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Abstract

Uncertainty estimation in Large Language Models (LLMs) is challenging because
token-level uncertainty includes uncertainty over lexical and syntactical variations,
and thus fails to accurately capture uncertainty over the semantic meaning of the
generation. To address this, Farquhar et al. [10] have recently introduced semantic
uncertainty (SE), which quantifies uncertainty in the semantic meaning by aggre-
gating token-level probabilities of generations if they are semantically equivalent.
Kossen et al. [18] further demonstrated that SE can be cheaply and reliably
captured using linear probes on the model hidden states. In this work, we build
on these results and show that semantic uncertainty in LLMs can be predicted from
only a very small set of neurons. We find these neurons by training linear probes
with L1 regularization. Our approach matches the performance of full-neuron
probes in predicting SE. An intervention study further shows these neurons causally
affect the semantic uncertainty of model generations. Our findings reveal how
hidden-state neurons encode semantic uncertainty, present a method to manipulate
this uncertainty, and contribute insights for the field of interpretability research.

1 Introduction

Estimating uncertainty in texts generated by Large Language Models (LLMs) is challenging because
token-level uncertainty measures can be biased by variations in syntactic or lexical forms, even when
the underlying meaning remains the same. Semantic uncertainty addresses this by focusing on uncer-
tainty within the space of semantic meaning [10, 19]. Concretely, Farquhar et al. [10] sample multiple
model generations, cluster them by their semantic meanings, and compute the entropy over the ag-
gregated probabilities of the semantic clusters. Due to the high computational costs of this sampling-
based approach, recent work has focused on linearly probing semantic entropy from the hidden states,
a technique that has proven effective in both in-distribution and out-of-distribution scenarios [18].

In this work, we investigate the hypothesis that semantic uncertainty is a feature linearly represented
by only a small subset of neurons in the hidden states [9]. This aligns with studies identifying neurons
responsible for concepts like toxicity [21] and unsafe features rooted in the hidden states of LLMs
[39]. Following Kossen et al. [18], we train linear probes to predict SE from the latent space using a
training set consisting of activation values of model generations and the corresponding SE scores.
We use the probe weights to assess the importance of individual neurons in contributing to semantic
uncertainty during model generation. By applying strong L1 regularization, we induce sparsity in
the probes, allowing us to identify key neurons—referred to as semantic entropy neurons—that
are most predictive of semantic uncertainty in the hidden layers of LLMs. To confirm semantic
entropy neurons causally impact the SE of model generations, we study the counterfactual effects of
clamping the activation of these neurons during inference, inspired by Templeton et al. [39]. Our
findings reveal that clamping causally impacts semantic entropy, i.e. we can control the level of SE by
clamping the neurons, although it does degrade model calibration. We further demonstrate that on a
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text completion task, Indirect Object Identification [44], clamping significantly affects the likelihoods
of semantically relevant tokens, unlike tempering which affects all tokens indiscriminantly.

In summary, our key contributions are:

• We demonstrate that a small set of SE neurons is sufficient to match the full SE probing
performance that uses the entire set (2,048 times more) of hidden space neurons (Section 4).

• We show that clamping individual neurons to activation values corresponding to high- or low-
SE model generations effectively manipulates semantic entropy in the intended directions.
Additionally, we show that the effects of clamping these neurons are distinct from generating
with increased model temperatures (Section 5).

2 Background

Semantic entropy (SE) is an effective measure of semantic uncertainty that can be used to detect
hallucinations in LLMs [10], where models generate plausible-sounding but factually incorrect
outputs [27, 11, 16]. SE is measured over clusters of semantically equivalent outputs, where two
generations are semantically equivalent if they entail each other bi-directionally. Probes—lightweight
classifiers trained on hidden states—have proven effective in predicting various linguistic properties
or future tokens [2, 35]. Kossen et al. [18] have shown that SE is a robust supervisory signal for
training semantic entropy probes (SEPs) on the model hidden states, thus providing a cost-efficient
method for quantifying semantic uncertainty and detecting hallucinations in LLM generations.

