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ABSTRACT

We present Metalorian, a conditional diffusion model tailored to generate de novo
heavy metal-binding peptides. Our approach leverages the embedding space of
MetaLATTE, a multi-label classifier fine-tuned on known metal-binding sequences,
to guide the generation of peptides with specific metal-binding capabilities. The
model utilizes a co-evolving diffusion framework that simultaneously handles
continuous protein embeddings and discrete metal-binding properties, allowing for
focused generation of shorter, economically-viable peptides. We demonstrate the
effectiveness of our approach by generating peptide binders for copper, cadmium,
and cobalt binding. Our results show that the generated peptides maintain key
properties such as charge and hydrophobicity while significantly reducing sequence
length and molecular weight compared to known metal-binding proteins. Co-
folding and binding energy analysis using molecular dynamics further validate the
potential binding capacities of these novel sequences. Finally, we experimentally
demonstrate that Metalorian-generated peptides effectively bind to cobalt resin via
phage display. Overall, our work solidifies a foundational platform for designing
heavy metal-binding peptides for targeted bioremediation campaigns, and further
motivates utilization of well-trained, continuous latent spaces for diffusion-based
de novo peptide design.

1 MEANINGFULNESS STATEMENT

We focused on bioremediation as an underexplored application of protein design due to the com-
plexity of metal ion binding both in vitro and in silico. Our work demonstrates how deep protein
representations can uncover essential metal-binding motifs hidden within larger proteins, extracting
only the critical components needed for ion chelation. By standing on the shoulders of well-trained
protein language models and extending them to this environmentally crucial domain, Metalorian
creates meaningful biological representations by distilling nature’s metal-binding strategies into
minimal, functional peptides that can address pressing environmental challenges.

2 INTRODUCTION

Metals are fundamental to biological systems, serving as enzyme co-factors and catalysts essential for
cellular functions. While elements like zinc, copper, and iron are critical for maintaining biochemical
processes, others such as cadmium, lead, and mercury pose toxicity risks at elevated concentrations
Kostenkova et al. (2022); Klug (2010); Tchounwou et al. (2012); Chen et al. (2023). Understanding
and manipulating metal-binding properties are therefore crucial for applications in environmental
remediation and pharmaceutical development Dixit et al. (2015).
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Recent advances in protein language models (pLMs) have transformed our ability to extract functional
insights directly from protein sequences without relying on structural data Lin et al. (2023); Elnaggar
et al. (2021). Building on this progress, MetaLATTE, a multi-label classifier fine-tuned on ESM-2
embeddings, predicts metal-binding probabilities with high accuracy, utilizing contrastive and focal
loss functions to address the challenges of imbalanced datasets and multi-label classification Zhang
et al. (2024); Permyakov (2021). While MetaLATTE excels in metal-binding prediction Zhang et al.
(2024), the growing demand extends beyond prediction to the actual generation of novel metal-binding
biomolecules.

Peptides, due to their structural simplicity, functional versatility, and favorable biochemical properties,
emerge as ideal candidates for metal-binding applications. Their smaller size (180–5000 Da), diverse
functional groups, and ease of synthesis make them highly suitable for selective metal chelation,
environmental remediation, and therapeutic interventions Luo et al. (2024); Akbarian et al. (2022).
To address this need, we introduce Metalorian, a co-evolving conditional diffusion model designed
to generate metal-binding peptides de novo. Metalorian leverages the metal-binding knowledge
embedded within MetaLATTE’s fine-tuned representation space to produce peptides with specific
metal affinities.

Our model integrates two interacting diffusion processes: a continuous diffusion model operating in
the ESM embedding space and a discrete diffusion model capturing metal-binding labels. Contrastive
learning between these components ensures that generated sequences retain strong specificity to their
target metal-binding properties Lee et al. (2023); Schroff et al. (2015). To experimentally validate
Metalorian’s predictions, we developed a novel phage assay, demonstrating successful cobalt binding
using Metalorian-generated peptides.

The key innovations of our approach include:

1. Adaptation of the co-evolving diffusion framework Lee et al. (2023) to protein sequence gen-
eration, enabling simultaneous handling of continuous metal-sensitive protein embeddings
and discrete metal-binding properties.

2. Integration of contrastive learning Lee et al. (2023); Schroff et al. (2015) in both continuous
and discrete diffusion processes to enhance binding specificity.

3. Development of a novel phage assay to experimentally validate metal-binding activity,
demonstrated through successful cobalt binding with Metalorian-generated peptides.

