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ABSTRACT

This paper studies the safe meta-reinforcement learning (safe meta-RL) problem
where anytime safety is ensured during the meta-test. We develop a safe meta-RL
framework that consists of two modules, safe policy adaptation and safe meta-
policy training, and propose efficient algorithms for the two modules. Beyond
existing safe meta-RL analyses, we prove the anytime safety guarantee of policy
adaptation and provide a lower bound of the expected total reward of the adapted
policies compared with the optimal policies, which shows that the adapted policies
are nearly optimal. Our experiments demonstrate three key advantages over existing
safe meta-RL methods: (i) superior optimality, (ii) anytime safety guarantee, and
(iii) high computational efficiency.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018) has achieved significant successes in various
domains, from video games (Mnih et al., 2015; Silver et al., 2016; Lee et al., 2018) to robotics (Levine
et al., 2016; Lee et al., 2020; Margolis et al., 2021; 2024). The RL problem is formulated as a Markov
decision process (MDP) and aims to maximize the expected total reward. Safe RL (Yu et al., 2019;
Xu et al., 2021; Ding et al., 2021; Yu et al., 2022) addresses additional safety requirements, such as
collision avoidance for robots (Xu & Zhu, 2022; Huang, 2021) and operation restrictions in financial
management (Abe et al., 2010). Typically, the safe RL problem is formulated as a constrained MDP
(CMDP) (Altman, 2021), which aims to maximize the expected total reward while ensuring that the
expected safety costs are below given thresholds. As noted in (Ding et al., 2021), the goals of reward
maximization and constraint enforcement are not completely aligned, aggravating the challenge of
the inherent trade-off between exploration and exploitation.

Meta-reinforcement learning (meta-RL) (Beck et al., 2023) aims to extract common knowledge
from multiple existing RL tasks, accelerating the learning process and increasing the data efficiency
of RL algorithms. Safe meta-RL (Khattar et al., 2023; Xu et al., 2021) integrates safe RL and
meta-RL and inherits the benefits of both. On the other hand, existing safe meta-RL methods
face three new challenges: optimality, computational efficiency, and anytime safety. Meta-CRPO
(Khattar et al., 2023) considers an online safe meta-RL problem. In each round, it computes the
task-specific policy by CRPO (Xu et al., 2021) and updates the meta-policy that has the minimal
average distance to the task-specific policies of all previous tasks. However, the meta-training does
not optimize the performance of the task-specific policy adaptation, and the policies adapted from the
learned meta-policy may be sub-optimal for new tasks. Meta-CPO (Cho & Sun, 2024) optimizes the
policies adapted from the meta-policy by constraint policy optimization (CPO) (Achiam et al., 2017).
Nevertheless, its computational complexity is high in both the meta-training and meta-test stages.
Specifically, during the meta-training, meta-CPO aims to solve a constrained bilevel optimization
problem (Xu & Zhu, 2023a) where the constraints are present at both the upper level and lower
level. It requires to compute the inverse of Hessian, which is computationally expensive. During the
meta-test, each policy adaptation step solves a nonconvex constrained optimization problem.

In applications of (safe) meta-RL (Nagabandi et al., 2018; Belkhale et al., 2021), during the meta-test,
the agent collects the rewards/costs of state-action pairs by exploring a new, unknown CMDP and
optimizes the policy based on the collected data. Therefore, it is important to guarantee anytime
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Table 1: Comparison with existing safe meta-RL methods
Theoretical results Experimental results

Methods Safety Bounded
optimality gap Efficiency OptimalityConstraint violation Target policy

(Khattar et al., 2023) Positive Safety for final policy ✓ Low Low
(Cho & Sun, 2024) Positive Safety for adapted policy × Low Medium
This paper Zero Anytime safety ✓ High High

safety, i.e., the safety constraints must be satisfied for every policy used for the exploration. However,
the anytime safety is overlooked in all existing safe meta-RL algorithms (Khattar et al., 2023; Cho &
Sun, 2024). Specifically, during the meta-test, they start with the meta-policy and repeatedly adapt
the most recent policy into a new one by the policy adaptation algorithm, which generates a sequence
of policies. Except for the final policy in the sequence, each policy, including the initial meta-policy,
is used to explore the environment and collect data. Meta-CRPO (Khattar et al., 2023) only quantifies
the safety constraint violation of the final convergent policy in the sequence, neglecting that of
intermediate policies for data collection. Meta-CPO (Cho & Sun, 2024) applies the CPO (Achiam
et al., 2017) as the policy adaptation algorithm, which can quantify the safety constraint violation of
policies that have undergone at least one adaptation step. However, the safety of the meta-policy is
ignored. Moreover, both meta-CRPO and meta-CPO provide positive upper bounds of the constraint
violation, which do not guarantee zero violation of the safety constraints.

Main contribution. In this paper, we develop a safe meta-RL framework consisting of two modules:
safe policy adaptation and safe meta-policy training. Specifically, the safe policy adaptation is to
maximize an approximate accumulated reward function under approximate constraint functions. The
safe meta-policy training is to maximize the meta-objective function of the meta-policy, i.e., the
expected accumulated reward of the task-specific policies adapted from the meta-policy, while the
meta-policy satisfies the safety constraints. Then, we derive efficient algorithms for the two modules.
In particular, to solve the safe policy adaptation, we derive its close-formed solution under certain
Lagrangian multipliers, and propose a dual-method-based algorithm to solve the multipliers. For the
safe meta-policy training, we derive the meta-gradient, i.e., the gradient of the meta-objective, simplify
its computation by exploiting the softmax form of the adapted policy, and propose a Hessian-free
meta-training algorithm.

The proposed algorithms offer three key advantages over existing safe meta-RL methods. (i) Superior
optimality. Our safe meta-policy training algorithm maximizes the expected accumulated reward of
the policies adapted from the meta-policy, and then improves the optimality of meta-CRPO (Khattar
et al., 2023) and naive transfers from meta-RL, which do not consider the task-specific safe policy
adaptation in the meta-training. (ii) Anytime safety guarantee during the meta-test. The safe
meta-policy training produces a safe initial meta-policy by imposing the safety constraint on it. The
safe policy adaptation imposes a constraint on the upper bound of the total cost, and thus is guaranteed
to produce a safe policy for each iteration when the initial policy is safe. By integrating these two
modules, anytime safety is achieved. (iii) High computational efficiency in both the meta-test and
meta-training stages. In the meta-test, the derivation of the close-formed solution makes it much more
efficient than those in meta-CRPO (Khattar et al., 2023) and meta-CPO (Cho & Sun, 2024), which
solve constrained optimization problems. In the meta-training, the close-formed solution of the policy
adaptation is used to derive a Hessian-free meta-gradient and reduces the computation complexity of
the proposed algorithm to approach that in the single-level optimization, making it more efficient than
meta-CPO (Cho & Sun, 2024) and many meta-RL algorithms (Finn et al., 2017; Liu et al., 2019b)
with the bi-level optimization steps and the computation of Hessian and Hessian inverse. We conduct
experiments on seven scenarios including navigation tasks with collision avoidance and locomotion
tasks to verify these advantages of the proposed algorithms.

Another major contribution of the paper is that it is the first to derive a comprehensive theoretical
analysis regarding near optimality and anytime safety guarantees for safe meta-RL. First, we establish
the theoretical basis of the algorithm design that guarantees anytime safety, i.e., zero constraint
violation for any policy used for exploration. Second, we derive a lower bound of the expected
accumulated reward of the adapted policies compared to that of the task-specific optimal policies,
which shows the near optimality of the proposed safe meta-RL framework. Finally, we demonstrate
a trade-off between the optimality bound and constraint violation when the allowable constraint
violation varies, which enables the algorithm to be adjusted to prioritize either safety or optimality.

Table 1 compares both the theoretical and experimental results between this paper and previous works
(Khattar et al., 2023; Cho & Sun, 2024). First, this paper considers the anytime safety and provides a
zero constraint violation guarantee. In previous works, they only provided positive upper bounds for
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the constraint violation, and the upper bounds only work for the final policy (Khattar et al., 2023) or
the adapted policies (Cho & Sun, 2024). Second, although (Khattar et al., 2023) provides an upper
bound of the optimality gap, the experimental optimality is the worst. On the other hand, (Cho &
Sun, 2024) does not provide an optimality bound. In contrast, the proposed method exhibits high
optimality and provides a near-optimality guarantee, outperforming existing approaches in terms of
both experimental and theoretical outcomes. Third, the proposed method is more efficient than the
existing approaches (Khattar et al., 2023; Cho & Sun, 2024).

Related works. Due to the space limit, we include a section of related works in Appendix A.

2 PROBLEM STATEMENT

CMDP. A CMDP M ≜ {S,A, γ, ρ, P, r, {ci}pi=1, {di}
p
i=1} is defined by the state space S, the

action space A, the discount factor γ, the initial state distribution ρ over S , the transition probability
P (s′|s, a) : S × A× S → [0, 1], the reward function r : S × A× S → [0, rmax], p cost functions
where the i-th cost function is defined as ci : S × A × S → [0, cmax

i ] for i = 1, · · · , p, and the
constant di, which is the limit of constraint i. The state space S could be either a discrete space or a
bounded continuous space. The action space A could be either discrete or continuous.

Policy. A stochastic policy π : S → P(A) is a mapping from states to probability distributions over
action. When A is discrete, π(a|s) denotes the probability of choosing action a in state s; when
A is continuous, π(a|s) denotes the probability density. Denote the policy space as Π. In addition,
a softmax policy parameterized by θ ∈ Rn is denoted as πθ, where πθ(a|s) ≜ exp(fθ(s,a))∫

A exp(fθ(s,a′))da′ ,

∀(s, a) ∈ S ×A, for continuous action space A, or πθ(a|s) ≜ exp(fθ(s,a))∑
a′∈A exp(fθ(s,a′)) , for discrete action

space A, and fθ : S ×A → R is an approximation function.

Safe RL. For a policy π, the value function is defined as V π(s) ≜ E[
∑∞

t=0 γ
t r(st, at, st+1)|s0 =

s, π]. The action-value function is defined as Qπ(s, a) ≜ E[
∑∞

t=0 γ
tr(st, at, st+1)|s0 = s, a0 =

a, π]. The advantage function is defined as Aπ(s, a) ≜ Qπ(s, a) − V π(s). The accumulated
reward function is J(π) ≜ Es∼ρ[V

π(s)]. Similarly, for each i = 1, · · · , p, we define V π
ci (s) ≜

E[
∑∞

t=0 γ
tci(st, at, st+1)|s0 = s, π], Qπ

ci(s, a) ≜ E[
∑∞

t=0 γ
tci(st, at, st+1)|s0 = s, a0 = a, π],

Aπ
ci(s, a) ≜ Qπ

ci(s, a) − V π
ci (s), and Jci(π) ≜ Es∼ρ

[
V π
ci (s)

]
. The discounted state visitation

distribution of π is defined as νπ(s) ≜ (1− γ)Es0∼ρ[
∑∞

t=0 γ
t P (st = s|π)]. The safe RL problem

is to maximize the accumulated reward function while the accumulated cost functions satisfy the
constraints, i.e., solving the problem maxπ∈Π J(π) s.t. Jci,τ (π) ≤ di, ∀i = 1, · · · , p.

Safe meta-RL with anytime safety. Safe meta-RL targets multiple safe RL tasks. Consider a space
of safe RL tasks Γ, where each task τ ∈ Γ is modeled by a CMDP Mτ ≜ {S,A, γ, ρτ , Pτ , rτ ,
{ci,τ}pi=1, {di,τ}

p
i=1}. Following the notions in the above subsections, the notations ρτ , Pτ , rτ , ci,τ ,

di,τ , as well as V π
τ , V π

ci,τ , Qπ
τ , Qπ

ci,τ , Aπ
τ , Aπ

ci,τ , Jτ , Jci,τ , and νπτ are defined for task τ . Consider a
set of safe RL tasks in Γ following a probability distribution P(Γ). Safe meta-RL aims to learn the
meta-prior from P(Γ) which can be used to train a policy for an unseen task τnew ∼ P(Γ) by a small
number of new environment explorations with anytime safety. In specific, during the meta-training,
tasks can be sampled from P(Γ), i.e., {τj}Tj=1 ∼ P(Γ) and the tasks’ CMDPs {Mτj}Tj=1 can be
explored. During the meta-test, a new task τnew is given, and the agent explores the CMDP Mτnew

and produces the task-specific policy. Note that we consider the meta-training to be an offline stage,
e.g. done in simulated environments, the safety constraints may be violated. In contrast, the policies
are deployed to practical environments during the meta-test. Any policy used to explore Mτnew

or
used to execute the task τnew should satisfy the safety constraints.

3 SAFE META-RL FRAMEWORK

The proposed safe meta-RL framework aims to learn a meta-policy πϕ such that it can adapt to
an unseen task with anytime safety guarantee. The framework includes two modules: safe policy
adaptation and safe meta-policy training. During the meta-training, the task-specific policy πτ for
each training task τ is adapted from the meta-policy πϕ by using the safe policy adaptation. Then,
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the meta-parameter ϕ is optimized by using the safe meta-policy training. During the meta-test, the
learned meta-policy πϕ is adapted to new tasks by the safe policy adaptation.

We propose the safe policy adaptation in Section 3.1, which can address the issues of safety guarantee
in (Khattar et al., 2023) and high computational complexity in (Cho & Sun, 2024), and propose the
safe meta-policy training in Section 3.2 to obtain a safe and optimal meta-policy. The integration
between these two modules ensures the anytime safety.

3.1 SAFE POLICY ADAPTATION

We first derive the optimization problem to achieve safe policy adaptation from the meta-policy. For
task τ , the policy πτ is adapted from the meta-policy πϕ by the safe policy adaptation As, which is
defined by πτ = As(πϕ,Λ,∆, τ) ≜

argmax
π∈Π

E
s∼ν

πϕ
τ ,a∼π(·|s)

[
A

πϕ
τ (s, a)

]
− λ E

s∼ν
πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] , (1)

s.t. Jci,τ (πϕ) + E
s∼ν

πϕ
τ

a∼π(·|s)

[
A

πϕ
ci,τ (s, a)

1− γ

]
+ λci Es∼ν

πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] ≤ di,τ + δci ,

where i = 1, · · · , p, Λ ≜ {λ, λc1 , · · · , λcp} and ∆ ≜ {δc1 , · · · , δcp} are the hyper-parameters of
As. The safe policy adaptation As in problem (1) is inspired by the derivation of CPO (Achiam
et al., 2017), where both problem (1) and CPO aim to approximate the original safe RL problem.
Specifically, the objective and constraint functions of problem (1) serve as upper bounds of the true
objective and constraint functions Jτ (π) and Jci,τ (π) of the safe RL problem. More details about the
upper bounds will be discussed in Lemma 1 of Section 5.1. More importantly, considering that the
explorations for the task τ are limited, problem (1) only needs to collect state-action data points and
evaluate A

πϕ
τ for a single policy πϕ, which keeps the same requirement of data collection as one-step

of gradient ascent in MAML (Finn et al., 2017). Therefore, we denote As, i.e., collecting data on the
meta-policy and solving the optimal solution of problem (1) as the one step of the policy adaptation.
Moreover, considering a single gradient ascent in MAML is usually insufficient to identify a policy
with good performance and safety, As is to completely solve the problem (1).