3 Semantic Entropy Neurons
Sparsity-Induced Neurons. We hypothesize that the hidden space neurons, hp

l (x), for token position
p at model layer l given input x, provide an over-complete basis for representing semantic entropy,
with only a few neurons being sufficient to distinguish between high and low semantic entropy
generations. We refer to these neurons as semantic entropy neurons, hp

SE. We train linear probes with
L1 regularization (i.e., Lasso regression) to encourage sparsity. With a sufficiently high L1 penalty,
only a small number of neurons retain non-zero coefficients. If our hypothesis is true, the L1 penalty
should not negatively impact probing performances. To ensure consistent neuron selection across
model layers, we pool individual neurons with the highest absolute linear weights from the layer-wise
probes to form the set of SE neurons. We consider p to be the second-last generated token given input
x, as shown to be effective for probing in [18].

Activation Clamping. If linearly probing with a limited number of SE neurons yields strong per-
formance in predicting SE, then the activations of SE neurons should display linearly separable distri-
bution gaps across high and low semantic entropy values. To determine whether these differences are
causally affecting the SE in model generations (rather than being spurious correlations), we use a coun-
terfactual approach. Following Kossen et al. [18], we first divide the model generations into high and
low SE clusters by dividing along the best-split SE threshold. We then compute the maximum (or min-
imum) neuron activations for the high (or low) SE sample clusters (see Eq. (1)). We manually clamp
the neuron activations for inputs in each cluster to the activation values of the opposite cluster, i.e.,
clamping neurons of high SE inputs to the low SE activation values and vice versa. The clamped acti-
vation for ĥp

SE(x) in layer l given input x and the set of all model generations X ′ can be formulated as

ĥp
SE=A(x) = sign (hp

SE=A(x)) ·
{
maxx′∈X′ (|hp

SE=B(x
′)|) , if A = Low, B = High

minx′∈X′ (|hp
SE=B(x

′)|) , if A = High, B = Low,
(1)

where A,B ∈ {High, Low} and B ̸= A. In preliminary experiments, we observe that the activation
gap |hp

SE=high(x)− hp
SE=low(x)| for input x often peaks at the layer l where the probe’s performance

is optimal. This is expected since this should be where the linear classification boundary lies.
Therefore, we clamp at the layer where the probes perform best: l = argmaxl′(Tl′), where Tl′ is
the test AUROC for probes trained on the activation of layer l′. Following Nanda [30], we apply
clamping at a single layer in the residual stream to enable fine-grained causal intervention.

We evaluate the differences in likelihoods of generating the first answer token when the model
is prompted with a question x, with or without low→high activation clamping in the short-form
generation settings [18]. Let Pt(y, x) denote the probability of generating token y at temperature t
when answering x, and P ′

t (y, x) the probability under activation clamping. We wish to show:
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1

|Y1|
∑
y∈Y1

P ′
t (y, x)− Pt′(y, x)

Pt(y, x)
> max

 1

|Y2|
∑
y∈Y2

P ′
t (y, x)− Pt′(y, x)

Pt(y, x)
, 0

 , ∀t′ > t. (2)

Intuitively, higher model temperatures (t′) flatten the probability distribution, increasing the probabil-
ities of most tokens, regardless of their semantic relevance. In contrast, activation clamping should
selectively boost the probabilities of semantically relevant tokens, rather than uniformly affecting
all token probabilities like tempering. Hence we check, in Equation (2), if the semantically relevant
tokens (Y1) are seeing proportionally greater probability boosts than semantically irrelevant tokens
(Y2), as well as than those under high tempering (i.e., l.h.s. of Eq. (2) > 0). Empirically, we find that
Y1 are usually the set of tokens that already has substantial probability mass before our intervention.

4 Single Neurons Capture Semantic Entropy
In this section, we compare the performance of predicting SE in-distribution using probes trained on
full activations (SEPs) versus those trained only on SE neurons (Sparse SEPs). Refer to Appendix B
for details on experiment setup. We pool SE neurons across datasets to ensure consistent inputs
for Sparse SEPs (cf. Section 3) and find that only 2 or 3 neurons out of 4,096 or 8,192 are selected
(Tab. 8). See Figure 1 for layer-wise performance comparisons. We find that sparse SEPs either
outperform or match SEPs across all datasets and models, particularly in mid-to-late layers. These
results confirm our hypothesis that hidden space neurons provide an over-complete basis for
representing semantic uncertainty (Section 3).
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Figure 1: Sparse SEPs using only a few neurons (≤ 3) match or outperforms SEPs using thousands
of neurons (≥ 4096). Layer-wise probing performance comparison between full activation (SEPs)
and SE neurons activation (Sparse SEPs) across models. Tested for in-distribution SE prediction.

