32k 41.05 57.95 26.81 51.86

Github char 66.00 86.75 36.62 70.77
32k 59.25 78.45 37.46 65.04

Table 2. Synthetic Reasoning Tasks (adjusted for token frequencies)

M. Language Models Regularized with Lexinvariance and BIG-bench Results
As described in the main paper, we implement a lexinvariance regularized Model in a way similar to embedding dropout.
Note that one problem in implementing it naively by using random Gaussian embeddings and learned embedding in a mixture
is that the two would become quickly distinguishable from each other during training since learned embeddings often have
larger norms, allowing the model simply ignore the randomized tokens. So instead of using random Gaussian embedding
matrices in place of a learned embedding matrix, we explored another approach for training a lexinvariant regularized LM:
training a standard LM with learnable embedding matrix over sequences partially applied with a random token permutation
Bp(x1,π),...,Bp(x1,π), where Bp(xi,π)=π(xi) with probability p and Bp(xi,π)=xi with probability 1−p. Since each
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token can be remapped to any other token with equal chance, the produced model should ideally also be lexinvariant when
p=1, though with no strict guarantees. In practice, we found the models trained this way behave very similarly to models
with random Gaussian embedding.

We evaluate our model over BIG-bench tasks where the language model performance scales well, and we prioritize evaluating
generative tasks over multiple-choice tasks. Tasks we evaluated on:

gre reading comprehension.mul, linguistics puzzles.gen, linguistics puzzles.gen, rhyming.gen, tellmewhy.gen, simple arith-
metic multiple targets json.gen, simple arithmetic json subtasks.gen, disfl qa.gen, arithmetic.gen, bridging anaphora resolution
barqa.gen, matrixshapes.gen, sufficient information.gen, logical args.mul, novel concepts.mul, code line description.mul,
unnatural in context learning.gen, unit interpretation.mul, english proverbs.mul, general knowledge.mul, geometric shapes.gen,
human organs senses.mul, contextual parametric knowledge conflicts.gen, crass ai.mul, auto categorization.gen, penguins
in a table.gen, hindu knowledge.mul, english russian proverbs.mul, modified arithmetic.gen, cryobiology spanish.mul,
evaluating information essentiality.mul, intent recognition.mul, understanding fables.mul, figure of speech detection.mul,
empirical judgments.mul, simple ethical questions.mul, swahili english proverbs.mul, language identification.mul, phrase
relatedness.mul, nonsense words grammar.mul, undo permutation.mul, object counting.gen, identify odd metaphor.mul,
elementary math qa.mul, social iqa.mul, parsinlu qa.mul, metaphor understanding.mul, timedial.mul, causal judgment.mul,
list functions.gen, implicatures.mul, date understanding.mul, codenames.gen, fact checker.mul, physics.mul, abstract narrative
understanding.mul, emojis emotion prediction.mul, metaphor boolean.mul, strategyqa.gen, ascii word recognition.gen,
auto debugging.gen, cause and effect.mul, conlang translation.gen, cryptonite.gen, cs algorithms.mul, dyck languages.mul,
gender inclusive sentences german.gen, hindi question answering.gen, international phonetic alphabet transliterate.gen,
irony identification.mul, logical fallacy detection.mul, movie dialog same or different.mul, operators.gen, paragraph
segmentation.gen, parsinlu reading comprehension.gen, repeat copy logic.gen, rephrase.gen, simple arithmetic json.gen,
simple arithmetic multiple targets json.gen, sports understanding.mul, word unscrambling.gen, hyperbaton.mul, linguistic
mappings.gen, anachronisms.mul, indic cause and effect.mul, question selection.mul, hinglish toxicity.mul, snarks.mul,
vitaminc fact verification.mul, international phonetic alphabet nli.mul, logic grid puzzle.mul, natural instructions.gen,
entailed polarity.mul, list functions.gen, conceptual combinations.mul, goal step wikihow.mul, logical deduction.mul,
conlang translation.gen, strange stories.mul, odd one out.mul, mult data wrangling.gen, temporal sequences.mul, analytic
entailment.mul, disambiguation qa.mul, sentence ambiguity.mul, swedish to german proverbs.mul, logical sequence.mul,
chess state tracking.gen, reasoning about colored objects.mul, implicit relations.mul, riddle sense.mul, physical intuition.mul,
simple arithmetic json multiple choice.mul, geometric shapes.gen, gem.gen, simp turing concept.gen, common morpheme.mul,
qa wikidata.gen, international phonetic alphabet transliterate.gen, similarities abstraction.gen, rephrase.gen, emoji movie.gen,
qa wikidata.gen, word sorting.gen, emoji movie.gen, qa wikidata.gen, periodic elements.gen, hindi question answering.gen

