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ABSTRACT

This paper studies the safe meta-reinforcement learning (safe meta-RL) problem
where anytime safety is ensured during the meta-test. We develop a safe meta-RL
framework that consists of two modules, safe policy adaptation and safe meta-
policy training, and propose efficient algorithms for the two modules. Beyond
existing safe meta-RL analyses, we prove the anytime safety guarantee of policy
adaptation and provide a lower bound of the expected total reward of the adapted
policies compared with the optimal policies, which shows that the adapted policies
are nearly optimal. Our experiments demonstrate three key advantages over existing
safe meta-RL methods: (i) superior optimality, (ii) anytime safety guarantee, and
(iii) high computational efficiency.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, |2018) has achieved significant successes in various
domains, from video games (Mnih et al., 2015; [Silver et al.| 2016} Lee et al.,|2018)) to robotics (Levine
et al.|[2016;|Lee et al.,2020; Margolis et al.,2021;[2024). The RL problem is formulated as a Markov
decision process (MDP) and aims to maximize the expected total reward. Safe RL (Yu et al.l 2019
Xu et al} 2021} Ding et al., [2021}; [Yu et al.| [2022) addresses additional safety requirements, such as
collision avoidance for robots (Xu & Zhul 2022; |Huang|, |2021) and operation restrictions in financial
management (Abe et al.| |2010). Typically, the safe RL problem is formulated as a constrained MDP
(CMDP) (Altmanl 2021)), which aims to maximize the expected total reward while ensuring that the
expected safety costs are below given thresholds. As noted in (Ding et al.| 2021)), the goals of reward
maximization and constraint enforcement are not completely aligned, aggravating the challenge of
the inherent trade-off between exploration and exploitation.

Meta-reinforcement learning (meta-RL) (Beck et al., |[2023)) aims to extract common knowledge
from multiple existing RL tasks, accelerating the learning process and increasing the data efficiency
of RL algorithms. Safe meta-RL (Khattar et al.l 2023 Xu et al) 2021) integrates safe RL and
meta-RL and inherits the benefits of both. On the other hand, existing safe meta-RL methods
face three new challenges: optimality, computational efficiency, and anytime safety. Meta-CRPO
(Khattar et al., 2023) considers an online safe meta-RL problem. In each round, it computes the
task-specific policy by CRPO (Xu et al.| 2021)) and updates the meta-policy that has the minimal
average distance to the task-specific policies of all previous tasks. However, the meta-training does
not optimize the performance of the task-specific policy adaptation, and the policies adapted from the
learned meta-policy may be sub-optimal for new tasks. Meta-CPO (Cho & Sun| |2024) optimizes the
policies adapted from the meta-policy by constraint policy optimization (CPO) (Achiam et al.|, [2017).
Nevertheless, its computational complexity is high in both the meta-training and meta-test stages.
Specifically, during the meta-training, meta-CPO aims to solve a constrained bilevel optimization
problem (Xu & Zhul |2023a) where the constraints are present at both the upper level and lower
level. It requires to compute the inverse of Hessian, which is computationally expensive. During the
meta-test, each policy adaptation step solves a nonconvex constrained optimization problem.

In applications of (safe) meta-RL (Nagabandi et al., 2018; [Belkhale et al.| 2021), during the meta-test,
the agent collects the rewards/costs of state-action pairs by exploring a new, unknown CMDP and
optimizes the policy based on the collected data. Therefore, it is important to guarantee anytime
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Table 1: Comparison with existing safe meta-RL methods

‘ Theoretical results \ Experimental results
) | Safety | Bounded - -
Methods | Constraint violation Target policy | optimality gap ‘ Efficiency  Optimality
(Khattar et al.}[2023) Positive Safety for final policy v Low Low
(Cho & Sun, [2024) Positive Safety for adapted policy X Low Medium
This paper Zero Anytime safety v High High

safety, i.e., the safety constraints must be satisfied for every policy used for the exploration. However,
the anytime safety is overlooked in all existing safe meta-RL algorithms (Khattar et al.l 2023;|Cho &
Sun, [2024)). Specifically, during the meta-test, they start with the meta-policy and repeatedly adapt
the most recent policy into a new one by the policy adaptation algorithm, which generates a sequence
of policies. Except for the final policy in the sequence, each policy, including the initial meta-policy,
is used to explore the environment and collect data. Meta-CRPO (Khattar et al.,[2023)) only quantifies
the safety constraint violation of the final convergent policy in the sequence, neglecting that of
intermediate policies for data collection. Meta-CPO (Cho & Sunl 2024) applies the CPO (Achiam
et al.|[2017) as the policy adaptation algorithm, which can quantify the safety constraint violation of
policies that have undergone at least one adaptation step. However, the safety of the meta-policy is
ignored. Moreover, both meta-CRPO and meta-CPO provide positive upper bounds of the constraint
violation, which do not guarantee zero violation of the safety constraints.

Main contribution. In this paper, we develop a safe meta-RL framework consisting of two modules:
safe policy adaptation and safe meta-policy training. Specifically, the safe policy adaptation is to
maximize an approximate accumulated reward function under approximate constraint functions. The
safe meta-policy training is to maximize the meta-objective function of the meta-policy, i.e., the
expected accumulated reward of the task-specific policies adapted from the meta-policy, while the
meta-policy satisfies the safety constraints. Then, we derive efficient algorithms for the two modules.
In particular, to solve the safe policy adaptation, we derive its close-formed solution under certain
Lagrangian multipliers, and propose a dual-method-based algorithm to solve the multipliers. For the
safe meta-policy training, we derive the meta-gradient, i.e., the gradient of the meta-objective, simplify
its computation by exploiting the softmax form of the adapted policy, and propose a Hessian-free
meta-training algorithm.

The proposed algorithms offer three key advantages over existing safe meta-RL methods. (i) Superior
optimality. Our safe meta-policy training algorithm maximizes the expected accumulated reward of
the policies adapted from the meta-policy, and then improves the optimality of meta-CRPO (Khattar
et al}2023) and naive transfers from meta-RL, which do not consider the task-specific safe policy
adaptation in the meta-training. (ii) Anytime safety guarantee during the meta-test. The safe
meta-policy training produces a safe initial meta-policy by imposing the safety constraint on it. The
safe policy adaptation imposes a constraint on the upper bound of the total cost, and thus is guaranteed
to produce a safe policy for each iteration when the initial policy is safe. By integrating these two
modules, anytime safety is achieved. (iii) High computational efficiency in both the meta-test and
meta-training stages. In the meta-test, the derivation of the close-formed solution makes it much more
efficient than those in meta-CRPO (Khattar et al., [2023)) and meta-CPO (Cho & Sun| 2024)), which
solve constrained optimization problems. In the meta-training, the close-formed solution of the policy
adaptation is used to derive a Hessian-free meta-gradient and reduces the computation complexity of
the proposed algorithm to approach that in the single-level optimization, making it more efficient than
meta-CPO (Cho & Sun, [2024) and many meta-RL algorithms (Finn et al., 2017; Liu et al., 2019b)
with the bi-level optimization steps and the computation of Hessian and Hessian inverse. We conduct
experiments on seven scenarios including navigation tasks with collision avoidance and locomotion
tasks to verify these advantages of the proposed algorithms.

Another major contribution of the paper is that it is the first to derive a comprehensive theoretical
analysis regarding near optimality and anytime safety guarantees for safe meta-RL. First, we establish
the theoretical basis of the algorithm design that guarantees anytime safety, i.e., zero constraint
violation for any policy used for exploration. Second, we derive a lower bound of the expected
accumulated reward of the adapted policies compared to that of the task-specific optimal policies,
which shows the near optimality of the proposed safe meta-RL framework. Finally, we demonstrate
a trade-off between the optimality bound and constraint violation when the allowable constraint
violation varies, which enables the algorithm to be adjusted to prioritize either safety or optimality.

Table[T]compares both the theoretical and experimental results between this paper and previous works
(Khattar et al.,|2023}|Cho & Sunl |[2024). First, this paper considers the anytime safety and provides a
zero constraint violation guarantee. In previous works, they only provided positive upper bounds for
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the constraint violation, and the upper bounds only work for the final policy (Khattar et al., 2023) or
the adapted policies (Cho & Sun, [2024). Second, although (Khattar et al.,[2023) provides an upper
bound of the optimality gap, the experimental optimality is the worst. On the other hand, (Cho &
Sun, 2024) does not provide an optimality bound. In contrast, the proposed method exhibits high
optimality and provides a near-optimality guarantee, outperforming existing approaches in terms of
both experimental and theoretical outcomes. Third, the proposed method is more efficient than the
existing approaches (Khattar et al.| 2023} |/Cho & Sun, [2024).

Related works. Due to the space limit, we include a section of related works in Appendix [A]

2 PROBLEM STATEMENT

CMDP. A CMDP M £ {S, A,v,p, P,r,{c;}’_,,{d;}’_,} is defined by the state space S, the
action space A, the discount factor ~, the initial state distribution p over S, the transition probability
P(s'|s,a) : § x A x S — [0, 1], the reward function r : § x A x S — [0, 7™**], p cost functions
where the i-th cost function is defined as ¢; : S X A x § — [0,c"**] fori = 1,--- ,p, and the
constant d;, which is the limit of constraint 7. The state space S could be either a discrete space or a
bounded continuous space. The action space A could be either discrete or continuous.

Policy. A stochastic policy 7 : S — P(.A) is a mapping from states to probability distributions over
action. When A is discrete, 7(a|s) denotes the probability of choosing action a in state s; when
A is continuous, 7(a|s) denotes the probability density. Denote the policy space as II. In addition,

a softmax policy parameterized by 6§ € R™ is denoted as g, where my(als) £ —o2Uo(s.0)

A exp(fo(s.a) S
= S caexp(fe(s,a))’ for discrete action
space A, and fp : S x A — R is an approximation function.

V(s,a) € S x A, for continuous action space A, or my(als)

Safe RL. For a policy 7, the value function is defined as V™ (s) = E[Y_ o, v 7(s¢, az, s¢+1)[s0 =

s, 7). The action-value function is defined as Q™ (s,a) £ E[Y oo, v'r(st, at, st+1)|s0 = s,a0 =

a,7]. The advantage function is defined as A™(s,a) = Q" (s,a) — V™(s). The accumulated
reward function is J(w) £ E,,[V™(s)]. Similarly, for each i = 1,--- ,p, we define V" (s) £

E[Z;’imtci(st,at,ml)\s() = s, QZ(S»G) £ E[ZzQWtCi(St,at,StJrl)\So = s,a9 = a, 7],
AT (s,a) £ QF (s,a) — VI (s), and J,(m) £ E,, [V (s)]. The discounted state visitation
distribution of 7 is defined as 1™ (s) £ (1 — Y)Egomp[>pog V' P (st = s|m)]. The safe RL problem
is to maximize the accumulated reward function while the accumulated cost functions satisfy the
constraints, i.e., solving the problem max,cry J(m) s.t. Jg, (7)) <d;, Vi=1,--- ,p.

Safe meta-RL with anytime safety. Safe meta-RL targets multiple safe RL tasks. Consider a space
of safe RL tasks I', where each task 7 € T is modeled by a CMDP M, = {S, A,7, p., Py, 7.,
{ci-}¥_1,{d; }¥_, }. Following the notions in the above subsections, the notations p., Pr, 7+, ¢; r,
dir,aswellas VI, VT QF, Q7. ., AT, AT, -, Jr, Je, ~, and v are defined for task 7. Consider a
set of safe RL tasks in I" following a probability distribution P(I"). Safe meta-RL aims to learn the
meta-prior from P(I") which can be used to train a policy for an unseen task 7;,¢,, ~ P(T") by a small
number of new environment explorations with anytime safety. In specific, during the meta-training,
tasks can be sampled from P(T"), i.e., {7;}1_; ~ P(I) and the tasks’ CMDPs {M }T_, can be
explored. During the meta-test, a new task 7., is given, and the agent explores the CMDP M.,
and produces the task-specific policy. Note that we consider the meta-training to be an offline stage,
e.g. done in simulated environments, the safety constraints may be violated. In contrast, the policies
are deployed to practical environments during the meta-test. Any policy used to explore M or
used to execute the task 7,,¢,, should satisfy the safety constraints.

Tnew

3 SAFE META-RL FRAMEWORK

The proposed safe meta-RL framework aims to learn a meta-policy 7 such that it can adapt to
an unseen task with anytime safety guarantee. The framework includes two modules: safe policy
adaptation and safe meta-policy training. During the meta-training, the task-specific policy 7" for
each training task 7 is adapted from the meta-policy 74 by using the safe policy adaptation. Then,
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the meta-parameter ¢ is optimized by using the safe meta-policy training. During the meta-test, the
learned meta-policy 7y is adapted to new tasks by the safe policy adaptation.

We propose the safe policy adaptation in Section [3.1] which can address the issues of safety guarantee

in (Khattar et al!} 2023) and high computational complexity in [2024), and propose the

safe meta-policy training in Section [3.2]to obtain a safe and optimal meta-policy. The integration
between these two modules ensures the anytime safety.