We additionally show probes trained on SE neurons perform well in out-of-distribution (OOD) tests.
As shown in Table 7 (right), Sparse SEPs match the performances of SEPs. This suggests that SE
neurons exhibit activation patterns generalizable across datasets, similar to those captured by SEPs
trained on full activations. See Appendix B for all evaluation details.

We investigate if semantic entropy neurons are polysemantic [5], or account for more fine-grained
characteristics of semantic uncertainty so as to be domain-generalizable. Our preliminary findings (see
Appendix D.5) show that these neurons strongly activate in response to tokens on topics where models
are more likely to make factual errors, such as numerical data, citations, or security codes (cf. Tab. 9).

5 Activation Clamping Manipulates SE
Clamping SE Neurons Controls SE. We perform activation clamping on the Llama-3-8B and
Gemma-2-9B models. We find that activation clamping has a significant impact on the semantic
entropy of model generations in the intended directions (see Tab. 3 and Fig. C.2). For example, under
high→low SE clamping, SE reduced by 35.6% on average across datasets for Llama-3-8B, and it
was 27.1% for Gemma-2-9B. This implies semantic entropy neurons are causally responsible for
the changes in SE. We further study if clamping causally affects model accuracy since SE can be
used to detect hallucinations. In Table C.2, we show that the overall model accuracy after clamping
remains largely unaffected, which droped at most by 1.17%. However, we find clamping could let
model behave in less calibrated ways, e.g. being more confidently wrong or ambiguously correct,
which we elaborate in Appendix C.
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Model ∆SE/Acc., Clp. Dir. SampleIncrt. SampleCrt.

Llama-3-8B (S)
∆SE, high→low −0.286±0.011 −0.350±0.023

∆Acc., high→low +0.050±0.006 −0.200±0.021

Gemma-2-9B (S)
∆SE, high→low −0.286±0.011 −0.409±0.023

∆Acc., high→low +0.041±0.005 −0.146±0.018

Table 1: Mean and standard error of absolute SE changes and Accuracy (Acc.) changes over datasets
for previously correct (SampleCrt.) and incorrect (SampleIncrt.) samples under high→low activation
clamping. SE ranges from 1.055 to 2.303 before clamping. See low→high results in Table 2.
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Figure 2: Activation clamping encourages more semantically sensible outputs than model tempering.
Semantically relevant tokens (in orange) in response to the set of synthesized IOI prompts X experi-
ence a greater proportional increase in probabilities (cf. Eq. (2)) under clamping compared to high tem-
pering and that of irrelevant tokens (in black) on average. Tested in (S)hort-form generation settings.

Logit Difference. We explore if activation clamping behaves differently from a simple tempering
of the next token distribution. Increasing the temperature of the next token probability distribution
increases the probability of tokens indiscriminately. In this section, we investigate if clamping
behaves in a more semantically meaningful way. We evaluate this on a text completion task of
Indirect Object Identification (IOI) [44]. We synthesize 500 IOI prompts (X) based on the IOI
templates from Wang et al. [44]. We create a pool of 12 human names, 10 locations, and 30 relevant
items to fill up the template, and ensure they fit appropriately for each context. An example template
is “After the lunch, [A] and [B] went to the [LOCATION]. John gave a [ITEM] to”, and a filled
prompt can be “After the lunch, John and Martin went to the shops. John gave a bag to”, where
“ Martin” is more expected to be the model completion. We categorize the 12 human names as
semantically relevant (Y1) and 10 irrelevant items separately generated (such as “sun”, “river”,
“mountain”) as semantically irrelevant (Y2). We confirm that these categorizations correspond to
higher or lower logits, with significant differences between the categories, from the generations of
unclamped models (see Tab. 5). We share all details in Appendix D.2.

In Figure 2, we present the average proportional changes in token likelihoods (as computed in Eq. (2))
when asking models to complete the IOI prompts. The shady area is the standard error among the
500 sample completions. We observe that semantically relevant tokens are more frequently returned
with low → high activation clamping (t = 1) than with high tempering (t′ > 1), as indicated by
positive y-axis values. Also, the semantically relevant tokens gain relatively more likelihood than
the semantically irrelevant ones, conforming to the inequality in Equation (2). These findings
suggest that activation clamping effectively adjusts the logits in a semantically reasonable manner,
distinguishing it from model tempering, which uniformly affects all token probabilities regardless
of their relevance as outputs.