Bellow, we plot the net percentage of tasks improved/deproved in each of the BIG-bench categories, out of the tasks that
are changed by at least a threshold amount.

N. Compute
We use one TPU v3-8 for all our pretraining runs. It takes approximately 23 hours for each pretraining run.

O. Related Work
O.1. Symbol Grounding

Beyond a modeling choice, the main question of our paper (that being whether an LM can learn language without a stable
token representation) is also analogous to the symbol grounding problem: Can meaning be acquired when symbols are not
even grounded stably, i.e. they can be mapped to completely random meanings in different sequences? It has long been argued
by the symbol grounding literature that symbolic representations must be grounded bottom-up in nonsymbolic representations
(Harnad, 1990), with famous arguments like Searle’s Chinese room. And this leads to an ongoing debate on whether LMs
can learn meaning purely from large amounts of text, without grounding to any real-world objects (Bender et al., 2021).
Conceptually, lexinvariant LM is one step further away from physical grounding. We show that they can still infer the meaning
of symbols based on lexical structures within the context.
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Figure 8. BIG-bench results with 0,1,2 and 3 shots.
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O.2. Byte-level T5

There is existing work on absorbing tokenization completely into part of language modeling by using extremely small tokens,
such as Byte-level T5 (Xue et al., 2021). In the extreme, such a model would become closer and closer to lexinvariant LM,
since bytes or bits have almost no stable meaning, so their embeddings are likely not used for prediction. In this paper, we
study general lexinvariant LMs with the lexinvariant property baked in and without requiring specific tokenizers.

O.3. Group invariances and Data augmentation

Our implementation of lexinvariant LMs can be seen as performing a form of very aggressive data augmentation, where we
randomize the identity of each token in each sequence. From this perspective, it is somewhat similar to the data recombination
in (Jia & Liang, 2016; Akyürek et al., 2020) and augmentation of named entities in (Raiman & Miller, 2017), where certain
parts of the sentence are swapped with other words while still maintaining the original grammatical structure. In contrast
to these augmentations, the training for our lexinvariant LMs completely swaps out all parts of the input text.

O.4. Deciphering Substitution Cipher using LMs

In general, solving substitution ciphers, where the cipher key is a permutation of the original alphabet, is a NP-hard problem
when only having access to LMs that can assign probabilities to sequences (Nuhn & Ney, 2013). There have been several
works focusing on solving substitution ciphers using LMs, including approaches from searching over the permutation space
guided by LMs’ scores (Hauer et al., 2014) to training a seq-to-seq model directly to perform deciphering as translation
(Aldarrab & May, 2020). Although our work does not focus specifically on the task of deciphering substitution ciphers, we
show that our lexinvariant model can efficiently perform in-context deciphering as a byproduct of language modeling.

O.5. Reasoning

It has been shown that large language models acquire surprising in-context reasoning capabilities (Brown et al., 2020; Liang
et al., 2022; Srivastava et al., 2022). Many of them are related to lexical flexibility through training for purely next-token
prediction, such as modified arithmetic, data reformatting, and redefining single word etc. However, LLMs also memorize
an enormous amount of knowledge along the way, which is often unnecessary. This work can also be seen as an exploration
of whether a (semi-)lexinvariant LM can discount knowledge and prioritize learning the diverse structural reasoning patterns
in language, therefore achieving the strong reasoning capability of LLMs with a smaller model.

P. Broader Impacts
Our work primarily provides a scientific exploration and understanding of the properties of lexinvariant language models.
More broadly, these properties could potentially help improve the robustness, generalizability, and reasoning ability of LMs
in the future works. In general we don’t foresee more specific negative societal impacts from this work other than general
misuse of language models.