3.1 SAFE POLICY ADAPTATION

We first derive the optimization problem to achieve safe policy adaptation from the meta-policy. For
task 7, the policy 7™ is adapted from the meta-policy 7, by the safe policy adaptation .4°, which is

defined by 77 = A®(m4,A, A, 7) £

argmax o i [A7(5,0)] = XE, e (Dt (719 ol )] M
TE

Az-ldjT (87 a’)

toJe - E ™
S J“ (7T¢)+ é [ 11—~

s~vL
ar~(+]s)

} B, e (D, (2(13) o (1) < diy +

v

where i = 1,--- ,p, A & {X\ A¢,,-++ , A, } and A £ {6,,,--- 0, } are the hyper-parameters of
A®. The safe policy adaptation .A® in problem () is inspired by the derivation of CPO
[2017), where both problem (I)) and CPO aim to approximate the original safe RL problem.
Specifically, the objective and constraint functions of problem (I)) serve as upper bounds of the true
objective and constraint functions .J, () and .J., () of the safe RL problem. More details about the
upper bounds will be discussed in Lemmal ] of Section[5.1] More importantly, considering that the
explorations for the task 7 are limited, problem (T)) only needs to collect state-action data points and
evaluate A7” for a single policy 4, which keeps the same requirement of data collection as one-step
of gradient ascent in MAML [2017). Therefore, we denote A®, i.e., collecting data on the
meta-policy and solving the optimal solution of problem () as the one step of the policy adaptation.
Moreover, considering a single gradient ascent in MAML is usually insufficient to identify a policy
with good performance and safety, .A* is to completely solve the problem (T).

The existence of the solution, the safety, and the monotonic improvement are guaranteed for A4°.
Specifically, when setting A = 0, given that the meta-policy my is safe for task 7, i.e., Je, +(7) <
d;,,Vi = 1,---,p, for an appropriate hyper-parameter A, we have following properties: (i) the
feasibility set of problem is not empty; (i) 77 is safe for task 7, i.e., Jo, - (77) < d; -, Vi =
1,---,p; (iii) the performance of 7 is better than the meta-policy my, i.e., J-(n7) > J (7). The
complete statements and proofs of property (i) are shown in Proposition[I]of Section[d.T} properties (ii)
and (iii) under selected hyper-parameter A are shown in Section[3} Moreover, when the requirement
of the constraint satisfaction is not strict, setting d., = 0 for all 7 in problem (1)) may overly restrict
the policy update step. To enhance the algorithm’s flexibility, we set 0 < ., < 0ynq2 as an allowable
constraint violation in problem ().

As mentioned in the above properties (ii) and (iii), both CPO and problem (T) can achieve policy
improvement and safety guarantee. However, the computational complexity of directly solving CPO
or the constrained optimization problem of (I) is high. CPO (Achiam et all,2017) and meta-CPO
(Cho & Sun| [2024) solve an approximate problem to mitigate the issue, but the computational
complexity is still high, meanwhile the safety constraint violation cannot be avoided in theory and
also usually appears in practice. In contrast, the safe policy adaptation in problem (I)) is designed
to have the closed-form solution under certain Lagrangian multipliers, and then can be efficiently
solved by the dual method, which will be discussed in Section @

Note that problem (TJ), for the first time, simultaneously offers two key advantages: (a) constraint
satisfaction guarantee for a single policy optimization step (policy optimization using data collected
on a single policy), which enables anytime safety in each policy adaptation step during the meta-test,
and (b) the closed-form solution, which significantly reduces the computational complexity of the
meta-policy training. The details of the two benefits to the safe meta-RL problem will be discussed
in Sections 4.1 and [5} Consequently, it is particularly well-suited for the safe meta-RL problem
formulation. As the existing safe policy optimization algorithms, such as primal-dual-based algorithm
in RCPO (Tessler et al| (2018b), PPO-Lagrangian (2019), and CRPO used

by meta-CRPO, do not hold any of these two benefits, and therefore () cannot be replaced by these
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algorithms. Moreover, although some prior works (Zhang et al., 2020b; |Liu et al.||2022) also derive
closed-form solutions of safe policy optimization, safety cannot be guaranteed in each step. Instead,
safety is only guaranteed for the final convergent policy, where the trust region size € is reduced to 0.

3.2 SAFE META-POLICY TRAINING

We obtain the optimal meta-policy 7y by solving the following optimization problem:
max E;opm[Jr (A% (g, A, A, 7)), st Je, o (Tg) < dir +0c,,Vi=1,--- ,pand VT €. (2)

Here, E.pr)[J7 (A®(mg, A, A, 7))] is the meta-objective function and is defined by the expected
accumulated reward after the parameter is adapted by the policy adaptation, which evaluates the
optimality of the meta-policy m,. We choose the constraints J;, ,(7y) < d; + + d¢,,Vi=1,--- ,p
for any task 7 (similar to problem , we set ., as the allowable error). There are two reasons to set
the constraints. First, as shown in Proposition Jor(my) < dir +0¢;, Vi =1, pis asufficient
condition for that the safe policy adaptation algorithm A®(mg, A, A, 7) has a solution, and further
assure the safe meta-policy training (Z)) is well-defined. Second, the exploration of the CMDP by the
meta-policy 7, should be safe for each task 7 to guarantee the initial policy of the policy adaptation
is safe. As mentioned in Section A®(mg, A, A, T) is guaranteed to be safe for task 7 when 7, is
safe, and iterative policy adaptation using .A° is guaranteed to be safe. Therefore, the anytime safety
of the policy adaptation is guaranteed. Its formal statement is shown in Section [5]

4  ALGORITHM

This section introduces the efficient algorithmic solutions to solve problems (I)) and (2)), respectively.

4.1 DUAL METHOD FOR SAFE POLICY ADAPTATION

This section derives the dual method to solve problem () efficiently. As mentioned in Section[3.1]
based on the design of problem (), we can derive its closed-form solution under certain Lagrangian
multipliers, and then solve the Lagrangian multipliers to obtain the overall solution. We first derive
the closed-form solution of problem (I]) and show its existence in the following proposition.
Proposition 1. Suppose that the softmax policy 7y satisfies Je, +(7y) < d; r + ¢, ¥Yi=1,--- ,p,
the solution ™" of the optimization problem ({I)) exists. Under certain mild constraint qualifications,
there exists Lagrangian multipliers {u},  }7_, with 0 < u < oo, such that

WT(' | S) S8 exp(f¢(s, ) + n_l(A:¢(Sa ) - Zi):lu:i,rAng<s> )))’ (3)
forany s € S, wheren & X+ (1 —~) >0, ul A,

The complete statement of Proposition |1| that includes the sufficient condition for the existence of
{ul, -}7_,, as well as the proof of the proposition are shown in Appendix Proposition [1| shows
that, when the meta-policy 7y is softmax, the closed-form solution of the policy adaptation is

also softmax. The approximate function f, for the meta-policy 7, is adapted to fy + 7~ 1 (A7% —

leu* Ac?r) of 7. With this computation, the approximate function of 77 can be directly

c;, T Ci
obtained, which is much simpler than solving problem (I)). More importantly, it can significantly

reduce the computational complexity of the meta-gradient, which will be discussed in Section[4.2]

In addition, the closed-form solution in (3)) implies the safe policy adaptation (I)) can be reduced to

the policy adaptation for an unconstrained MDP under the penalized reward function. Specifically,

. . _ A T
when we define a comprehensive reward function 7, = r, — leuzi ~Ci r, then the term AT —

leuzi’TAZ;‘jT is the advantage function of 74 for 7. This implies that problem li is equivalent to

an unconstrained policy optimization problem, where the reward 7, is penalized by the negative costs
—¢;,r and the weights of the cost penalty are given by the Lagrangian multiplier u;, , of .

Proposition 2. Suppose the assumption in Proposition |l| holds. Let 7 (u = [uy, - , uyp|) be the

policy with 7 (-]s) o exp(fy(s,) + A+ (L =) 320y uide,) " (A7 (5,1) = 320 juidel+(s,)))-

Then, the Lagrangian multipliers {u:m}f:l in (3)) is the solution of the dual problem of (1)), i.e.,
min B~ (A7 — 0w AR (s.0) — Dicr (7" Cls)[ms ()] + S0 yuidl 4

P s~ur
UGRZO ar~m®
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where 1" = X\ + (1 =) 31_, wiA, and d; - 2 (1 =)(diyr +0e, = Jeyr (m4)).

Proposition@ shows the derivation of the Lagrangian multiplier ug, . Its proof is shown in Appendix
F.2.2} With u., ., the solution of safe policy adaptation (1) can be obtained immediately by Proposi-
%Zu Note that problem ) is the dual problem of (T)) with the closed-form 7 for any dual variable
u, which enables us to use the dual method to solve problem (@). Next, we provide the algorithm of
solving problem (@) and its computational complexity analysis.

Algorithm [T] states the algorithm for the safe policy adaptation. We apply the projected gradient
descent (PGD) to solve the optimization problem (4) to obtain the Lagrangian multipliers {u;, , }}_;,
then the closed-form solution of problem (T) is immediately obtained. The gradient of the objective
function L(u) of problem (4) w.r.t u (used in line Ié-_l| of Algorithm can be stated as

Vi L(w) = ~E,_, 7o [Eqmnu( ) [AZr (s, @)] + (1= P)Ae, Dicr (7 (|3) ()] + by (5)

S~Ur

where 7* and d;  are defined in Proposition , and then the gradient step is projected to R ;. The
computation in @ is derived based on the dual method shown in Proposition 6.1.1 in (Bertsekas),
1997), which is simplified compared with direct computation by the chain rule. The derivation is
shown in Appendix [F2.3] As the optimization problem (@) is the dual problem of (I)) and is always
convex, the PGD method in Algorithm [T]can guarantee convergence to the global optimum (Tusem),
2003). Due to the low dimensionality of the decision variables of problem (@) (the dimension of
the Lagrangian multipliers {uj” P_ is the constraint number p) and the simplicity of gradient
computation, the computational complexity of Algorithm [I]is much lower than directly solving
problem (T). Other Lagrangian-based policy optimization algorithms, such as RCPO [Tessler et al.
(2018b) and PPO-Lagrangian [Ray et al.|(2019), have been used to solve safe RL. However, they
are not suitable for this safe meta-RL problem. More discussion and the comparisons between the
proposed dual method in (@), ), and Algorithm[I]and the existing Lagrangian-based algorithms are
shown in Appendix [C}

Algorithm 1 Dual-method-based safe policy adaptation

Require: Meta-policy 74; Advantage functions A% and A.?.; step size f.

1: wj=0foralliel,---,p

2: forn=1,---, N do

3: Compute 7 (+[s) oc exp(fo(s,) + (A + (1 =) Xo7_; wide,) " (A7%(s,7) = o7_ wiAel+ (s, )
4 u; + max{0,u; — BV, L(u)} foreachi=1,--- ,p, where V,, L(u) is shown in

5: end for

6: ug, r =u;foralli=1,---,p

7w (+]s) oc exp(fo(s, ) + A+ (1= 9) 0oy ul, - Ae)) THAT (5,) = 0 uf, - A+ (s,-))

8: return {uy, . }_,, 7"

4.2 SAFE META-POLICY TRAINING ALGORITHM

To solve the optimization problem (2)) for meta-training, we first consider the computation of the meta-
gradient, i.e., VyE. pr)[J- (A% (74, A, A, 7))]. The following proposition provides the computation
of VgJ-(A*(my, A, A, 7)). Notice that the Lagrangian multipliers {u, . }{_, in Propositions|l|and
|Z| are solved by problem @) and thus depend on the meta-policy 74. We denote the solved Lagrangian
multipliers with 74 as u;, . (74) in the following sections.

Proposition 3. Suppose the assumption in Proposition (I holds. Let 17 = A®*(my, A, A, 7). Un-

der certain conditions, we have that V yJ.(n7) exists and V yJ.(n7) = ﬁEsw,ﬂr o (-]s)

[(Von(me) 71 Q7 (s,a) + n(my) "' VeQ7" (s,a) + Vo fs(s,a)) Q7 (s,a)l, where n(my) = X +
(1= 7) 30y ué - (7o) Ae, and Q7 2 Q7% = 377y, 1 (74)Qelr.

