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ABSTRACT

Predicting drug efficacy and safety in vivo requires information on biological
responses (e.g., cell morphology and gene expression) to small molecule perturba-
tions. However, current molecular representation learning methods do not provide a
comprehensive view of cell states under these perturbations and struggle to remove
noise, hindering model generalization. We introduce the Information Alignment
(InfoAlign) approach to learn molecular representations through the information
bottleneck method in cells. We integrate molecules and cellular response data
as nodes into a context graph, connecting them with weighted edges based on
chemical, biological, and computational criteria. For each molecule in a training
batch, InfoAlign optimizes the encoder’s latent representation with a minimality
objective to discard redundant structural information. A sufficiency objective de-
codes the representation to align with different feature spaces from the molecule’s
neighborhood in the context graph. We demonstrate that the proposed sufficiency
objective for alignment is tighter than existing encoder-based contrastive methods.
Empirically, we validate representations from InfoAlign in two downstream appli-
cations: molecular property prediction against up to 27 baseline methods across
four datasets, plus zero-shot molecule-morphology matching. The code and model
are available at https://github.com/liugangcode/InfoAlign.

1 INTRODUCTION

Drug properties, e.g., toxicity and adverse effects (Liu et al., 2023a), are induced by molecular
initiating events—interactions between a molecule and a biological system—that first impact the
cellular level and ultimately influence tissue or organ functions (Mast et al., 2014). However, a
chemical molecule’s structure alone is insufficient information to predict its impact on cells: each
chemical interacts with multiple cells and genes and induces complex changes in gene expression and
cell morphology, making predictions of downstream responses challenging (Carpenter et al., 2006;
Moshkov et al., 2023). Hence, molecular representation learning should make use of information
about cellular response, enhancing the representation of the mode of action and thereby improving
predictions for downstream bioactivity tasks (Liu et al., 2023a; Wang et al., 2023a).

There is a lack of exploration for holistic molecular representations from molecular structure, cell
morphology, and gene expression (Hu et al., 2020a; You et al., 2020; Liu et al., 2022; Wang et al.,
2023a; Sanchez-Fernandez et al., 2023). For example, graph self-supervised methods only manipulate
molecular structures to perturb or mask molecular graphs using contrastive or predictive losses (Hu
et al., 2020a; You et al., 2020; Inae et al., 2023). Moshkov et al. (2023) explored the ability of
different data modalities, taken independently, to predict molecules’ assay activity in a diverse set of
assays (tasks). They found (from (Moshkov et al., 2023)’s Fig.2) that molecular structure supports
highly accurate prediction (AUC > 90%) in 31% (16/52) of tasks, gene expression in 37% (19/52) and
cell morphology in 54% (28/52). Similarly, in our experiments (Figure 3), we observe that molecular
structure is not a one-size-fits-all solution.

Cells can be perturbed by treating them with chemicals or genetic reagents that disrupt a particular
gene or pathway. These chemical and genetic perturbations in vitro naturally bridge molecules
with cell morphology and gene expression, as illustrated in Figure 1 (b). However, multi-modal
contrastive methods such as CLOOME (Sanchez-Fernandez et al., 2023) and InfoCORE (Wang et al.,
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Figure 1: Comparison of Representation Learning Methods: (a) Existing contrastive methods use two
encoders—one for molecules and another for cell morphology or gene expression features—without
sharing the molecule encoders for different alignment targets. (b) InfoAlign remove redundant
information from molecules, cell morphology, and gene expressions based on the information
bottleneck, resulting in more concise yet predictive molecular representations (Alemi et al., 2016).

2023a), depicted in Figure 1 (a), focus primarily on aligning molecular representations with cell
morphology (Sanchez-Fernandez et al., 2023; Wang et al., 2023a) or gene expression (Wang et al.,
2023a). These approaches fall short in two ways. (1) They do not remove redundant information,
grey-colored area in Figure 1 (b), that may harm representation generalization. The presence of
redundant information (Wang et al., 2023a) may induce spurious correlations, adversely affecting
the generalization of molecular representations. For example, in small molecule perturbations (Bray
et al., 2016; Chandrasekaran et al., 2023), batch identifiers can signify confounding technical factors,
creating misleading associations between molecular structures and cell morphology (Wang et al.,
2023a). (2) They treat molecules as the sole connectors between gene expression and cell morphology,
ignoring the potential for genetic perturbations (Chandrasekaran et al., 2023) to directly establish
connections between these modalities. Genetic perturbations (Chandrasekaran et al., 2023) not only
enrich the feature space of gene expression and cell morphology but also enhance the navigation of
molecular representation learning towards the overlapped (bottleneck) area in Figure 1 (b).

To address the aforementioned challenges, we conceptualize the cellular response processes as a
context graph, capturing a more complete set of interactions among molecules, gene expression, and
cell morphology. We identify the neighborhood of the molecule on the context graph and apply the
information bottleneck (Tishby et al., 2000) to optimize molecular representations, which aligns them
with neighboring biological variables to remove redundant information and improve generalization.

We propose the Information Alignment (InfoAlign) approach, as presented in Figure 1 (b). InfoAlign
uses one encoder and multiple decoders with information bottleneck for minimal sufficient statistics
in representation learning. The minimality objective optimizes the encoder to learn the minimal
informative representation from molecular structures by discarding redundant information. The suffi-
ciency objective ensures the encoder retains sufficient information, allowing decoders to reconstruct
features for biological variables in neighborhood areas of the context graph. We construct the context
graph based on molecule and genetic perturbations (Bray et al., 2017; Chandrasekaran et al., 2023;
Subramanian et al., 2017) and introduce more biological (gene-gene interaction (Himmelstein et al.,
2017)) and computational (cosine similarity) criteria to increase edge connectivity. We conduct
random walks on the context graph, beginning with the molecule in the training batch, to identify its
neighborhood. Cumulative edge weights indicate similarity between the molecule and variables along
the path. The molecule is encoded, and its latent representation is decoded to align with features
identified in the random walk. Encoders and decoders are jointly optimized using an upper bound for
the minimality objective and a lower bound for the sufficiency objective.

The sufficiency objective introduces a decoder-based bound for multi-modal alignment. We show
its theoretical advantages by demonstrating that it provides a tighter bound than the encoder-based
approaches used in previous contrastive methods (Oord et al., 2018; Radford et al., 2021), as discussed
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in Section 4.3. In experiments, InfoAlign outperforms up to 27 baselines across three classification
and one regression dataset, covering 685 tasks, with average improvements of up to 6.4%. InfoAlign
also demonstrates strong zero-shot multi-modal matching on two molecule-morphology datasets.

2 RELATED WORK

Representation Learning on Molecular Structure: Representation learning approaches for
molecules can be categorized into sequential-based (Krenn et al., 2022; Ross et al., 2022) or graph-
based models (Hu et al., 2020a; You et al., 2020; Zhang et al., 2021; Liu et al., 2023b). Sequential
models, utilizing string formats of molecules like SMILES and SELFIES (Krenn et al., 2022), have
evolved from Recurrent Neural Networks (RNNs) to Transformers (Chithrananda et al., 2020; Ross
et al., 2022). These models typically follow specific pretraining strategies similar to language models
such as BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2019; Chithrananda et al., 2020) and
GPT (Radford et al., 2019). The pretraining targets are thus often the next token predictions or mask
language modeling (Devlin et al., 2018; Chithrananda et al., 2020) on SMILES or SELFIES se-
quences (Radford et al., 2019). Graph Neural Networks (GNNs) are the architectures for graph-based
approaches (Hu et al., 2020a; You et al., 2020; Zhang et al., 2021; Liu et al., 2024b), where methods
to pretrain GNNs often perturb or mask the atoms, edges, or substructures of molecular graphs with
contrastive (Hu et al., 2020a; You et al., 2020) and predictive losses (Zhang et al., 2021; Inae et al.,
2023). Recent evidence highlights the challenges of developing universal molecular representations
based solely on molecular structures without integrating domain knowledge (Bray et al., 2016; Seal
et al., 2022; Sun et al., 2022; Seal et al., 2023; Liu et al., 2024a). Although using motifs is a common
method to incorporate such knowledge (Rong et al., 2020; Inae et al., 2023), the incorporation of
information about molecules’ biological impacts is much less explored. We aim to enhance molecular
representation learning by incorporating domain knowledge from cellular response data.