6 Conclusion
In this work, we show that semantic entropy, as a measure of semantic uncertainty, can be reliably
captured from linearly probing on just 2 or 3 neurons from the model hidden states (cf. Tab. 8).
We further show that clamping the activation of these neurons can effectively manipulate the SE
of model generations in the intended directions, while possibly making the model less calibrated.
One future direction is to understand SE neurons by investigating their polysemanticity and finding
interpretations through their activating patterns with input tokens [5].
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A Related Work

Understanding Hidden States. Recent research highlights the significance of LLM hidden states
in influencing model behavior. Operations on these states can alter model outputs, including factual
accuracy [45, 38]. Probes—lightweight classifiers trained on hidden states—have proven effective for
predicting various linguistic properties and even future tokens [2, 35]. Notably, recent studies suggest
that certain directions in the latent space correspond to the “truthfulness” of model outputs [26, 1].

Model Steering. Prior works such as [13, 33, 8, 31] seek to find the internal workings of neural
networks by interpreting individual neurons and their interactions in deciding model behavior. Olah
et al. [33] suggests that neural networks develop legible internal representations of features, which
can be connected to form interpretable circuits. These features are causally meaningful variables that
can be leveraged to steer the model, much like steering vectors. Meanwhile, it has been demonstrated
that model behaviors can be steered by adding a vector to the model hidden states [22, 43], derived
by calculating the differences in activation averages between specific model behavioral classes,
similar to the activation clamping approach we will employ.

Logit Lens. The logit lens is a tool for examining how predictions develop within neural networks,
particularly transformers like GPT, by directly multiplying intermediate layer activations with the
model’s unembedding matrix, which maps the model hidden states to the vocabulary space, to generate
token logits for predicting the next token [14, 3, 32]. Due to the residual structure of transformers,
the network tends to maintain a consistent basis across layers. It hence often reveals that prediction
distributions converge toward the final output well before the last layer [32]. While the logit lens
generally provides valuable insights into the model’s decision process, Belrose et al. [3] argue that it
only offers a biased view on a fraction of information encoded in the network. We build on the logit
lens to precisely identify how changes in specific neuron activations influence the logits of ground
truth and other relevant tokens (Section 3), a technique referred to as the logit difference method [29].

B Experiment Setup
Probing Semantic Entropy & Evaluation. We evaluate SEPs across four models based on
their ability to capture semantic entropy. For short-form generations, we use Llama-2-7B [41],
Llama-3-8B [28], and Gemma-2-9B [12], with DeBERTa-Large [15] as the entailment model. For
long-form generations, we use Llama-3-70B [28] with GPT-3.5 [6] predicting entailment. Sparse
SEPs are trained using Lasso regression [40] with the inverse of L1 regularization constraint being
0.01. SEPs are evaluated on four QA datasets: TriviaQA [17], SQuAD [37], BioASQ [42], and NQ
Open [20]. We compute the area under the receiver operating characteristic curve (AUROC), with
ground truth labels given by binarized SE [18]. We ensure consistency with Kossen et al. [18] in
dataset splits, model instructions, and the calculation of SE.

In additional to layer-wise training, we train Sparse SEPs on concatenated layers, and test them in the
In-Distribution (ID) and Out-of-Distribution (OOD) tests in predicting SE. We follow the same layer
concatenation strategy as in the hallucination detection experiments in Kossen et al. [18, Appendix
B.3]. The concatenation details are shared in Table 6. Sparse SEPs are trained with a regularization
parameter of 1/λ1 = 0.01. SEPs are trained on the same set of concatenated layers, allowing for
a meaningful comparison since SEPs utilize a superset of information compared to Sparse SEPs.
In the OOD tests, particularly, we train SEPs on one dataset and test them on others, and on each
dataset, we report the average test performances using probes trained on others.

Activation Clamping. We further our experiments to identify semantic entropy neurons and
manipulate them within the hidden states of Llama-3-8B and Gemma-2-9B for short-form generations.
Activation clamping is performed on 500 samples from high- or low-SE cluster across multiple
datasets. Additionally, we explored the logit differences using 500 synthesized Indirect Object
Identification (IOI) examples referencing Wang et al. [44, Appendix E.].

C Activation Clamping

Additional Results. We show the observable gaps between the mean activation values of SE
categories in Figure C.1. We report full clamping outcomes for Llama-3-8B and Gemma-2-9B in the
short-form generation settings at Table 3. We present the absolute changes in SE and accuracy for
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different correctness classes before and after clamping in Table 2. We show the kernel density plots
for Llama-3-8B after clamping at Figure C.2. We provide some concrete examples on how clamping
would change model behaviors at high temperatures (t = 1.0) in Table 4.
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Figure C.1: Average SE neurons activation over samples for different SE categories across layers.
There exist noticeable gaps between activation averages of the two categories. Llama-3-8B and
Gemma-2-9B in (S)hort-form generation settings.