The computations of V4Q7°(+), V4Qe’r(+) and Vuy, ,(my) are shown in Appendices mand
[F3:3] The complete statement of Proposition 3 that includes the sufficient condition of the existence
of V4 J(7m7), as well as the proof of the proposition are shown in Appendix In Proposition
the gradient Vguy, _(mg) w.r.t ¢, is the gradient of the solved Lagrangian multipliers, i.e. the
optimal solution of problem (@). We apply the implicit gradient theorem for constrained optimization
in (Giorgi & Zuccotti, [2018; | Xu & Zhu, 2023a) to show the existence and the computation of
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Vgur, -(mg), which is shown in Appendix In practice, we simplify the computation of the
meta-gradient of VJ-(77) as

v amer (1) [(VoSs(s,a) +0(ms) T Ve Qr* (s,0)QF (s,a)], (6)

where () £ A + (1 =) 20 uf, -(79)Ac, and Vo Qr® = VoQr® — 37 uf, (m9)VeQelr.
In (6), we take Vyu?, (mg) = 0 in Proposition 3|approximately. On one hand, the computation
complexity of Vyug, . (mg) is high, as shown in Appendix On the other hand, under this
approximation, we only omit the small change of the Lagrangian multiplier uzm(mﬁ) around the
meta-policy 74, i.€., we keep the penalty to constraint violation but treat the weight of the penalty
to constraint violation unchanged over a small neighbor of 7,. Therefore, the omitted term is a
higher-order term with a smaller impact on the meta-gradient. Note that, the meta-gradients in
many meta-learning approaches include the Hessian computation, such as supervised meta-learning
approaches, like MAML and iMAML (Finn et al] 2017} [Rajeswaran et al} 2019} [Xu & Zhul [2023b),
meta-RL (Finn et al| 2017} [Liu et al.| [2019b) and safe meta-RL approach meta-CPO (Cho & Sun|
[2024). In contrast, thanks to the closed-form solution (shown in Proposition[I) of the policy adaptation
problem (), the meta-gradient in () does not include the computations of Hessian and inverse of
Hessian w.r.t. ¢, which holds a comparable computational complexity as the policy gradient, and
therefore is more computationally efficient than the above meta-learning approaches.

Algorithm 2 Safe meta-policy training algorithm

Require: Initial meta-policy 7y, ; allowable constraint violation ., defined in Problems (E[) and @)
forn=0,--- ,N —1do
Sample a task 7 with the CMDP M, from the task distribution P(T")

Tén

1:
2
3:  Evaluate J., - (74, ), Ar?"(-,-) and AZ’7 (-, -) by sampling data using the meta-policy 74, on task T
4
5

if Jo, - (74,) < dir +0c,,Vi=1,---  pthen
Obtain the task-specific policy 7" and the Lagrangian multipliers u?, (7, ) by Algorithm with the
meta-policy 74,

6: Evaluate Q7 (+,-) by sampling data using the task-specific policy 7" on task 7
7: Compute the meta-gradient V4 J, (77) by (6)
8: Take a step of TRPO (Schulman et al.}[2015a) with using V4 J- (77) towards maximize J,(77) to
obtain ¢pn41
9:  else
10: Choose any i, € {1,--- ,p} such that Jo, (7, ) > di, r + dc;,
11: Compute the policy gradient VyJo, -(7s, ) E, ., mn oy (19) Vo fsn (s, a)Agf:J(s, a)].
12: Take a step of TRPO with using V4 Jo, -(7g,,) towards minimize Jc, - (7e) to obtain ¢y+1
13:  endif
14: end for

15: return 74,

The safe meta-policy training algorithm aims to solve the optimization problem in (2) and is stated in
Algorithm@ To deal with the constraint imposed on the meta-policy 7 in problem @) we use the
idea similar to CRPO 2021). Specifically, we first check the constraint violation in line
E[ If the constraints are not violated, we maximize the meta-objective; otherwise, we minimize the
constraint functions. Under this procedure, we always have J., (74, ) < d;+ +d¢,,Vi=1,--- ,p
when computing the task-specific policy 7™ = A®(my, , A, A, 7), and therefore the solution of 7™
always exists, according to Proposition[I} To stabilize the training, we use the TRPO for the policy
update in lines[8|and[T2] which only needs the gradient information.

5 THEORETICAL RESULTS

In this section, we introduce the theoretical results of the safe meta-RL framework. Note that problem
([@) is a constrained bilevel optimization problem, and the convergence and optimality analysis of
solving the problem and obtaining 74 are widely studied in (Xu & Zhu, [2023a; Bertrand et al.| 2022

Liu et al.}[2021)). So we analyze the performance of the solved meta-policy 74 in our theoretica
results. In particular, we introduce the necessary assumptions and notations, derive the performance

guarantee for safe policy adaptation A® in Section [5.1] and then derive the optimality and safety
guarantee of the safe meta-RL framework in Section[5.2]
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We introduce several necessary assumptions and notations used in the theoretical results.
Assumption 1 (Non-empty feasible set). The feasible set of problem (2)) is not empty.

Assumption 2 (Sufficient visit in safe states). There exists a set of states S* C S and a constant
1 > 0 such that, for any task 7 € T and any safe policy 7° € {m € 11 : J., -(7) < d; + dmaz, Vi =
1,---,p}, v (s) >nforalls € S°.

Assumption |1| supposes that problem (2) is well defined and its optimal meta-parameter ¢* exists.
Assumption 2 supposes that there exists a set of states S such that the safe policy can take sufficient
visitation in the set S¥. We denote o € (0, 1] as the lower bound of the visitation probability of safe
policies to SV, i.e., > cgu VT (s) > aor [, v (s)ds > a for any 7°.

Since the reward 7, < 7" and ¢; » < "%, then [A7 (s, a)| <™ /(1 —v) and |A7, _(s,a)| <
cma® /(1 — ~) are upper bounded. We define the upper bounds as A™%* £ max,cr e |AZ (s, a)|
and A7'" £ max,er qen |A7 ,(s,a)| foreachi =1,--- ,p.

5.1 MONOTONIC IMPROVEMENT AND ANYTIME SAFETY FOR POLICY ADAPTATION

We first introduce an intermediate lemma. Its proof is shown in Appendix [F4.1]
Lemma 1. Suppose that Assumption holds. For any task T, and any safe policies 7, ' € {m €

11 : Jcm’(ﬂ') S d[ + 6"1,(1:1:5 Vi = 17 e ',p}’ we have JT(W/) S JT(T‘-) +]ESNV;F’G~7T'('|5) {%SZYQ)} +

pmaz AT (s,a
1743(1—7)2E3NV: [DKL(TH("S)HW("S))] and JT(TF/) 2 JT(TF) + ESNV,‘,’I,aNW’(-\s) |: 1(_7 ):| -
4y AT

na(l—"/)/2 E ,

and AT are replaced by A7, | and A7, ., A™ is replaced by A7'*", and J is replaced by J., ;.

Ci T’

s~vr [Dicp(7(+]8)||7(¢[s))]. The inequalities also holds for eachi =1, - -, p, when AT

The right-hand side of the inequalities corresponds to the objective function and constraint functions
of A® in problem (m), which has a closed-form solution, as shown in Section@ In specific, when
using the first inequality in Lemmaon the accumulated cost J,, (7”), the right-hand side is the
upper bound of J., (7). Therefore, the constraint functions in problem (1)) limit the upper bound
of J., - (n’) to be below the specified constraint requirement, which also applies to J,, () itself.
When using the second inequality in Lemma on the accumulated reward J, (7'), the right-hand side
is the lower bound of J(7’). Then, .A® in problem (1) is to maximize the lower bound of J.(7'),
which guarantees monotonic improvement. This idea is also used in (Schulman et al., 2015a; |Achiam
et all[2017). We state the results in Proposition[d]and show its proof in Appendix [F.4.2]

Proposition 4. Suppose that Assumption @holds. Suppose 4 satisfies J., - (1) < dir + 0c,, Vi =
1,---,p. Let m™ = A%(my, A, A7) with X > % and A, > % for each i. Then,

Jeir (7)) < dj r + O, for each i, and J (77) > J- (7).

With this proposition, we can derive the properties of monotonic improvement and anytime safety
guarantee for the policy adaptation, which is stated in Corollary [T}

max

max A
Corollary 1. Suppose that Assumptionsand hold. Let A > sz(Alf’y) and ., > ::(17:7)2 for

i=1--,p Letw) ) = AS(W[Tk],A, A, T) with d., = 0 for k € N, where Ty = Mo being the
. Then, for all k € N, Je, (7)) < di - for each i and J-(7]) 1)) = J7 (7).

solution of problem

When a new task 7 € T is given, we start from the meta-policy 7+, iteratively implement 4%, and
generate a policy sequence {W[Tk] HY_,- As indicated in Corollary , the constraints are satisfied for
each policy in the policy sequence, which shows the anytime safety of the policy adaptations.

5.2 NEAR-OPTIMALITY AND SAFETY GUARANTEE FOR META-POLICY TRAINING

In Section @ we show the policy is monotonically improved from 74~ during policy adaptation. On
the other hand, 7y~ is learned from the task distribution P(T"), which should be a good initial policy
for the task sampled from P(I"). In this section, we compare the policy adapted from 74+ with the
task-specific optimal policy and verify the near-optimality of the proposed safe meta-RL framework.
We start with the definition of the optimal task-specific policies and the task variance.
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Definitions. Define the optimal policy 77 for task 7 as 77 £ argmax, cry Jo () s.t. J, - (7) < d; .
Define the e-conservatively optimal policy W:A[E], which is optimal for 7 under conservative safety

constraints, i.e., ] £ argmax, .y Jo(m) st Je, (1) < dir — €, where the conservative

constant € > 0, and w[ = 7] ). We define the variance of a task distribution P(T") as Var(P(T')) =

ming B pyE__ s [Drr(nl(:s)||me(-|s))], which the minimal mean square of the distances

S~UVr
among the optimal task-specific policies 7., and the minimal point is denoted as ¢. Similarly, the
task variance under the conservative safety constraints is defined as Var®(P(I')) £ ming E, _p(r)

E, . .7 [Drr(m] 4(]s)|me(|s))], and the minimal point is denoted as ¢!, The radius of P(I)

is defined as R(P(T)) £ max,ercep B =0 [Drp(n] T iqCls)m e (+]s))], where the set E'is
definedby £ £ {¢ > 0: 77 (] exists for all 7 € I'}. Note that the task variance Varle and the radius
R is the inherent property of P(T"), which measures the similarity of tasks sampled from P(T"). For
example, if the reward function 7 and cost ¢; among tasks are similar, optimal policies 7] [ Are close,

then Var!l and R are close to 0. With the definitions, the near-optimality and safety guarantee of the
safe meta-RL is shown in Theorem Il

Theorem 1. Suppose that Assumptions |1 and I hold. Let A\ = % Ae;, =

tyApe
na(l-7) and
8yAma® ) gy Amaz

e, = n(:(la . R(P(T)) —eforalli =1,--- ,p, where ¢ is chosen from [O, T V)QR( (T ))} Let

@* be the solution of problem . The solution of A*(mg+, A, A, T) exists, and we have

8,yAmO/L'
E 5 . AA >F T I e <(P(T
7~P(T) [JT(A (7T¢ y 43y ,7'))] 2 Brp) [JT(TF*’H)] na(l 77)2])@7« ( ( ))7 @)
Jey (A% (mge, A, A T)) —de, » < SrA R(P(I")) fe el 8)
CiyT T+ My D, T)) — COcy 7 S — 7 o — €, Jorany T .
¢ na(l —-)? Y

The proof of Theorem [I]is shown in Appendix [F:4.3] The theorem derives (i) the lower bound of the
expected accumulated reward of the policy 77 adapted by one time of .4° from the meta-parameter
7y with the comparison to the task-specific (conservatively) optimal policy 7} Kk It also derives (ii)
the upper bound of the constraint violation for each task 7.

Case 1 (Safety guarantee). When 0., = 0, the safe constraint is strictly satisfied, i.e., J., -(17) —

gmac
de,,r < 0 forany T, but the optimality comparator J, (7] [6]) with € = :J(IC’W)Q R(P(T)) in (El) is
suboptimal (e-conservatively optimal).

Am,am
ke 2 > R(P(I")), the optimality comparator J.(w] [0]) =

na(l—y SyAmes
R(P(T)).

77;(1(1 ok

Case 2 (Near-optimality). When §., =

J(wl) in (ﬂ) is all-task optimum, but the constraint is violated at most

As shown in Cases[I]and 2] there is a trade-off between the optimality of accumulated reward and
the safety constraint satisfaction when the allowable constraint violation thresholds J., vary. In
particular, when d., is increased, the optimality is improved while the constraint violation increases.
As indicated by the optimality-safety trade-off, in the implementation of the proposed algorithm, we
choose a large ., when the constraint satisfaction is not required to be strict, and a small §., =~ 0
when the constraint satisfaction is prioritized. The reason for the trade-off is that the constraint
function in problem @) approximate the true constraints J., - (7) — d., » < 0 for any « by only
knowing the information (the advantage functions A.?,) at a single policy ¢, and therefore are more
conservative than the true constraints, which leads to loss of optimality. To the best of our knowledge,
as anytime safety cannot be guaranteed in the existing framework (Khattar et al.||2023;|Cho & Sun,
2024)), it is the first time to show the trade-off between optimality and safety, and is also the first to
provide an optimality bound with the anytime safe guarantee. Moreover, Theorem|I]is reduced to the
optimality analysis in (Xu & Zhul 2024) when choosing ¢ = 0 for the unconstrained meta-RL.