The existence of the solution, the safety, and the monotonic improvement are guaranteed for As.
Specifically, when setting ∆ = 0, given that the meta-policy πϕ is safe for task τ , i.e., Jci,τ (πϕ) ≤
di,τ ,∀i = 1, · · · , p, for an appropriate hyper-parameter Λ, we have following properties: (i) the
feasibility set of problem (1) is not empty; (ii) πτ is safe for task τ , i.e., Jci,τ (π

τ ) ≤ di,τ ,∀i =
1, · · · , p; (iii) the performance of πτ is better than the meta-policy πϕ, i.e., Jτ (πτ ) ≥ Jτ (πϕ). The
complete statements and proofs of property (i) are shown in Proposition 1 of Section 4.1; properties (ii)
and (iii) under selected hyper-parameter Λ are shown in Section 5. Moreover, when the requirement
of the constraint satisfaction is not strict, setting δci = 0 for all i in problem (1) may overly restrict
the policy update step. To enhance the algorithm’s flexibility, we set 0 ≤ δci ≤ δmax as an allowable
constraint violation in problem (1).

As mentioned in the above properties (ii) and (iii), both CPO and problem (1) can achieve policy
improvement and safety guarantee. However, the computational complexity of directly solving CPO
or the constrained optimization problem of (1) is high. CPO (Achiam et al., 2017) and meta-CPO
(Cho & Sun, 2024) solve an approximate problem to mitigate the issue, but the computational
complexity is still high, meanwhile the safety constraint violation cannot be avoided in theory and
also usually appears in practice. In contrast, the safe policy adaptation in problem (1) is designed
to have the closed-form solution under certain Lagrangian multipliers, and then can be efficiently
solved by the dual method, which will be discussed in Section 4.1.

Note that problem (1), for the first time, simultaneously offers two key advantages: (a) constraint
satisfaction guarantee for a single policy optimization step (policy optimization using data collected
on a single policy), which enables anytime safety in each policy adaptation step during the meta-test,
and (b) the closed-form solution, which significantly reduces the computational complexity of the
meta-policy training. The details of the two benefits to the safe meta-RL problem will be discussed
in Sections 4.1 and 5. Consequently, it is particularly well-suited for the safe meta-RL problem
formulation. As the existing safe policy optimization algorithms, such as primal-dual-based algorithm
in RCPO Tessler et al. (2018b), PPO-Lagrangian Ray et al. (2019), and CRPO Xu et al. (2021) used
by meta-CRPO, do not hold any of these two benefits, and therefore (1) cannot be replaced by these
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algorithms. Moreover, although some prior works (Zhang et al., 2020b; Liu et al., 2022) also derive
closed-form solutions of safe policy optimization, safety cannot be guaranteed in each step. Instead,
safety is only guaranteed for the final convergent policy, where the trust region size ϵ is reduced to 0.

3.2 SAFE META-POLICY TRAINING

We obtain the optimal meta-policy πϕ∗ by solving the following optimization problem:
max
ϕ

Eτ∼P(Γ)[Jτ (As(πϕ,Λ,∆, τ))], s.t. Jci,τ (πϕ) ≤ di,τ + δci ,∀i = 1, · · · , p and ∀τ ∈ Γ. (2)

Here, Eτ∼P(Γ)[Jτ (As(πϕ,Λ,∆, τ))] is the meta-objective function and is defined by the expected
accumulated reward after the parameter is adapted by the policy adaptation, which evaluates the
optimality of the meta-policy πϕ. We choose the constraints Jci,τ (πϕ) ≤ di,τ + δci ,∀i = 1, · · · , p
for any task τ (similar to problem (1), we set δci as the allowable error). There are two reasons to set
the constraints. First, as shown in Proposition 1, Jci,τ (πϕ) ≤ di,τ + δci ,∀i = 1, · · · , p is a sufficient
condition for that the safe policy adaptation algorithm As(πϕ,Λ,∆, τ) has a solution, and further
assure the safe meta-policy training (2) is well-defined. Second, the exploration of the CMDP by the
meta-policy πϕ should be safe for each task τ to guarantee the initial policy of the policy adaptation
is safe. As mentioned in Section 3.1, As(πϕ,Λ,∆, τ) is guaranteed to be safe for task τ when πϕ is
safe, and iterative policy adaptation using As is guaranteed to be safe. Therefore, the anytime safety
of the policy adaptation is guaranteed. Its formal statement is shown in Section 5.

4 ALGORITHM

This section introduces the efficient algorithmic solutions to solve problems (1) and (2), respectively.

4.1 DUAL METHOD FOR SAFE POLICY ADAPTATION

This section derives the dual method to solve problem (1) efficiently. As mentioned in Section 3.1,
based on the design of problem (1), we can derive its closed-form solution under certain Lagrangian
multipliers, and then solve the Lagrangian multipliers to obtain the overall solution. We first derive
the closed-form solution of problem (1) and show its existence in the following proposition.
Proposition 1. Suppose that the softmax policy πϕ satisfies Jci,τ (πϕ) ≤ di,τ + δci ,∀i = 1, · · · , p,
the solution πτ of the optimization problem (1) exists. Under certain mild constraint qualifications,
there exists Lagrangian multipliers {u∗

ci,τ}
p
i=1 with 0 ≤ u∗

ci,τ < ∞, such that

πτ (· | s) ∝ exp(fϕ(s, ·) + η−1(A
πϕ
τ (s, ·)−

∑p
i=1u

∗
ci,τA

πϕ
ci,τ (s, ·))), (3)

for any s ∈ S, where η ≜ λ+ (1− γ)
∑p

i=1 u
∗
ci,τλci .

The complete statement of Proposition 1 that includes the sufficient condition for the existence of
{u∗

ci,τ}
p
i=1, as well as the proof of the proposition are shown in Appendix F.2.1. Proposition 1 shows

that, when the meta-policy πϕ is softmax, the closed-form solution of the policy adaptation (1) is
also softmax. The approximate function fϕ for the meta-policy πϕ is adapted to fϕ + η−1(A

πϕ
τ −∑p

i=1u
∗
ci,τA

πϕ
ci,τ ) of πτ . With this computation, the approximate function of πτ can be directly

obtained, which is much simpler than solving problem (1). More importantly, it can significantly
reduce the computational complexity of the meta-gradient, which will be discussed in Section 4.2.

In addition, the closed-form solution in (3) implies the safe policy adaptation (1) can be reduced to
the policy adaptation for an unconstrained MDP under the penalized reward function. Specifically,
when we define a comprehensive reward function r̄τ ≜ rτ −

∑p
i=1u

∗
ci,τ ci,τ , then the term A

πϕ
τ −∑p

i=1u
∗
ci,τA

πϕ
ci,τ is the advantage function of πϕ for r̄τ . This implies that problem (1) is equivalent to

an unconstrained policy optimization problem, where the reward rτ is penalized by the negative costs
−ci,τ and the weights of the cost penalty are given by the Lagrangian multiplier u∗

ci,τ of (1).

Proposition 2. Suppose the assumption in Proposition 1 holds. Let πu (u ≜ [u1, · · · , up]) be the
policy with πu(·|s) ∝ exp(fϕ(s, ·)+ (λ+(1− γ)

∑p
i=1 uiλci)

−1(A
πϕ
τ (s, ·)−

∑p
i=1uiA

πϕ
ci,τ (s, ·))).

Then, the Lagrangian multipliers {u∗
ci,τ}

p
i=1 in (3) is the solution of the dual problem of (1), i.e.,

min
u∈Rp

≥0

E
s∼ν

πϕ
τ

a∼πu

[(A
πϕ
τ −

∑p
i=1uiA

πϕ
ci,τ )(s, a)−DKL (πu(·|s)∥πϕ(·|s))] +

∑p
i=1uid

′
i,τ , (4)
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where ηu ≜ λ+ (1− γ)
∑p

i=1 uiλci and d′i,τ ≜ (1− γ)(di,τ + δci − Jci,τ (πϕ)).

Proposition 2 shows the derivation of the Lagrangian multiplier u∗
ci,τ . Its proof is shown in Appendix

F.2.2. With u∗
ci,τ , the solution of safe policy adaptation (1) can be obtained immediately by Proposi-

tion 1. Note that problem (4) is the dual problem of (1) with the closed-form πu for any dual variable
u, which enables us to use the dual method to solve problem (4). Next, we provide the algorithm of
solving problem (4) and its computational complexity analysis.

Algorithm 1 states the algorithm for the safe policy adaptation. We apply the projected gradient
descent (PGD) to solve the optimization problem (4) to obtain the Lagrangian multipliers {u∗

ci,τ}
p
i=1,

then the closed-form solution of problem (1) is immediately obtained. The gradient of the objective
function L̄(u) of problem (4) w.r.t u (used in line 4 of Algorithm 1) can be stated as

∇uiL̄(u) = −E
s∼ν

πϕ
τ

[Ea∼πu(·|s)[A
πϕ
ci,τ (s, a)] + (1− γ)λciDKL (πu(·|s)∥πϕ(·|s))] + d′i,τ , (5)

where πu and d′i,τ are defined in Proposition 2, and then the gradient step is projected to Rp
≥0. The

computation in (5) is derived based on the dual method shown in Proposition 6.1.1 in (Bertsekas,
1997), which is simplified compared with direct computation by the chain rule. The derivation is
shown in Appendix F.2.3. As the optimization problem (4) is the dual problem of (1) and is always
convex, the PGD method in Algorithm 1 can guarantee convergence to the global optimum (Iusem,
2003). Due to the low dimensionality of the decision variables of problem (4) (the dimension of
the Lagrangian multipliers {u∗

ci,τ}
p
i=1 is the constraint number p) and the simplicity of gradient

computation, the computational complexity of Algorithm 1 is much lower than directly solving
problem (1). Other Lagrangian-based policy optimization algorithms, such as RCPO Tessler et al.
(2018b) and PPO-Lagrangian Ray et al. (2019), have been used to solve safe RL. However, they
are not suitable for this safe meta-RL problem. More discussion and the comparisons between the
proposed dual method in (4), (5), and Algorithm 1 and the existing Lagrangian-based algorithms are
shown in Appendix C.

Algorithm 1 Dual-method-based safe policy adaptation
Require: Meta-policy πϕ; Advantage functions A

πϕ
τ and A

πϕ
ci,τ ; step size β.

1: ui = 0 for all i ∈ 1, · · · , p
2: for n = 1, · · · , N do
3: Compute πu(·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)

∑p
i=1 uiλci)

−1(A
πϕ
τ (s, ·)−

∑p
i=1uiA

πϕ
ci,τ (s, ·)))

4: ui ← max{0, ui − β∇ui L̄(u)} for each i = 1, · · · , p , where∇uiL(u) is shown in (5)
5: end for
6: u∗

ci,τ = ui for all i = 1, · · · , p
7: πτ (·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)

∑p
i=1 u

∗
ci,τλci)

−1(A
πϕ
τ (s, ·)−

∑p
i=1u

∗
ci,τA

πϕ
ci,τ (s, ·)))

8: return {u∗
ci,τ}

p
i=1, πτ

4.2 SAFE META-POLICY TRAINING ALGORITHM

To solve the optimization problem (2) for meta-training, we first consider the computation of the meta-
gradient, i.e., ∇ϕEτ∼P(Γ)[Jτ (As(πϕ,Λ,∆, τ))]. The following proposition provides the computation
of ∇ϕJτ (As(πϕ,Λ,∆, τ)). Notice that the Lagrangian multipliers {u∗

ci,τ}
p
i=1 in Propositions 1 and

2 are solved by problem (4), and thus depend on the meta-policy πϕ. We denote the solved Lagrangian
multipliers with πϕ as u∗

ci,τ (πϕ) in the following sections.

Proposition 3. Suppose the assumption in Proposition 1 holds. Let πτ = As(πϕ,Λ,∆, τ). Un-
der certain conditions, we have that ∇ϕJτ (π

τ ) exists and ∇ϕJτ (π
τ ) = 1

1−γEs∼νπτ
τ ,a∼πτ (·|s)

[
(
∇ϕη(πϕ)

−1Q̄
πϕ
τ (s, a) + η(πϕ)

−1∇ϕQ̄
πϕ
τ (s, a) +∇ϕfϕ(s, a)

)
Qπτ

τ (s, a)], where η(πϕ) ≜ λ +

(1− γ)
∑p

i=1 u
∗
ci,τ (πϕ)λci , and Q̄

πϕ
τ ≜ Q

πϕ
τ −

∑p
i=1u

∗
ci,τ (πϕ)Q

πϕ
ci,τ .

The computations of ∇ϕQ
πϕ
τ (·), ∇ϕQ

πϕ
ci,τ (·) and ∇ϕu

∗
ci,τ (πϕ) are shown in Appendices F.3.2 and

F.3.3. The complete statement of Proposition 3 that includes the sufficient condition of the existence
of ∇ϕJτ (π

τ ), as well as the proof of the proposition are shown in Appendix F.3.1. In Proposition
3, the gradient ∇ϕu

∗
ci,τ (πϕ) w.r.t ϕ, is the gradient of the solved Lagrangian multipliers, i.e. the

optimal solution of problem (4). We apply the implicit gradient theorem for constrained optimization
in (Giorgi & Zuccotti, 2018; Xu & Zhu, 2023a) to show the existence and the computation of

6
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∇ϕu
∗
ci,τ (πϕ), which is shown in Appendix F.3.3. In practice, we simplify the computation of the

meta-gradient of ∇ϕJτ (π
τ ) as

Es∼νπτ
τ ,a∼πτ (·|s)[(∇ϕfϕ(s, a) + η(πϕ)

−1∇̃ϕQ̄
πϕ
τ (s, a))Qπτ

τ (s, a)], (6)

where η(πϕ) ≜ λ+ (1− γ)
∑p

i=1 u
∗
ci,τ (πϕ)λci and ∇̃ϕQ̄

πϕ
τ = ∇ϕQ

πϕ
τ −

∑p
i=1u

∗
ci,τ (πϕ)∇ϕQ

πϕ
ci,τ .

In (6), we take ∇ϕu
∗
ci,τ (πϕ) = 0 in Proposition 3 approximately. On one hand, the computation

complexity of ∇ϕu
∗
ci,τ (πϕ) is high, as shown in Appendix F.3.3. On the other hand, under this

approximation, we only omit the small change of the Lagrangian multiplier u∗
ci,τ (πϕ) around the

meta-policy πϕ, i.e., we keep the penalty to constraint violation but treat the weight of the penalty
to constraint violation unchanged over a small neighbor of πϕ. Therefore, the omitted term is a
higher-order term with a smaller impact on the meta-gradient. Note that, the meta-gradients in
many meta-learning approaches include the Hessian computation, such as supervised meta-learning
approaches, like MAML and iMAML (Finn et al., 2017; Rajeswaran et al., 2019; Xu & Zhu, 2023b),
meta-RL (Finn et al., 2017; Liu et al., 2019b) and safe meta-RL approach meta-CPO (Cho & Sun,
2024). In contrast, thanks to the closed-form solution (shown in Proposition 1) of the policy adaptation
problem (1), the meta-gradient in (6) does not include the computations of Hessian and inverse of
Hessian w.r.t. ϕ, which holds a comparable computational complexity as the policy gradient, and
therefore is more computationally efficient than the above meta-learning approaches.

Algorithm 2 Safe meta-policy training algorithm
Require: Initial meta-policy πϕ0 ; allowable constraint violation δci defined in Problems (1) and (2).
1: for n = 0, · · · , N − 1 do
2: Sample a task τ with the CMDPMτ from the task distribution P(Γ)
3: Evaluate Jci,τ (πϕn), A

πϕn
τ (·, ·) and A

πϕn
ci,τ (·, ·) by sampling data using the meta-policy πϕn on task τ

4: if Jci,τ (πϕn) ≤ di,τ + δci ,∀i = 1, · · · , p then
5: Obtain the task-specific policy πτ and the Lagrangian multipliers u∗

ci,τ (πϕn) by Algorithm 1 with the
meta-policy πϕn

6: Evaluate Qπτ

τ (·, ·) by sampling data using the task-specific policy πτ on task τ
7: Compute the meta-gradient∇ϕJτ (π

τ ) by (6)
8: Take a step of TRPO (Schulman et al., 2015a) with using ∇ϕJτ (π

τ ) towards maximize Jτ (π
τ ) to

obtain ϕn+1

9: else
10: Choose any in ∈ {1, · · · , p} such that JCin

(πϕn) > din,τ + δcin
11: Compute the policy gradient∇ϕJCin ,τ (πϕn) ∝ E

s∼ν
πϕn
τ ,a∼πϕn (·|s)[∇ϕfϕn(s, a)A

πϕn
Cin ,τ (s, a)].