Representation Learning with Cellular Response Data: A primary goal of molecular representation
learning is to predict molecular bioactivity. Likewise, emerging gene expression Subramanian et al.
(2017) and morphological profiling approaches Carpenter et al. (2006); Seal et al. (2024) that describe
perturbed genetic or cellular states in cell cultures can also be used to predict bioactivity. In some
datasets, molecules are the perturbations, and the perturbed cell states measured are gene expression
values for a thousand or more genes (Subramanian et al., 2017) and/or microscopy Cell Painting
images, which can be represented as a thousand or more morphology features Cimini et al. (2023).
Recently created large-scale perturbation datasets (Subramanian et al., 2017; Chandrasekaran et al.,
2023) could enrich molecular representation learning approaches. CLOOME (Sanchez-Fernandez
et al., 2023), MIGA (Zheng et al., 2024), MoCoP (Nguyen et al., 2023), and MolPhenix (Fradkin et al.,
2024) contrast cellular images with molecules. InfoCORE (Wang et al., 2023a) contrasts molecule
with either morphological profiling (Bray et al., 2017) or gene expression (Wang et al., 2023a).
InfoCORE Wang et al. (2023a) mitigates confounding batch identifiers using a batch classifier, which
may not be practical when batch identifiers are unavailable during training.

3 PROBLEM DEFINITION

We denote x ∈ X as the molecule from the space X . An encoder with parameters pθ(z | x) maps
x to a D-dimensional latent representation z ∈ RD. One may implement a Graph Neural Network
(GNN) (Xu et al., 2019) as the encoder. The GNN first updates node representations and then
performs a readout operation (e.g., summation) over the nodes to obtain the latent representation.

Existing research has extensively used structural features to pretrain the GNN encoder (Hu et al.,
2020a; Inae et al., 2023). However, incorporating more expressive features from the cellular context,
such as cell morphology and gene expression, remains largely unexplored for improving molecular
representations. In this work, we use these features as targets to optimize molecular representations.

4 MULTI-MODAL ALIGNMENT WITH INFOALIGN

We present the overall representation learning framework in Figure 2. In Section 4.1, we construct
the context graph for cellular response data. In Section 4.2, we introduce representation learning
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Figure 2: Molecular Representation Learning Using the Context Graph: (a) In Section 4.1, we
construct the graph with various interaction, perturbation, and cosine similarities among molecules x,
cell morphology profiles c, and genes e. Given a training batch of molecules, including x1 and x4,
random walk extracts paths, for instance, of length four. (b) In Section 4.2, we aim to learn molecular
representations based on the information bottleneck, preserving minimal information from the input
molecule while ensuring sufficient information for decoding the target along the walk path Px.

methods based on the principle of minimal sufficiency for molecules and their related modalities. In
Section 4.3, we demonstrate the theoretical advantages of the proposed method.

4.1 RANDOM WALKS ON CELLULAR CONTEXT GRAPH

Node Construction: We model the interactions of the molecule x with other molecules, the cell c,
and genes e using the context graph. They are nodes with different features y. Node features for
molecules are binary vectors obtained using fingerprints (Rogers & Hahn, 2010). Cell morphology
features are derived from CellProfiler (Carpenter et al., 2006) applied to Cell Painting microscopy
images. Gene nodes have expression values obtained using L1000 methods (Subramanian et al.,
2017). We rescale the cell morphology and gene expression features to a range between 0 and 1.

Edge Construction: We link nodes using chemical, biological, and computational criteria. For
example, molecules can perturb cultured human cells, inducing changes in cell morphology (Chan-
drasekaran et al., 2023) and gene expression (Subramanian et al., 2017), thus linking molecules to cell
morphology and gene expression nodes. Genes could also perturb cells, inducing links between genes
and cell morphology (Chandrasekaran et al., 2023). Additionally, We calculate cosine similarity
for nodes of the same type and use biological criteria, such as gene-gene interactions (Himmelstein
et al., 2017), to enrich edges. Each edge is assigned a weight w ranging from 0 to 1. For example,
edges derived from computational criteria between molecule nodes are assigned weights based on
the assumption that structurally similar molecules may exhibit similar biological effects, a concept
widely used in drug discovery, such as lead optimization. We construct the context graph as detailed
in Section 5 and appendix C.1, with an example shown in Figure 2 (a).

Random Walk Path Extraction: The context graph identifies related cellular response patterns for
input molecules in representation learning. Given an input molecule x, we extract its neighborhood
through random walks starting from x. Specifically, we employ degree-based transition probabili-
ties (Perozzi et al., 2014) and denote the walking path as Px : x

w1−−→ v2
w2−−→ . . .

wL−−→ vL, where v2
is a direct neighbor of x. To quantify the similarity between x and node vi (2 ≤ i ≤ L) on Px, we
compute the cumulative product of edge weights as α(vi | Px) =

∏i−1
j=1 wj .

4.2 OPTIMIZATION FOR REPRESENTATION WITH INFORMATION BOTTLENECK

The information bottleneck (IB) (Tishby et al., 2000; Alemi et al., 2016) is an appealing method
for defining concise representations with strong predictive power. For molecular representation, we
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extract minimal sufficient information from the random variable X of molecules. This is achieved
by aligning the molecular representations Z with the targets Y , derived from node features along
the walk path P . The IB has two principles based on mutual information (MI): (1) the minimality
principle, which minimizes MI between molecules and their latent representations as I(X;Z), and
(2) the sufficiency principle, which decodes latent representations to maximally reconstruct feature
spaces for variables along the walk path I (Z;Y ). Together, these form the optimization objectives:

min
p(z|x)

[−I (Z;Y ) + βI(X;Z)] , (1)

where β controls the trade-off between minimality and sufficiency. The exact computation of I(Z;Y )
and I(X;Z) is intractable due to the unknown conditional distribution p(y|z) and the marginal p(z).
We introduce the variational approximations q(y|z) and q(z) for them, respectively. This results in a
lower bound estimation for the first decoding term IDLB and an upper bound for the second encoding
term IEUB (Poole et al., 2019).

I(Z;Y ) ≥ Ep(z,y) [log q(y | z)] +H(Y ) ≜ IDLB

I(X;Z) ≤ Ep(x) [KL (p(z | x)∥q(z))] ≜ IEUB

(2)

H(Y ) is the differential entropy. Proofs are in appendix B.1. Together, IDLB and IEUB upper bound
Eq. (1), forming a tractable objective −IDLB + IEUB to optimize the encoder. For the target Y , the
IDLB objective requires decoders rather than encoders, as typically used in prior work (Sanchez-
Fernandez et al., 2023). We use distinct decoders, denoted as qϕ with parameters ϕ, for various
targets, including molecular fingerprints, gene expressions, and cell morphology features.

After ignoring the constant terms, one could formulate the loss function according to Eq. (2) for the
molecule sample x, its latent representation z, and the targets yv from Px:

L =
1

L

∑
v∈Px

α(v|Px) [− log (qϕ(yv | z)] + βKL (pθ(z | x) | N (0, I)) , (3)

where the first term aligns the representation with other features, and KL is the Kullback–Leibler
divergence used for regularization. N (0, I) is the Gaussian prior. In this formulation, the encoder
models a distribution instead of a single representation z, learning the mean and variance µ,σ ∈ RD.
One may use parameterization tricks to sample z from the distribution (Alemi et al., 2016). The
decoder then reconstructs yv , the features of the neighboring node v ∈ Px from the walk path.

InfoAlign uses multiple decoders for qϕ to align multi-modal features, while prior work relies on
encoders with CLIP-like losses to align the latent space (Radford et al., 2021; Girdhar et al., 2023;
Wang et al., 2023a; Sanchez-Fernandez et al., 2023). Next, we provide the theoretical benefits of
decoder-based alignment alongside the empirical advantages in Section 6.