Through this methodology, we aim to generate de novo, shorter, and economically viable peptides
with specific metal-binding capabilities, including those targeting underrepresented and toxic metals,
using protein sequence information alone.

3 METHODS

3.1 DIFFUSION MODEL

Metalorian Our model, Metalorian, adapts the co-evolving conditional diffusion framework Lee
et al. (2023) to protein sequence generation by incorporating both continuous (protein embeddings)
and discrete (metal-binding labels) components (Figure S1). The model consists of two interacting
diffusion processes:

Continuous Diffusion Model (DiffusionProteinModel) We operate continuous diffusion model
on ESM-2 protein embeddings (xC

0 ∈ RB×L×1280) that was fine-tuned with metal-binding proteins
Zhang et al. (2024). During diffusion model training, the ESM-2 backbone have the last 10 layers
unfrozen. The forward process follows:

q(xC
t |xC

0 ) = N (xC
t ;
√
ᾱtx

C
0 , (1− ᾱt)I) (1)

where ᾱt =
∏t

i=1 αi and αt = 1− βt.
The reverse process is parameterized by ϵθC and conditioned on discrete variables:
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Discrete Diffusion Model (MultinomialDiffusion) We operate discrete diffusion model on metal-
binding labels (xD

0 ∈ RB×15) using a multinomial diffusion process. The model uses TabularUnet as
its backbone denoising network. The forward process uses categorical distributions:

q(xD
t |xD

t−1) = C(xD
t ; (1− βt)x

D
t−1 + βt/K) (3)

where K is the number of classes.
The reverse process is conditioned on continuous embeddings:

pθD (x
D
t−1|xD

t , xC
t ) =

∑
q(xD

t−1|xD
t , xD

0 )pθD (x
D
0 |xD

t , xC
t ) (4)

The two models are trained jointly with combined loss:

Ltotal =LdiffC (θC) + λCLCLC
(θC)︸ ︷︷ ︸

continuous

+LdiffD (θD) + λDLCLD
(θD)︸ ︷︷ ︸

discrete
(5)

where LdiffC , LdiffD are diffusion losses for continuous and discrete components; LCLC
, LCLD

are
contrastive learning losses with negative sampling; λC , λD are weighting coefficients.

The contrastive learning loss uses a triplet formulation with positive and negative samples:

LCL =

S∑
i=0

max{d(Ai, Pi)− d(Ai, Ni) +m, 0} (6)

where A is the anchor, P is a positive sample, N is a negative sample, d is a distance metric, m is
the margin, and S is the number of samples. This approach encourages the model to learn the true
correlation between continuous embeddings and discrete labels while being robust to mismatched
conditions.
For positive sample generation, we generate x̂C+

0 conditioned on matching discrete label xD
t and

x̂D+
0 conditioned on matching continuous embedding xC

t . For negative sample generation, within
a minibatch, we generate x̂C−

0 using mismatched discrete label xD−
t and x̂D−

0 using mismatched
continuous embedding xC−

t .

3.2 SAMPLING

Progressive Verification Sampling We propose two complementary sampling approaches for pro-
tein sequence generation with metal-binding properties. The first approach, Progressive Verification
Sampling (Algorithm 1), is designed for well-represented metal classes in our training data. During
phase one (steps T to Tc), it follows standard diffusion sampling:

xt−1 ∼ N (µt,σt) (7)

In phase two (steps Tc to 0), we introduce a verification mechanism that ensures label alignment
through multiple sampling attempts. At each timestep, we evaluate both predictor probability
P (xt)[ytarget] from the MetaLATTE classification model and discrete label alignment argmax(xD

t ) =
ytarget. Sampling continues until success criteria are met: predictor confidence exceeds threshold τ
and labels align. At each timestep, the continuous and discrete models inform each other’s sampling
process:

µt,σt = fC
θ (xC

t |t,xD
t ) (8)

xD
t−1 = fD

θ (xD
t |t,xC

t−1) (9)

where fC
θ conditions the continuous sampling on the current discrete state, and fD

θ updates the
discrete state based on both previous discrete state and new continuous sample.