12: Take a step of TRPO with using∇ϕJCin ,τ (πϕn) towards minimize JCin ,τ (πϕ) to obtain ϕn+1

13: end if
14: end for
15: return πϕN

The safe meta-policy training algorithm aims to solve the optimization problem in (2) and is stated in
Algorithm 2. To deal with the constraint imposed on the meta-policy πϕ in problem (2), we use the
idea similar to CRPO (Xu et al., 2021). Specifically, we first check the constraint violation in line
4. If the constraints are not violated, we maximize the meta-objective; otherwise, we minimize the
constraint functions. Under this procedure, we always have Jci,τ (πϕn

) ≤ di,τ + δci ,∀i = 1, · · · , p
when computing the task-specific policy πτ = As(πϕn ,Λ,∆, τ), and therefore the solution of πτ

always exists, according to Proposition 1. To stabilize the training, we use the TRPO for the policy
update in lines 8 and 12, which only needs the gradient information.

5 THEORETICAL RESULTS

In this section, we introduce the theoretical results of the safe meta-RL framework. Note that problem
(2) is a constrained bilevel optimization problem, and the convergence and optimality analysis of
solving the problem and obtaining πϕ∗ are widely studied in (Xu & Zhu, 2023a; Bertrand et al., 2022;
Liu et al., 2021). So we analyze the performance of the solved meta-policy πϕ∗ in our theoretical
results. In particular, we introduce the necessary assumptions and notations, derive the performance
guarantee for safe policy adaptation As in Section 5.1, and then derive the optimality and safety
guarantee of the safe meta-RL framework in Section 5.2.

7
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We introduce several necessary assumptions and notations used in the theoretical results.
Assumption 1 (Non-empty feasible set). The feasible set of problem (2) is not empty.
Assumption 2 (Sufficient visit in safe states). There exists a set of states Sv ⊆ S and a constant
η > 0 such that, for any task τ ∈ Γ and any safe policy πs ∈ {π ∈ Π : Jci,τ (π) ≤ di + δmax, ∀i =
1, · · · , p}, νπ

s

τ (s) ≥ η for all s ∈ Sv .

Assumption 1 supposes that problem (2) is well defined and its optimal meta-parameter ϕ∗ exists.
Assumption 2 supposes that there exists a set of states Sv such that the safe policy can take sufficient
visitation in the set Sv . We denote α ∈ (0, 1] as the lower bound of the visitation probability of safe
policies to Sv , i.e.,

∑
s∈Sv νπ

s

τ (s) ≥ α or
∫
Sv ν

πs

τ (s)ds ≥ α for any πs.

Since the reward rτ ≤ rmax and ci,τ ≤ cmax
i , then |Aπ

τ (s, a)| ≤ rmax/(1− γ) and |Aπ
ci,τ (s, a)| ≤

cmax
i /(1− γ) are upper bounded. We define the upper bounds as Amax ≜ maxτ∈Γ,π∈Π |Aπ

τ (s, a)|
and Amax

ci ≜ maxτ∈Γ,π∈Π |Aπ
ci,τ (s, a)| for each i = 1, · · · , p.

5.1 MONOTONIC IMPROVEMENT AND ANYTIME SAFETY FOR POLICY ADAPTATION

We first introduce an intermediate lemma. Its proof is shown in Appendix F.4.1.
Lemma 1. Suppose that Assumption 2 holds. For any task τ , and any safe policies π, π′ ∈ {π ∈
Π : Jci,τ (π) ≤ di + δmax, ∀i = 1, · · · , p}, we have Jτ (π′) ≤ Jτ (π) +Es∼νπ

τ ,a∼π′(·|s)

[
Aπ

τ (s,a)
1−γ

]
+

4γAmax

ηα(1−γ)2Es∼νπ
τ
[DKL(π

′(·|s)||π(·|s))] and Jτ (π
′) ≥ Jτ (π) + Es∼νπ

τ ,a∼π′(·|s)

[
Aπ

τ (s,a)
1−γ

]
−

4γAmax

ηα(1−γ)2Es∼νπ
τ
[DKL(π

′(·|s)||π(·|s))]. The inequalities also holds for each i = 1, · · · , p, when Aπ
τ

and Aπ′

τ are replaced by Aπ
ci,τ and Aπ′

ci,τ , Amax is replaced by Amax
ci , and Jτ is replaced by Jci,τ .

The right-hand side of the inequalities corresponds to the objective function and constraint functions
of As in problem (1), which has a closed-form solution, as shown in Section 3.1. In specific, when
using the first inequality in Lemma 1 on the accumulated cost Jci,τ (π

′), the right-hand side is the
upper bound of Jci,τ (π

′). Therefore, the constraint functions in problem (1) limit the upper bound
of Jci,τ (π

′) to be below the specified constraint requirement, which also applies to Jci,τ (π
′) itself.

When using the second inequality in Lemma 1 on the accumulated reward Jτ (π
′), the right-hand side

is the lower bound of Jτ (π′). Then, As in problem (1) is to maximize the lower bound of Jτ (π′),
which guarantees monotonic improvement. This idea is also used in (Schulman et al., 2015a; Achiam
et al., 2017). We state the results in Proposition 4 and show its proof in Appendix F.4.2.
Proposition 4. Suppose that Assumption 2 holds. Suppose πϕ satisfies Jci,τ (πϕ) ≤ di,τ + δci ,∀i =
1, · · · , p. Let πτ = As(πϕ,Λ,∆, τ) with λ ≥ 4γAmax

ηα(1−γ) and λci ≥ 4γAmax
ci

ηα(1−γ)2 for each i. Then,
Jci,τ (π

τ ) ≤ di,τ + δci for each i, and Jτ (π
τ ) ≥ Jτ (πϕ).

With this proposition, we can derive the properties of monotonic improvement and anytime safety
guarantee for the policy adaptation, which is stated in Corollary 1.

Corollary 1. Suppose that Assumptions 1 and 2 hold. Let λ ≥ 4γAmax

ηα(1−γ) and λci ≥ 4γAmax
ci

ηα(1−γ)2 for
i = 1, · · · , p. Let πτ

[k+1] = As(πτ
[k],Λ,∆, τ) with δci = 0 for k ∈ N, where πτ

[0] = πϕ∗ being the
solution of problem (2). Then, for all k ∈ N, Jci,τ (π

τ
[k]) ≤ di,τ for each i and Jτ (π

τ
[k+1]) ≥ Jτ (π

τ
[k]).

When a new task τ ∈ Γ is given, we start from the meta-policy πϕ∗ , iteratively implement As, and
generate a policy sequence {πτ

[k]}
N
k=0. As indicated in Corollary 1, the constraints are satisfied for

each policy in the policy sequence, which shows the anytime safety of the policy adaptations.

5.2 NEAR-OPTIMALITY AND SAFETY GUARANTEE FOR META-POLICY TRAINING

In Section 5.1, we show the policy is monotonically improved from πϕ∗ during policy adaptation. On
the other hand, πϕ∗ is learned from the task distribution P(Γ), which should be a good initial policy
for the task sampled from P(Γ). In this section, we compare the policy adapted from πϕ∗ with the
task-specific optimal policy and verify the near-optimality of the proposed safe meta-RL framework.
We start with the definition of the optimal task-specific policies and the task variance.
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Definitions. Define the optimal policy πτ
∗ for task τ as πτ

∗ ≜ argmaxπ∈Π Jτ (π) s.t. Jci,τ (π) ≤ di,τ .
Define the ϵ-conservatively optimal policy πτ

∗,[ϵ], which is optimal for τ under conservative safety

constraints, i.e., πτ
∗,[ϵ] ≜ argmaxπ∈Π Jτ (π) s.t. Jci,τ (π) ≤ di,τ − ϵ, where the conservative

constant ϵ ≥ 0, and πτ
∗ = πτ

∗,[0]. We define the variance of a task distribution P(Γ) as Var(P(Γ)) ≜
minϕ Eτ∼P(Γ)Es∼ν

πϕ
τ

[DKL(π
τ
∗ (·|s)||πϕ(·|s))], which the minimal mean square of the distances

among the optimal task-specific policies πτ
∗ , and the minimal point is denoted as ϕ̂. Similarly, the

task variance under the conservative safety constraints is defined as Varϵ(P(Γ)) ≜ minϕ Eτ∼P(Γ)

E
s∼ν

πϕ
τ

[DKL(π
τ
∗,[ϵ](·|s)||πϕ(·|s))], and the minimal point is denoted as ϕ̂[ϵ]. The radius of P(Γ)

is defined as R(P(Γ)) ≜ maxτ∈Γ,ϵ∈E E
s∼ν

π
ϕ̂[ϵ]

τ

[DKL(π
τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))], where the set E is

defined by E ≜ {ϵ ≥ 0 : πτ
∗,[ϵ] exists for all τ ∈ Γ}. Note that the task variance Var[ϵ] and the radius

R is the inherent property of P(Γ), which measures the similarity of tasks sampled from P(Γ). For
example, if the reward function r and cost ci among tasks are similar, optimal policies πτ

∗,[ϵ] are close,
then Var[ϵ] and R are close to 0. With the definitions, the near-optimality and safety guarantee of the
safe meta-RL is shown in Theorem 1.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Let λ = 4γAmax

ηα(1−γ) , λci =
4γAmax

ci

ηα(1−γ)2 and

δci =
8γAmax

ci

ηα(1−γ)2R(P(Γ))− ϵ for all i = 1, · · · , p, where ϵ is chosen from
[
0,

8γAmax
ci

ηα(1−γ)2R(P(Γ))
]
. Let

ϕ∗ be the solution of problem (2). The solution of As(πϕ∗ ,Λ,∆, τ) exists, and we have

Eτ∼P(Γ)[Jτ (As(πϕ∗ ,Λ,∆, τ))] ≥ Eτ∼P(Γ)[Jτ (π
τ
∗,[ϵ])]−

8γAmax

ηα(1− γ)2
Varϵ(P(Γ)), (7)

Jci,τ (As(πϕ∗ ,Λ,∆, τ))− dci,τ ≤
8γAmax

ci

ηα(1− γ)2
R(P(Γ))− ϵ, for any τ ∈ Γ. (8)

The proof of Theorem 1 is shown in Appendix F.4.3. The theorem derives (i) the lower bound of the
expected accumulated reward of the policy πτ adapted by one time of As from the meta-parameter
πϕ∗ with the comparison to the task-specific (conservatively) optimal policy πτ

∗,[ϵ]. It also derives (ii)
the upper bound of the constraint violation for each task τ .
Case 1 (Safety guarantee). When δci = 0, the safe constraint is strictly satisfied, i.e., Jci,τ (π

τ )−
dci,τ ≤ 0 for any τ , but the optimality comparator Jτ (πτ

∗,[ϵ]) with ϵ =
8γAmax

ci

ηα(1−γ)2R(P(Γ)) in (7) is
suboptimal (ϵ-conservatively optimal).

Case 2 (Near-optimality). When δci =
8γAmax

ci

ηα(1−γ)2R(P(Γ)), the optimality comparator Jτ (πτ
∗,[0]) =

Jτ (π
τ
∗ ) in (7) is all-task optimum, but the constraint is violated at most

8γAmax
ci

ηα(1−γ)2R(P(Γ)).

As shown in Cases 1 and 2, there is a trade-off between the optimality of accumulated reward and
the safety constraint satisfaction when the allowable constraint violation thresholds δci vary. In
particular, when δci is increased, the optimality is improved while the constraint violation increases.
As indicated by the optimality-safety trade-off, in the implementation of the proposed algorithm, we
choose a large δci when the constraint satisfaction is not required to be strict, and a small δci ≈ 0
when the constraint satisfaction is prioritized. The reason for the trade-off is that the constraint
function in problem (1) approximate the true constraints Jci,τ (π) − dci,τ ≤ 0 for any π by only
knowing the information (the advantage functions Aπϕ

ci,τ ) at a single policy πϕ, and therefore are more
conservative than the true constraints, which leads to loss of optimality. To the best of our knowledge,
as anytime safety cannot be guaranteed in the existing framework (Khattar et al., 2023; Cho & Sun,
2024), it is the first time to show the trade-off between optimality and safety, and is also the first to
provide an optimality bound with the anytime safe guarantee. Moreover, Theorem 1 is reduced to the
optimality analysis in (Xu & Zhu, 2024) when choosing ϵ = 0 for the unconstrained meta-RL.

Next, we delve into the optimality bound. Consider fixing δci and ϵ and then fixing the upper bound
of the constraint violation Jci,τ (π

τ ). Theorem 1 shows that, the performance of meta-RL is improved
when the variance of the task distribution Varϵ(P(Γ)) is reduced, as πτ approach the task-specific
optimal policy πτ

∗,[ϵ]. It corresponds to the intuition of meta-learning, which is that, when the variance
of a task distribution is smaller, the tasks are more similar, and then the experience learned from the
task distribution works better for new tasks sampled from the task distribution.

9
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Figure 1: Average accumulated reward (columns 1 and 3, higher is better) and maximal accumulated cost
(columns 2 and 4, higher is worse) across all validation/test tasks during the meta-training (columns 1 and
2) and the meta-test (columns 3 and 4) in Half-Cheetah (row 1) and Point-Circle (row 2). The accumulated
reward and cost during meta-training are computed on the policy adapted one step from the meta-policy. The
black dashed line is the constraint of the accumulated cost (below the line means satisfaction).

6 EXPERIMENTS

Our experiments aim to validate three claimed benefits of the proposed algorithms for safe meta-RL:
(i) superior optimality, i,e, the accumulated rewards of the proposed algorithms can exceed those of
baselines; (ii) anytime safety, i,e, all the learned meta-policy and the adapted policies should satisfy
the safety constraint; (iii) high computational efficiency for both the meta-training and meta-test.

We conduct experiments on four high-dimensional locomotion scenarios, including Half-Cheetah,
Humanoid, Hopper, Swimmer, and three navigation scenarios with collision avoidance, including
Point-Circle, Car-Circle-Hazard, and Point-Button in Gym and Safety-Gymnasium libraries (Brock-
man et al., 2016; Ji et al., 2023). We compare the proposed method with three benchmarks: (a)
MAML (Finn et al., 2017) with constraint penalty; (b) meta-CPO (Cho & Sun, 2024); (c) meta-CRPO
(Khattar et al., 2023). In (a), we add a weighted penalty term for constraint violation to the loss
function of the MAML. Note that (c) is originally designed for online safe meta-RL, where tasks
are revealed sequentially during the meta-training. So, we use (3) with all training tasks provided
before the meta-training and it does not have the meta-training stage (Figures 1 and 2 do not have
meta-training for meta-CRPO). For the fairness of the comparison, all the methods have the same data
requirements and task settings. More details about the settings of the tasks, algorithm implementation,
and hyper-parameters are shown in Appendices D.1 and D.2.
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Figure 2: Normalized computation time of the meta-training
(per iteration) and meta-test in Half-Cheetah and Point-Circle.