4.3 THEORETICAL MOTIVATION FOR DECODER-BASED ALIGNMENT

InfoNCE (Oord et al., 2018) is the contrastive loss used for most CLIP-like methods (Radford et al.,
2021; Wang et al., 2023a). In this work, we show that the MI lower bound based on InfoAlign is
tighter than that based on InfoNCE.
Proposition 4.1. For the molecular representation Z and target Y (from cell morphology, gene
expressions, or molecular fingerprints), the encoder-based MI lower bound IELB for InfoNCE can
be derived by incorporating K − 1 additional samples, denoted as y2:K , to build the Monte Carlo
estimate m(·) of the partition function (Nguyen et al., 2010; Poole et al., 2019):

IELB = 1 + Ep(z,y)p(y2:K)

[
log

eh(z,y)

m(z; y, y2:K)

]
− Ep(z)p(y2:K)p(y)

[
eh(z,y)

m(z; y, y2:K)

]
, (4)

where h(z, y) is the neural network parameterized critic for density approximation with the energy-
based variational family. The decoder-based lower bound IDLB is defined in Eq. (2), then we have
that IDLB is tighter than IELB , i.e., I(Z;Y ) ≥ IDLB(Z;Y ) ≥ IELB(Z;Y ).

Proofs are in appendix B.2. The result aligns with empirical observations in previous studies such as
DALL-E 2 (Ramesh et al., 2022), where a prior model was introduced to improve representations
from CLIP (Radford et al., 2021) before decoding to another modality. In this work, we learn
decodable latent representations from molecules to align with different biological features.
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5 IMPLEMENTATION OF CONTEXT GRAPH AND PRETRAINING SETTING

Data Source of Context Graph: We create the context graph based on (1) two Cell Painting
datasets (Bray et al., 2017; Chandrasekaran et al., 2023), containing around 140K molecule per-
turbations (molecule and cell morphology pairs) and 15K genetic perturbations (gene and cell
morphology pairs) across 1.6 billion human cells; (2) Hetionet (Himmelstein et al., 2017), which
captures gene-gene and gene-molecule relationships from millions of biomedical studies; and (3) a
dataset reporting differential gene expression values for 978 landmark genes (Wang et al., 2016) for
chemical perturbations (molecule and gene expression pairs) (Subramanian et al., 2017).

Node Features: Different profiling methods provide node features in different ways. Morgan
fingerprints (Rogers & Hahn, 2010) are feature vectors extracted from each molecule’s structure,
CellProfiler features (Carpenter et al., 2006) are computed from the image of each cell and represent
cell morphology, and L1000 profiles (Subramanian et al., 2017) capture gene expression values on 978
landmark genes from cells treated with a chemical perturbation. Here are two practical considerations
for the context graphs: (1) Chandrasekaran et al. (2023) provided one dataset that measured the cell
morphology impacts of perturbing individual genes. The 15K genetic perturbations (Chandrasekaran
et al., 2023) provide gene-cell morphology pairs but lack corresponding gene expression profiles.
Still, we keep the gene nodes from this dataset to account for potential gene-gene interactions and
incorporate cell morphology features into them. (2) All 978 landmark genes have expression values
linked to the molecules used in (Wang et al., 2016). We update new gene expression nodes with
978-dimensional feature vectors. These vectors summarize all molecule-gene expression connections
for a small molecule perturbation. This approach efficiently reduces dense connections between
landmark genes and molecules. We select the top 1% of gene-molecule expression values as new
edges to enrich the context graph’s connectivity. We scale cell morphology and gene expression
features to a range of 0 to 1 using the Min-Max scaler along each dimension.

Edge Weights: For edges based on chemical perturbations (Chandrasekaran et al., 2023), we assign
the edge weight of 1. We also compute cosine similarity for nodes if they are in the same feature
space (such as two cell morphology/gene expression profiles, or Morgan fingerprints). To avoid noisy
edges from computations, we (1) apply a 0.8 threshold for cosine similarity, and additionally (2)
explicitly enforce 99.5% sparsity by selecting top similar edges.

All together, this results in a context graph of 276,855 nodes (129,592 molecules, 4533 genes +
13,795 gene expressions, and 128,935 cell morphology) and 366,384 edges.

Encoder and Decoder: We use a five-layer Graph Isomorphism Network (GIN) (Xu et al., 2019)
with sum as the readout function as the molecule encoder. All molecules on the context graph are used
to pretrain the encoder. Since we extract feature vectors as decoding targets in different modalities, we
efficiently use a Multi-Layer Perceptron (MLP) as modality decoders. We set the hidden dimension
to 300, β = 4, and L = 4. In each training batch, random walks start from the molecule node to
extract the walk path. The decoders are then pretrained to reconstruct the corresponding node features
along the path. Further details can be found in Section appendix C.

6 EXPERIMENTS

We demonstrate the effectiveness of InfoAlign’s representation in (1) molecular property prediction,
(2) molecule-morphology matching, and (3) analyze the performance of InfoAlign. These lead to
three research questions (RQs).

6.1 RQ1: MOLECULAR PROPERTY PREDICTION

Better molecular representations should improve prediction performance. We train MLPs on different
representations to predict molecular properties in both classification and regression tasks.

6.1.1 EXPERIMENTAL SETTING

Dataset and Evaluation: We select datasets for important tasks in drug discovery, including activity
classification for various assays in ChEMBL2K (Gaulton et al., 2012) and Broad6K (Moshkov et al.,
2023), drug toxicity classification using ToxCast (Richard et al., 2016), and absorption, distribution,
metabolism, and excretion (ADME) regression using Biogen3K (Fang et al., 2023). The dataset
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Table 1: Results on ChEMBL2K and Broad6K. We report average AUC (Avg.), as well as the
percentage of tasks achieving AUC above 80%, 85%, and 90%. We highlight the best and second best
mean. We also highlight the row of the best method in each category.

Dataset ChEMBL2k (AUC ↑) Broad6k (AUC ↑)
(# Molecule / # Task) (2355 / 41) (6567 / 32)
Method Avg. >80% >85% >90% Avg. >80% >85% >90%

Morgan Fingerprints
MLP 76.8±2.2 48.8±3.9 34.6±6.3 21.9±5.7 63.3±0.3 6.3±0.0 4.4±1.7 3.1±0.0
RF 54.7±0.7 0.0±0.0 0.0±0.0 0.0±0.0 55.5±0.1 0.0±0.0 0.0±0.0 0.0±0.0
GP 51.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 50.6±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Pretrained GNN
AttrMask (Hu et al., 2020a) 73.9±0.5 46.8±2.7 31.2±4.4 14.6±1.7 59.8±0.2 3.1±0.0 3.1±0.0 3.1±0.0
ContextPred (Hu et al., 2020a) 77.0±0.5 55.1±1.3 34.1±4.6 14.6±1.7 60.0±0.2 7.5±1.7 3.1±0.0 3.1±0.0
EdgePred (Hu et al., 2020a) 75.6±0.5 54.2±4.0 34.6±7.2 12.2±2.4 59.9±0.2 3.1±0.0 3.1±0.0 3.1±0.0
GraphCL (You et al., 2020) 75.6±1.6 46.8±7.6 32.2±6.8 18.0±3.7 67.2±0.5 15.6±3.1 3.1±0.0 3.1±0.0
GROVER (Rong et al., 2020) 73.3±1.4 38.5±2.0 22.4±3.6 14.6±2.4 66.2±0.1 15.6±0.0 3.8±1.4 3.1±0.0
JOAO (You et al., 2020) 75.1±1.0 47.8±5.1 33.7±2.0 19.0±3.2 67.3±0.4 12.5±0.0 3.8±1.4 3.1±0.0
MGSSL (Zhang et al., 2021) 75.1±1.1 39.0±4.6 29.3±3.0 10.3±3.2 66.9±0.5 13.8±2.8 3.1±0.0 3.1±0.0
GraphLoG Xu et al. 73.5±0.7 41.9±2.0 29.3±3.4 15.6±2.8 62.9±0.4 4.4±1.7 0.0±0.0 0.0±0.0
GraphMAE (Hou et al., 2022) 74.7±0.1 33.2±1.3 27.8±1.3 12.2±1.7 66.8±0.3 14.4±1.7 3.1±0.0 3.1±0.0
DSLA (Kim et al., 2022) 69.3±1.0 23.9±4.7 14.6±5.5 6.8±1.1 63.3±0.3 6.3±0.0 3.1±0.0 3.1±0.0
UniMol (Zhou et al., 2023) 76.8±0.4 46.8±2.0 33.7±1.1 24.9±2.0 65.4±0.1 7.5±1.7 3.1±0.0 3.1±0.0