Model ∆SE/Acc., Clp. Dir. SampleIncrt. SampleCrt.

Llama-3-8B (S)
∆SE, low→high +0.910±0.022 +2.392±0.017

∆Acc., low→high +0.046±0.008 −0.052±0.006

Gemma-2-9B (S)
∆SE, low→high +0.457±0.020 +1.113±0.011

∆Acc., low→high +0.066±0.010 −0.025±0.004

Table 2: Mean and standard error of absolute SE changes and Accuracy (Acc.) changes over datasets
for previously correct (SampleCrt.) and incorrect (SampleIncrt.) samples under low→high activation
clamping from Llama-3-8B and Gemma-2-9B models. SE ranges from 0.0 to 1.03 before clamping.
The standard error indicates the variations among sample-wise changes in each measure and category
of samples. See high→low results in Table 1.

Clamping Affects Model Calibration. We observe this in Table 1: under high→low SE clamping,
the SE decreases by 0.35, but the accuracy drops by 0.20 on previously correct samples (both are
absolute changes for Llama-3-8B). Under low→high SE clamping (see Tab. 2), the SE increases by
0.91, and yet the accuracy increases by 0.04 on previously incorrect samples. The results suggest
that clamping could affect model faithfulness in counterfactual ways, where depending on the model
correctness and SE a priori, model can be more confidently wrong, or more ambiguously correct.
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SE unchanged

BioASQ TriviaQA NQ Open SQuAD
High SE Samples
Accuracy After Clamping 0.1800 0.2271 0.2060 0.1800
(∆) (↓0.0020) (↓0.0160) (↓0.0040) (↑0.0220)
Mean SE After Clamping 1.5937 1.4537 1.3493 0.0000
(∆) (↓0.2277) (↓0.1718) (↓0.3287) (↓1.8160)

Low SE Samples
Accuracy After Clamping 0.7100 0.7260 0.5840 0.4900
(∆) (↓0.0100) (↓0.0220) (↓0.0120) (↓0.0240)
Mean SE After Clamping 0.8869 0.7181 1.4111 1.4071
(∆) (↑0.5415) (↑0.5164) (↑1.0545) (↑0.9508)

Figure C.2: (Top) Kernel density plots of SE changes after clamping in two directions: low → high
(red) or high → low (blue) clamping. Correctness is determined by the answers of unclamped
Llama-3-8B in the short-form generation setting. (Bottom) Table C.2: Changes in LLM correctness
and SE for Llama-3-8B in (S)hort-form Generation Setting after activation clamping. Table entries
are results after clamping.

Table 3: Changes in LLM accuracy and semantic entropy (SE) during model generations for Llama-
3-8B and Gemma-2-9B in the (S)hort-form generation setting, following activation clamping on SE
neurons for samples with low or high SE. The table entries show the values after clamping. For both
models, activation clamping hardly affects model accuracy while significantly changing semantic
entropy.

Llama-3-8B (S)

BioASQ TriviaQA NQ Open SQuAD
Low SE Samples
Accuracy 0.72 → 0.71 ↓ 0.75 → 0.73 ↓ 0.60 → 0.58 ↓ 0.50 → 0.50
Mean SE 0.35 → 0.89 ↑ 0.20 → 0.72 ↑ 0.36 → 1.41 ↑ 0.46 → 1.41 ↑
High SE Samples
Accuracy 0.22 → 0.18 ↓ 0.28 → 0.27 ↓ 0.20 → 0.21 ↑ 0.14 → 0.16 ↑
Mean SE 1.75 → 1.51 ↓ 1.66 → 1.28 ↓ 1.67 → 1.36 ↓ 1.72 → 1.40 ↓

Gemma-2-9B (S)

BioASQ TriviaQA NQ Open SQuAD
Low SE Samples
Accuracy 0.74 → 0.74 0.80 → 0.80 0.60 → 0.60 0.50 → 0.50
Mean SE 0.29 → 0.48 ↑ 0.19 → 0.43 ↑ 0.33 → 0.68 ↑ 0.39 → 0.75 ↑
High SE Samples
Accuracy 0.22 → 0.21 ↓ 0.28 → 0.27 ↓ 0.20 → 0.21 ↑ 0.14 → 0.16 ↑
Mean SE 1.75 → 1.51 ↓ 1.66 → 1.28 ↓ 1.67 → 1.36 ↓ 1.72 → 1.40 ↓
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Table 4: Selected generations (t = 1.0) using activation clamping from Llama-3-8B on TriviaQA and
NQ Open in the short-form generation setting. The clamping does influence generation consistency
and hence semantic entropy (SE).