Figures 1 and 2 show the experiment results
in Half-Cheetah and Point-Circle. Due to
the page limit, the results on the other four
scenarios are shown in Appendix D.3. Fig-
ure 1 shows that the proposed safe meta-RL
algorithm significantly outperforms all the
baseline methods regarding the optimality,
i.e. about 50% improvement over the best
baselines in terms of the accumulated re-
wards during both the meta-training and
the meta-test in Half-Cheetah and Point-Circle. Moreover, as shown in the fourth column of Figure 1,
the proposed algorithms achieve anytime safety during the meta-test, i.e., the maximal accumulated
costs always satisfy the constraints, while the baselines cannot achieve it. Figure 2 shows that our
algorithm is much more efficient than the baselines, saving about 70% of the computation time for
meta-training and 50% for meta-testing compared to meta-CPO.

7 CONCLUSION

In this paper, we study a safe meta-RL problem with the requirement of anytime safety. We present
an algorithm with three key advantages, including superior optimality, anytime safety guarantee, and
high computational efficiency. We provide a theoretical analysis regarding the near-optimality and
safety guarantees and empirically demonstrate the advantages of the proposed algorithms.
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Appendix for "Safe Meta-Reinforcement Learning via
Dual-Method-Based Policy Adaptation: Near-Optimality and

Anytime Safety Guarantee"

A RELATED WORKS

Safety metrics in safe RL. Safe RL aims to handle the safety requirements in the practical applica-
tions of RL. Safe RL typically applies two categories of safety metrics. The first metric is used in
CMDP (Altman, 2021) and is applied in (Tessler et al., 2018a; Chow et al., 2018; Ding et al., 2021;
Chen et al., 2021; Achiam et al., 2017; Yang et al., 2019; Polosky et al., 2022). It introduces costs
associated with state-action pairs based on MDP, and the agent is defined as safe when the expected
accumulated costs satisfy given safety constraints. The second metric is remaining in the safety
region (Wachi & Sui, 2020; Yu et al., 2022; Paternain et al., 2022), which is stricter than the first
metric. Specifically, the agent is safe when it remains in a desired safe set for any sampled trajectory.
In this paper, we consider the anytime safety during policy adaptation, where each policy is required
during the exploration of an unknown MDP. It is naturally infeasible to guarantee anytime safety
under the second safety metric, as the action to remain in the safety region is unknown before the
exploration. In contrast, the agent could be safe under the first safety metric even if it visits some
undesired states. As a result, we consider the first safety metric.

Solutions of CMDPs. The solutions of the CMDPs can be categorized into (i) penalty function
(Guan et al., 2022), (ii) primal-dual approaches (Tessler et al., 2018a; Chow et al., 2018; Yu et al.,
2019; Ding et al., 2021; Chen et al., 2021), (iii) trust-region approaches (Achiam et al., 2017; Yang
et al., 2019; Zhang et al., 2020b; Liu et al., 2022). Existing works theoretically establish the safety
guarantee for both primal-dual approaches (Chow et al., 2018; Yu et al., 2019; Ding et al., 2021) and
trust-region approaches (Achiam et al., 2017). The primal-dual approaches update the dual variables
and the policy simultaneously. Therefore, they gradually reduce the total cost below the required
threshold by multiple policy optimization steps and can only establish the safety guarantee for the
final convergent policy and cannot guarantee anytime safety during policy optimization. Therefore,
they cannot meet the anytime safety requirement during policy adaptation in the safe meta-RL
problems, i.e., the safety constraints are satisfied during each step of policy adaptation. In contrast,
trust-region approaches constrain the policy within a safe policy set, potentially ensuring safety for
every policy during the policy optimization process. However, the computational complexity of
existing trust-region approaches is high, especially when applied to the safe meta-RL problem. The
safety policy adaptation in this paper belongs to the category of trust-region approaches. On the other
hand, we propose a novel safe policy adaptation method and derive a dual method to address the
computational inefficiency issue.

Cautious adaptation and safe meta-RL. Cautious adaptation (Zhang et al., 2020a) and safe meta-
RL both consider to learn prior knowledge to improve the safety level of the adaptations in new
environments. On the other hand, cautious adaptation considers the out-of-distribution exploration
with the prior learned safety knowledge. The safe meta-RL focuses on in-distribution few-shot
learning with safety constraints. Therefore, the safe meta-RL requires less exploration data during
adaptation than cautious adaptation, but is limited to in-distribution tasks and less generalizable than
cautious adaptation.

Safe meta-RL v.s. multitask/multi-objective safe RL methods. Safe meta-RL, multi-task safe RL
Kim et al. (2023), and multi-objective safe RL Huang et al. (2022) all consider the multiple tasks
in the safe RL setting. However, the biggest difference between meta-safe RL and multi-task/multi-
objective safe RL is that the agent in meta-safe RL is required to adapt to a new and unknown
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environment under few-shot data collection. Therefore, the policy adaptation algorithm is the most
important part of meta-safe RL. This paper designs a novel policy adaptation algorithm that holds
several benefits for the few-shot policy adaptation that the existing methods do not hold. In contrast,
the multi-task/multi-objective safe RL learns the policies for multiple tasks during the training stage,
where the policy adaptation is not required. Therefore, the multi-task/multi-objective can borrow the
existing policy optimization methods and do not need to design a new one.

B DISCUSSION OF THE RELATIONS BETWEEN CPO (ACHIAM ET AL., 2017)
AND THE SAFE POLICY ADAPTATION BY PROBLEM (1)

The safe policy adaptation As in (1) is inspired by the derivation of CPO, the first optimization
problem in Section 5.3 of (Achiam et al., 2017), and replaces the term

√
DKL (π(·|s)∥πϕ(·|s)) in

the objective and the constraint functions of the optimization problem by DKL (π(·|s)∥πϕ(·|s)).
Similarly, we derive the inequalities in Lemma 1 replace the term maxs DKL(π

′(·|s)||π(·|s) in
Theorem 1 in (Schulman et al., 2015a) and replace the term

√
Es∼νπ

τ
[DKL(π′(·|s)||π(·|s))] in

Corollary 3 in (Achiam et al., 2017) by Es∼νπ
τ
[DKL(π

′(·|s)||π(·|s))] in the right-hand side of the
inequalities.

The modification from (Achiam et al., 2017) to the safe policy adaptation As holds two benefits:
(i) performance guarantee and (ii) computational efficiency. First, as Corollary 3 in (Achiam et al.,
2017) enables the feasibility, the monotonic improvement, and the constraint satisfaction to hold
for the solution of the first optimization problem in Section 5.3 of (Achiam et al., 2017), Lemma 1
enables the feasibility, the monotonic improvement, and the constraint satisfaction to hold for the
safe policy adaptation As. Second, the modification to the safe policy adaptation As enables us
to derive its closed-form solution and As can be solved by the dual method, which significantly
reduces the computational complexity of the meta-safe RL algorithm, as mentioned in Section 4.1.
On the other hand, one cannot use the dual method for the first optimization problem in Section 5.3
of (Achiam et al., 2017), and the computational complexity is high. Paper (Achiam et al., 2017)
solves an approximate problem to mitigate the issue, but the computational complexity is still high,
meanwhile, the safety constraint violation cannot be avoided in theory and also usually appears in
practice.

C COMPARISONS BETWEEN THE PROPOSED DUAL METHOD AND EXISTING
LAGRANGIAN-BASED SAFE RL ALGORITHMS

The Lagrangian-based policy optimization algorithm, such as RCPO Tessler et al. (2018b), PPO-
Lagrangian Ray et al. (2019) and CRPO Xu et al. (2021) used in meta-CRPO Khattar et al. (2023),
has been widely used to solve safe RL. However, although both the proposed dual method in Section
4.1 and the primal-dual method in RCPO, PPO-Lagrangian, and CRPO, are Lagrangian-based safe
policy optimization algorithms, they are different. The primal-dual method is much worse than the
proposed method and is not suitable for this safe meta-RL problem.

The dual-method in Section 4.1, including (4) and (5), is to solve the safe policy adaptation problem
in (1). As mentioned in Section 3.1, the safe policy adaptation (1) holds several benefits similar to
CPO, including the safety guarantee for a single policy optimization step (using data collected on a
single policy) and the monotonic improvement. Moreover, we derive the closed-form solution under
certain Lagrangian multipliers for the optimization problem (1). Based on the derived closed-form
solution of (1) (shown in (3) ), we can use the dual method shown in (4) and (5) to solve the safe
policy adaptation problem in (1), which significantly reduces the computational complexity during
the meta-training.

In contrast, RCPO and PPO-Lagrangian do not hold any of the benefits shown in CPO and the
proposed algorithm. First, RCPO and PPO-Lagrangian use the gradient ascent steps on the Lagrangian,
which do not have the safety guarantee and the monotonic improvement in each policy optimization
step, and therefore cannot guarantee anytime safety in the meta-test stage. Moreover, there is no
closed-form solution for the policy optimization step in RCPO and PPO-Lagrangian, and therefore
cannot be solved by the dual method, which leads the high computational complexity during the
meta-training.
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D EXPERIMENTAL SUPPLEMENTS

All experiments are executed on a computer with a 5.20 GHz Intel Core i12 CPU.

D.1 TASK SETTINGS

(a) Half-Cheetah (b) Humanoid (c) Hopper

(d) Swimmer (e) Car-Circle-Hazard (f) Point-Button

(g) Point-Circle

Figure 3: High-dimensional locomotion tasks and navigation tasks with collision avoidance.

We conduct experiments on totally seven scenarios, which include four high-dimensional locomotion
scenarios (Half-Cheetah, Humanoid, Hopper, and Swimmer) in Gym library (Brockman et al., 2016),
and three navigation scenarios with collision avoidance (Point-Circle, Car-Circle-Hazard, and Point-
Button) in Safety-Gymnasium library (Ji et al., 2023). The scenarios are visually illustrated in Figure
3. We use the task setups similar to those used in previous works on meta-RL and safe meta-RL (Cho
& Sun, 2024; Finn et al., 2017; Khattar et al., 2023). We provide the details of the task setups as
follows.

Half-Cheetah. Half-Cheetah (Figure 3.a) has a 17-dimensional state space and a 6-dimensional
action space. In the experiment of Half-Cheetah, the reward is the negative absolute value between
the agent’s current velocity and a goal velocity, where the goal velocity characterizes the task. The
task distribution is defined by the distribution of the goal velocity, which is a uniform distribution
from 0.0 to 2.0. The cost is defined by hcheetah − h0 ≤ dτ , i.e. the cost is positive when its head is
higher than h0.

Humanoid. Humanoid (Figure 3.b) has a 376-dimensional observation space and a 17-dimensional
action space. In the experiment of Humanoid, the reward is set as vy sin θ + vx cos θ, where vx and
vy are the velocities along the x-axis and y-axis, and θ is the walking direction of the humanoid. So
the reward is the velocity along the direction θ. The task is characterized by the walking direction θ,
which is sampled uniformly from 0 to π/2. The cost is defined by the control cost of the humanoid
robot, i.e.,

∑
i c

2
i , where ci is the torque imposed on each component.
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Table 2: Hyper-parameter setting in As

scenario λ, λc1 dτ δc1

Half-Cheetah 1.0 10.0 0.0
Humanoid 5.0 20.0 0.0
Hopper 1.0 5.0 0.0
Swimmer 0.2 5.0 0.0
Point-Circle 0.5 10.0 0.0
Car-Circle-Hazard 0.5 10.0 0.0
Point-Button 0.5 10.0 0.0

Hopper. Hopper (Figure 3.c) has a 12-dimensional state space and a 3-dimensional action space.
In the experiment of Hopper, the reward is the negative absolute value between the agent’s current
velocity and a goal velocity, where the goal velocity characterizes the task. The task distribution is
defined by the distribution of the goal velocity, which is a uniform distribution from 0.0 to 1.0. The
cost is defined by the control cost of the robot.

Swimmer. Swimmer (Figure 3.d) has a 8-dimensional state space and a 2-dimensional action space.
In the experiment of Swimmer, for different tasks, we add a Gaussian noise to the state transition,
and the variance is uniformly sampled from 0.0 to 0.5 for different tasks; we use the reward defined
as the negative absolute value between the agent’s current velocity and a goal velocity, which is a
uniform distribution from 0.0 to 1.0, we used the cost defined by the control cost of the swimmer
robot, i.e., w

∑
i c

2
i , where ci is the torque imposed on each component and the weight w is sampled

uniformly from 0.5 to 1.

Point-Circle. Point-Circle (Figure 3.e) has a 28-dimensional state space and a 2-dimensional action
space. In the experiment of Point-Circle, a positive reward is given when the agent runs in a circle,
and a positive cost is given when the agent does not stay within the safe region. The setting of the
safe region characterizes the task. The task distribution is defined by the distribution of the circle
radius and the wall distance. The circle radius is a uniform distribution from 1.0 to 1.5 and the wall
distance is a uniform distribution from 0.55 to 0.75.

Car-Circle-Hazard. Car-Circle-Hazard (Figure 3.f) has a 60-dimensional state space and a 2-
dimensional action space. In the experiment of Car-Circle-Hazard, a positive reward is given when
the agent runs in a circle, and a positive cost is given when the agent does not stay within the safe
region or collides with Hazards. The setting of the safe region and the hazards characterize the task.
The task distribution is defined by the distribution of the circle radius, the distribution of the positions,
and the distribution of the number of hazards. The circle radius is a uniform distribution from 0.7 to
1.0 and the number of hazards is a uniform distribution from 3 to 7. the distribution of the position of
the hazard is a uniform distribution over the safety space.

Point-Button. Point-Button (Figure 3.g) has a 56-dimensional state space and a 2-dimensional
action space. In the experiment of Point-Button, a positive reward is given when the agent touches
a goal button, and a positive cost is given when it does not stay within the safe region and touches
any no-goal button or hazards. The setting of the buttons and the hazards characterize the task. The
task distribution is defined by the distribution of the number and the positions of buttons and the
number and the positions of hazards. Both the number of buttons and the number of hazards is
a uniform distribution from 6 to 10, and the distributions of positions of buttons and hazards are
uniform distributions over the safety space.

D.2 ALGORITHM SETTINGS

We apply Algorithm 4. We consider the policy as a Gaussian distribution, where the neural network
produces the means and variances of the actions. The neural network policy has two hidden layers of
size 64, with tanh nonlinearities. The horizon is 200, with 40 rollouts per policy adaptation step for
all problems in the high-dimensional locomotion scenarios. The horizon is 500, with 10 rollouts per
policy adaptation step for all problems in the navigation scenarios. The discount factor γ = 0.99.
The models are trained for up to 300 meta-iterations in the meta-training. In each iteration, we
sample 10 tasks from the task distribution. The meta-policy is tested on 20 tasks and is adapted by 20
iterations for each task in the meta-test. For the TRPO in meta-parameter optimization, we use the
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KL-divergence constraint as δ = 1e− 3. We set λ = λc1 in the safe policy adaptation As in problem
(1). Table 2 shows the setting of λ and dτ in As for each scenario.

We compare the proposed method with three benchmarks: (a) MAML (Finn et al., 2017) with
constraint penalty, (b) meta-CPO (Cho & Sun, 2024), and meta-CRPO (Khattar et al., 2023). For all
methods, we run each algorithm 5 times, including meta-training and meta-test, and show the mean
and standard deviation of the evaluation quantities.
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Figure 4: Average accumulated reward (columns 1 and 3, higher is better) and maximal accumulated cost
(columns 2 and 4, higher is worse) across all validation/test tasks during the meta-training (columns 1 and
2) and the meta-test (columns 3 and 4) in Humanoid (row 1), Hopper (row 2), Swimmer (row 3), Car-Circle-
Hazard (row 4), Point-Botton (row 5). The accumulated reward and cost during meta-training are computed on
the policy adapted one step from the meta-policy. The black dashed line is the constraint of the accumulated cost
(below the line means satisfaction).