Pretrained Chemical Language Models
Roberta (Mary et al., 2024) 74.7±1.9 46.3±3.4 35.1±4.4 22.9±1.3 59.8±0.7 5.0±1.7 3.1±0.0 3.1±0.0
GPT2 (Mary et al., 2024) 71.0±3.4 31.2±11.2 20.0±9.4 7.3±6.9 60.6±0.3 7.5±1.7 1.9±1.7 1.9±1.7
MolT5 (Edwards et al., 2022) 69.9±0.8 32.2±2.0 21.0±4.1 8.8±1.3 56.4±0.8 3.8±1.4 2.5±1.4 2.5±1.4
ChemGPT (Frey et al., 2023) 65.0±1.1 16.1±2.8 11.2±3.3 5.4±1.1 55.1±0.9 3.1±0.0 3.1±0.0 1.3±1.7

Cell Morphology
MLP 64.3±2.4 15.6±6.6 8.3±3.7 4.9±3.9 51.9±1.0 0.0±0.0 0.0±0.0 0.0±0.0
RF 55.9±0.7 3.9±1.3 3.9±1.3 2.4±0.0 55.3±0.1 0.0±0.0 0.0±0.0 0.0±0.0
GP 50.1±0.0 0.0±0.0 0.0±0.0 0.0±0.0 54.7±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Gene Expression
MLP 56.1±1.1 5.1±1.4 3.4±1.3 3.4±1.3 56.9±1.4 1.9±1.7 1.9±1.7 1.9±1.7
RF 52.8±0.3 0.0±0.0 0.0±0.0 0.0±0.0 55.2±0.2 0.0±0.0 0.0±0.0 0.0±0.0
GP Run out of time 50.1±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Multi-modal Alignment
CLOOME 66.7±1.8 26.8±4.6 16.1±3.7 10.7±5.1 61.7±0.4 3.1±0.0 3.1±0.0 0.0±0.0
InfoCore (GE) 79.3±0.9 62.4±2.8 46.3±3.0 30.3±2.2 60.2±0.2 3.1±0.0 0.0±0.0 0.0±0.0
InfoCore (CP) 73.8±2.0 37.6±9.2 26.3±4.7 10.7±4.1 61.1±0.2 6.3±0.0 3.1±0.0 0.0±0.0
InfoAlign (Ours) 81.3±0.6 66.3±2.7 49.3±2.7 35.1±3.7 70.0±0.1 18.8±2.2 3.1±0.0 3.1±0.0

covers 685 tasks with details in Table 5 and appendix D.1. We apply scaffold-splitting for all datasets.
We follow a 0.6:0.15:0.25 ratio for training, validation, and test sets for all datasets. We use the Area
under the curve (AUC) for classification and mean absolute error (MAE) for regression. Mean and
standard deviations are reported from ten runs.

Baseline: We include 27 baselines across six categories: (1) three molecular fingerprint (FP)-based
methods (Rogers & Hahn, 2010); (2) eleven pretrained GNNs; (3) four pretrained chemical language
models; (4,5) six methods based on cell morphology and gene expression values from cells treated
with each molecule; (6) CLOOME (Sanchez-Fernandez et al., 2023) and InfoCORE (Wang et al.,
2023a) for multi-modal alignment using structure, morphology, and gene expression data. We use
MLPs, Random Forests (RF), and Gaussian Processes (GP) for methods in categories (1,4,5). Setting
details and all results are in appendices D.1 and D.3.

6.1.2 RESULTS AND ANALYSIS

We present results across various assays in Tables 1 and 2 and Figure 3. Key observations include:

(1) Molecular structures are superior compared to cell morphology and gene expression features
for predicting various molecular assays. This is likely because the datasets and tasks we selected
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Table 2: Results on ToxCast and Biogen3K. We report the average AUC and the percentage of AUC
above 80% on ToxCast, and regression MAE (scaled by × 100) for Biogen3K. We highlight the best
and second best mean. We also highlight the row of the best method in each category.
Dataset ToxCast (AUC ↑) Biogen3K (MAE ×100 ↓ )
(# Molecule / # Task) (8576 / 617) (3521 / 6)
Method Avg. >80 % Avg. hPPB rPPB RLM HLM ER Solubility

Morgan Fingerprints
MLP 57.6±1.0 1.6±0.3 66.2±2.4 66.1±2.6 56.8±2.3 56.5±4.2 74.6±6.2 73.7±7.3 69.5±3.0
RF 52.3±0.1 0.2±0.1 52.8±0.2 44.2±0.1 44.2±0.1 42.0±0.2 67.7±0.7 66.9±0.9 51.6±0.1
GP Run out of Time 60.0±0.0 51.3±0.0 59.5±0.0 49.7±0.0 68.8±0.0 69.3±0.0 61.6±0.0

Pretrained GNN
AttrMask (Hu et al., 2020a) 63.1±0.8 3.2±1.2 67.3±0.3 82.4±1.1 49.8±0.7 51.7±1.0 57.9±0.6 62.6±0.5 99.1±1.2
ContextPred (Hu et al., 2020a) 63.0±0.6 3.3±1.3 68.5±0.9 85.0±7.9 49.7±0.4 55.1±2.7 61.4±1.8 63.1±0.5 96.5±3.7
EdgePred (Hu et al., 2020a) 63.5±1.1 4.8±3.0 67.8±0.9 81.2±10.2 48.0±0.5 53.5±2.8 62.2±1.8 62.9±0.7 99.1±6.9
GraphCL (You et al., 2020) 52.2±0.2 0.5±0.3 53.9±0.6 43.8±0.3 45.4±0.6 40.6±0.5 76.7±1.0 67.1±2.2 49.6±0.3
GROVER (Rong et al., 2020) 53.1±0.4 0.5±0.1 54.9±1.6 44.5±0.4 46.5±0.7 41.7±0.6 73.2±5.7 71.0±4.3 52.6±0.3
JOAO (You et al., 2021) 52.3±0.2 0.4±0.1 55.0±0.8 44.5±0.5 47.6±0.5 40.6±0.2 74.3±2.8 71.5±2.6 51.4±0.6
MGSSL (Zhang et al., 2021) 64.2±0.2 4.0±0.4 53.2±0.3 44.8±0.6 49.7±0.3 41.5±0.2 65.6±1.8 64.6±0.5 52.7±0.5
GraphLoG (Xu et al., 2021) 58.6±0.4 2.5±0.3 56.9±0.4 49.3±0.3 54.8±0.5 42.6±0.3 66.8±1.7 69.0±1.3 58.8±0.5
GraphMAE (Hou et al., 2022) 53.3±0.1 0.6±0.1 52.8±0.8 43.3±0.9 51.2±0.8 40.9±0.3 64.4±2.7 65.9±3.8 50.9±1.4
DSLA (Kim et al., 2022) 57.8±0.5 0.7±0.1 57.9±0.7 50.4±0.7 53.6±1.7 43.3±0.9 68.6±1.2 70.8±2.0 60.9±0.6
UniMol (Zhou et al., 2023) 64.6±0.2 4.8±1.0 55.8±2.8 50.1±5.2 49.9±5.6 43.6±1.1 65.4±4.9 65.8±1.2 59.9±6.6

Pretrained Chemical Language Models
Roberta (Mary et al., 2024) 64.2±0.8 3.1±1.8 69.0±2.6 71.4±14.5 65.1±19.2 63.7±24.6 67.5±5.2 69.9±4.9 76.7±13.2
GPT2 (Mary et al., 2024) 61.5±1.1 2.4±0.6 74.0±8.5 65.4±12.9 73.1±20.8 54.1±12.9 83.2±21.5 86.1±19.8 81.8±25.5
MolT5 (Edwards et al., 2022) 64.7±0.9 3.6±1.1 65.1±0.5 76.7±2.1 55.9±1.1 49.2±1.0 70.3±0.8 73.1±1.0 65.3±1.7
ChemGPT (Frey et al., 2023) Token Error 75.7±8.5 59.5±7.3 88.8±32.3 76.1±11.8 84.0±20.6 77.2±8.5 68.6±7.1

Multi-modal Alignment
CLOOME 54.2±0.9 0.9±0.2 64.3±0.4 65.2±1.5 56.9±0.8 44.2±0.8 70.7±0.4 73.6±0.8 75.0±2.1
InfoCORE (GE) 65.3±0.2 5.4±1.7 69.9±1.2 79.9±3.6 51.6±1.8 51.3±2.1 78.6±0.3 77.8±1.9 80.3±0.9
InfoCORE (CP) 62.4±0.4 1.3±0.5 71.0±0.6 74.5±4.9 53.5±0.7 53.6±2.1 80.8±1.5 79.4±3.4 84.4±1.0
InfoAlign (Ours) 66.4±1.1 6.6±1.6 49.4±0.2 39.7±0.4 39.2±0.3 40.5±0.6 66.7±1.7 62.0±1.5 48.4±0.6
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Figure 3: Percentage of Tasks Where Representations Excel: The top bar compares the best baselines
using single-modal representations (Single Rep.) across representation categories. The bottom bar
compares three aligned representations (Aligned Rep.): InfoAlign, CLOOME, and InfoCORE.

fundamentally involve predicting the binding affinity of a molecule to a protein Gaulton et al. (2012);
furthermore, in these datasets, molecules with activity in a given assay tend to have highly related
structures, rather than representing two or more structurally distinct classes of molecules with activity;
together this implies that molecular structure alone will tend to yield strong results. When comparing
the three popular structure-based representation approaches, no single method outperforms the others
across all four datasets. Pretrained GNNs generally perform better than fingerprint-based methods
and pretrained chemical language models, thanks to recent advancements. However, continued efforts
in universal structural representation are still necessary.