Question Answer Generations Clamped Generations

High → Low Clamping on TriviaQA

Who won the 2014 FIFA World
Cup?

Germany Argentina, Brazil,
Netherlands

Germany, Germany,
Germany

Which actor played Captain
America?

Chris Evans Robert Downey Jr.,
Chris Pratt, Chris
Hemsworth

Chris Evans, Chris
Evans, Chris Evans

What is the capital of France? Paris Berlin, Madrid, Rome Paris, Paris, Paris

What year did World War II
end?

1945 1941, 1942, 1944 1945, 1945, 1945

Low → High Clamping on NQ Open

Who created an engine using
high pressure steam in 1801?

Oliver Evans Richard Trevithick,
Richard Trevithick,
Richard Trevithick

French engineer
Richard Trevithick,
British engineer
Richard Trevithick,
Matthew Murray

French troops put down the
Camisard uprisings between
what years?

1702 and 1709 1702 and 1710, 1702-
1710, 1702-1710

1722 and 1724, 1666
and 1699, 1701 and
1710

Who was a prominent Huguenot
in Holland?

Pierre Bayle William the Silent,
William the Silent,
William the Silent

Admiral Michiel de
Ruyter, Willem Us-
selincx, William the
Silent of Orange

What was the name of Watt’s
partner?

Boulton Boulton, Boulton, Boul-
ton

Boulton, and James B.
& Wyl Wilson & John
Muir, John Buss and
Matthew Murray
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D Experiment Details

Here we provide details to reproduce the experiments of the main body of this paper.

D.1 Prompt Templates

We adhere to the prompt templates outlined in Kossen et al. [18, Appendix B.1] for guiding both
short- and long-form model generations.

D.2 Synthesis of IOI Samples

Name Lists. We generate 12 random people names, 10 random locations, 30 objects—each set of
3 objects associated with one location—and 10 additional words that would never appear in the
samples. The people names are treated as semantically relevant tokens, while the extra words are
considered semantically irrelevant tokens. All the generated names are presented below.

# Define lists of possible names, objects, and places
# To fill in [A], [B], [PLACE], and [OBJECT] in the IOI templates.
names = ["John", "Mary", "Tom", "James", "Dan", "Sid", "Martin", "Amy",
"Alice", "Bob", "Charlie", "Eve"]
places = ["shops", "park", "office", "restaurant", "cinema", "beach",
"library", "museum", "airport", "cafe"]
objects = {

"shops": ["bag", "apple", "book"],
"park": ["ball", "kite", "frisbee"],
"office": ["document", "pen", "notebook"],
"restaurant": ["drink", "menu", "receipt"],
"cinema": ["ticket", "popcorn", "drink"],
"beach": ["shell", "towel", "sunscreen"],
"library": ["book", "magazine", "newspaper"],
"museum": ["souvenir", "map", "postcard"],
"airport": ["passport", "boarding pass", "luggage"],
"cafe": ["coffee", "sandwich", "cake"]

}
extra_words = ["sun", "river", "mountain", "cloud", "wind", "rain",
"tree", "stone", "leaf", "fire"]

Logit Differences. We measure the logit differences between the semantically relevant and irrelevant
token categories, as presented in Table 5. We find that the logits for the semantically relevant category
are significantly higher than those for the irrelevant category, with differences exceeding two standard
errors for each pair of tokens considered from the two categories.

Sample Generation from Templates. We use GPT-4o to generate the name lists and complete IOI
samples with the below prompt:

[IOI Templates]

1. Generate Lists:
- Generate 20 unique single-word names, evenly split by presumed gender.
- Generate 10 unique single-word place names.
- Generate 10 unique single-word object names.