D.3 SUPPLEMENTAL RESULTS

Figures 4 and 5 show the experimental results in Humanoid, Hopper, Car-Circle-Hazard, and Point-
Button. Note that meta-CRPO is not designed for offline optimization of meta-policy, and then there
is no meta-training result for the approach. Due to the high dimension of the Humanoid tasks, the
meta-training of meta-CPO is too slow (10 times slower than the proposed method) in Humanoid
tasks. It is extremely time-consuming to run the meta-training of meta-CPO multiple times on
humanoid tasks and draw its figure. So the result of meta-CPO is not shown in Fig 4.
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Figure 5: Normalized computation time of the meta-training and the meta-test in Humanoid, Hopper, Swimmer,
Car-Circle-Hazard, and Point-Botton.
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Figure 6: Average accumulated reward (columns 1 and 3, higher is better) and maximal accumulated cost
(columns 2 and 4, higher is worse) across all validation/test tasks during the meta-training (columns 1 and 2)
and the meta-test (columns 3 and 4) in Half-Cheetah (row 1) and Car-Circle-Hazard (row 2). The accumulated
reward and cost during meta-training are computed on the policy adapted one step from the meta-policy. The
black dashed line is the constraint of the accumulated cost (below the line means satisfaction).

Figure 4 shows that the proposed safe meta-RL algorithm significantly outperforms all the baseline
methods regarding the optimality, i.e. the accumulated reward during both the meta-training and
the meta-test in all the scenarios. Moreover, it shows that the proposed algorithms achieve anytime
safety during the meta-test, i.e., the maximal accumulated costs always satisfy the constraints, while
the baselines cannot achieve it. Figure 5 shows that our algorithm is much more efficient than the
baselines in meta-training and meta-test.

D.4 SELECTION OF HYPER-PARAMETER

To investigate the influence of the hyper-parameter, the allowable constraint violation constant δci ,
in experiments, we conduct the experiments with δci = 0.0, 1.0, 2.0 and 3.0, on two environments,
including Half-cheetah and Car-Circle-Hazard. The results are shown in Figure 6.

As stated in Section 5.2, the theoretical result shows a trade-off between the optimality and the safety
constraint satisfaction when the allowable constraint violation thresholds δci vary. In particular, when
δci is increased, the optimality is improved while the constraint violation increases. This statement is
verified by Figure 6. Specifically, especially in Car-Circle-Hazard, when the allowable constraint
violation threshold δci varies from 0.0 to 3.0, the performance is improved but the constraint violation
is increased in both the meta-training and the meta-test. Therefore, as indicated in both theoretical
results in Section 5.2 and the experimental results in Figure 6, we choose a large δci when the
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constraint satisfaction is not required to be strict, and a small δci → 0 when the constraint satisfaction
is prioritized.

For the hyper-parameter λ, λci , we set λ = λci and tune them such that, the KL divergence of initial
policy π and the adapted policy π′ solved from the safe policy adaptation problem (1) is close to
0.03. If the KL divergence is too large, the objective and constraint functions of problem (1) are not
good approximations to the accumulated reward/cost functions, as indicated by Lemma 1. If the KL
divergence is too small, the policy adaptation step of problem (1) is too small.

E ALGORITHM SUPPLEMENT

E.1 AN ALTERNATIVE ALGORITHM IMPLEMENTATION

When the proposed algorithms are applied to high-dimensional continuous state and action spaces,
we provide Algorithms 3 and 4, an alternative algorithm implementation of Algorithms 2 and 1.
Compared with Algorithms 2 and 1, Algorithms 3 and 4 avoid approximating A

πϕn
τ and A

πϕn
ci,τ during

the meta-training, since it is costly to approximate the value functions V πϕn
τ and V

πϕn
ci,τ by neural

networks and use GAE (Schulman et al., 2015b) to estimate the advantage functions Aπϕn
τ and A

πϕn
ci,τ

for each sampled task. Instead, Algorithms 3 and 4 only require to approximate Q
πϕn
τ and Q

πϕn
ci,τ ,

which can be estimated by Monte-Carlo sampling.

More specifically, in line 3 of Algorithm 3 replace

πu(·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)

p∑
i=1

uiλci)
−1(A

πϕ
τ (s, ·)−

∑p

i=1
uiA

πϕ
ci,τ (s, ·)))

in line 3 of Algorithm 1 by

πu(·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)

p∑
i=1

uiλci)
−1(Q

πϕ
τ (s, ·)−

∑p

i=1
uiQ

πϕ
ci,τ (s, ·))). (9)

These two equations are equivalent, where the Q function replaces the A function. Similarly, line 10
of Algorithm 3 is also equivalent to line 7 of Algorithm 1.

Line 11 in Algorithm 4 is equivalent to line 11 of Algorithm 2, where the Q function also replaces
the A function. The left problem is how to solve the optimization problem (4) and obtain the the
Lagrangian multipliers u∗

ci,τ (πϕn) only using the Q functions.

We show the solution next. The gradient of the objective function L̄(u) in problem (4) w.r.t u is

∇ui
L̄(u) = −E

s∼ν
πϕ
τ

[Ea∼πu(·|s)[A
πϕ
ci,τ (s, a)] + (1− γ)λciDKL (πu(·|s)∥πϕ(·|s))] + d′i,τ ,

as shown in (5). Notice that the value of ∇ui
L̄(u) is the constraint function in the optimization

problem (1),

−E
s∼ν

πϕ
τ

[Ea∼π(·|s)[A
πϕ
ci,τ (s, a)] + (1− γ)λciDKL (π(·|s)∥πϕ(·|s))] + d′i,τ ,

when π = πu. Moreover, the constraint function in problem (1) is already designed as a replacement
of −Jci,τ (π) + di,τ + δci and it is cheaper to compute than −Jci,τ (π) + di,τ + δci for arbitrary π in
problem (1). However, in the problem of approximating ∇uiL̄(u), thanks to the derived closed-form
πτ as πu shown in (9), using the original one −Jci,τ (π

u) + di,τ + δci becomes cheaper. So, we
directly use −Jci,τ (π

u) + di,τ + δci . Therefore, we have

∇ui
L̄(u) ≈ (1− γ)(−Jci,τ (π

u) + di,τ + δci). (10)

Next, we use the first-order approximation to approximate −Jci,τ (π
u) + di,τ + δci . Assume the

policy πu is parameterized by πθu , then
1

1− γ
∇ui

L̄(u) ≈ −Jci,τ (π
u) + di,τ + δci

≈ −
(
∇⊤

ϕ Jci,τ (πϕ)(θϕ − ϕ) + Jci,τ (πϕ)
)
+ di,τ + δci

= − 1

1− γ
E
s∼ν

πϕ
τ ,a∼πϕ(·|s)

[∇⊤
u lnπϕ(a|s)Q

πϕ
ci,τ (s, a)](θu − ϕ)− Jci,τ (πϕ) + di,τ + δci

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 3 Safe policy adaptation algorithm with the first-order approximation
Require: Meta-policy πϕ; Advantage functions Q

πϕ
τ and Q

πϕ
ci,τ ; step size β.

1: ui = 0 for all i ∈ 1, · · · , p
2: for n = 1, · · · , N do
3: Compute πu(·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)

∑p
i=1 uiλci)

−1(Q
πϕ
τ (s, ·)−

∑p
i=1uiQ

πϕ
ci,τ (s, ·)))

4: for i = 1, · · · , p do
5: ui ← max{0, ui − β∇ui L̄(u)} where∇uiL(u) is shown in (10)
6: end for
7: end for
8: u∗

ci,τ = ui for all i = 1, · · · , p
9: πτ (·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)

∑p
i=1 u

∗
ci,τλci)

−1(Q
πϕ
τ (s, ·)−

∑p
i=1u

∗
ci,τQ

πϕ
ci,τ (s, ·)))

10: return {u∗
ci,τ}

p
i=1, πτ

Algorithm 4 An alternative algorithm of meta-training
Require: Initial meta-policy πϕ0 ;
1: for n = 0, · · · , N do
2: Sample a task τ with the CMDPMτ from the task distribution P(Γ)
3: Evaluate Jci,τ (πϕn), Q

πϕn
τ (·, ·) and Q

πϕn
ci,τ (·, ·) for the current meta-policy πϕn on task τ

4: if Jci,τ (πϕn) ≤ di,τ + δci ,∀i = 1, · · · , p then
5: Obtain the task-specific policy πτ and the Lagrangian multipliers u∗

ci,τ (πϕn) by Algorithm 3 with the
meta-policy πϕn

6: Evaluate Qπτ

τ (·, ·) for the task-specific policy πτ on task τ

7: Compute the meta-gradient∇ϕJτ (π
τ ) = 1

1−γ
Es∼νπτ

τ ,a∼πτ (·|s)[∇ϕfϕn(s, a)Q
πτ

τ (s, a)]

8: Take a step of TRPO (Schulman et al., 2015a) with using ∇ϕJτ (π
τ ) towards maximize Jτ (π

τ ) to
obtain ϕn+1

9: else
10: Choose any in ∈ {1, · · · , p} such that JCin

(πϕn) > din,τ + δcin
11: Compute the policy gradient∇ϕJCin ,τ (πϕn) ∝ E

s∼ν
πϕn
τ ,a∼πϕn (·|s)[∇ϕfϕn(s, a)Q

πϕn
Cin ,τ (s, a)].

12: Take a step of TRPO (Schulman et al., 2015a) with using ∇ϕJCin ,τ (πϕn) towards minimize
JCin ,τ (πϕ) to obtain ϕn+1

13: end if
14: end for
15: return

Then,

∇ui
L̄(u) ≈ −E

s∼ν
πϕ
τ ,a∼πϕ(·|s)

[∇⊤
u lnπϕ(a|s)Q

πϕ
ci,τ (s, a)](θu−ϕ)+(1−γ)(Jci,τ (πϕ)−di,τ−δci),

(11)
In this way, we replace all the estimations of the A function with the estimations of the Q functions,
without the requirement of extra data collection.

E.2 ACTION SAMPLING IN ALGORITHM IMPLEMENTATION

In Algorithms 1 and 2, we need to sample actions from

πu(·|s) ∝ exp(fϕ(s, ·) + η−1(Q
πϕ
τ (s, ·)−

∑p

i=1
uiQ

πϕ
ci,τ (s, ·))). (12)

When the action space is discrete (no matter whether the state space is discrete or continuous), it is
trivial to do the sampling. When the action space is high-dimensional and continuous, it is not easy
to do the sampling. Here, we show two solutions. In the implementation of Algorithms 1 and 2, we
apply the second solution.

E.2.1 THE FIRST SOLUTION

Similar to many widely used RL algorithm implementations, such as (Schulman et al., 2015a), we
also consider the policy parameterized by a Gaussian distribution, i.e.,

πϕ(a|s) =
exp (fϕ(s, a))∫

a′ exp (fϕ(s, a′)) da′
= A1 exp

(
− (a− gϕ(s))

2

2δ2ϕ

)
,
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where fϕ = − (a−gϕ(s))
2

2δ2ϕ
and gϕ is a neural network with the input s. So the policy is a softmax

policy.

For the policy in (12), we have

πu(a|s) = A2 exp

(
− (a− gϕ(s))

2

2δ2ϕ
− η−1 (a− gQ(s))

2

2δ2Q

)
.

Here, Qπϕ
τ (s, a) −

∑p
i=1uiQ

πϕ
ci,τ (s, a) is approximated by − (a−gQ(s))2

2δ2Q
+ C(s) where gQ(s) and

C(s) are neural networks with the input s.

Then,

πu(a|s) = A3 exp

−

(
a− (

ηδ2Q
ηδ2ϕ+δ2Q

gϕ(s) +
δ2ϕ

ηδ2ϕ+δ2Q
gQ(s))

)2
2

δ2ϕδ
2
Q

ηδ2ϕ+δ2Q

 , (13)

i.e., the πu(a|s) is Gaussian with the mean is
ηδ2Q

ηδ2ϕ+δ2Q
gϕ(s)+

δ2ϕ
ηδ2ϕ+δ2Q

gQ(s) and the standard deviation

is
√

δ2ϕδ
2
Q

ηδ2ϕ+δ2Q
. This can be sampled by many code libraries directly.

We can also treat the approximate function − (a−gQ(s))2

2δ2Q
as Aπϕ

τ (s, a)−
∑p

i=1uiA
πϕ
ci,τ (s, a) and used

in Algorithms (1) and (2), which take πu(·|s) ∝ exp(fϕ(s, ·)+η−1(A
πϕ
τ (s, ·)−

∑p
i=1uiA

πϕ
ci,τ (s, ·))).

E.2.2 THE SECOND SOLUTION

In the second solution, we also consider the policy parameterized by a Gaussian distribution, i.e.,

πϕ(a|s) =
exp (fϕ(s, a))∫

a′ exp (fϕ(s, a′)) da′
= A1 exp

(
− (a− gϕ(s))

2

2δ2ϕ

)
,

where fϕ = − (a−gϕ(s))
2

2δ2ϕ
and gϕ is a neural network with the input s.

We use the policy parameterized by θ to approximate the policy πu(·|s) ∝ exp(fϕ(s, ·) +
η−1(Q

πϕ
τ (s, ·)−

∑p
i=1uiQ

πϕ
ci,τ (s, ·))), by minimizing the expected KL-divergence, i.e.,

min
θ

loss(θ) = E
s∼ν

πϕ
τ

[
DKL

(
πθ (·|s) ∥

exp(fϕ(s, ·) + η−1(Q
πϕ
τ (s, ·)−

∑p
i=1uiQ

πϕ
ci,τ (s, ·)))

Zϕ (s)

)]
.

As shown in (Haarnoja et al., 2018), the problem is equivalent to minθ loss(θ) =

E
s∼ν

πϕ
τ ,a∼πθ(·|s)

[
lnπθ (a|s)−

(
fϕ(s, a) + η−1(Q

πϕ
τ (s, a)−

∑p

i=1
uiQ

πϕ
ci,τ (s, a))

)]
.

This optimization problem can be restated as

min
θ

E
s∼ν

πϕ
τ ,a∼πϕ(·|s)

[
πθ(·|s)
πϕ(·|s)

(
lnπθ (a|s)−

(
fϕ(s, a) + η−1(Q

πϕ
τ (s, a)−

∑p

i=1
uiQ

πϕ
ci,τ (s, a))

))]
.

Therefore, we do not need more data to approximate the expectation E
s∼ν

πϕ
τ ,a∼πϕ(·|s)

. Similarly, we

can also use πθ to approximate πu(·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)
∑p

i=1 uiλci)
−1(A

πϕ
τ (s, ·)−∑p

i=1uiA
πϕ
ci,τ (s, ·))).
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F ANALYSIS AND PROOF

F.1 AUXILIARY RESULTS

Lemma 2 (Policy gradient (Sutton & Barto, 2018; Agarwal et al., 2021)). Let πθ be the parameterized
policy with the parameter θ. It holds that

∇θJτ (πθ) =
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s) [∇θ lnπθ(a|s)Qπθ

τ (s, a)]

=
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s) [∇θ lnπθ(a|s)Aπθ

τ (s, a)] .

Lemma 3 (Policy gradient of the softmax policy). For the softmax policy πθ as πθ(a|s) =
exp(fθ(s,a))∑

a′∈A exp(fθ(s,a′)) (in discrete action space A) or πθ(a|s) ≜ exp(fθ(s,a))∫
A exp(fθ(s,a′))da′ (in continuous

action space A), ∀(s, a) ∈ S ×A. It holds that

∇θJτ (πθ) =
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s) [∇θfθ(s, a)A

πθ
τ (s, a)] . (14)

Proof. We prove it under the discrete action space A. The proof under the continuous action space A
is similar.