(2) Cell morphology and gene expression features may complement molecular structures, yield-
ing more generalizable representations. As shown in Figure 3, cell morphology and gene expression
outperform molecular structure in approximately 20% and 10% of tasks on the ChEMBL2K and
Broad6K datasets, respectively. This suggests that incorporating cell context into representation
learning would be beneficial. That said, existing multi-modal baselines (InfoCORE, CLOOME)
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Table 3: Retrieval results on ChEMBL2K and Broad6K: Ranking metrics for top candidates.

ChEMBL2K NDCG % (↑) HIT % (↑) Broad6K NDCG % (↑) HIT % (↑)

top-1 top-10 top-1 top-10 top-1 top-10 top-1 top-10

CLOOME 0 2.0 0 6.3 CLOOME 0.5 0.9 0.5 1.5
InfoCORE 0 4.5 0 11.3 InfoCORE 1.0 2.5 1.0 4.6
InfoAlign 1.3 5.7 1.3 12.5 InfoAlign 0.5 2.3 0.5 5.1
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Figure 4: Histogram of rankings for the correct matching on ChEMBL2K (left) and Broad6K (right).

only outperform molecular structure-based approaches on ChEMBL2K and ToxCast, as they do not
construct molecular representations holistically by using all cell-related modalities.

(3) InfoAlign achieves the best average performance on all tasks compared to 27 baselines. The
improvements from InfoAlign range from 2.5% to 6.4% on average across four datasets compared to
the second-best method. These gains are more significant when using the 80% AUC threshold on
classification datasets. While InfoCORE (GE) performs best among baselines on the ChEMBL2K and
ToxCast datasets, it struggles to align molecular representations with more than two modalities and
sometimes leads to negative transfer, as seen in Broad6K and Biogen3K.

6.2 RQ2: MOLECULE-MORPHOLOGY CROSS-MODAL MATCHING

Molecular representations are aligned with cell morphology. The zero-shot matching performance of
a queried molecule to cell morphology features evaluates the alignment between the two modalities.

6.2.1 EXPERIMENTAL SETTING

We compared InfoAlign with the CLOOME and InfoCORE (CP) for retrieving cell morphology from
molecular representations. We calculate the cosine similarity between the molecular representation
and all cell morphology candidates, rank these candidates, and compute Normalized Discounted
Cumulative Gain (NDCG) and HIT scores for the top-1 and top-10 candidates as metrics. For a fair
evaluation of zero-shot matching, we exclude the cell morphology data for molecules that were used to
train the baselines. Consequently, we have 80 molecule-cell morphology pairs from ChEMBL2K and
196 pairs from Broad6K. All the morphology data are used as candidates for matching.

For InfoAlign, we use the pretrained decoder from Section 5 to extract the morphology features of the
encoded molecule and then calculate the likelihood of these decoded features against the candidate
morphology data. We then rank the candidates in the decoding space based on their likelihood scores.

6.2.2 RESULTS AND ANALYSIS

Cross-modal matching results with ranking metrics for the top candidates are in Table 3. InfoAlign
outperforms InfoCORE on ChEMBL2K and is comparable on Broad6K, with both surpassing
CLOOME. Additionally, we present a histogram of ranking positions for correct matching pairs
in Figure 4 to compare overall retrieval performance. The results show that InfoAlign and InfoCORE
perform similarly, while CLOOME tends ranks correct pairs lower.

6.3 RQ3: PERFORMANCE ANALYSIS

6.3.1 ABLATION STUDIES

We perform ablation studies on Eq. (3) by pretraining encoders with different targets removed: (1)
molecule-related, (2) cell morphology-related, and (3) gene expression-related features. The results
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Table 4: Ablation studies on the pretraining loss. Different node features are removed from the
context graph to assess their impact on downstream tasks. Avg. AUC is reported.

ChEMBL2K
AUC ↑

Broad6K
AUC ↑

ToxCast
AUC ↑

Biogen3K
MAE ↓ (×100)

Default as Eq. (3) 81.3± 0.6 70.0± 0.1 66.4± 1.1 49.4± 0.2
w/o Cell Morphology 80.7± 0.6 68.6± 0.1 65.5± 1.1 51.7± 1.1
w/o Gene Expressions 78.3± 0.5 68.6± 0.2 64.7± 1.0 50.3± 0.5
w/o Molecular Features 79.1± 0.2 67.1± 0.4 65.8± 2.3 51.7± 0.6
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Figure 5: Analysis on the hyperparameters: strength of prior β and random walk length L. AUC is
computed on the test set of ChEMBL2K.

in Table 4 cover all datasets. We observe that both cell morphology and gene expression features are
crucial for achieving the best performance. Different biological targets have varying impacts across
datasets: molecular structure has more influence on Broad6K and Biogen3K, while gene expression
is more important for ChEMBL2K and ToxCast. Further studies on the cell morphology and gene
expression are in appendix D.4.

6.3.2 HYPERPARAMETER ANALYSIS

Lastly, we perform analysis for the hyperparameters: the strength of the regularization to the prior
Gaussian distribution β and the length of the random walk paths L. Results are presented in Figure 5.
We observe a trade-off between the principles of minimality and sufficiency in Figure 5a: a too-high β
value (minimal information) makes it challenging for the representation to be sufficiently expressive
for molecular, gene expression, and cell morphology features, potentially degrading downstream
performance. Conversely, a too-low β value weakens minimality and may impair generalization. The
convergence of the pretraining loss could serve as a good indicator to balance these aspects. For
the hyperparameter L, we observe in Figure 5b that downstream performance on ChEMBL2K is
relatively robust across a wide range of walk lengths. Further analysis of the random walk sampling
is provided in appendix D.5.

7 CONCLUSION

In this work, we proposed learning molecular representations in a cell context with three modalities:
molecular structure, gene expression, and cell morphology. We introduced the information bottleneck
approach, InfoAlign, using a molecular graph encoder and multiple MLP decoders. InfoAlign learned
minimal sufficient molecular representations extracted by reconstructing features in the random walk
path on a cellular context graph. This context graph incorporated molecules, cell morphology, and
gene expression information defined in scalar or vector spaces to construct nodes, and used various
chemical, biological, and computational criteria to define their weighted edges. We demonstrated
the theoretical and empirical advantages of the proposed method. InfoAlign outperformed other
representation learning methods in various molecular property prediction and zero-shot molecule-
morphology matching tasks.
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A MORE RELATED WORK ON REPRESENTATION LEARNING WITH DIFFERENT
MODALITIES

Existing methods on multimodal alignment, such as CLIP (Radford et al., 2021), primarily address
pairwise relationships between texts and images and use methods like InfoNCE (Oord et al., 2018;
Wang et al., 2023a; Sanchez-Fernandez et al., 2023). These approaches use separate encoders for
different modalities to compute contrastive loss, which is upper bounded by the number of negative
examples (Poole et al., 2019). Subsequent research on molecules similarly focuses on pairwise
alignment between molecules and cell images (Sanchez-Fernandez et al., 2023; Wang et al., 2023a),
molecules and protein sequences (Huang et al., 2021), and molecules and text (Edwards et al., 2022;
Jin et al., 2023). Although BioBridge (Wang et al., 2023b) handles multiple modalities, it leverages
a knowledge graph for transforming representations between modalities rather than optimizing
molecular representations.