Next, we delve into the optimality bound. Consider fixing d., and € and then fixing the upper bound
of the constraint violation J., - (77). Theorem shows that, the performance of meta-RL is improved
when the variance of the task distribution Var<(IP(T")) is reduced, as 77 approach the task-specific
optimal policy WI’[e]. It corresponds to the intuition of meta-learning, which is that, when the variance
of a task distribution is smaller, the tasks are more similar, and then the experience learned from the
task distribution works better for new tasks sampled from the task distribution.
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Figure 1: Average accumulated reward (columns 1 and 3, higher is better) and maximal accumulated cost
(columns 2 and 4, higher is worse) across all validation/test tasks during the meta-training (columns 1 and
2) and the meta-test (columns 3 and 4) in Half-Cheetah (row 1) and Point-Circle (row 2). The accumulated
reward and cost during meta-training are computed on the policy adapted one step from the meta-policy. The
black dashed line is the constraint of the accumulated cost (below the line means satisfaction).

6 EXPERIMENTS

Our experiments aim to validate three claimed benefits of the proposed algorithms for safe meta-RL:
(i) superior optimality, i,e, the accumulated rewards of the proposed algorithms can exceed those of
baselines; (ii) anytime safety, i,e, all the learned meta-policy and the adapted policies should satisfy
the safety constraint; (iii) high computational efficiency for both the meta-training and meta-test.

We conduct experiments on four high-dimensional locomotion scenarios, including Half-Cheetah,
Humanoid, Hopper, Swimmer, and three navigation scenarios with collision avoidance, including
Point-Circle, Car-Circle-Hazard, and Point-Button in Gym and Safety-Gymnasium libraries (Brock
man et al., 2016; Ji et al.l 2023). We compare the proposed method with three benchmarks: (a)
MAML (Finn et al.L 2017) with constraint penalty; (b) meta-CPO (Cho & Sun, 2024); (c) meta-CRPO
(Khattar et al., 2023). In (a), we add a weighted penalty term for constraint violation to the loss
function of the MAML. Note that (c) is originally designed for online safe meta-RL, where tasks
are revealed sequentially during the meta-training. So, we use (3) with all training tasks provided
before the meta-training and it does not have the meta-training stage (Figures[I]and [2]do not have
meta-training for meta-CRPO). For the fairness of the comparison, all the methods have the same data
requirements and task settings. More details about the settings of the tasks, algorithm implementation,
and hyper-parameters are shown in Appendices and[D.2]

Figures[T]and2]show the experiment results HltCheetan Pontorce
in Half-Cheetah and Point-Circle. Due to a0 o e oy
the page limit, the results on the other four =3 MewoRPO 3 MetcRPO
scenarios are shown in Appendix [D.3] Fig-

ure[I|shows that the proposed safe meta-RL

algorithm significantly outperforms all the
baseline methods regarding the optimality,
i.e. about 50% improvement over the best
baselines in terms of the accumulated re- Figure 2: Normalized computation time of the meta-training
wards during both the meta-training and (per iteration) and meta-test in Half-Cheetah and Point-Circle.

the meta-test in Half-Cheetah and Point-Circle. Moreover, as shown in the fourth column of Figure m
the proposed algorithms achieve anytime safety during the meta-test, i.e., the maximal accumulated
costs always satisfy the constraints, while the baselines cannot achieve it. Figure 2] shows that our
algorithm is much more efficient than the baselines, saving about 70% of the computation time for
meta-training and 50% for meta-testing compared to meta-CPO.

©

Normalized computation time
N

Normalized computation time
o o =~ =~ n N
S o o 5 o o

Meta-training Meta-test 0 Meta-training Meta-test

7 CONCLUSION

In this paper, we study a safe meta-RL problem with the requirement of anytime safety. We present
an algorithm with three key advantages, including superior optimality, anytime safety guarantee, and
high computational efficiency. We provide a theoretical analysis regarding the near-optimality and
safety guarantees and empirically demonstrate the advantages of the proposed algorithms.

10
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Appendix for ''Safe Meta-Reinforcement Learning via
Dual-Method-Based Policy Adaptation: Near-Optimality and
Anytime Safety Guarantee"

A RELATED WORKS

Safety metrics in safe RL. Safe RL aims to handle the safety requirements in the practical applica-
tions of RL. Safe RL typically applies two categories of safety metrics. The first metric is used in
CMDP (Altman, 2021) and is applied in (Tessler et al.,[2018a; |Chow et al.,[2018}; [Ding et al., 2021}
Chen et al.,|2021; |/Achiam et al.,|2017;|Yang et al., 2019; |Polosky et al., [2022). It introduces costs
associated with state-action pairs based on MDP, and the agent is defined as safe when the expected
accumulated costs satisfy given safety constraints. The second metric is remaining in the safety
region (Wachi & Suil [2020; |Yu et al., [2022} [Paternain et al., [2022), which is stricter than the first
metric. Specifically, the agent is safe when it remains in a desired safe set for any sampled trajectory.
In this paper, we consider the anytime safety during policy adaptation, where each policy is required
during the exploration of an unknown MDP. It is naturally infeasible to guarantee anytime safety
under the second safety metric, as the action to remain in the safety region is unknown before the
exploration. In contrast, the agent could be safe under the first safety metric even if it visits some
undesired states. As a result, we consider the first safety metric.

Solutions of CMDPs. The solutions of the CMDPs can be categorized into (i) penalty function
(Guan et al., [2022), (ii) primal-dual approaches (Tessler et al., | 2018a; Chow et al.| 2018} |Yu et al.,
2019; Ding et al.| 2021} |Chen et al.,[2021), (iii) trust-region approaches (Achiam et al., 2017} Yang
et al.,|2019; Zhang et al.,|2020Db} [Liu et al.,|2022). Existing works theoretically establish the safety
guarantee for both primal-dual approaches (Chow et al.,[2018; |Yu et al.,|2019; |Ding et al.,[2021) and
trust-region approaches (Achiam et al.,[2017). The primal-dual approaches update the dual variables
and the policy simultaneously. Therefore, they gradually reduce the total cost below the required
threshold by multiple policy optimization steps and can only establish the safety guarantee for the
final convergent policy and cannot guarantee anytime safety during policy optimization. Therefore,
they cannot meet the anytime safety requirement during policy adaptation in the safe meta-RL
problems, i.e., the safety constraints are satisfied during each step of policy adaptation. In contrast,
trust-region approaches constrain the policy within a safe policy set, potentially ensuring safety for
every policy during the policy optimization process. However, the computational complexity of
existing trust-region approaches is high, especially when applied to the safe meta-RL problem. The
safety policy adaptation in this paper belongs to the category of trust-region approaches. On the other
hand, we propose a novel safe policy adaptation method and derive a dual method to address the
computational inefficiency issue.

Cautious adaptation and safe meta-RL. Cautious adaptation (Zhang et al.|[2020a) and safe meta-
RL both consider to learn prior knowledge to improve the safety level of the adaptations in new
environments. On the other hand, cautious adaptation considers the out-of-distribution exploration
with the prior learned safety knowledge. The safe meta-RL focuses on in-distribution few-shot
learning with safety constraints. Therefore, the safe meta-RL requires less exploration data during
adaptation than cautious adaptation, but is limited to in-distribution tasks and less generalizable than
cautious adaptation.

Safe meta-RL v.s. multitask/multi-objective safe RL methods. Safe meta-RL, multi-task safe RL
Kim et al.|(2023)), and multi-objective safe RL |[Huang et al.|(2022) all consider the multiple tasks
in the safe RL setting. However, the biggest difference between meta-safe RL and multi-task/multi-
objective safe RL is that the agent in meta-safe RL is required to adapt to a new and unknown
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environment under few-shot data collection. Therefore, the policy adaptation algorithm is the most
important part of meta-safe RL. This paper designs a novel policy adaptation algorithm that holds
several benefits for the few-shot policy adaptation that the existing methods do not hold. In contrast,
the multi-task/multi-objective safe RL learns the policies for multiple tasks during the training stage,
where the policy adaptation is not required. Therefore, the multi-task/multi-objective can borrow the
existing policy optimization methods and do not need to design a new one.

B DISCUSSION OF THE RELATIONS BETWEEN CPO (ACHIAM ET AL.,[2017))
AND THE SAFE POLICY ADAPTATION BY PROBLEM (1))

The safe policy adaptation .A° in (T)) is inspired by the derivation of CPO, the first optimization
problem in Section 5.3 of (Achiam et al., 2017), and replaces the term \/Drcr, (7 (-[s)[[74(-[s)) in
the objective and the constraint functions of the optimization problem by Dy, (7(-|s)||7me(+]s)).
Similarly, we derive the inequalities in Lemma [I| replace the term maxg Dy, (7'(:|s)||7(:]|s) in
Theorem 1 in (Schulman et a1.|, |2015a|) and replace the term /E~,r [Dgr(7'(:|s)]|7(-[s))] in
Corollary 3 in (Achiam et al., 2017) by Es~,x [Drr(7'(-|s)||7(+|s))] in the right-hand side of the
inequalities.

The modification from (Achiam et al, 2017) to the safe policy adaptation .A® holds two benefits:
(i) performance guarantee and (ii) computational efficiency. First, as Corollary 3 in (Achiam et al.
enables the feasibility, the monotonic improvement, and the constraint satisfaction to hold
for the solution of the first optimization problem in Section 5.3 of (Achiam et all2017), Lemmal[T]
enables the feasibility, the monotonic improvement, and the constraint satisfaction to hold for the
safe policy adaptation .A°. Second, the modification to the safe policy adaptation .4° enables us
to derive its closed-form solution and .A® can be solved by the dual method, which significantly
reduces the computational complexity of the meta-safe RL algorithm, as mentioned in Section {.1]
On the other hand, one cannot use the dual method for the first optimization problem in Section 5.3
of (Achiam et al, [2017), and the computational complexity is high. Paper (Achiam et al.| 2017)
solves an approximate problem to mitigate the issue, but the computational complexity is still high,
meanwhile, the safety constraint violation cannot be avoided in theory and also usually appears in
practice.

C COMPARISONS BETWEEN THE PROPOSED DUAL METHOD AND EXISTING
LAGRANGIAN-BASED SAFE RL ALGORITHMS

The Lagrangian-based policy optimization algorithm, such as RCPO [Tessler et al.| (2018b)), PPO-
Lagrangian and CRPO used in meta-CRPO [Khattar et al.| (2023)),
has been widely used to solve safe RL. However, although both the proposed dual method in Section
BT and the primal-dual method in RCPO, PPO-Lagrangian, and CRPO, are Lagrangian-based safe
policy optimization algorithms, they are different. The primal-dual method is much worse than the
proposed method and is not suitable for this safe meta-RL problem.

The dual-method in Section 1] including @) and (), is to solve the safe policy adaptation problem
in (T). As mentioned in Section[3-]] the safe policy adaptation (T)) holds several benefits similar to
CPO, including the safety guarantee for a single policy optimization step (using data collected on a
single policy) and the monotonic improvement. Moreover, we derive the closed-form solution under
certain Lagrangian multipliers for the optimization problem (I). Based on the derived closed-form
solution of (I) (shown in @) ), we can use the dual method shown in @) and (@) to solve the safe
policy adaptation problem in (T), which significantly reduces the computational complexity during
the meta-training.

In contrast, RCPO and PPO-Lagrangian do not hold any of the benefits shown in CPO and the
proposed algorithm. First, RCPO and PPO-Lagrangian use the gradient ascent steps on the Lagrangian,
which do not have the safety guarantee and the monotonic improvement in each policy optimization
step, and therefore cannot guarantee anytime safety in the meta-test stage. Moreover, there is no
closed-form solution for the policy optimization step in RCPO and PPO-Lagrangian, and therefore
cannot be solved by the dual method, which leads the high computational complexity during the
meta-training.
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D EXPERIMENTAL SUPPLEMENTS

All experiments are executed on a computer with a 5.20 GHz Intel Core 112 CPU.

D.1 TASK SETTINGS

(b) Humanoid

£ o ® @
* n L
-. ® o. ; ? . ®
® »
°fe > ° o 09
(d) Swimmer (e) Car-Circle-Hazard (f) Point-Button
;

(g) Point-Circle

Figure 3: High-dimensional locomotion tasks and navigation tasks with collision avoidance.

We conduct experiments on totally seven scenarios, which include four high-dimensional locomotion
scenarios (Half-Cheetah, Humanoid, Hopper, and Swimmer) in Gym library (Brockman et al., 2016),
and three navigation scenarios with collision avoidance (Point-Circle, Car-Circle-Hazard, and Point-
Button) in Safety-Gymnasium library 2023)). The scenarios are visually illustrated in Figure
Bl We use the task setups similar to those used in previous works on meta-RL and safe meta-RL

& Sunl, [2024;; [Finn et al.} 2017} [Khattar et al, 2023)). We provide the details of the task setups as
follows.

Half-Cheetah. Half-Cheetah (Figure [3]a) has a 17-dimensional state space and a 6-dimensional
action space. In the experiment of Half-Cheetah, the reward is the negative absolute value between
the agent’s current velocity and a goal velocity, where the goal velocity characterizes the task. The
task distribution is defined by the distribution of the goal velocity, which is a uniform distribution
from 0.0 to 2.0. The cost is defined by hcheetan — ho < d, i.e. the cost is positive when its head is
higher than hy.