From Lemma 2, we have

∇θJτ (πθ) =
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s) [∇θ lnπθ(a|s)Aπθ

τ (s, a)]

=
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s)

[
∇θ ln

(
exp(fθ(s, a))∑

a′∈A exp(fθ(s, a′))

)
Aπθ

τ (s, a)

]
=

1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s)

[
∇θfθ(s, a)−∇θ ln

(∑
a′∈A

exp(fθ(s, a
′))

)
Aπθ

τ (s, a)

]
Here, ∇θ ln

(∑
a′∈A exp(fθ(s, a

′))
)

is independent with a, then ∇θJτ (πθ)

=
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s)

[
∇θfθ(s, a)−∇θ ln

(∑
a′∈A

exp(fθ(s, a
′))

)
Aπθ

τ (s, a)

]

=
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s) [∇θfθ(s, a)A

πθ
τ (s, a)]−

1

1− γ
Es∼ν

πθ
τ

[
∇θ ln

(∑
a′∈A

exp(fθ(s, a
′))

)
Ea∼πθ(·|s)A

πθ
τ (s, a)

]
.

Since Ea∼πθ(·|s)A
πθ
τ (s, a) = Ea∼πθ(·|s)[Q

πθ
τ (s, a)]− V πθ

τ (s) = 0. Then,

∇θJτ (πθ) =
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s) [∇θfθ(s, a)A

πθ
τ (s, a)] .

F.2 PROOFS OF CLOSED-FORM SOLUTION OF SAFE POLICY ADAPTATION

F.2.1 PROOF OF PROPOSITION 1

We provide the complete statement of Proposition 1 as the following Proposition 5.
Proposition 5. When the softmax policy πϕ satisfies Jci,τ (πϕ) ≤ di,τ + δci ,∀i = 1, · · · , p, the
solution πτ of the optimization problem (1) exists. Suppose an appropriate constraint qualification
(to be stipulated) holds at πτ , there exists {u∗

ci,τ}
p
i=1 with u∗

ci,τ ≥ 0, such that

πτ (· | s) ∝ exp

(
fϕ(s, ·) + η−1(A

πϕ
τ (s, ·)−

p∑
i=1

u∗
ci,τA

πϕ
ci,τ (s, ·))

)
, ∀s ∈ S,
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i.e.,

πτ (a|s) =
exp

(
fϕ(s, a) +

(
λ+

∑p
i=1 u

∗
ci,τλci

)−1 (
A

πϕ
τ (s, a)−

∑p
i=1 u

∗
ci,τA

πϕ
ci,τ (s, a)

))∑
a∈A exp

(
fϕ(s, a′) + η−1

(
A

πϕ
τ (s, a′)−

∑p
i=1 u

∗
ci,τA

πϕ
ci,τ (s, a

′)
)) ,

in discrete action space A, or

πτ (a|s) =
exp

(
fϕ(s, a) +

(
λ+

∑p
i=1 u

∗
ci,τλci

)−1 (
A

πϕ
τ (s, a)−

∑p
i=1 u

∗
ci,τA

πϕ
ci,τ (s, a)

))∫
a′ exp

(
fϕ(s, a′) + η−1

(
A

πϕ
τ (s, a′)−

∑p
i=1 u

∗
ci,τA

πϕ
ci,τ (s, a

′)
))

da′
,

in continuous action space A, where η = (1− γ)λ+
∑p

i=1 u
∗
ci,τλci .

There are many constraint qualifications where each of them assures the validity of the proposition,
including but not limited to Mangasarian-Fromovitz constraint qualification (MFCQ), linear indepen-
dence constraint qualification (LICQ), and Slater’s condition (SC) (Giorgi & Zuccotti, 2018). Refer
to (Peterson, 1973) for more validated constraint qualifications.

The assumption that one constraint qualification holds at πτ is mild. For example, if there exists a
policy π such that ∀i

Jci,τ (πϕ) + E
s∼ν

πϕ
τ

a∼π(·|s)

[
A

πϕ
ci,τ (s, a)

1− γ

]
+ λci Es∼ν

πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] < di,τ + δci , (15)

then the Slater’s condition holds. Note that when π = πϕ, we have Jci,τ (πϕ)+ E
s∼ν

πϕ
τ

a∼π(·|s)

[
A

πϕ
ci,τ

(s,a)

1−γ

]
+

λci Es∼ν
πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] ≤ di,τ + δci . It usually exists a π near πϕ such that (15) holds
or the πϕ itself can assure (15) holds. Next, we prove the proposition.

Proofs of Proposition 5. The optimization problem (1) can be restated as

argmin
π∈Π

− E
s∼ν

πϕ
τ

a∼π(·|s)

[
A

πϕ
τ (s, a)

]
+ λ E

s∼ν
πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] ,

s.t. E
s∼ν

πϕ
τ

a∼π(·|s)

[
A

πϕ
ci,τ (s, a)

]
+ λ′

ci Es∼ν
πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] ≤ d′i,τ , i = 1, · · · , p,

where the constants λ′
ci ≜ (1− γ)λci , and d′i,τ ≜ (1− γ)(di,τ + δci − Jci,τ (πϕ)).

First, we consider the discrete state-action space S ×A. Considering the probability at each state-
action pair π(a|s) as the decision variable, the minimization is taken over the probability simplex{
π(·|s) : 0 ≤ π(a|s) ≤ 1,

∑
a∈A π(a|s) = 1

}
. Then the optimization problem is formally stated as

argmin
π

E
s∼ν

πϕ
τ

[∑
a∈A

−π(a|s)Aπϕ
τ (s, a) + λDKL (π(·|s)∥πϕ(·|s))

]
,

s.t. E
s∼ν

πϕ
τ

[∑
a∈A

π(a|s)Aπϕ
ci,τ (s, a) + λ′

ciDKL (π(·|s)∥πϕ(·|s))

]
≤ d′i,τ , i = 1, · · · , p,∑

a∈A
π(a|s) = 1 for any s ∈ S,

π(a|s) ≤ 1 for any a ∈ A, s ∈ S,
− π(a|s) ≤ 0 for any a ∈ A, s ∈ S.

(16)

Since πϕ ∈ ΠC
τ , we have d′i,τ = (1− γ)(di,τ + δci − Jci,τ (πϕ)) ≥ 0, the solution of (16) exists.

According to Theorem 1 in (Giorgi & Zuccotti, 2018) and theorems in (Bertsekas, 1997; Boyd
& Vandenberghe, 2004), since the constraint qualification holds, the Karush-Kuhn-Tucker (KKT)
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conditions hold at πτ , i.e., there exists Lagrangian multipliers {u∗
ci,τ}

p
i=1, u∗

0(s) for all s ∈ S,
u∗
1(s, a) and u∗

2(s, a) for all (s, a) ∈ S ×A, such that
u∗
ci,τ ≥ 0,∀i = 1, · · · , p,

u∗
1(s, a) ≥ 0, u∗

2(s, a) ≥ 0, ∀(s, a) ∈ S ×A, (17)

E
s∼ν

πϕ
τ

[∑
a∈A

πτ (a|s)Aπϕ
ci,τ (s, a) + λ′

ciDKL (πτ (·|s)∥πϕ(·|s))

]
− d′i,τ ≤ 0, ∀i = 1, · · · , p,

πτ (s, a) ≥ 0, πτ (s, a) ≤ 1,∀(s, a) ∈ S ×A, (18)∑
a∈A

πτ (a|s) = 1, ∀s ∈ S, (19)

u∗
ci,τ

(
E
s∼ν

πϕ
τ

[∑
a∈A

πτ (a|s)Aπϕ
ci,τ (s, a) + λ′

ciDKL (πτ (·|s)∥πϕ(·|s))

]
− d′i,τ

)
= 0,

u∗
1(s, a)(π

τ (s, a)− 1) = 0,∀(s, a) ∈ S ×A, (20)
−u∗

2(s, a)π
τ (s, a) = 0,∀(s, a) ∈ S ×A, (21)

∇πL(π
τ , {u∗

ci,τ}
p
i=1, u

∗
0, u

∗
1, u

∗
2) = 0, (22)

where

L(π, {u∗
ci,τ}

p
i=1, u

∗
0, u

∗
1, u

∗
2)) ≜ E

s∼ν
πϕ
τ

[∑
a∈A

−π(a|s)Aπϕ
τ (s, a) + λDKL (π(·|s)∥πϕ(·|s))

]

+

p∑
i=1

u∗
ci,τ

(
E
s∼ν

πϕ
τ

[∑
a∈A

π(a|s)Aπϕ
ci,τ (s, a) + λ′

ciDKL (π(·|s)∥πϕ(·|s))

]
− d′i,τ

)

+
∑
s∈S

u∗
0(s)

(∑
a∈A

π(a|s)− 1

)
+
∑
s∈S

∑
s∈S

u∗
1(s, a)(π(s, a)− 1)− u∗

2(s, a)π(s, a).

(23)
Note that (17) (18) (19) (20) (21)(22) constitute the KKT condition for the following optimization
problem:

argmin
π

E
s∼ν

πϕ
τ

[∑
a∈A

π(a|s)

(
−A

πϕ
τ (s, a) +

p∑
i=1

u∗
ci,τA

πϕ
ci,τ (s, a)

)

+

(
λ+

p∑
i=1

u∗
ci,τλ

′
ci

)
DKL (π(·|s)∥πϕ(·|s))

]
−

p∑
i=1

u∗
ci,τd

′
i,τ

s.t.
∑
a∈A

π(a|s) = 1 for any s ∈ S,

π(a|s) ≤ 1 for any a ∈ A, s ∈ S,
− π(a|s) ≤ 0 for any a ∈ A, s ∈ S.

(24)

i.e., the KKT condition for the optimization problem (24) holds at πτ with Lagrangian multipliers
u∗
0(s), u

∗
1(s, a) and u∗

2(s, a). Here, {u∗
ci,τ}

p
i=1 are constants for the problem.

Since the terms −E
s∼ν

πϕ
τ

[∑
a∈A π(a|s)Aπϕ

τ (s, a)
]

and E
s∼ν

πϕ
τ

[∑
a∈A π(a|s)Aπϕ

ci,τ (s, a)
]

are lin-
ear; the term E

s∼ν
πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] is convex, the optimization problem (24) is convex.
Moreover, since all the constraint functions are affine, the Slater’s condition holds naturally for the
optimization problem (24), as shown in (Boyd & Vandenberghe, 2004). Therefore, the strong duality
holds. Then, πτ is the optimal solution for (24).

In (24), we can omit the term −
∑p

i=1 u
∗
ci,τd

′
i,τ and keep the solution unchanged. Next, we borrow

the conclusion of Proposition 3.1 in (Liu et al., 2019a), we have πτ (a|s) =

exp
(
fϕ(s, a) +

(
λ+

∑p
i=1 u

∗
ci,τλ

′
ci

)−1 (
A

πϕ
τ (s, a)−

∑p
i=1 u

∗
ci,τA

πϕ
ci,τ (s, a)

))
∑

a∈A exp
(
fϕ(s, a′) +

(
λ+

∑p
i=1 u

∗
ci,τλ

′
ci

)−1 (
A

πϕ
τ (s, a′)−

∑p
i=1 u

∗
ci,τA

πϕ
ci,τ (s, a

′)
)) ,
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i.e.,

πτ (· | s) ∝ exp

(
fϕ(s, ·) + (λ+

p∑
i=1

u∗
ci,τλ

′
ci)

−1(A
πϕ
τ (s, ·)−

p∑
i=1

u∗
ci,τA

πϕ
ci,τ (s, ·))

)
,

for all s ∈ S. Since λ′
ci = (1− γ)λci , the proof is done.

F.2.2 PROOF OF PROPOSITION 2

Proof of Proposition 2. For the Lagrangian multiplier variables u, u0, u1, u2, we denote the solution
of minπL(π, u, u0, u1, u2) as π{u,u0,u1,u2} (L is shown in (23)), i.e.,

π{u,u0,u1,u2} = argmin
π

L(π, u, u0, u1, u2).

From the proof of Proposition 1, we have the strong duality for the optimization problem (16) holds.
Then, we have {u∗, u∗

0, u
∗
1, u

∗
2} =

argmax{u,u0,u1,u2}L(π
{u,u0,u1,u2}, u, u0, u1, u2), s.t. u ≥ 0, u1 ≥ 0, u2 ≥ 0. (25)

Next, from the above optimization problem, we set u0, u1, u2 as u∗
0(u), u

∗
1(u), u

∗
2(u) in (25), where

u∗
0(u), u

∗
1(u), u

∗
2(u) are the solution of dual variable (Lagrangian multiplier solution) of the following

problem:

argmin
π

E
s∼ν

πϕ
τ

[∑
a∈A

π(a|s)

(
−A

πϕ
τ (s, a) +

p∑
i=1

uiA
πϕ
ci,τ (s, a)

)

+

(
λ+ (1− γ)

p∑
i=1

uiλci

)
DKL (π(·|s)∥πϕ(·|s))

]
−

p∑
i=1

uid
′
i,τ

s.t.
∑
a∈A

π(a|s) = 1 for any s ∈ S,

π(a|s) ≤ 1 for any a ∈ A, s ∈ S,
− π(a|s) ≤ 0 for any a ∈ A, s ∈ S.

(26)

We have

u∗ = argmaxuL(π
{u,u∗

0(u),u
∗
1(u),u

∗
2(u)}, u, u∗

0(u), u
∗
1(u), u

∗
2(u)), s.t. u ≥ 0. (27)

Similar to solution of (24), we have the solution of (26) is πu, where πu(·|s) ∝ exp(fϕ(s, ·) +
(
∑p

i=1 uiλci)
−1(A

πϕ
τ (s, ·) −

∑p
i=1uiA

πϕ
ci,τ (s, ·))). Moreover, from the strong duality of the opti-

mization problem (26) (linear inequality constraints), we have

π{u,u∗
0(u),u

∗
1(u),u

∗
2(u)} = argmin

π
L(π, u, u∗

0(u), u
∗
1(u), u

∗
2(u)) = πu. (28)

Therefore,
u∗ = argmaxuL(π

u, u, u∗
0(u), u

∗
1(u), u

∗
2(u)), s.t. u ≥ 0.

Moreover, we know∑
s∈S

u∗
0(u)(s)

(∑
a∈A

πu(a|s)− 1

)
+
∑
s∈S

∑
s∈S

u∗
1(u)(s, a)(π

u(s, a)− 1)− u∗
2(u)(s, a)π

u(s, a) = 0.

Form (27) and (23), we have

u∗ =max
u

E
s∼ν

πϕ
τ ,a∼πu(·|s)[−A

πϕ
τ (s, a) +

p∑
i=1

uiA
πϕ
ci,τ (s, a)] + (λ+

p∑
i=1

uiλ
′
ci)

E
s∼ν

πϕ
τ

[DKL (πu(·|s)∥πϕ(·|s))]−
p∑

i=1

ui(1− γ)(di,τ + δci − Jci,τ (πϕ))

s.t. ui ≥ 0, ∀i = 1, · · · , p.
Then, the proof is done.
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F.2.3 DEVIATION OF GRADIENT W.R.T. THE DUAL VARIABLES

We derive the gradient of L̄ w.r.t. the dual variables u for (5). Let

L̂(u, πu) ≜ E
s∼ν

πϕ
τ

a∼πu

[A
πϕ
τ (s, a)−

p∑
i=1

uiA
πϕ
ci,τ (s, a)]

− (λ+ (1− γ)

p∑
i=1

uiλci) Es∼ν
πϕ
τ

[DKL (πu(·|s)∥πϕ(·|s))] +
p∑

i=1

uid
′
i,τ

where d′i,τ ≜ (1− γ)(di,τ + δci − Jci,τ (πϕ)). Then,

∇uL̄(u) = ∇1L̂(u, π
u) +∇uπ

u∇2L̂(u, π
u)

Consider ∇2L̂(u, π
u). From (28), we have

π{u,u∗
0(u),u

∗
1(u),u

∗
2(u)} = argmin

π
L(π, u, u∗

0(u), u
∗
1(u), u

∗
2(u)) = πu

where L is shown in (23) and u∗
0(u), u

∗
1(u), u

∗
2(u) are the solution of dual variable of (26). Then

∇1L(π
u, u, u∗

0(u), u
∗
1(u), u

∗
2(u)) = 0.