B PROOF DETAILS

B.1 PROOF OF EQ. (2)

Approximating the mutual information of high-dimensional variables is a challenging task (Gowri
et al., 2024). For the input, latent, and target variables X , Z, and Y , the exact computation of
the mutual information (MI) I(Z;Y ) and I(X;Z) is intractable. For the molecule x, its latent
representation z, and any biological target from cellular responses y, we introduce variational
approximations q(y|z) to obtain a lower bound on I(Z;Y ):

I(Z;Y ) = Ep(z,y)

[
log

p(z, y)q(y|z)
p(y)p(z)q(y|z)

]
,

= Ep(z,y)

[
log

q(y|z)
p(y)

]
+ Ep(z) [KL (p(y|z)∥q(y|z))] ,

≥ Ep(z,y) [log q(y|z)] +H(Y ) ≜ IDLB

(5)

This is because that KL (p(y|z)∥q(y|z)) ≥ 0. We introduce the variational approximations q(z) for
a upper bound on I(X;Z):

I(X;Z) = Ep(x,z)

[
log

p(x, z)q(z)

p(x)p(z)q(z)

]
,

= Ep(x,z)

[
log

p(z|x)
q(z)

]
− Ep(z) [(p(z)∥q(z)] ,

≤ Ep(x) [KL (p(z|x)∥q(z))] ≜ IEUB

(6)

B.2 PROOF OF PROPOSITION 4.1

For the molecule x, its latent representation z, and any biological target from cellular responses y,
we use the neural network parameterized critic h(z, y) with the energy-based variational family for
density approximation (Poole et al., 2019):

q(y|z) = p(y)

Ep(y)

[
eh(z,y)

]eh(z,y).
Thus, we can rewrite IDLB based on the unnormalized distribution of q(y|z):

IDLB = Ep(z,y) [log q(y|z)] +H(Y )

= Ep(z,y)

[
log

(
p(y)

Ep(y)

[
eh(z,y)

]eh(z,y))]− Ep(y) [log p(y)] ,

= Ep(z,y) [h(z, y)]− Ep(z,y)

[
Ep(y)[e

h(z,y)]
]
,

= Ep(z,y) [h(z, y)]− Ep(z)(log Z̃(z)),

(7)
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where Z̃(z) = Ep(y)[e
h(z,y)] is the partition function.

Note that the log partition function is intractable. Poole et al. (2019) introduced a new variational
parameter a(·) to upper bound Z̃(z), deriving a tractable lower bound for IDLB :

IDLB ≥ Ep(z,y)[h(z, y)]− Ep(z)

[
Ep(y)[e

h(z,y)]

a(z)
+ log(a(z))− 1

]
. (8)

This is because ∀x, a > 0, the inequality log(x) ≤ x
a + log(a)− 1 holds, which can be applied to

the second term of Eq. (7). The INWJ bound (Nguyen et al., 2010) is a special case where a(z) = e.

INWJ ≜ Ep(z,y)[h(z, y)]− Ep(z)

[
Ep(y)[e

h(z,y)]

e
+ log(e)− 1

]
= Ep(z,y)[h(z, y)]− e−1Ep(z)[Z̃(z)].

(9)

INWJ has high variance due to the estimation of the upper bound on the log partition function. Based
on INWJ and multiple examples, one can derive the encoder-based lower bound IELB for InfoNCE.

Suppose there are K − 1 additional examples independently and identically sampled and denoted as
y2:K , and the critic is configured with parameters a(·) as 1 + log eh(z,y)

a(z;y,y2:K) . Then, we can rewrite
INWJ for its multi-sample version:

INWJ = Ep(z,y)p(y2:K)

[
1 + log

eh(z,y)

a(z; y, y2:K)

]
− e−1Ep(y)p(z)p(y2:K)

[
e
1+log eh(z,y)

a(z;y,y2:K )

]
,

= 1 + Ep(z,y)p(y2:K)

[
log

eh(z,y)

a(z; y, y2:K)

]
− Ep(y)p(y2:K)p(z)

[
eh(z,y)

a(z; y, y2:K)

]
.

(10)

Multiple samples can be utilized for the Monte Carlo method m(z; y, y2:K) to estimate the upper
bound on the partition function a(z; y, y2:K):

a(z; y, y2:K) = m(z; y, y2:K) =
1

K

(
eh(z,y) +

K∑
i=2

eh(z,yi)

)
,

where K − 1 independent samples are drawn from
∏

i p(yi) and one sample from p(z, y) for the
term Ep(z,y)p(y2:K)[·] or K samples from

∏K
i=1 p(yi) (we set y1 = y) for a p(z) sample in the

Ep(y)p(y2:K)[·] term. Therefore, we can derive IELB ≜ INCE :

IELB ≜ INCE = 1 + Ep(z,y)p(y2:K)

[
log

eh(z,y)

m(z; y, y2:K)

]
− Ep(y)p(y2:K)p(z)

[
eh(z,y)

m(z; y, y2:K)

]
,

= 1 + Ep(Y |Z)p(z)p(y2:K)

[
log

eh(z,y)

1
K

∑K
i=1 e

h(z,yi)

]

− Ep(y)p(y2:K)p(z)

[
eh(z,y)

1
K

∑K
i=1 e

h(z,yi)

]
,

= Ep(z,y) [h(z, y)]− Ep(z)

[
log

1

K

K∑
i=1

eh(z,yi)

]
.

(11)
Note that for Ep(y)p(y2:K)p(z)[·], we average the bound over K replicates as well to ensure that the
last term in Eq. (10) is the constant 1. Now, IELB or INCE is upper bounded by logK, rather than
a(·). Hence, the difference between IDLB and IELB is

IDLB − IELB = Ep(z)

[
log

1

K

K∑
i=1

eh(z,yi)

]
− Ep(z)(log Z̃(z)) ≥ 0. (12)

When K is sufficiently large to estimate the partition function, we have Ep(z)

[
log
(
Ep(y)

[
eh(z,y)

])]
for the left term, indicating that IDLB − IELB = 0. Since INCE is upper bounded by logK (Oord
et al., 2018), smaller values of K may result in a less tight IELB , causing IDLB − IELB ≥ 0 to
always hold. In particular, I(Z;Y ) > logK implies that the bound IELB will be loose.
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Figure 6: From the initial idea in Section 4 to the practical implementation of the context graph,
we first display relations between molecules and all the landmark genes from Wang et al. (2016)
for the X1 − E3 and X3 − E2 relationships. E3 and E2 are landmark genes involved in small
molecule perturbations and cell morphology perturbation; we display them separately for clarity.
Next, we merge all landmark genes into new gene expression nodes and integrate genes from genetic
perturbations in the JUMP dataset (Chandrasekaran et al., 2023) with cell morphology features.
Practical considerations are detailed in Section 5 and appendix C.

C CONTEXT GRAPH AND MODEL DETAILS

C.1 EDGE CONSTRUCTION

Edges represent similarity relationships between molecules, genes and cells. According to the
chemical or biological criteria, we have following types of edges:

1. Molecule-Cell Morphology Edges: These edges are introduced through molecule perturba-
tion experiments from cell painting datasets created by Bray et al. (2016) and the JUMP
dataset (Chandrasekaran et al., 2023). It links molecule nodes with cell morphology nodes.
We use the edge weight 1 for all these edges.

2. Edge-Cell Morphology Edges: These edges should be introduced by genetic perturbation
from the JUMP dataset Chandrasekaran et al. (2023). The perturbations are either based
on gene overexpression (ORF) or gene knockout techniques (CRISPR). They link the
gene nodes and the cell morphology nodes. However, the genes introduced by the genetic
perturbations lack gene expression profiling from (Subramanian et al., 2017) as node features.
We did not implement gene-cell morphology edges from (Chandrasekaran et al., 2023) due
to the absence of differential gene expression profiling values (Subramanian et al., 2017).
Instead, we merged the gene nodes from (Chandrasekaran et al., 2023) with their linked cell
morphology nodes, creating single nodes. This approach enables a more efficient context
graph, incorporating some gene nodes with cell morphology features.

3. Molecule-Gene Edges: These edges could represent molecule-gene binding and regulation
relationships, linking molecules to genes (Himmelstein et al., 2017). Some links can
be sourced from (Himmelstein et al., 2017), and we also retrieve gene-molecule links
from (Wang et al., 2016) by selecting the top 5% absolute differential expression values.
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4. Gene-Gene Edges: These edges denote the relationships of gene-gene covariance and
interaction and we use the links from (Himmelstein et al., 2017).