2. Sample Generation:
- Generate 500 samples using the IOI templates provided.
- Randomly fill in the missing fields ([A], [B], [PLACE], [OBJECT])
using the generated lists.
- Ensure that [A] and [B] are always different.
- Each template, name, place, and object should be selected with
equal probability.
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Semantically Relevant Tokens Llama-2-7B Llama-3-8B Gemma-2-9B
John 11.004±0.131 9.909±0.068 11.432±0.114

Mary 10.438±0.157 9.501±0.091 11.471±0.134

Tom 11.072±0.129 9.354±0.069 10.469±0.128

James 8.700±0.138 8.578±0.083 9.944±0.126

Dan 8.637±0.139 7.208±0.086 8.585±0.136

Sid 5.426±0.174 5.675±0.128 6.253±0.177

Martin 7.373±0.142 7.359±0.092 8.502±0.147

Amy 8.158±0.149 8.169±0.101 9.664±0.139

Alice 9.915±0.156 9.165±0.088 10.784±0.120

Bob 10.093±0.149 8.973±0.076 10.740±0.128

Charlie 9.815±0.160 8.483±0.098 9.857±0.144

Eve 9.639±0.135 7.314±0.120 7.933±0.156

Semantically Irrelevant Tokens
sun 1.931±0.081 2.545±0.057 3.537±0.072

river 2.025±0.081 1.974±0.047 2.838±0.064

mountain 0.701±0.081 0.672±0.045 2.305±0.065

cloud 1.245±0.083 1.280±0.042 2.916±0.067

wind 1.411±0.081 1.766±0.048 3.899±0.073

rain 1.719±0.081 1.732±0.043 4.092±0.079

tree 2.762±0.092 2.269±0.050 3.186±0.071

stone 1.155±0.079 1.758±0.041 2.618±0.057

leaf 0.897±0.077 1.509±0.047 1.755±0.061

fire 2.285±0.085 2.846±0.045 4.836±0.072

Table 5: Average logits over 500 IOI samples with standard errors for semantically relevant (in
orange) and irrelevant first answer tokens. The differences between each pair of tokens from the two
categories are significant, with variations less than two standard errors of the difference distributions.

- Leave the final [A] field blank in each generated sample.

We refer to Wang et al. [44, Appendix E.] for the IOI templates to use in verbatim.

Notes on Prompting LLMs. We strip the final “[A]” from each IOI sample, allowing LLMs to
complete the sequence. It’s important to note that different models typically use different tokenizers.
To ensure the models behave as expected, we first compute transition scores with unclamped models
to verify that the expected “[A]” is predicted with reasonable probabilities.

We observe that Llama-2-7B tokenizes empty spaces individually and treats the name “Eve” as
two tokens. Specifically, it tokenizes “ Eve” into two tokens, [382, 345], with an optional begin-of-
sequence token 1. In this case, we use token 345 to compute probabilistic changes. Additionally, for
other models, we strip all empty spaces from the generated IOI samples, while for Llama-2-7B, we
retain one space to ensure it generates content tokens directly.

D.3 Details on Semantic Entropy Probes

We share the layer concatenation details in Table 6 and show the comparison on the performances of
Sparse SEPs against SEPs in Table 7.

D.4 Details on Activation Clamping

We include the details of activation clamping on various models in Table 8.

D.5 Details on SAE Training and Feature Latents

Sparse Auto-Encoders (SAEs) are used to learn sparse and interpretable representations of high-
dimensional data, such as the hidden states of LLMs. SAEs consist of an encoder and a decoder that
project hidden states into a higher-dimensional sparse feature space and then reconstruct them. The
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Table 6: Model properties and selected layers for concatenation in SEPs and Sparse SEPs for semantic
entropy in (L)ong-form and (S)hort-form generation settings.

Model Name No. Layers Hid. Dim. Layers of SEPs/Sparse SEPs
Llama-3-70B (L) 80 8192 [36, 37, 38, 39, 40]
Gemma-2-9B (S) 42 3584 [38, 39, 40, 41, 42]
Llama-3-8B (S) 32 4096 [23, 24, 25, 26, 27]
Llama-2-7B (S) 32 4096 [21, 22, 23, 24, 25]

Table 7: ∆AUROC (x100) of Sparse SEPs (S. SEPs) compared to SEPs. Avg ± standard error. (S)hort- and
(L)ong-form generations. Probes are trained on a concatenated set of performant layers. See Appendix B for
details.