Moreover, we know∑
s∈S

u∗
0(u)(s)

(∑
a∈A

πu(a|s)− 1

)
+
∑
s∈S

∑
s∈S

u∗
1(u)(s, a)(π

u(s, a)− 1)− u∗
2(u)(s, a)π

u(s, a) = 0.

Thus,
∇2L̂(u, π

u) = ∇1L(π
u, u, u∗

0(u), u
∗
1(u), u

∗
2(u)) = 0.

Then, we have
∇uL̄(u) = ∇1L̂(u, π

u).

Therefore,

∇ui
L̄(u) = −E

s∼ν
πϕ
τ

[Ea∼πu(·|s)[A
πϕ
ci,τ (s, a)] + (1− γ)λciDKL (πu(·|s)∥πϕ(·|s))] + d′i,τ .

F.3 META-GRADIENT

F.3.1 COMPUTATION OF META-GRADIENT

Proposition 6. Let πτ = As(πϕ,Λ,∆, τ). Suppose all the assumptions in Proposition (5) hold.
Suppose the LICQ and the strict complementary slackness condition (SCSC) (Giorgi & Zuccotti,
2018; Xu & Zhu, 2023a) for the optimization problem (3.1) holds at πτ . Then, ∇ϕJτ (π

τ ) exists and

∇ϕJτ (π
τ ) =

1

1− γ
Es∼νπτ

τ ,a∼πτ (·|s)[
(
∇ϕη(πϕ)

−1Q̄
πϕ
τ (s, a)

+η(πϕ)
−1∇ϕQ̄

πϕ
τ (s, a) +∇ϕfϕ(s, a)

)
Qπτ

τ (s, a)],

where η(πϕ) ≜ λ+ (1− γ)
∑p

i=1 u
∗
ci,τ (πϕ)λci , and Q̄

πϕ
τ ≜ Q

πϕ
τ −

∑p
i=1u

∗
ci,τ (πϕ)Q

πϕ
ci,τ .

Proof. For any meta-policy πϕ, the objective function of the optimization problem (3.1) is strongly
concave and the constraint function is convex. The LICQ and the SCSC hold at πτ . According to
Theorem 2 in (Xu & Zhu, 2023a), ∇ϕJτ (π

τ ) exists.

We have
πτ (·|s) ∝ exp(fϕ(s, ·) + η(πϕ)

−1(A
πϕ
τ (s, ·)−

∑p

i=1
u∗
ci,τA

πϕ
ci,τ (s, ·)))

is equivalent to

πτ (·|s) ∝ exp(fϕ(s, ·) + η(πϕ)
−1(Q

πϕ
τ (s, ·)−

∑p

i=1
u∗
ci,τQ

πϕ
ci,τ (s, ·))).
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From Lemma 3, we have

∇ϕJτ (π
τ ) =

1

1− γ
Es∼νπτ

τ ,a∼πτ (·|s)[∇ϕ

(
η(πϕ)

−1Q̄
πϕ
τ (s, a) + fϕ(s, a)

)
Qπτ

τ (s, a)]

=
1

1− γ
Es∼νπτ

τ ,a∼πτ (·|s)[
(
∇ϕη(πϕ)

−1Q̄
πϕ
τ (s, a)

+η(πϕ)
−1∇ϕQ̄

πϕ
τ (s, a) +∇ϕfϕ(s, a)

)
Qπτ

τ (s, a)].

F.3.2 COMPUTATION OF ∇ϕQ
πϕ
τ (s, a)

We have
∇ϕQ

πϕ
τ (s, a) =

γ

1− γ
· E

(s′,a′)∼σ
(s,a)
τ,πϕ

[
∇ϕfϕ (s

′, a′)Q
πϕ
τ (s′, a′)

]
. (29)

where the state-action visitation probability σ
(s,a)
τ,πθ initialized at (s, a) ∈ S ×A is defined by

σ(s,a)
τ,πϕ

(s′, a′) = (1− γ)
∞∑
t=0

γtP (st = s′, at = a′|πϕ, s0 ∼ Pτ (·|s, a)) .

Proof. As shown in (Wang et al., 2020),

∇ϕQ
πϕ
τ (s, a) = ∇ϕ

(
(1− γ) · rτ (s, a) + γ · Es′∼Pτ (·|s,a)

[
V

πϕ
τ (s′)

])
=

γ

1− γ
· E

(s′,a′)∼σ
(s,a)
τ,πϕ

[
∇ϕ lnπϕ (a

′|s′) ·Qπϕ
τ (s′, a′)

]
.

By Lemma 3, from (14), we can obtain (29).

F.3.3 GRADIENT OF LAGRANGIAN MULTIPLIERS

We show the existence and the computation of ∇ϕu
∗
ci,τ (πϕ) in the following proposition.

Proposition 7. Let πτ = As(πϕ,Λ,∆, τ). Suppose all the assumptions in Proposition (5) hold.
Suppose the LICQ and the strict complementary slackness condition (SCSC) (Giorgi & Zuccotti, 2018;
Xu & Zhu, 2023a) for the optimization problem (3.1) holds at πτ . Then, the Lagrangian multipliers
u∗
ci,τ (πϕ) is unique for any given πϕ, ∇ϕu

∗
ci,τ (πϕ) exists. For i ∈ {1, · · · , p}, if u∗

ci,τ (πϕ) = 0, then
∇ϕu

∗
ci,τ (πϕ) = 0. Let ū∗

ci,τ (πϕ) be the vector includes all all i ∈ {1, · · · , p} with u∗
ci,τ (πϕ) > 0,

∇ϕu
∗
ci,τ (πϕ) = −∇ϕ∇ūL̂(ū, ϕ)∇2

ūL̂(ū, ϕ)
−1

where L̂(ū, ϕ) = E[Aπϕ
τ (s, a) −

∑p
i=1 uiA

πϕ
ci,τ (s, a)] − ηu E

s∼ν
πϕ
τ

[DKL (πu(·|s)∥πϕ(·|s))] +∑p
i=1 ui(di,τ + δci − Jci,τ (πϕ)).

Proof. For any meta-policy πϕ, the objective function of the optimization problem (3.1) is strongly
concave and the constraint function is convex. The LICQ and the SCSC hold at πτ . According to
Theorem 2 in (Xu & Zhu, 2023a), the Lagrangian multipliers u∗

ci,τ (πϕ) is unique for any given πϕ

and ∇ϕu
∗
ci,τ (πϕ) exists. The computation is shown in (Xu & Zhu, 2023a). For all i ∈ {1, · · · , p}

with u∗
ci,τ (πϕ) = 0, we have ∇ϕu

∗
ci,τ (πϕ) = 0.

F.4 OPTIMALITY AND CONSTRAINT SATISFACTION ANALYSIS

F.4.1 LEMMAS FOR OPTIMALITY AND SAFE ANALYSIS

Lemma 4. Suppose that Assumption 2 holds. For any task τ , and any safe policies π and π′ ∈ {π ∈
Π : Jci,τ (π) ≤ di + δmax, ∀i = 1, · · · , p}, the following bound holds:

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)]−Cπ

τ (π
′) ≤ Jτ (π

′)−Jτ (π) ≤
1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)]+Cπ

τ (π
′) (30)
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where

Cπ
τ (π

′) =
8γmaxs,a A

π
τ (s, a)

α(1− γ)2
Dmax

TV (π||π′)Es∼νπ
τ ,s∈Sv [DTV (π(·|s)||π′(·|s))] .

Here, we define DTV (π(·|s)||π′(·|s)) ≜ 1
2

∑
a∈A |π(a|s) − π′(a|s)| and Dmax

TV (π||π′) ≜
maxs∈Sv DTV (π(·|s)||π′(·|s)).

The inequalities (30) also holds for each i = 1, · · · , p, when Aπ
τ and Aπ′

τ are replaced by Aπ
ci,τ and

Aπ′

ci,τ , maxs,a A
π
τ (s, a) is replaced by maxs,a A

π
ci,τ (s, a), Jτ is replaced by Jci,τ .

Proof. The proof follows similar lines of Theorem 1 in (Schulman et al., 2015a) and Corollary 1 and
2 in (Achiam et al., 2017). For the sake of self-containedness, we provide the complete proof.

Let Pπ
τ is a matrix where Pπ

τ (i, j) = Ea∼π(·|si)Pτ (sj |si, a) and Pπ′

τ is a matrix where Pπ′

τ (i, j) =

Ea∼π′(·|si)Pτ (sj |si, a). Let G = (1 + γPπ
τ + (γPπ

τ )
2 + . . .) = (1 − γPπ

τ )
−1, and similarly

G̃ = (1+ γPπ′
τ + (γPπ′

τ )2 + . . .) = (1− γPπ′
τ )−1. Let ρ be a density vector on state space and rτ

is a reward function vector on state space, thus r⊤τ ρ is a scalar meaning the expected reward under
density ρ. Note that Jτ (π) = r⊤τ Gρτ , and Jτ (π

′) = r⊤τ G̃ρτ . Here, ρτ is the initial state distribution
for task τ . Let ∆ = Pπ′

τ − Pπ
τ .

Follow the proof in Appendix B in (Schulman et al., 2015a), we have

G−1 − G̃−1 = (1− γPπ)− (1− γPπ̃) = γ∆.

Left multiply by G̃ and right multiply by G,

G̃ = γG̃∆G+G. (31)

Left multiply by G and right multiply by G̃,

G̃ = γG∆G̃+G. (32)

Substituting the right-hand side in (31) into G̃ in (32), then

G̃ = G+ γG∆G+ γ2G∆G̃∆G.

So we have

Jτ (π
′)− Jτ (π) = r⊤τ (G̃−G)ρτ = γr⊤τ G∆Gρτ + γ2r⊤τ G∆G̃∆Gρτ . (33)

Note that r⊤τ G = vπτ
⊤, where v is the value function on the state space. We also have Gρτ = 1

1−γ ν
π
τ ,

where νπτ is the state visitation distribution vector. So,

Jτ (π̃)− Jτ (π) = r⊤τ (G̃−G)ρτ =
γ

1− γ
vπτ

⊤∆νπτ +
γ2

1− γ
vπτ

⊤∆G̃∆νπτ .

Consider the first term γ
1−γ v

π
τ
⊤∆νπτ , similar to Equation (50) in (Schulman et al., 2015a), we have

γvπτ
⊤∆νπτ = vπτ

⊤(Pπ′

τ − Pπ
τ )ν

π
τ

=
∑
s

νπτ (s)
∑
s′

∑
a

(π′(a|s)− π(a|s))Pτ (s
′|s, a) γvπτ (s′)

=
∑
s

νπτ (s)
∑
a

(π′(a|s)− π(a|s))

[
r(s) +

∑
s′

Pτ (s
′|s, a) γvπτ (s′)− v(s)

]
=
∑
s

νπτ (s)
∑
a

(π′(a|s)− π(a|s))Aπ
τ (s, a)

(34)

Since we have
∑

a π(a|s)Aπ
τ (s, a) = 0, we have

γvπτ
⊤∆νπτ =

∑
s

νπτ (s)
∑
a

π′(a|s)Aπ
τ (s, a) = E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)] .
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Combine (33) and the above equation, we have the following for the second term:

γ2

1− γ
vπτ

⊤∆G̃∆νπτ = Jτ (π
′)− Jτ (π)−

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)] .

Then we need to show ∣∣∣∣ γ2

1− γ
vπτ

⊤∆G̃∆νπτ

∣∣∣∣ ≤ Cπ
τ (π

′).

First, ∣∣∣∣ γ2

1− γ
vπτ

⊤∆G̃∆νπτ

∣∣∣∣
≤
∣∣∣∣ γ2

1− γ

(
vπτ

⊤∆
)
Sv

(
G̃∆νπτ

)
Sv

∣∣∣∣+ ∣∣∣∣ γ2

1− γ

(
vπτ

⊤∆
)
S/Sv

(
G̃∆νπτ

)
S/Sv

∣∣∣∣
By Hölder’s inequality,∣∣∣∣ γ2

1− γ
vπτ

⊤∆G̃∆νπτ

∣∣∣∣ ≤ γ

1− γ
∥γvπτ

⊤∆∥∞∥G̃∆νπτ ∥1.

Similar to (34), each element in the vector γvπτ
⊤∆ is

∑
a(π

′(a|s)− π(a|s))Aπ
τ (s, a), then we have∥∥∥γ (vπτ ⊤∆

)
Sv

∥∥∥
∞

≤ max
s∈Sv

∑
a

|π′(a|s)− π(a|s)|Aπ
τ (s, a) ≤ 2max

s,a
Aπ

τ (s, a)D
max
TV (π||π′).

∥∥∥∥γ (vπτ ⊤∆
)
S/Sv

∥∥∥∥
∞

≤ max
s∈S/Sv

∑
a

|π′(a|s)− π(a|s)|Aπ
τ (s, a) ≤ 4max

s,a
Aπ

τ (s, a).

From the Lemma 3 of (Achiam et al., 2017), we have

∥G̃∆νπτ ∥1 ≤ 2

1− γ
Es∼νπ

τ
[DTV (π(·|s)||π′(·|s))] .

Therefore, we have∣∣∣∣ γ2

1− γ
vπτ

⊤∆G̃∆νπτ

∣∣∣∣
≤ 4γmaxs,a A

π
τ (s, a)

(1− γ)2
(
Dmax

TV

(
π||π′)Es∼νπ

τ ,s∈Sv [DTV (π(·|s)||π′(·|s))]

+
2(1− α)

α
Dmax

TV (π||π′)Es∼νπ
τ ,s∈Sv [DTV (π(·|s)||π′(·|s))]

)
≤8γmaxs,a A

π
τ (s, a)

α(1− γ)2
Dmax

TV (π||π′)Es∼νπ
τ ,s∈Sv [DTV (π(·|s)||π′(·|s))]

Then the bounds hold.

Lemma 5 (Restatement of Lemma 1). Suppose that Assumption 2 holds. For any task τ , and any
safe policies π, π′ ∈ {π ∈ Π : Jci,τ (π) ≤ di + δmax, ∀i = 1, · · · , p}, the following bound holds:

Jτ (π
′)− Jτ (π) ≤

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)] +

4γAmax

ηα(1− γ)2
Es∼νπ

τ
[DKL(π

′(·|s)||π(·|s))]

and

Jτ (π
′)− Jτ (π) ≥

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)]−

4γAmax

ηα(1− γ)2
Es∼νπ

τ
[DKL(π

′(·|s)||π(·|s))] .