We enrich the edges in the context graph by incorporating computational similarity edges, where
cosine similarity is computed among within nodes having the same type and feature vectors. We note
that the cell morphology features from (Bray et al., 2016) and (Chandrasekaran et al., 2023) have
different dimensions since the latter has applied batch correction techniques Arevalo et al. (2023) on
the CellProfiler features (Carpenter et al., 2006). Thus, we cannot compute the similarity between
these two subsets of cell morphology nodes. We use (1) a 0.8 similarity threshold and (2) a minimal
sparsity of 99.5% by selecting top 0.5% similar edges to avoid excessive noise in computational
similar edges.

C.2 DATASET SOURCES OF NODES

Here are the datasets we used to create different types of nodes on the context graph:

• Molecule nodes: Molecular nodes are sourced from two cell painting datasets: one by Bray
et al. (2017) and the other from the recently released JUMP dataset (Chandrasekaran et al.,
2023), and the third source from Wang et al. (2016), which are used to study adverse drug
reactions.

• Gene nodes: Gene nodes are from the landmark genes used by Wang et al. (2016) in creating
the LINCS L1000 profiling of drugs. Other gene nodes come from genetic perturbations
in the JUMP dataset (Chandrasekaran et al., 2023). The gene nodes from (Chandrasekaran
et al., 2023) have cell morphology features as described in appendix C.1. The landmark
gene nodes from (Wang et al., 2016) have scalar gene expression profiles, but these values
are updated in the new gene expression nodes.

• Cell morphology nodes: Cell nodes are sourced from the two cell painting datasets (Bray
et al., 2016; Chandrasekaran et al., 2023).

• Gene expression nodes: Based on landmark genes from (Wang et al., 2016), each gene
expression node summarizes all gene expression profiles into vectors from a small molecule
perturbation. Since Wang et al. (2016) measured the same landmark genes for a set of
molecules, we update new gene expression nodes with feature vectors for all these land-
mark genes. This approach efficiently constructs decoding targets from molecules to gene
expression profiles and prevents redundant gene-molecule connections.

We present an example of the cellular context graph in Figure 6.

C.3 MODEL DETAILS

We use a five-layer GIN (Xu et al., 2019), following previous GNN pre-training work (Hu et al.,
2020a). The hidden dimension is set to 300, with a batch normalization layer and summation used
for readout of the graph representation from node-level features.

For the MLP decoders, they have three layers. The input dimension is 300, with a hidden dimension
of 1200. The output dimension matches the corresponding node features from the context graph in
pretraining. For the newly introduced hyperparameters β = 1e− 9 and L = 4, details on their studies
can be found in Section 6.3.2.

In downstream tasks, the GNN encoder is frozen, and new MLP decoders, which output task
predictions, are applied to the molecular representation from the GNN encoder.

D EXPERIMENT DETAILS

D.1 PREDICTION DATASETS

All experiments were run on a single 32G V100. Molecules can interact with multiple cells and genes
to generate cell morphology and gene expression features. These molecules act as perturbations, with
the resulting cell states measured as gene expression values for thousands of genes (Subramanian

18



Published as a conference paper at ICLR 2025

Table 5: Datasets and task information. Classf. denotes classification and Regr. denotes regression.

Dataset Type # Task # Molecules # Atoms # Edges # Available Cell # Available Gene
Avg./Max Avg./Max Morphology Expressions

ChEMBL2K Classf. 41 2355 23.7/61 25.6/68 2353 631
Broad6K Classf. 32 6567 34.1/74 36.8/82 2673 1138
ToxCast Classf. 617 8576 18.8/124 19.3/134 N.A. N.A.
Biogen3K Regr. 6 3521 23.2/78 25.3/84 N.A. N.A.
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Figure 7: An overview of the representation’s predictive performance on all 41 bioactivity prediction
tasks in ChEMBL2K. Results for molecular structure are obtained from the best method ContextPred.
Results for cell morphology and gene expression come from the best method based on MLPs.

et al., 2017) and/or as morphology features from Cell Painting microscopy images (Chandrasekaran
et al., 2023; Cimini et al., 2023). Due to the high cost and complexity of these experiments, not
all downstream datasets include morphology or gene expression data for each molecule. Notably,
ToxCast and Biogen3K lack these features. Prediction dataset statistics are detailed in Table 5.

• ChEMBL2K (Gaulton et al., 2012): The dataset is a subset of the ChEMBL dataset (Gaulton
et al., 2012), overlapping with the JUMP CP (Chandrasekaran et al., 2023) datasets. We
determined activity using the “activity_comment” provided by ChEMBL. If not, we applied
a threshold of 6.5, labeling compounds with pChEMBL > 6.5 as active. We exclude all
molecules in the dataset from the pretraining set to avoid data leakage. There are a total of
41 tasks related to protein binding affinity, which are converted to binary activity values. We
filter the dataset to ensure that each task has at least one positive and five negative examples.

• Broad6K (Moshkov et al., 2023): The original version provided by Moshkov et al. (2023)
is a collection of 16,170 molecules tested in 270 assays, resulting in a total of 585,439
readouts. However, there are a large number of missing values, with 153 assays having a
missing value percentage above 99%. To mitigate bias in the conclusions, we extract subsets
where the percentage is less than 50%.
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Figure 8: An overview of the representation’s predictive performance across five major task categories
on Broad6K. Results for molecular structure are obtained from the best method based on JOAO.
Results for cell morphology come from the best method based on RF. Results for gene expression are
derived from the best method based on MLP.

• ToxCast (Richard et al., 2016): The toxicology data is collected from the “Toxicology in the
21st Century” initiative, widely utilized in many graph machine learning models (Hu et al.,
2020b). The dataset comprises 8,576 molecules and 617 binary classification tasks.

• Biogen3K (Fang et al., 2023): The dataset includes properties that describe the disposition
of a drug in the body, including absorption, distribution, metabolism, and excretion (ADME).
It is collected from 120 Biogen datasets across six ADME in vitro endpoints over 20 time
points spanning about 2 years. The endpoints include human liver microsomal (HLM)
stability reported as intrinsic clearance (Clint, mL/min/kg), MDR1-MDCK efflux ratio (ER),
Solubility at pH 6.8 (µg/mL), rat liver microsomal (RLM) stability reported as intrinsic
clearance (Clint, mL/min/kg), human plasma protein binding (hPPB) percent unbound, and
rat plasma protein binding (rPPB) percent unbound.

We utilize scaffold-splitting with a ratio of 0.6:0.15:0.25 for all datasets. We use the Area under the
curve (AUC) score for classification and mean absolute error (MAE) for regression. We report the
mean and standard deviations from ten runs.

D.2 IMPLEMENTATION AND BASELINE

We consider baselines from three representation sources: molecular structures, cell morphology,
and gene expressions. Moreover, we have three different ways to represent molecular structures,
including fingerprints based on domain knowledge, GNNs based on the graph structure of molecules,
and chemical language models (ChemLM) based on SMILES-sequence structure of molecules.

1. Molecular descriptors/fingerprints (Rogers & Hahn, 2010) (Structure only): We train MLPs,
Random Forests (RF), and Gaussian Processes (GP) on these representations.

2. Pretrained GNN representations (Hu et al., 2020a) (Structure only): We consider AttrMask,
ContextPred, and EdgePred with supervised pretraining (Hu et al., 2020a). We also include
GraphCL (You et al., 2020), GROVER (Rong et al., 2020), JOAO (You et al., 2021),
MGSSL (Zhang et al., 2021), GraphLoG (Xu et al., 2021), GraphMAE (Hou et al., 2022),
DSLA (Kim et al., 2022), and UniMol (Zhou et al., 2023). We implement GraphCL,
GROVER, and JOAO based on (Wang et al., 2024). Fine-tuned MLPs are applied on top of
the pretrained representations.

3. Pretrained ChemLM representations (Frey et al., 2023) (Structure only): We consider
pretrained models such as 102M Roberta and 87M GPT2 implemented by (Mary et al.,
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Table 6: Ablation studies on the pretraining loss. Different node features are removed from the
context graph to assess their impact on downstream tasks. Avg. AUC is reported.