Humanoid. Humanoid (Figure B]b) has a 376-dimensional observation space and a 17-dimensional
action space. In the experiment of Humanoid, the reward is set as v,, sin 6 + v,, cos 6, where v, and
vy are the velocities along the z-axis and y-axis, and 6 is the walking direction of the humanoid. So
the reward is the velocity along the direction 6. The task is characterized by the walking direction 6,
which is sampled uniformly from 0 to 7 /2. The cost is defined by the control cost of the humanoid
robot, i.e., Y i c?, where c; is the torque imposed on each component.
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Table 2: Hyper-parameter setting in .A°

scenario Mg  dr ey
Half-Cheetah 1.0 10.0 0.0
Humanoid 5.0 20.0 0.0
Hopper 1.0 5.0 0.0
Swimmer 0.2 5.0 0.0
Point-Circle 0.5 10.0 0.0
Car-Circle-Hazard 0.5 10.0 0.0
Point-Button 0.5 10.0 0.0

Hopper. Hopper (Figure[3]c) has a 12-dimensional state space and a 3-dimensional action space.
In the experiment of Hopper, the reward is the negative absolute value between the agent’s current
velocity and a goal velocity, where the goal velocity characterizes the task. The task distribution is
defined by the distribution of the goal velocity, which is a uniform distribution from 0.0 to 1.0. The
cost is defined by the control cost of the robot.

Swimmer. Swimmer (Figure[3]d) has a 8-dimensional state space and a 2-dimensional action space.
In the experiment of Swimmer, for different tasks, we add a Gaussian noise to the state transition,
and the variance is uniformly sampled from 0.0 to 0.5 for different tasks; we use the reward defined
as the negative absolute value between the agent’s current velocity and a goal velocity, which is a
uniform distribution from 0.0 to 1.0, we used the cost defined by the control cost of the swimmer
robot, i.e., w ), c?, where c; is the torque imposed on each component and the weight w is sampled
uniformly from 0.5 to 1.

Point-Circle. Point-Circle (Figure[3]e) has a 28-dimensional state space and a 2-dimensional action
space. In the experiment of Point-Circle, a positive reward is given when the agent runs in a circle,
and a positive cost is given when the agent does not stay within the safe region. The setting of the
safe region characterizes the task. The task distribution is defined by the distribution of the circle
radius and the wall distance. The circle radius is a uniform distribution from 1.0 to 1.5 and the wall
distance is a uniform distribution from 0.55 to 0.75.

Car-Circle-Hazard. Car-Circle-Hazard (Figure [3|f) has a 60-dimensional state space and a 2-
dimensional action space. In the experiment of Car-Circle-Hazard, a positive reward is given when
the agent runs in a circle, and a positive cost is given when the agent does not stay within the safe
region or collides with Hazards. The setting of the safe region and the hazards characterize the task.
The task distribution is defined by the distribution of the circle radius, the distribution of the positions,
and the distribution of the number of hazards. The circle radius is a uniform distribution from 0.7 to
1.0 and the number of hazards is a uniform distribution from 3 to 7. the distribution of the position of
the hazard is a uniform distribution over the safety space.

Point-Button. Point-Button (Figure [3]g) has a 56-dimensional state space and a 2-dimensional
action space. In the experiment of Point-Button, a positive reward is given when the agent touches
a goal button, and a positive cost is given when it does not stay within the safe region and touches
any no-goal button or hazards. The setting of the buttons and the hazards characterize the task. The
task distribution is defined by the distribution of the number and the positions of buttons and the
number and the positions of hazards. Both the number of buttons and the number of hazards is
a uniform distribution from 6 to 10, and the distributions of positions of buttons and hazards are
uniform distributions over the safety space.

D.2 ALGORITHM SETTINGS

We apply Algorithm ] We consider the policy as a Gaussian distribution, where the neural network
produces the means and variances of the actions. The neural network policy has two hidden layers of
size 64, with tanh nonlinearities. The horizon is 200, with 40 rollouts per policy adaptation step for
all problems in the high-dimensional locomotion scenarios. The horizon is 500, with 10 rollouts per
policy adaptation step for all problems in the navigation scenarios. The discount factor v = 0.99.
The models are trained for up to 300 meta-iterations in the meta-training. In each iteration, we
sample 10 tasks from the task distribution. The meta-policy is tested on 20 tasks and is adapted by 20
iterations for each task in the meta-test. For the TRPO in meta-parameter optimization, we use the
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KL-divergence constraint as § = le — 3. We set A = A, in the safe policy adaptation .4° in problem
(I). Table[2]shows the setting of A and d in .A*® for each scenario.

We compare the proposed method with three benchmarks: (a) MAML (Finn et al 2017) with
constraint penalty, (b) meta-CPO (Cho & Sun, [2024), and meta-CRPO (Khattar et al.,[2023)). For all
methods, we run each algorithm 5 times, including meta-training and meta-test, and show the mean
and standard deviation of the evaluation quantities.
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Figure 4: Average accumulated reward (columns 1 and 3, higher is better) and maximal accumulated cost
(columns 2 and 4, higher is worse) across all validation/test tasks during the meta-training (columns 1 and
2) and the meta-test (columns 3 and 4) in Humanoid (row 1), Hopper (row 2), Swimmer (row 3), Car-Circle-
Hazard (row 4), Point-Botton (row 5). The accumulated reward and cost during meta-training are computed on
the policy adapted one step from the meta-policy. The black dashed line is the constraint of the accumulated cost
(below the line means satisfaction).

D.3 SUPPLEMENTAL RESULTS

Figures {f] and [5] show the experimental results in Humanoid, Hopper, Car-Circle-Hazard, and Point-
Button. Note that meta-CRPO is not designed for offline optimization of meta-policy, and then there
is no meta-training result for the approach. Due to the high dimension of the Humanoid tasks, the
meta-training of meta-CPO is too slow (10 times slower than the proposed method) in Humanoid
tasks. It is extremely time-consuming to run the meta-training of meta-CPO multiple times on
humanoid tasks and draw its figure. So the result of meta-CPO is not shown in Fig
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Figure 5: Normalized computation time of the meta-training and the meta-test in Humanoid, Hopper, Swimmer,
Car-Circle-Hazard, and Point-Botton.
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Figure 6: Average accumulated reward (columns 1 and 3, higher is better) and maximal accumulated cost
(columns 2 and 4, higher is worse) across all validation/test tasks during the meta-training (columns 1 and 2)
and the meta-test (columns 3 and 4) in Half-Cheetah (row 1) and Car-Circle-Hazard (row 2). The accumulated
reward and cost during meta-training are computed on the policy adapted one step from the meta-policy. The
black dashed line is the constraint of the accumulated cost (below the line means satisfaction).

Figure ] shows that the proposed safe meta-RL algorithm significantly outperforms all the baseline
methods regarding the optimality, i.e. the accumulated reward during both the meta-training and
the meta-test in all the scenarios. Moreover, it shows that the proposed algorithms achieve anytime
safety during the meta-test, i.e., the maximal accumulated costs always satisfy the constraints, while
the baselines cannot achieve it. Figure[5]shows that our algorithm is much more efficient than the
baselines in meta-training and meta-test.

D.4 SELECTION OF HYPER-PARAMETER

To investigate the influence of the hyper-parameter, the allowable constraint violation constant d.,,
in experiments, we conduct the experiments with 6., = 0.0, 1.0, 2.0 and 3.0, on two environments,
including Half-cheetah and Car-Circle-Hazard. The results are shown in Figure[§]

As stated in Section[5.2] the theoretical result shows a trade-off between the optimality and the safety
constraint satisfaction when the allowable constraint violation thresholds ., vary. In particular, when
d., is increased, the optimality is improved while the constraint violation increases. This statement is
verified by Figure[] Specifically, especially in Car-Circle-Hazard, when the allowable constraint
violation threshold d,., varies from 0.0 to 3.0, the performance is improved but the constraint violation
is increased in both the meta-training and the meta-test. Therefore, as indicated in both theoretical
results in Section @ and the experimental results in Figure |§|, we choose a large J., when the
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constraint satisfaction is not required to be strict, and a small §., — 0 when the constraint satisfaction
is prioritized.

For the hyper-parameter A\, \.,, we set A = )., and tune them such that, the KL divergence of initial
policy 7 and the adapted policy 7’ solved from the safe policy adaptation problem (m) is close to
0.03. If the KL divergence is too large, the objective and constraint functions of problem (I) are not
good approximations to the accumulated reward/cost functions, as indicated by Lemmal[I] If the KL
divergence is too small, the policy adaptation step of problem (T)) is too small.

E ALGORITHM SUPPLEMENT

E.1 AN ALTERNATIVE ALGORITHM IMPLEMENTATION

When the proposed algorithms are applied to high-dimensional continuous state and action spaces,
we provide Algorithms [3]and ] an alternative algorithm implementation of Algorithms [2] and [I]
Compared with Algorithms and Algorithms and avoid approximating A7*" and A% during
the meta-training, since it is costly to approximate the value functions V;"*" and V%" by neural
networks and use GAE (Schulman et al., 2015b) to estimate the advantage functions A7*" and Az’
for each sampled task. Instead, Algorithms and only require to approximate Q7°" and Qr.%,
which can be estimated by Monte-Carlo sampling.

More specifically, in line [3]of Algorithm [3|replace

p

7 (1s) oc exp(fo(s )+ A+ (1= ) D wide) (AT (s.) = D7

in line 3] of Algorithm[T]by

ulAz:iT (Sa )))

R Cfs) o expl (s )+ (1 =) Do uide) QT (5,) = 301 wiQFie(s,): - ©)

These two equations are equivalent, where the ) function replaces the A function. Similarly, line [T0]
of Algorithm[3]is also equivalent to line[7]of Algorithm [T}

Line[IT]in Algorithm[4]is equivalent to line[IT]of Algorithm 2] where the @) function also replaces
the A function. The left problem is how to solve the optimization problem (@) and obtain the the
Lagrangian multipliers u?, (7, ) only using the @ functions.

We show the solution next. The gradient of the objective function L(u) in problem (4) w.r.t u is
Vi L(u) = =E 7o [Eanmu(is)[Aelr(s,a)] + (1= 1)Ae, Drcr, (7" ([s) 176 ([5))] + i 1,

S~U,

as shown in . Notice that the value of V,,, L(u) is the constraint function in the optimization
problem (TJ),

—E, ¢ [Bana(s)[Aelr (s, a)] + (1= y)Ae; Dicr (w(:]) 7o (-|5))] + i -,

when 7 = 7. Moreover, the constraint function in problem (TJ) is already designed as a replacement
of —J, - (m) +d; » + d, and it is cheaper to compute than —J., () + d; » + d, for arbitrary 7 in
problem . However, in the problem of approximating V,,, L(u), thanks to the derived closed-form
77 as w* shown in @), using the original one —J., - (7*) + d; » + d., becomes cheaper. So, we
directly use —J,, - (7%) + d; » + d,. Therefore, we have

Vu L(u) = (1 = 3)(=Je, o (7%) 4+ di 7 + 6c,). (10)

Next, we use the first-order approximation to approximate —J;, - (7*) 4+ d; » + J¢,. Assume the
policy 7" is parameterized by 7y, , then

1 _
ﬁvuil’(u) ~ _Jciﬂ'(ﬂ—u) + di,‘r + 561'
~ = (vg‘]cia"'(ﬂ'¢)(0¢ - d)) + ‘]61177(71-4))) + di,T + 5(%

1 n
= VI In 7T¢(G|S)ch,r(s, a)](0u — @) — Jcm'(ﬂaﬁ) + dir + 0c;

- E

177 SNV: 704"’7"¢'("3)[
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Algorithm 3 Safe policy adaptation algorithm with the first-order approximation

Require: Meta-policy 74; Advantage functions Qr¢ and Q:f’ - step size (3.

1: u; =0forallie1,---,p

2: forn=1,--- ,Ndo

3 Compute 7(-|s) o exp(fo(s,-) + (A4 (1 —7) 0L, wide) " (QT% (5, ) — S0, 0@ (5,))
4. fori=1,---,pdo B

5: u; < max{0,u; — BV, L(u)} where V, L(u) is shown in

6:  end for

7: end for

8 wur, ,=wu;foralli=1,---,p

9: 77 (:]s) x exp(fo(s, ) + A+ (1 —7)>" u;’T)\Ci)A( T(s,-) — leuzi,TQ:fT(S, N)

10: return {uy, -}, 7"

Algorithm 4 An alternative algorithm of meta-training

Require: Initial meta-policy 74,
1: forn=0,---,N do
2:  Sample a task 7 with the CMDP M from the task distribution P(T")
3:  Evaluate J., (74, ), Q%" (+,-) and Q2% (-, -) for the current meta-policy 74, on task T
4 if Jo, +(74,) < dir + 0c;,Vi=1,--- ,pthen
5 Obtain the task-specific policy 7" and the Lagrangian multipliers uZhT (7, ) by Algorithmwith the
meta-policy mg,,

6: Evaluate Q7 (-, -) for the task-specific policy 7" on task T
7: Compute the meta-gradient Vg J, (77) = ﬁE‘wu:T (1) [Vo fon (s, a)QT (s,a)]
8: Take a step of TRPO (Schulman et al.,|2015a) with using V4 J (7" ) towards maximize J-(7") to
obtain ¢n+1
9:  else
10: Choose any i, € {1,--- ,p} such that Jo, (7, ) > di, » + dc,,
11: Compute the policy gradient VyJc, (7, ) o B, . on anmg, (1s) Vol (s, a)Qgi:J(s, a)].
12: Take a step of TRPO (Schulman et all [2015a) with using GﬁbJCinaT(ﬂ-ﬁbn) towards minimize
Je;, ,7(my) to obtain ¢y41
13:  endif
14: end for
15: return
Then,

vuli(u) ~ _ESNV:”P@N%(.‘S)[VI lnﬂ(b(a‘S)QZz'qiT(S’a)](eu_¢)+(1_,y)(JCiaT(W¢)_di7T_6Ci)7

(11)
In this way, we replace all the estimations of the A function with the estimations of the () functions,
without the requirement of extra data collection.