These two inequalities also holds for each i = 1, · · · , p, when Aπ
τ and Aπ′

τ are replaced by Aπ
ci,τ and

Aπ′

ci,τ , Amax is replaced by Amax
ci , Jτ is replaced by Jci,τ .
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Lemma 5 is a variant of Theorem 1 in (Schulman et al., 2015a) and Corollary 1 and 2 in
(Achiam et al., 2017). The difference is that, under Assumption 2, the inequalities in Lemma
5 replace the term maxs DKL(π

′(·|s)||π(·|s) in Theorem 1 in (Schulman et al., 2015a) and re-
place the term

√
Es∼νπ

τ
[DKL(π′(·|s)||π(·|s))] in Corollary 1 and 2 in (Achiam et al., 2017) by

Es∼νπ
τ
[DKL(π

′(·|s)||π(·|s))] in the right-hand side of the inequalities.

Proof. We show the first inequality. The second inequality follows a similar way. From Lemma 4,

Jτ (π
′)− Jτ (π)−

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)]

≤8γmaxs,a A
π
τ (s, a)

α(1− γ)2
Dmax

TV (π||π′)Es∼νπ
τ ,s∈Sv [DTV (π(·|s)||π′(·|s))] .

From Assumption 2, for any safe policy π, we have νπτ (s) ≥ η for all s ∈ Sv, then we have
ηDmax

TV (π||π′) ≤ Es∼νπ
τ
[DTV (π(·|s)||π′(·|s))], i.e.,

Dmax
TV (π||π′) ≤ 1

η
Es∼νπ

τ ,s∈Sv [DTV (π(·|s)||π′(·|s))] .

Then, we have

Es∼νπ
τ ,s∈Sv [DTV (π(·|s)||π′(·|s))]2 ≤ Es∼νπ

τ ,s∈Sv

[
D2

TV (π(·|s)||π′(·|s))
]

≤ Es∼νπ
τ ,s∈Sv

[
D2

TV (π(·|s)||π′(·|s))
]
.

From the above three inequalities, we have

Jτ (π
′)− Jτ (π)−

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)] ≤

8γAmax

ηα(1− γ)2
Es∼νπ

τ

[
D2

TV (π(·|s)||π′(·|s))
]
. (35)

From (Csiszár & Körner, 2011), we have

D2
TV (π(·|s)||π′(·|s)) ≤ 1

2
DKL(π

′(·|s)||π(·|s)).

Therefore,

Jτ (π
′)− Jτ (π) ≤

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)] +

4γAmax

ηα(1− γ)2
Es∼νπ

τ
[DKL(π

′(·|s)||π(·|s))]

F.4.2 PROOF OF PROPOSTION 4

Proof of Propostion 4. From Lemma 1, we have

Jτ (π) ≤ Jτ (πϕ) + Es∼νπ
τ ,a∼π(·|s)

[
A

πϕ
τ (s, a)

1− γ

]
+

4γAmax

ηα(1− γ)2
E
s∼ν

πϕ
τ

[DKL(π(·|s)||πϕ(·|s))]

Since λci ≥
4γAmax

ci

ηα(1−γ)2 , we have

Jci,τ (π
τ )

≤ Jci,τ (πϕ) + E
s∼ν

πϕ
τ

a∼πτ (·|s)

[
A

πϕ
ci,τ (s, a)

1− γ

]
+

4γAmax
ci

ηα(1− γ)2
E
s∼ν

πϕ
τ

[DKL (πτ (·|s)∥πϕ(·|s))]

≤ Jci,τ (πϕ) + E
s∼ν

πϕ
τ

a∼πτ (·|s)

[
A

πϕ
ci,τ (s, a)

1− γ

]
+ λci Es∼ν

πϕ
τ

[DKL (πτ (·|s)∥πϕ(·|s))]

≤ di,τ + δci .
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Also, we have

Jτ (π) ≥ Jτ (πϕ) + Es∼νπ
τ ,a∼π(·|s)

[
A

πϕ
τ (s, a)

1− γ

]
− 4γAmax

ηα(1− γ)2
E
s∼ν

πϕ
τ

[DKL(π(·|s)||πϕ(·|s))]

Since λ ≥ 4γAmax

ηα(1−γ) , we have

Jτ (π) ≥ Jτ (πϕ) + Es∼νπ
τ ,a∼π(·|s)

[
A

πϕ
τ (s, a)

1− γ

]
− λ

1− γ
E
s∼ν

πϕ
τ

[DKL(π(·|s)||πϕ(·|s))] .

For the solution πτ of problem (1), we have

Jτ (π
τ ) ≥ E

s∼ν
πϕ
τ

a∼πτ (·|s)

[
A

πϕ
τ (s, a)

1− γ

]
− λ

1− γ
E
s∼ν

πϕ
τ

[DKL (πτ (·|s)∥πϕ(·|s))] + Jτ (πϕ)

= max
π∈ΠC

τ

E
s∼ν

πϕ
τ

a∼π(·|s)

[
A

πϕ
τ (s, a)

1− γ

]
− λ

1− γ
E
s∼ν

πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] + Jτ (πϕ)

≥ E
s∼ν

πϕ
τ

a∼πϕ(·|s)

[
A

πϕ
τ (s, a)

1− γ

]
− λ

1− γ
E
s∼ν

πϕ
τ

[DKL (πϕ(·|s)∥πϕ(·|s))] + Jτ (πϕ) = Jτ (πϕ).

where ΠC
τ is the feasible set of problem (1). The last inequality comes from πϕ ∈ ΠC

τ .

F.4.3 PROOF OF THEOREM 1

Recall the notations defined in Section 5.2 and used in this section: the optimal task-specific policy
πτ
∗ for task τ as

πτ
∗ ≜ argmaxπ∈Π Jτ (π) s.t. Jci,τ (π) ≤ di,τ ;

the conservative task-specific optimal policy πτ
∗,[ϵ], which is optimal for τ under conservative safety

constraints, i.e.,
πτ
∗,[ϵ] ≜ argmaxπ∈Π Jτ (π) s.t. Jci,τ (π) ≤ di,τ − ϵ,

where the conservative constant ϵ ≥ 0; the task variance

Var(P(Γ)) ≜ minϕ Eτ∼P(Γ)Es∼ν
πϕ
τ

[DKL(π
τ
∗ (·|s)||πϕ(·|s))];

the task variance under the conservative safety constraints

Varϵ(P(Γ)) ≜ minϕ Eτ∼P(Γ)Es∼ν
πϕ
τ

[DKL(π
τ
∗,[ϵ](·|s)||πϕ(·|s))],

and its minimal point

ϕ̂[ϵ] ≜ argminϕ Eτ∼P(Γ)Es∼ν
πϕ
τ

[DKL(π
τ
∗,[ϵ](·|s)||πϕ(·|s))],

the radius of the task distribution P(Γ)

R(P(Γ)) ≜ maxτ∈Γ,ϵ∈E E
s∼ν

π
ϕ̂[ϵ]

τ

[DKL(π
τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))],

where the set E is defined by {ϵ ≥ 0 : πτ
∗,[ϵ] exists for all τ ∈ Γ}.

We also define

R[ϵ](P(Γ)) ≜ maxτ∈Γ E
s∼ν

π
ϕ̂[ϵ]

τ

[DKL(π
τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))].

We first show some lemmas for the proof of Theorem 1.
Lemma 6. Suppose that Assumption 2 holds. For any ϵ, The policy πτ

∗,[ϵ] belongs to the

set {π ∈ Π : Jci,τ (πϕ̂[ϵ]) + E
s∼ν

π
ϕ̂[ϵ]

τ

a∼π(·|s)

[
A

π
ϕ̂[ϵ]

ci,τ
(s,a)

1−γ

]
+

4γAmax
ci

ηα(1−γ)2Es∼ν
π
ϕ̂[ϵ]

τ

[DKL(π(·|s)||πϕ̂[ϵ](·|s))]

≤ dci,τ − ϵ+
8γAmax

ci

ηα(1−γ)2R(P(Γ)) for all i = 1, · · · , p
}
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Proof. From the second inequality in Lemma 1, Jci,τ (π
τ
∗,[ϵ]) ≥

Jci,τ (πϕ̂[ϵ]) +
1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]
−

4γAmax
ci

ηα(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
.

Since Jci,τ (π
τ
∗,[ϵ]) ≤ dci,τ − ϵ, we have

Jci,τ (πϕ̂[ϵ]) +
1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]

−
4γAmax

ci

ηα(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
≤ dci,τ − ϵ.

Then,

Jci,τ (πϕ̂[ϵ]) + E
s∼ν

π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)

1− γ

]
+

4γAmax
ci

ηα(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]

≤ dci,τ − ϵ+
8γAmax

ci

ηα(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
≤ dci,τ − ϵ+

8γAmax
ci

ηα(1− γ)2
R[ϵ](P(Γ))

≤ dci,τ − ϵ+
8γAmax

ci

ηα(1− γ)2
R(P(Γ)).

Lemma 7. Suppose that Assumption 2 holds. We have

πϕ̂[ϵ] ∈
{
π ∈ Π : Jci,τ (π) ≤ dci,τ − ϵ+

8γAmax
ci

ηα(1− γ)2
R(P(Γ)) for all i = 1, · · · , p and τ ∈ Γ

}
.

Proof. From the second inequality in Lemma 1, Jci,τ (π
τ
∗,[ϵ]) ≥

Jci,τ (πϕ̂[ϵ]) +
1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]
−

4γAmax
ci

ηα(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
.

Since Jci,τ (π
τ
∗,[ϵ]) ≤ dci,τ − ϵ, we have

Jci,τ (πϕ̂[ϵ]) +
1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]

≤ dci,τ − ϵ+
4γAmax

ci

ηα(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
.

Also, from (34) and the proof of Lemma 1, we have
1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]

=
1

1− γ

∑
s

ν
π
ϕ̂[ϵ]

τ (s)
∑
a

(πτ
∗,[ϵ](a|s)− πϕ̂[ϵ](a|s))A

π
ϕ̂[ϵ]

ci,τ (s, a)

≤
4Amax

ci

ηα(1− γ)
Dmax

TV (πτ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))2

≤
4Amax

ci

ηα(1− γ)
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
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Then,

Jci,τ (πϕ̂[ϵ]) +
1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]

≤ dci,τ − ϵ+
4Amax

ci

ηα(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
≤ dci,τ − ϵ+

8γAmax
ci

ηα(1− γ)2
R[ϵ](P(Γ))

≤ dci,τ − ϵ+
8γAmax

ci

ηα(1− γ)2
R(P(Γ)).

Here, we assume γ ≥ 0.5, which is commonly used.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Let πτ (ϕ̂[ϵ]) = As(πϕ̂[ϵ] ,Λ,∆, τ) with

λ = 4γAmax

ηα(1−γ) , λci =
2γ4Amax

ci

ηα(1−γ)2 and δci =
4γ4Amax

ci

ηα(1−γ)2R(P(Γ))− ϵ. We have

Eτ∼P(Γ)[Jτ (π
τ
∗,[ϵ])− Jτ (As(πϕ∗ ,Λ,∆, τ))] ≤ 8γAmax

ηα(1− γ)2
Varϵ(P(Γ)).

Proof. From Lemma 6, we have that πτ
∗,[ϵ] ∈ ΠB , where ΠB ≜ {π ∈ Π : Jci,τ (πϕ̂[ϵ])+

1
1−γ E

s∼ν
π
ϕ̂[ϵ]

τ

a∼π(·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]
+λci,τEs∼ν

π
ϕ̂[ϵ]

τ

[DKL(π(·|s)||πϕ̂[ϵ](·|s))] ≤ dci,τ + δci ,∀i}.

Also, πτ (ϕ̂[ϵ]) ∈ ΠB . Therefore, from the definition of As in problem (1), we have

E
s∼ν

π
ϕ̂[ϵ]

τ

a∼πτ (ϕ̂[ϵ])(·|s)

[
A

π
ϕ̂[ϵ]

τ (s, a)
]
−λD̄KL(π

τ (ϕ̂[ϵ]), πϕ̂[ϵ]) ≥ E
s∼ν

π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

τ (s, a)
]
−λD̄KL(π

τ
∗,[ϵ], πϕ̂[ϵ]),

where we use D̄KL(π1(·|s), π2(·|s)) to represent Es∼ν
π2
τ
[DKL(π1(·|s), π2(·|s))].

From the second inequality in Lemma 1 and the above inequality,

Jτ (π
τ (ϕ̂[ϵ]))− Jτ (πϕ̂[ϵ]) ≥

1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ (ϕ̂[ϵ])(·|s)

[
A

π
ϕ̂[ϵ]

τ (s, a)
]
− λ

1− γ
D̄KL(π

τ (ϕ̂[ϵ]), πϕ̂[ϵ])

≥ 1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

τ (s, a)
]
− λ

1− γ
D̄KL(π

τ
∗,[ϵ], πϕ̂[ϵ]).

From the first inequality in Lemma 1,

Jτ (π
τ
∗,[ϵ])− Jτ (πϕ̂[ϵ]) ≤

1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

τ (s, a)
]
+

4γAmax

ηα(1− γ)2
D̄KL(π

τ
∗,[ϵ], πϕ̂[ϵ]).

From the last two inequalities,

Jτ (π
τ (ϕ̂[ϵ]))− Jτ (π

τ
∗,[ϵ]) ≥ −(

4γAmax

ηα(1− γ)2
+

λ

1− γ
)D̄KL(π

τ
∗,[ϵ], πϕ̂[ϵ]),

i.e.,

Jτ (π
τ
∗,[ϵ])− Jτ (As(πϕ̂[ϵ] ,Λ,∆, τ)) ≤ (

4γAmax

ηα(1− γ)2
+

λ

1− γ
)D̄KL(π

τ
∗,[ϵ], πϕ̂[ϵ]).
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Then,
Eτ∼P(Γ)[Jτ (π

τ
∗,[ϵ])− Jτ (As(πϕ̂[ϵ] ,Λ,∆, τ))]

≤ (
4γAmax

ηα(1− γ)2
+

λ

1− γ
)Eτ∼P(Γ)[D̄KL(π

τ
∗,[ϵ], πϕ̂[ϵ])]

= (
2γAmax

ηα(1− γ)2
+

λ

1− γ
)Varϵ(P(Γ)).

Moreover, from Lemma 7,

πϕ̂[ϵ] ∈ ΠC ≜ {π ∈ Π : Jci,τ (π) ≤ dci,τ + δci for all i = 1, · · · , p and τ ∈ Γ} .

From the definition of ϕ∗, we have

Eτ∼P(Γ)[Jτ (As(πϕ∗ ,Λ,∆, τ))] ≥ max
π∈ΠC

Eτ∼P(Γ)[Jτ (As(π,Λ,∆, τ))]

≥ Eτ∼P(Γ)[Jτ (As(πϕ̂[ϵ] ,Λ,∆, τ))]

Then, we have
Eτ∼P(Γ)[Jτ (π

τ
∗,[ϵ])− Jτ (As(πϕ∗ ,Λ,∆, τ))]

≤ Eτ∼P(Γ)[Jτ (π
τ
∗,[ϵ])− Jτ (As(πϕ̂[ϵ] ,Λ,∆, τ))]

≤ (
γAmax

ηα(1− γ)2
+

λ

1− γ
)Varϵ(P(Γ))

≤ 8γAmax

ηα(1− γ)2
Varϵ(P(Γ)).

Proof of Theorem 1. Theorem 1 is proven by combining Theorem 2 with Corrolary 1.

G LIMITATIONS AND FUTURE WORKS

In this paper, we consider the safety metric of CMDP, i.e., the expected accumulated costs satisfy the
given safety threshold. This metric is generally less rigorous than the safe control research, where
safety is defined as persistently satisfying certain state constraints. A future work is establishing the
safe meta-RL algorithm with the rigorous safety metric. Another limitation is that we assume the
solution of problem (2) exists, i.e., there exists a policy such that it is safe for all tasks as the initial
policy for policy adaptation steps. A future work is to release this assumption and identify a safe
task-specific meta-policy for each given task.
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