Model In-distribution Generalization
(S. SEP − SEP) (S. SEP − SEP)

Llama-3-8B (S) 0.95 ± 1.06 2.55 ± 2.81
Gemma-2-9B (S) -3.67 ± 1.10 5.19 ± 1.43
Llama-2-7B (S) 1.08 ± 0.54 -1.59 ± 8.50
Llama-3-70B (L) -2.26 ± 4.60 1.59 ± 3.89

model is trained with a loss function that combines the reconstruction error with an l1 regularization
term to encourage sparsity, activating only a few features per input.

We train Sparse Auto-Encoders (SAEs) on the post-MLP residual stream of the 25th layer of the
Llama-3-8B model, following the recommendation by Templeton et al. [39] that this stream is less
affected by cross-layer superposition. Our SAE expands the model hidden states from the activation
space into a higher-dimensional feature space with an expansion factor of 16. We specifically focus
on the 25th layer of the model, as layer-wise SE probes indicate that this layer provides the best
performance (Fig. 1), and activation clamping at this layer yields remarkable performance (Section 5).
The training is performed on 500 million tokens from the OpenWebText corpus [25].

We use the training objective of a Gated SAE, which is shown to be a Pareto Improvement over SAEs
in the current evaluation standard (e.g., MSE of decoded activation and feature sparsity) of SAEs
[36, 7].

Interpretable Features from SAE. To assess interpretability, we use both the activation and logit
lens approaches. We leverage the resources provided by Neuronpedia [24], a platform trusted and
utilized by, for example, Lieberum et al. [23], to list the tokens whose occurrences most strongly
activate each feature (i.e. activation lens) as well as the tokens whose logits are most affected by the
activation of each feature (i.e. logit lens). Features activated by a sufficient number of tokens are
assigned an interpretation auto-generated by GPT-4o-mini [34]. We refer to Bricken et al. [5], Bills
et al. [4] for guidance on generating auto-interpreted features.

See Table 9 for the full set of interpreted features. Interestingly, the features identified with clamped
activation values, if not within the top sparsity percent (though some are), are mostly unavailable for
interpretation since they are activated by too few tokens or have too low activation values.

14



Table 8: Details on activation clamping (e.g., clamped activation (clp. act.) and clamped layer (clp.
lyr.) used in Section 5 across models in both (S)hort-form and (L)ong-form generation settings.

Model Name NSE (Total) Clp. Activation Clp. Lyr.

Llama-3-70B (L) [3099, 4031, 6970](8192)
low → high: [-0.24, 0.82, 3.00]

72(out of 80)high → low: [-10.36, -4.93, 0.29]

Llama-2-7B (S) [363, 1415, 2298](4096)
low → high: [14.49, 5.56, 26.25]

25(out of 32)high → low: [-4.82, -9.00, -3.66]

Llama-3-8B (S) [788, 2978](4096)
low → high: [3.73, -3.37]

25(out of 32)high → low: [-1.59, 0.99]

Gemma-2-9B (S) [1279, 2558](3584)
low → high: [-36.13, 76.50]

30(out of 42)high → low: [44.94, -15.60]

SE Category Feature ID Auto-Interpreted Feature

High SE

8735 Phrases indicating possession or belonging
10857 The word "actually" and its frequency in the text, highlighting its

relevance in various contexts
14001 The conjunction "and" to identify connections or additions in

sentences
17664 Identifiers or codes related to technology and security issues
25705 Concepts related to political bias and trust in science (e.g., cita-

tions)
29370 Numerical values or references to quantitative data
34230/2471 Vertical bars indicating section breaks or special formatting mark-

ers in the text (beginning of text)
40224 Punctuation marks
41748 Occurrences of the word "the" (often as the first word in a sen-

tence)
43052 Instances of punctuation and numerical values
49386 References to public officials or roles mentioned in discussions
51252 Technical terms and references to digital tools or features in

various contexts

Low SE

21347 Promotional content related to sales and events
43682 References to lunar missions and related space technology
43686 Themes related to the relationship between technology and per-

sonal touch in human interactions
43688 References to significant intellectual contributions and social

theories
43689 Concepts related to heritage and identity
43690 References to legal or administrative processes regarding town-

ship formation
43695 Phrases indicating political statements or commentary

Table 9: Auto-interpreted features corresponding to NSE neurons under the high or low SE categories,
generated by GPT-4o-mini [34]. The default number of selected features is 21, calculated as
10−3.505 × dmodel × m, where 10−3.505 represents the L0 feature sparsity, dmodel = 4096, and
m = 16. Only features with sufficient activating tokens or interpretable activations are listed. Refer
to Appendix D.5 for further evaluation details.
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