E.2 ACTION SAMPLING IN ALGORITHM IMPLEMENTATION

In Algorithms[I]and[2] we need to sample actions from
u — T p T
" ([s) oc exp(f (s, )+ Q7 (5,7) = D wiQelx(s,)))- (12)

When the action space is discrete (no matter whether the state space is discrete or continuous), it is
trivial to do the sampling. When the action space is high-dimensional and continuous, it is not easy
to do the sampling. Here, we show two solutions. In the implementation of Algorithms[IJand[2] we
apply the second solution.

E.2.1 THE FIRST SOLUTION

Similar to many widely used RL algorithm implementations, such as (Schulman et al.| [2015a)), we
also consider the policy parameterized by a Gaussian distribution, i.e.,

m(als) = exp (fo(s,a)) = A;ex ,w
A = e (ol ) dad — p( %7 )
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2
where fy = —% and g4 is a neural network with the input s. So the policy is a softmax
b
policy.

For the policy in (I2), we have

u (a—gs(s)*  _1(a—gq(s))?
m(als) = Agexp | — 5 - 5 .
(als) e p( 22 n 253 )

Here, Q7% (s,a) — Y7 u;Qc~ (s, a) is approximated by — M + C(s) where gg(s) and
C'(s) are neural networks with the input s.
Then,

(0 (i gs(o) + m5igr ()

a— (556796 (8) + 5215z 90 8 )

m(als) = Asexp | — A A , (13)
2 b Q
765 +63

. . . . . mdY 57 .
i.e., the 7% (a|s) is Gaussian with the mean is TS go(s)+ T 155 9Q (s) and the standard deviation

252
is ;;’7_?_62 This can be sampled by many code libraries directly.
We can also treat the approximate function — w as A7’ (s,a) — >0 u;Acl+ (s, a) and used
Q

inAlgorithmsand, which take 7% (+|s) o< exp(fy (s, )+n~ 1(A:r"s(s,-)— P Al (s,0))).

E.2.2 THE SECOND SOLUTION

In the second solution, we also consider the policy parameterized by a Gaussian distribution, i.e.,

__ewlula) (@ gu(s)?
%(“'S)‘fa/eXp<f¢<s,a'>>da"Alep( 202 )

(a=g4(5))*

where fy = —— 52 and g is a neural network with the input s.

We use the policy parameterized by 6 to approximate the policy 7%(-|s) o exp(fs(s,-) +
Q7 (s,-) — Y0 uiQc’~(s,))), by minimizing the expected KL-divergence, i.e.,

minloss(0) =, _,x {DKL <7r9 (15) ||eXp(f¢(Sw)+77_1( 7 (5,0) = SopwiQeln (s, ))))} .

Zg (s)

As shown in (Haarnoja et al., 2018)), the problem is equivalent to ming loss(f) =

By amnye) [ 1079 (als) = (fals.0) + 07 (QF (s.0) = D07 wiQEte(s.a))) .

This optimization problem can be restated as

BNE, g | ot (10 () = (Fo(s.0) 407 @ (50) — 3 i@ (s.a) )|

Therefore, we do not need more data to approximate the expectation E__ . Similarly, we

sanmg(+]s)

can also use 7y to approximate 7 (+|s) o< exp(fy(s,+) + (A + (L — ) X0_ wide,) "L (AT (s, ) —
i=1WiAc;, S, .
p AT?
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F ANALYSIS AND PROOF

F.1 AUXILIARY RESULTS

Lemma 2 (Policy gradient (Sutton & Barto, |2018;|Agarwal et al.,[2021)). Let wg be the parameterized
policy with the parameter 0. It holds that

1 s
VgJT (7T0) :mESNlI:Q’aNﬂ'e(~|5) [VG In u; (a’|s)Q‘r9 (87 a)}
1
=15
Lemma 3 (Policy gradient of the softmax policy). For the softmax policy g as mg(als) =
exp(fo(s,a)) g : 2 exp(fo(s,a)) : ;
S oxn (o () (in discrete action space A) or mp(a|s) = Texp(fo (s.a7))da” (in continuous

action space A),¥(s,a) € S x A. It holds that

Eswyfe,a~w9(~|s) [VG In ,/TG(G‘|S)A:B (87 a)] .

1
VQJ-,— (7T9) :17ESNU:9 ar~mg(+]s) [VQfg (S, a)A:G (57 a)} . (14)
— ;
Proof. We prove it under the discrete action space .A. The proof under the continuous action space A
is similar.
From Lemma 2} we have

1
Vod:(mg) = ﬁE (15 [VoInmg(als) AT’ (s, a)]

U L eplfosa)
1 _VESNVTB,(LNWQ(.\S) [V@l (Za’GA exp(fg(s,a/))>AT (s,a)]

! B, ro san~mo (+|s) [V@fa(s, a)—Vgln (Z exp(fo(s, d))) AT (s, a’)‘|

o
s~v Y anmy

1y a’'€A
Here, Vg In (3" c 4 exp(fo(s,a’))) is independent with a, then V.J, ()

0

smv T armg(-]s)

Vo fo(s,a) = Voln (Z exp(fe(&a'))) A7 (s, a)]

a’eA

:7ESNV:9 ,a~tg(+|s) [V9f0(87 a)A:Q (87 a’)] -

1 U
EESNM‘,’_"Q [V@ In (Z exp(fg(s,a’))> ]EGNWS(_S)AT"(S,CL)] .

a’eA
Since Eqory(.1s) AT (5,a) = Eqrry(15)[QF° (s,a)] — V?(s) = 0. Then,

1
VoJr (7T9) ZEESNVIG ,arvtg(-]s) [v9f9 (S’ a)A:G (57 CL)] .

F.2 PROOFS OF CLOSED-FORM SOLUTION OF SAFE POLICY ADAPTATION

F.2.1 PROOF OF PROPOSITION(]

We provide the complete statement of Proposition [I]as the following Proposition 3]

Proposition 5. When the softmax policy my satisfies Je, +(7y) < dir + 0¢;, Vi = 1,--- . p, the
solution ™ of the optimization problem ({I)) exists. Suppose an appropriate constraint qualification
(o be stipulated) holds at w7, there exists {u;,  }7_, withu}, >0, such that

P

(- | 8) o exp <f¢<s, D AT (s, ) = Yk AT (s, ->>> ) V8 €S,
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Le.,

exXp (fd)(s? a’) + (A + E?:l u:i,‘r}\ci) - (A:¢(S7 a’) - f:l u;JAZ‘rﬁT(Sv a‘)))
D aeaexp (fo(s,a) + 071 (A7 (s,a") — o0_ ug, LAl (s,a'))) ’

in discrete action space A, or

exXp (fd)(s? a’) + (A + E?:l u:i,‘r}\ci) - (A:'r(ﬁ(s’ a’) - f:l u;JAZ‘rﬁT(Sv a‘)))
[exp (fo(s,a’) +n=1 (A77(s,a') — D20 uf, AL (s,a))) da ’

in continuous action space A, where n = (1 —y )X+ 30wk ..

7" (als) =

7" (als) =

There are many constraint qualifications where each of them assures the validity of the proposition,
including but not limited to Mangasarian-Fromovitz constraint qualification (MFCQ), linear indepen-
dence constraint qualification (LICQ), and Slater’s condition (SC) (Giorgi & Zuccottil [2018). Refer
to (Peterson, |[1973) for more validated constraint qualifications.

The assumption that one constraint qualification holds at 7" is mild. For example, if there exists a
policy 7 such that V2

Aclr

Jci,‘l‘ (’/T¢) + E |:“(S’a):| + )\Ci E

swu:¢ Y
ar~(-|s)

e [Drr (T([9)llme(-[s)] < dijr +0c;, (15)

%
then the Slater’s condition holds. Note that when 7 = 7y, we have J., ; (74)+ E {Aclf_(ja)} +
i swu:d’
ar~T(-]s)

A, B, 7o [Drr (m(:|s)|m(-s))] < dir + b, It usually exists a w near 74 such that holds
or the 7 itself can assure @]) holds. Next, we prove the proposition.

Proofs of Proposition[d] The optimization problem (I)) can be restated as

argrrrllin - E| [A7 (s, )] + AE,_ = [Dicr (n(:|s) |75 (-[5))],
S S~V
ar~r(ls)
st. E_ [Acir(s,0)] + AL B, 7o [Dicr (n(:s) 7o (-18)] < iy i =1, .p,
amr(]s)

where the constants X, = (1 — 7)., and d . £ (1 —7)(di.r + 0c, — Je, .+ (7).

First, we consider the discrete state-action space S x .A. Considering the probability at each state-
action pair 7(a|s) as the decision variable, the minimization is taken over the probability simplex
{m(|s): 0 < m(als) <1, ,c47(als) = 1}. Then the optimization problem is formally stated as

argmin E__ = [Z —7(als)AT?(s,a) + ADkr, (7r(|s)||ﬂ'¢(8))] ,
g acA

stE o [Z m(als)Acir(s,a) + A, Dk, (W('|S)W¢('|5))] <dj,, i=1-p,
acA
Z m(als) = 1 forany s € S,
acA
m(als) < 1foranya € A ;s €S,
—m(als) <0foranya € A,s € S.

Since 74 € IS, we have d; . = (1 =y)(dir +0c;, = Je; r (Tg)) > 0, the solution of exists.

According to Theorem 1 in (Giorgi & Zuccotti, |2018) and theorems in (Bertsekas|, [1997; Boyd
& Vandenberghel 2004)), since the constraint qualification holds, the Karush-Kuhn-Tucker (KKT)
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conditions hold at 77, i.e., there exists Lagrangian multipliers {u}, ,};_;, uj(s) for all s € S,
ui(s,a) and ul(s, a) for all (s,a) € S x A, such that

U*, 207Vi:17"'7p7

uj(s,a) > 0,us(s,a) >0, V(s,a) € S x A, (17)
E, m [Z w7 (als)Acx(s,a) + A, Dicr (27 ([s)[lmg (-|s)) | —di - <0, Vi=1,---,p,
acA
7 (s,a) > 0,77 (s,a) < 1,Y(s,a) € S x A, (18)
> aT(als)=1,Vs €S, (19)
acA
U, r <]Es~u:¢ [Z " (als)Acl(s,a) + A, Dy (7 ('|8)|7T¢('|8))] —dQ,T> =0,
acA
ui(s,a)(7"(s,a) — 1) = 0,V(s,a) € S x A, (20)
—us(s,a)m" (s,a) =0,Y(s,a) € S x A, 21
V L " {uc T}l 1au07u1’u2) _O (22)
where
L(m, {uy, Yooy ug,ui, us)) B o [Z —n(als)A7* (s,a) + ADkr, (W('S)H%('lS))]
acA
P
3, (Ewy [Z (als) AZéx (5, @) + N, D, <w<-s>||7r¢<~|s>>] - d;,7>
i=1 acA
+Zu8(s) (Z m(als) — 1) + ZZU’{(&CL)(W(S,@) —1) —uj(s,a)w(s,a).
seS acA sES seS

(23)
Note that (T7) (T8) (I9) 20) @I)(22) constitute the KKT condition for the following optimization
problem:

argmin £
- :

™
Nde)

" w(als) (_Am, a)+ 3wl AT (s, a))

acA i=1

P p
+<A+Zu;,»;>DKL< (1s) o ] D e
i=1

i=1 (24)
s.t. Z m(als) = 1 forany s € S,
acA
m(als) < 1foranya € A s €S,
—7(als) <Oforanya € A,s € S.
i.e., the KKT condition for the optimization problem (24) holds at 7™ with Lagrangian multipliers
ug(s), ui(s,a) and u3(s,a). Here, {ujm}f:l are constants for the problem.

Since the terms ~E__ = [35,c 4 7(als)Ar’ (s,a)] and E__ = [35,c 4 7(als)Acl- (s, a)] are lin-
car; the erm E__ =, [DK L (m(:]s)||ms(-]$))] is convex, the optimization problem (24) is convex.
Moreover, sincé all the constraint functions are affine, the Slater’s condition holds naturally for the
optimization problem (24), as shown in (Boyd & Vandenberghe, 2004). Therefore, the strong duality
holds. Then, 77 is the optimal solution for (24).