ChEMBL2K
AUC ↑

Broad6K
AUC ↑

ToxCast
AUC ↑

Biogen3K
AUC ↑

InfoAlign 81.33± 0.62 69.95± 0.09 66.36± 1.05 49.42± 0.18
w/o Cell-Related Nodes 79.57± 0.58 68.41± 0.31 65.11± 0.82 51.21± 0.17
w/o Gene-Related Nodes 77.97± 0.33 67.10± 0.17 64.93± 0.96 51.57± 0.46
w/o Cell-Related Loss 80.70± 0.60 68.60± 0.10 65.50± 1.10 51.70± 1.10
w/o Gene-Related Loss 78.30± 0.50 68.60± 0.20 64.70± 1.00 50.30± 0.50

2024). We also include MolT5 (Edwards et al., 2022) and 19M ChemGPT (Frey et al.,
2023). We apply fine-tuned MLPs on top of these pretrained representations.

4. Cell Morphology (Rogers & Hahn, 2010) (Cell or Structure only): Cell morphology features
are available in for part of molecules in the ChEMBL2K and Broad6K datasets. We train
MLPs, RF, and GP on these representations. Note that not all molecules have corresponding
cell morphology feature vectors; in such cases, we replace the predictions on the missing
feature with ML predictions on the structure.

5. Gene Expression (Rogers & Hahn, 2010) (Gene or Structure only): Differential gene expres-
sion values are available for part of molecules in the ChEMBL2K and Broad6K datasets.
We train MLPs, RF, and GP on these representations. Note that not all molecules have
corresponding gene expression vectors over landmark genes; in such cases, we replace the
predictions on the missing feature with ML predictions on the structure.

6. CLOOME (Sanchez-Fernandez et al., 2023) and InfoCORE (Wang et al., 2023a) (Structure-
Cell or Structure-Gene aligned): CLOOME utilizes ResNet (He et al., 2016) and descriptor-
based MLP to align representation from cell morphology images with the molecular structure
representation. We use their pretrained MLP to obtain molecular representations and fine-
tune another MLP on top of these representations. InfoCORE has two versions, InfoCORE-
CP and InfoCORE-GE, which align the molecular graph representation with cell morphology
features or differential gene expression features, respectively. We use both versions as
baselines and fine-tune another MLP on top of these representations.

D.3 MORE RESULTS FOR MOLECULAR PROPERTY PREDICTION

We present additional comparisons on the ChEMBL2K dataset between basic representation ap-
proaches and InfoAlign across all task dimensions in Figure 7. Similarly, results for the Broad6K
dataset, comparing basic representations across five major task dimensions (Cell, Yeast, Viral,
Biochem, and Bacterial-related targets), are shown in Figure 8. Combined with Tables 1 and 2, these
detailed results lead to further observations:

(1) Different structure-based molecular representations vary in sensitivity to model architecture.
Dramatic performance drops occur with Morgan FP when replacing the MLP architecture with RF
or GP in the ChEMBL2K and Broad6K datasets. Conversely, in the Biogen3K dataset, RF and GP
significantly outperform MLP. In contrast, pretrained GNN and ChemLM representations maintain
more consistent performance across various datasets.

(2) Learning universal molecular representations solely from molecular structures remains chal-
lenging, even within the representation category. For pretrained GNN representations, ContextPred
outperforms others on the ChEMBL2K dataset. JOAO excels on the Broad6K dataset. UniMol
and GraphMAE are the best pretrained GNN representations on ToxCast and Biogen3K datasets,
respectively. For ChemLM representations, MolT5 excels over other sequential-based models in the
ToxCast and Biogen3K datasets, but this is not the case with the ChEMBL2K and Broad6K datasets.
Different datasets may emphasize varied aspects of bioactivity classification or regression and pose
generalization challenges for molecular representation learning.

(3) InfoAlign shows strong generalization for the targets of non-human cells, as shown in Figure 8.
Although the context graph primarily uses data from small molecule and genetic perturbation
datasets (Bray et al., 2016; Chandrasekaran et al., 2023) focused on human cell cultures, InfoAlign
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Figure 9: The mean, with one standard deviation, of the number of unique nodes extracted from the
random walk paths. We vary the walk length L from 2 to 12, showing that random walks can sample
diverse neighbors, with the number exceeding the walk length.

also exhibits robust generalization to bacterial and viral targets compared to basic representation
approaches.

Table 7: Performance comparison of fully fine-tuned UniMol and InfoAlign models with their
representations across various datasets. "Others" refers to cell morphology and gene expression
features.

Fine-tuning Method ChEMBL2K Broad6K ToxCast Biogen3K

Representatio from UniMol 76.8±0.4 65.4±0.1 64.6±0.2 55.8±2.8
Representation from UniMol and Others 77.5±0.1 66.4±0.5 NA NA
Fully-tuned UniMol 78.9±0.2 65.1±1.0 71.3±0.6 43.6±0.3
Representation from InfoAlign 81.3±0.6 70.0±0.1 66.4±1.1 49.4±0.2
Fully-tuned InfoAlign 80.1±0.9 69.2±0.7 72.0±0.5 42.8±1.1

Additionally, we set up further comparisons, including: (1) the concatenated representation from
UniMol (Zhou et al., 2023) using cell morphology and gene expression on the ChEMBL2K and
Broad6K datasets, and (2) fully fine-tuned InfoAlign and UniMol, including both the representation
encoder and MLP predictors.

Results are presented in Table 7. First, we observe that concatenating UniMol representations with
cell morphology and gene expression features improves performance in prediction tasks, though it
still does not match the performance of InfoAlign. InfoAlign achieves the best results by aligning
molecular representations with these features during pretraining, rather than in the downstream stage.

Second, we observe that fully fine-tuning benefits both UniMol and InfoAlign on ToxCast and
Biogen3K datasets. While fully fine-tuning improves UniMol representation on ChEMBL, InfoAlign,
with only MLP decoder tuning, achieves the best performance. On Broad6K, fully fine-tuning is less
effective for both InfoAlign and UniMol compared to tuning only the MLP. These results suggest that,
if resources allow, fully fine-tuning should be preferred for better overall performance, especially
for UniMol, which requires more time and resources due to the use of 3D molecular structures. If
resources are limited, InfoAlign’s representation provides a strong alternative without the need for
full fine-tuning.

D.4 MORE ABLATION STUDIES ON CELL MORPHOLOGY AND GENE EXPRESSION

We also conducted ablation studies to assess the importance of cell morphology and gene expression
in constructing the context graph. We removed either all cell morphology-related nodes or gene
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Figure 10: Jaccard Similarity of Neighborhoods Across Different Walk Lengths: We calculate the
Jaccard similarity of neighborhoods from different walk lengths. We compare pairwise similarities
for the same molecule across varying walk lengths L in the pretraining set and report the average
similarity for the set.

expression-related nodes from the context graph and pretrained InfoAlign. Combined with results
from Table 4 (without cell/gene-related loss terms), additional results where nodes are removed from
the context graph are presented in Table 6.

First, we confirm the importance of cell morphology and gene expression as nodes in the context graph
for pretraining. Second, we observe a greater performance drop when removing nodes compared to
excluding the loss terms. This highlights the importance of including diverse data types as nodes,
even without features, and suggests a promising direction for improving InfoAlign’s pretraining by
enhancing the context graph with virtual nodes.

D.5 MORE PERFORMANCE ANALYSIS ON THE RANDOM WALK

We conduct more experiments to analyze how random walk helps InfoAlign pretraining with diverse
neighbor sampling. We cache the random walk results for 100 epochs and study the number of unique
nodes at varying walk lengths. In Figure 9, we report the mean and standard deviation of the number
of unique nodes for all molecules in the pretraining set at each walk length. We observe that the
number of unique nodes is larger and varies compared to the corresponding walk length, indicating
that diverse neighbors are sampled in different training steps.

We further explore the Jaccard similarity of neighborhoods extracted for the same molecule across
varying walk paths, averaging similarity scores over all pretraining molecules. The pairwise similari-
ties for different walk lengths are shown in Figure 10. We observe that similarity decreases as the
difference in walk lengths increases, but remains above 90%. This suggests that while random walks
sample diverse neighbors, varying the walk length does not significantly affect the neighborhood,
which may explain the stable performance of InfoAlign in Figure 5b. These results also show that
even with a walk length of 2, diverse neighbors can be obtained, likely due to high-degree nodes in
the context graph.
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