In lj we can omit the term — Y ©_, u? uy, ,d; . and keep the solution unchanged. Next, we borrow

the conclusion of Proposition 3.1 in (Liu et al., 2019a)), we have 77 (a|s) =
exp (Fols, ) + (A X0y ut o N,) (AT (s.0) = S0 ul, AT (5. 0))
-1 g iy
Saeaep (fols.a) + (A S0, g, )~ (AF (s 0) — S0, u, AT (s.0)))

Y
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ie.,

( | 5) X exp ( )‘ + Zuc T\ :(b(sv ) - ‘Zu:i,‘z—Ang(sv ))) )

forall s € S. Since A\, = (1 — ), the proof is done.

F.2.2 PROOF OF PROPOSITIONZ]

Proof of Proposition[2] For the Lagrangian multiplier varlables u, Ug, U1, Uz, we denote the solution
of ming L(m, u, ug, u1, uz) as miwuo,u,uz} (L is shown in ) ie.,

plwvo vzl — garomin L(7, u, ug, w1, uz).
v

From the proof of Proposition[I] we have the strong duality for the optimization problem (T6) holds.
Then, we have {u*, uy, uj, us} =

arg max{u,uo,ul,ug}L(ﬂ{u’uo’uhUQ}a U, U, Ut u2)7 S.t.u > 07 uy > 07 Ug > 0. (25)

Next, from the above optimization problem, we set ug, u1, uz as ug(u), ui (u), us(u) in (25), where
ug(w), ui(u), ui(u) are the solution of dual variable (Lagrangian multiplier solution) of the following
problem:

T

argmin E__
- -

Z 7(als) (—A:“) (s,a) + Z ui Acl (s, a))

acA

+<A+(1—V)ZuiAci>DKL((| 176 (-] 1 Z“’

i=1

(26)
s.t. Z m(als) =1forany s € S,
acA
m(als) < 1foranya € A ;s €S,
—m(als) <Oforanya € A,s € S.
We have
u* = argmax,, L(m (%o (i (a0} 4 ) ub(u), ub(u)), s.tu> 0. (27)
Similar to solution of (24), we have the solution of is m, where 7" (-|s) o< exp(fy(s,-) +

(P uihe,) "HAT (s, ) — 3P u;Acl+(s,+))). Moreover, from the strong duality of the opti-
mization problem (26) (linear inequality constraints), we have

o (Wi us (Wl — arg min L, w, uf(u), ul(u), uh(u)) = 7 (28)
Therefore,

u* = arg max, L(m", u, ug(u), u (u), uz(w)), s.t. u > 0.
Moreover, we know

Zué( (Zﬂ' — 1) —i—ZZul w4 (s,a) — 1) —u3(u)(s,a)m"(s,a) = 0.

SES acA s€S seS
Form (27) and (23), we have
*
u" =max[E

p p
axE,_ro g FAT (5.0) £ 30 AT (s, )] + (A D wid,)
1= =1

p
Eswu:¢ [DKL (77“(‘8)||7T¢(|8))] - Z ( )(dl r+ 50@ - (7T¢))
i=1
stu; >0,Vi=1,---,p
Then, the proof is done. 0
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F.2.3 DEVIATION OF GRADIENT W.R.T. THE DUAL VARIABLES
We derive the gradient of L w.r.t. the dual variables v for (5). Let

. P

L(u,7*) & E_[AT(s,a) = ) uiAiix(s,a)]

7r
s~ov,

arm®

~ A+ (-7 Zuz i) By mo [Drer (" ([ )7 (] +Zuz”

where d; | £ (1 —)(dir + 6¢; — Jey 7 (7). Then,

VuL(u) = ViL(u, 7%) + V" Vo L(u, 7%)

Consider V5L (u, 7). From , we have

plwo(ur(@uz (WY — arg min L, u, ul(u), u} (u), uh(u) = 7

where L is shown in (23) and uj(u), u} (u), u3(u) are the solution of dual variable of (26). Then
ViL(m®, u,uh(w), uy (u), us(uw)) = 0.

Moreover, we know

Zué( (Zﬂ‘ —1) —i—ZZul 7 (s,a) — 1) —u3(u)(s,a)m"(s,a) = 0.
seS acA

seS seS

Thus, )
VoL(u,n") = Vi L(m", u, ud(u), vl (u), us(u)) = 0.

Then, we have

Therefore,

Vi, L) = =B ro[Eanr(rs) [Acl7(s,a)] + (1 = )Ae, Dicr, (7" () 7o (-]5))] + i -

S~U,

F.3 META-GRADIENT

F.3.1 COMPUTATION OF META-GRADIENT

Proposition 6. Letr 77 = A°(my, A, A, T). Suppose all the assumptions in Proposition (5)) hold.
Suppose the LICQ and the strict complementary slackness condition (SCSC) (Giorgi & Zuccotti,
2018 Xu & Zhu, |2023a) for the optimization problem holds at ©™. Then, V 3 J(7") exists and

1 A7
EESNVZ_"T ,a~TT(-]8) [(v¢>77(7r¢)_1@7'¢ (87 a)
+77(7T¢)_IV¢Q7TE¢ (Sa a’) + V¢f¢(8, Cl,)) Q:T (87 CL)],

where () £ A+ (1 —7) S0 uf, (7o) A, and Q7% £ Q7% — 370 jur, - (m9) Qe

Ved: (n7) =

Proof. For any meta-policy 7, the objective function of the optimization problem @) is strongly
concave and the constraint function is convex. The LICQ and the SCSC hold at 7”. According to
Theorem 2 in (Xu & Zhu, [2023a)), V,J(77) exists.

‘We have
p

77 () o exp(f(s, ) +n(mg) AT (5,) = Y ui, AT (s,0))

is equivalent to

7 (s) oc exp(fu(s,-) + n(ms)H(QF (s,) = 3

i=1

p

u*',T zid:"'(& )))

i=1 ¢
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From Lemma[3] we have

1 _7, .
V¢JT(7TT) :ﬁEsr\au;’T,anT(-|s)[v¢ (77<7T¢>)_1QT¢ (Sa a) + f(b(sa a)) Q:—r (Sa a)]

1 1A
:ﬁESNVﬂawfus)[(V¢77(7T¢) 'Q7 (s,a)
+1(mp) "'V Q7% (5,a) + Vi fo(s,a)) QF (s, ).
O
F.3.2 COMPUTATION OF V4Q7° (s, )
We have N
Vo' (5,0) = 77— By aneotem [Vols (8,0) Q7 (51,07 (29)
where the state-action visitation probability US;,Z) initialized at (s,a) € S x A is defined by
05'?771'(;) (S/7a/) = (1 - ’Y) ZPytP (St = 8/7 at = a’|7r¢, So ~ PT("Sv a)) .
t=0
Proof. As shown in (Wang et al., 2020),
V¢Q:¢ (57 (Z) = v¢ ((1 - 7) : 7’7—(57 (l) +- ES’NPT(-\s,a) [V‘fﬂ—(ﬁ (S/)])
= 1 j y ' E(s’,a’)wagf;sg [V¢ In T (a’/|8/) : ;% (S/7 a/)] .
By Lemma 3] from (T4), we can obtain (29). O

F.3.3 GRADIENT OF LAGRANGIAN MULTIPLIERS

We show the existence and the computation of V4u;, . (74) in the following proposition.

Proposition 7. Let 77 = A®(my, A, A, 7). Suppose all the assumptions in Proposition (|5) hold.
Suppose the LICQ and the strict complementary slackness condition (SCSC) (Giorgi & Zuccotti, 2018,
Xu & Zhu} 2023d) for the optimization problem (3-1) holds at ©™. Then, the Lagrangian multipliers
uy, . (mg) is unique for any given mg, Vyuy, (74) exists. Fori € {1,--- ,p}, ifu, (7g) =0, then
Vouy, ,(my) = 0. Let uy, (my) be the vector includes all all i € {1,--- ,p} with uy, (74) >0,
V¢u*

e (T6) =~V Val (1, ¢)V2L(5, 6) !
where L(@,¢) = EAT"(s,a) — Y7y widils(s,0)] = 0" B, o [Dice (7 (1s)llms (1)) +

Zf:1 ui(di,T +0¢; — ey r (7T¢>))'

Proof. For any meta-policy 4, the objective function of the optimization problem (@) is strongly
concave and the constraint function is convex. The LICQ and the SCSC hold at 7”. According to
Theorem 2 in (Xu & Zhu, 2023a), the Lagrangian multipliers uy, , (74) is unique for any given 7y
and Vyuy, (mg) exists. The computation is shown in (Xu & Zhu, 2023a). For alli € {1,--- ,p}
with u’, _(74) = 0, we have Vguf, (m4) = 0.

O
F.4 OPTIMALITY AND CONSTRAINT SATISFACTION ANALYSIS
F.4.1 LEMMAS FOR OPTIMALITY AND SAFE ANALYSIS

Lemma 4. Suppose that Assumptionholds. For any task T, and any safe policies T and ' € {m €
I: Je, +(m) < d; + dmag, Vi =1,---,p}, the following bound holds:

1 1
L E ) C) S () - L(m) € = B [AT(s.0)]+ () GO)
— sr — shr
a~t’(+]s) an’(-]s)
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where

8ymax, , A7(s,a)
all P

Here, we define Dy (w(-|s)||7'(-|s))

maxsese Dy (w(-]s)|[7'(-[s)).

The inequalities (@) also holds for eachi =1, --- ,p, when AT and A:l are replaced by A7, . and

A7T

Ci, T’

CT(n') =

Dy (||m ) sz sesv [Drv (n(:|s)] |7’ (-|s))] -

(1>

3 2acalmlals) — '(als)| and Dig*(x||n’) =

max; , AT (s, a) is replaced by max, , A7, _(s,a), J; is replaced by J., ..

Proof. The proof follows similar lines of Theorem 1 in (Schulman et al.} [2015a) and Corollary 1 and
2 in (Achiam et al.|[2017). For the sake of self-containedness, we provide the complete proof.

Let P is a matrix where P7 (i, j) = Eqr(.|s;) Pr(s;5:, a) and P~ is a matrix where P™ (i, j) =
Eqrr(1s0) Pr (s]|s“ a). Let G = (1 +yPF + (WPr)? +...) = (1 — vPF)~!, and similarly
G = (1+~yP™ + (yP™)%+...) = (1 —~yP7™ )~ Let p be a density vector on state space and 7,
is a reward function vector on state space, thus r;r p is a scalar meaning the expected reward under
density p. Note that .J,(7) = 7] Gp,, and J,(1') = r Gp,. Here, p, is the initial state distribution
for task 7. Let A = PT — P~

Follow the proof in Appendix B in (Schulman et al}[20154), we have
G =G = (1—9P;) = (1= 7Ps) =7A.

Left multiply by G and right multiply by G,
G =~vGAG +G. (31)
Left multiply by G and right multiply by G,
G =~vGAG +G. (32)
Substituting the right-hand side in into G in , then
G = G+ vGAG + vy GAGAG.

So we have
J (") = Jo(m) = 7] (G — G)pr = vr] GAGp- 4+ +*rT GAGAG):. (33)
Note that 7] G’ = vT ", where v is the value function on the state space. We also have Gp, = {2-v7,

where /7 is the state visitation distribution vector. So,

~ 2 ~
J (7)) = Jo(n) =7 (G — G)p, = 2 V”U:TAV: + %’U:TAGAV:.

Consider the first term 1%11: TAvT, similar to Equation (50) in (ISchulman et al.l, |2015a[), we have

T TAVT = U”T(P P”) T

T

= vils ZZ s) — m(als))Pr (s']s, a) Yo7 (')

—ZV Z (als) — m(als) +ZP s'|s,a) yuI (8') —v(s)
:ZV: s Z 7' (als) — m(als))AZ (s, a)

Since we have ) m(a|s)AZ(s,a) = 0, we have

I AT =3 i () Y w (al)AT(s,0) = B [AT(s,a).

s~vT

(34)

a~'(-|8)
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Combine (33) and the above equation, we have the following for the second term:

2
- 1
Tt TAGAVT = Jo(x') — Jo(n) — —— E_ [AT(s,a)].
1-— Y 1—7v s~uF
a~m’(+]s)
Then we need to show )
‘ Tt TAGAVT| < CF (x).
L=y
First,
72 T
‘ vl AGAV
-

<[y (7)., (6m98) |+

By Holder’s inequality,

17 v T AGAYT

Similar to (34), each element in the vector 71}”TA is >, (7'(als) — m(als))AZ (s, a), then we have

i T ~ T
< e Al GAV

H'y (vaA)S”H < Exéa>v<Z|7r (a|s)|AZ(s,a) < 2maxA T(s,a) DS (| |7").
< max Zpr (als)| A7 (5, 0) < 4max A7 (s, a).

-
™ A)
HW(UT S/8v||y, ~ s€ES/S®

From the Lemma 3 of (Achiam et al 017), we have

. 2
IGAVT]) < Ty e [Drv (7 (-Is)|l7"(-[5))] -

Therefore, we have
2
’ %QJ:T AGAVT

4dymax, , AZ(s, a)
(1—=9)?
+MD’””(7T||7T')E es [D (W(’lS)llW'('lS))])

o sevmsese [DTv
8ymax, o AT (s, a)
a(l—n)?
Then the bounds hold.

(D" (7|7 ) Esny sese [Drv (m(|s)][7'(-]s))]

D" (w||7)Eswz sesv [Drv (w(-[s)][7"([s))]

O

Lemma 5 (Restatement of Lemmal[l). Suppose that Assumption 2| holds. For any task T, and any
safe policies w, 7' € {mw € I : J, (7) < d; + Smax, Vi =1,--- , D}, the following bound holds:

1 - 4,.)/Amaw
Jr(7') = Jr(m) < T— SE: [A7(s,a)] + mEswr [Drr('(|s)||m(]s))]
arem'(:]s)
and
1 4,7Amaac
J(r") = Jr(m) > —— E_ [Al(s,a)] — ———5Fsour [Drr (7' (:]8)]|7(-]5))] -
()= I 2 1 B, [AT(00)] = s Drcn (19l 15)
ar’(-]s)
These two inequalities also holds for eachi =1, -- ,p, when AT and A;.r, are replaced by A7, , and

AC“T, A™T js replaced by A", J is replaced by J., ;
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Lemma |§| is a variant of Theorem 1 in (Schulman et al) |2015a) and Corollary 1 and 2 in
(Achiam et al., 2017). The difference is that, under Assumption |Z[, the inequalities in Lemma
replace the term max, D (7'(+|s)||7(+|s) in Theorem 1 in (Schulman et al., 2015a) and re-
place the term \/ESM,: [Dgr (7' (:|s)||7(+|s))] in Corollary 1 and 2 in (Achiam et al., 2017) by
Egwpr [Drcr (7' (|s)||7(-[s))] in the right-hand side of the inequalities.

Proof. We show the first inequality. The second inequality follows a similar way. From Lemma4]

I(w) = Jolr) = == E, A3(s.0)

arr’('|s)

8 AT
Ym0 A7 (8 @) s (11 20E, e o [Dry (r(Js)] 2 ().

a(l—9)?

From Assumption 2} for any safe policy m, we have v7(s) > n for all s € SY, then we have
nDFG (nl|') < Eswur [Drv (x([s)[[7"(|s))], Le.,

max 1
Dy (n||7') < y Borvrses® [Drv (r(-|s)l[7"(:]5))]

Then, we have
2
Esnvr sesv [Drv (w(-1s) |7 (19)]” < Esmvr sesv [Dv (r(:]9)][7'(-|s))]
< Esnvr sese [Dyy (w(c]s)||7'(]s))] -

From the above three inequalities, we have

Jr (') — J7 () — T~ SE: [A7(s,a)] < mﬂzsw: [DEy (x(:[s)||7(-|s))] - (35)
amr’('l5)

From (Csiszar & Korner, [2011)), we have

Dy (n(-]s)l|7'(]s)) < %DKL(W’(-IS)HW(~IS))-

Therefore,
1 4y AT
J (") — J; <—— E AT (s, — K= [D (- .
() =y (m) < 1= Swﬁ)[ F(osa)] + ooy [Dica () C15))
a~T (|S

F.4.2 PROOF OF PROPOSTION[4]

Proof of Propostiond} From Lemmal[I] we have
AT (s,a) 4y A0
11—~ na(l —y)? =~

J1(%) < Iy (75) + Eumr amonts [ o D (r(19)] s (-15))

max

. 4vAT"
Since A\, > m, we have

Jesr (77)

<durlm+ B |
amn™ (1s)

Agﬁ,f (3’ a):| 4’YAZ'LMC

1= | * na = a2 Esmie Drr (7 (ls)lima(1s)]

< Jciﬂ' (ﬂ-tﬁ) + )
S~Ur
a~m” (+]s)

[A:f} (s,a)

1—n ] + e, B, 7o [Drcr (77 (-]8)[lms (:]s))]

< di,'r + 5ci .
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Also, we have

AT (s, a)] 4y A0

Jo(m) = o (76) + Esnvr amn(|s) [ = | pa(ic 7)Q]ESW

o [Drn(m(-[s)]ms(-]5))]

Amaw

Since A > 247" we have
na(l—y)

AT (s,a)
L=~
For the solution 7™ of problem @), we have

Jo(m) 2 T (1) + Egmvr amn(.|s) [ } -1 A E, o [Drr(m(|s)l|ms(-]s))] -

-

L)z E [AT¢(8’G)]‘1A E, o [Dict (n7(1s)llms(1s)] + T, ()

s~u:d’ 1- Y - s~y
amn” (-1s)
AT (s,a A
—m BB D ()] + )
amn(']s)
AT A
> B[S - 2B Dk (el + T () = Jr ).
arTy(-]s)
where TIC is the feasible set of problem (1). The last inequality comes from 7% & ITC. O

F.4.3 PROOF OF THEOREMIII

Recall the notations defined in Section [5.2]and used in this section: the optimal task-specific policy

m for task 7 as
7l £ argmax, oy Jo () s.t. Je, o (7) < dj
the conservative task-specific optimal policy 7T:7[6], which is optimal for 7 under conservative safety
constraints, i.e.,
£ argmax, . J, () s.t. Jo, (7)) < di s — €,

e

where the conservative constant € > (; the task variance
Var(P(T)) 2 ming Erp)E, o [Dicr (L (|s)|76(-]5))];

S~UL

the task variance under the conservative safety constraints
Vare(B(T)) £ ming B wpr)E, 7o [Dicr (7 (g (|s)|lms(:|s))],
and its minimal point
o £ argming B, pnE, 7o [Drr(nL g (19)l1m6(-]9))],
the radius of the task distribution P(T")
R(P(T)) = MaXrel,ecE ESNVU;[eJ [DKL(WI,[e]('|S)H7T¢;[eJ (-[s))],

o

where the set £ is defined by {e¢ > 0 : @[, exists forall 7 € I'}.

We also define

Rl (P(T")) £ max,er ]ES 7 gle] [DKL(WI,[E]('|5)||7T4§[<1(‘|5))]~

~U,

We first show some lemmas for the proof of Theorem T}

Lemma 6. Suppose that Assumption H holds. For any €, The policy 7 (€] belongs to the
" plel

A+ (s,a 4“/14:;'(“6
set {m €Il: Jeyr(mya) + E(»M{ | )]Jr E o [Drrn(r(-]s)|lmga(ls))]

N 1—~ na(l—y)? S~

s~V
arr(-|s)
maxr
8yAL

S dci,T — €+ WR(P(F))]COVQ”Z = 17 e ,p}
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Proof. From the second inequality in Lemma Jer (T () 2

1 Tlel Ay A7
Jo (o, E [AC?T , }—*]E [D TGl (ls))] -
i (%[ 1)+ 1—~ ol o (s,a) na(l — )2 s #L] KL(W*,[E]( |5)||7T¢[ 1(:[s))
G’Nﬂ-:,[e](“s)
Since J;, - (7] [e]) <d., r — €, we have
Jey r(T30) + L E {A%M (s a)}
Ci, T\ plel 1— v 31l Ci,T )

S~UL
anvTl (g (:Is)

dyAmas .
B [PRETL g (1) (19))] < der e
Then,
A (s,a) 4y Aoz
ey (g R < Tole |:D i . e\’ :|
i (%[ 1)+ ol 1—~ na(l — )2 s, 2L KL(W*,[e]( |S)||7T¢[ 1(0ls)
‘IN”:,[e]HS)
8y AT .
Sdepr =€t L BB [Drca (g (19l (1))
8y Amazx
<d, ,— e pldp(r
< ek e RE(T)
8y Amaz
<dgy s — €+ ——% R(P(T)).
na(l —~)? (R())
O
Lemma 7. Suppose that Assumption 2] holds. We have
8y Amazr
Mo €EAmEIl: Jo, (7)) <de, » — €+ ———=R(P(T)) foralli =1,--- ,pandTEF}.
olel { () ) 7705(1—’}/)2 (())
Proof. From the second inequality in Lemmam Jei (77 1) 2
1 T ale] 4'}’Amaw
2 Ci T N .
rlmge) v 1y B A5 (0] = LB, e [ Dre (g Cls)mgea (19)]
a””:,[s]('\s)
Since Je, (7] ) < de,,r — €, we have
1 4Ll
Joo 7 (T310) + —— E [A,j} s,a]
) ( ¢[]) 1—~ SNVZGSE] c ( )

Sde,r —€+ na(l =2 s 8le] [DKL(WI,[E]("S)”WJ)M ¢[s)] -

Also, from (34) and the proof of Lemmal T} we have

1 3le
—_ E [A:ﬁ[T] (s, a)}
1—7v s 1
GNW:,[E]('\S)

1 T 3le T T ale
= = S @) Y g als) — ma(als) AL (s )

a

4A27:az
na(l —)

4Amaz
S Ty B (PR g (1970 (1))

max

Dy (WI,[G]('|S)||7T¢;[eJ('|5))2

IN
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Then,
1 Tale
Torman) + 7= (475 (5,0)]
anml o (]s)
<o =t ot B o [Deael g (9l 1)
<dor et mmd (B(T))
<d..—€e+ MR(P(F)).

Here, we assume vy > 0.5, which is commonly used.
O

Theorem 2. Suppose that Assumptions |I| and [2| hold. Let n™(§l9) = A (T g0, A A, T) with

4y ATHOT 274Amaz 4’}/4A
A= m, Aci = na(l P and 601 = WRUP(F)) — €. We have
S,YAma:v
E, - o A A _— ‘(P(T)).
p O (7 gg) = T (A (g A A )] € V(B (T))

Proof. From Lemma @ we have that 7], € 15, where IT1? 2 {7 < 1I : Jey 7 (Ta00)+
T 5lel .
s B (A )] 0B Dren(rCs)limg (15)] < de.r + e, Vi),

1=y
s~UL
arm(-|s)

Also, 77 (¢l) € IIB. Therefore, from the definition of A® in problem , we have

E A7 (5,0 -aDkr(n (@) mp0) = B A7 (s,0)|[-ADrs (0 g g,

$lel 3lel

s~V s~V

ann” ($ID)(:]s) ar~v (g (ls)

where we use D r, (1 (+]s), m2(+|s)) to represent E, =2 [Dgcr,(m1(+|s), m2(-]5))].

From the second inequality in Lemma|[T]and the above inequality,

o3 1 T 5le] A — o 0Te
T (@ (@) = ) 20— E (478 (s,a)] T Drn( (01), m510)
amn™ (B1)(]s)
1 Tole] A
> ¢ - ).
1= vy Eé[e] |:A7' (8, a‘):| 1 — 'YDKL( €] ¢[s])

S~UVL
a“”":,[g] (:Is)

From the first inequality in Lemmal[T}

1 T 4,}/Amax _
Jo(nT ) = Jo(may) < —— K {AJ , } O Drn(xT ).
(7 a) (T410) < T—7 (s,a)| + a1 =72 KL [ Tgia)
arvml o (-s)
From the last two inequalities,
N 4y Amaw A=
Jr " QSM —J; 7(-;—5 > — + Dk, 71—::677TA5 )
(" (¢') = Jr (7l 1) (7704(1—7)2 1_7) (216> Tgrar)

ie.,
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Then,
ETN]P(F) [J‘r ('/T:’[E]) — Jq— (AS (Tfé[e] 5 A, A, T))]

Ay Ames A _
< E Dy (n7 . 75
> (7704(1*’}/)2 17,}/) 'rwlP’(F)[ KL(W*’[E],F¢[E])]
2,yAmaa: )\ .
= ( JVar(B(I)).

na(l—v)2 11—y
Moreover, from Lemmal[7]
wya €M 2 {m ell: J,, - (m) <de, r + 0, foralli=1,--- ,pand 7 € T'}.
From the definition of ¢*, we have
E-,—N]P’(F) [JT(AS (Wd?* ’ Aa Aa T))] > Hé%}é ]ETN]P(F) [J‘F (AS (7Ta A7 Av T))]
> ETN]P’(F) [‘]7' (AS (ﬂ-({;[é] ’ A7 A7 T))]
Then, we have
E,pr)[Jr (7] 1q) = Jr(A° (T, A, A, 7))
< ETNIP’(F) [JT (Trjk—,[e]) —Jr (AS (7’(‘({5[(] ) Aa Aa T))]
,yAmaw )\
< + Var®(P(T'
(= + 7o) Ver ()
8,YA77L(I$
ol —9)?

Var<(P(T)).

Proof of Theorem([I] Theorem[I]is proven by combining Theorem [2] with Corrolary [T}

G LIMITATIONS AND FUTURE WORKS

In this paper, we consider the safety metric of CMDP, i.e., the expected accumulated costs satisfy the
given safety threshold. This metric is generally less rigorous than the safe control research, where
safety is defined as persistently satisfying certain state constraints. A future work is establishing the
safe meta-RL algorithm with the rigorous safety metric. Another limitation is that we assume the
solution of problem (2) exists, i.e., there exists a policy such that it is safe for all tasks as the initial
policy for policy adaptation steps. A future work is to release this assumption and identify a safe

task-specific meta-policy for each given task.
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