Gradient-Guided Sampling For metal classes with limited training examples or complex binding
patterns, we introduce Gradient-Guided Label Sampling (Algorithm 2). This approach extends
classifier guidance Dhariwal & Nichol (2021) with dynamic scaling Dinh et al. (2024) and label
alignment. At each timestep t, we compute:

s = exp(P (xt)[ytarget])− β
∑

i ̸=ytarget

exp(P (xt)[i]) (10)
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xt−1 ∼ N (µt + λt∇xt
s,σt) (11)

where λt doubles the base guidance scale λ when the predictor’s confidence for the target class falls
below threshold τ . This co-evolution of continuous and discrete states, combined with gradient
guidance, ensures that both sequence generation and label prediction remain consistent throughout
the sampling process. The key difference here is that in gradient-guided sampling, this cross-model
interaction works alongside the gradient guidance, while in progressive verification sampling it works
with the verification mechanism.

3.3 EVALUATION

We assessed both the physicochemical properties and structural stability of our generated metal-
binding peptides. Initial characterization using Biopython package (v1.78) Cock et al. (2009) and
molecular dynamics system was prepared using Ambertools24 Case et al. (2023) and MCPB.py Li &
Merz Jr (2016) for specific metal-protein interactions. Other details can be found in (Appendix A.2).

3.4 EXPERIMENTAL SCREENING PLATFORM

Phagemids were generated using a phage display vector from Dr. Anoop Patel’s lab at Duke University.
The vector was digested with SapI (NEB), and binder sequences were cloned via Gibson Assembly
(NEB). Recombinant constructs were electroporated into TG1 electrocompetent cells (Biosearch
Technologies), grown in 2XYT medium (Sigma-Aldrich) with 2% glucose and 100 µg/mL ampicillin
at 37◦C overnight, then infected with M13KO7 helper phage (NEB) and incubated at 37◦C for 1 hour.
Infected cells were pelleted, resuspended in 2XYT with 100 µg/mL ampicillin and kanamycin, and
incubated at 30◦C for 16 hours. Phage particles were precipitated with PEG buffer (20% PEG, 2.5 M
NaCl), filtered (0.45 µm), and titrated by infecting TG1 cells, plating on LB agar with ampicillin,
and incubating at 30◦C for 16 hours. Samples were Sanger sequenced (Genewiz), and remaining
phage was stored in 20% glycerol at −80◦C. For phage elution, 1× 1010 phage were incubated with
HisPur™ Cobalt Resin (ThermoFisher) in PBS at 4◦C for 30 minutes, washed with TBST (0.5%
Tween 20), and eluted with 0.5 M EDTA (pH 8.0, ThermoFisher). The eluate was used to infect TG1
cells, plated on LB agar with ampicillin, incubated at 30◦C for 16 hours, and colonies were counted
to assess phage enrichment. A schematic for our experimental screening pipeline can be found in
Figure S2.

4 RESULTS

4.1 In silico GENERATION OF HEAVY METAL BINDERS

Using our Metalorian diffusion model guided by the MetaLATTE multi-label metal binding classifier
Zhang et al. (2024), we generated metal-binding peptide sequences with lengths between 30 and 80
residues. This length range was chosen to ensure sequences remain within the peptide range suitable
for in silico analysis while maintaining sufficient length for stable folding. We focused our generation
on copper, zinc, and cobalt binding peptides due to their significance in environmental remediation
and the availability of metal ion binding simulations.

The comparison between known metal-binding proteins from the MbPA database Li et al. (2023)
and our generated peptides revealed successful optimization of several key properties (Figure 1).
Our sequences demonstrated reduced length and molecular weight while maintaining similar charge
distributions to natural proteins. The slight increase in hydrophobicity scores in our generated
sequences likely reflects the increased presence of cysteine residues, which although classified as
hydrophobic in standard scales, are polar amino acids crucial for metal binding (Figure S3). Analysis
of sequence diversity through Shannon entropy (Figure 1) showed that our generated sequences
exhibit lower Shannon entropy compared to known metal-binding proteins, indicating reduced
randomness and diversity. This indicates that our model has captured essential amino acid patterns
characteristic of metal-binding proteins, potentially concentrating on residues more actively involved
in metal coordination with shorter lengths. Furthermore, our observations aligns with those in
metallothioneins, where specific amino acids like cysteines and histidines predominantly determine
binding specificity and affinity Calatayud et al. (2021); Permyakov (2021).
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Figure 1: Distribution comparison of physical properties. Length, charge, hydrophobicity, molecular
weights, instability index, and Shannon’s entropy for real copper, cadmium, cobalt ion binding
proteins from the training dataset compared to peptides generated via Metalorian.

Figure 2: In vitro validation of cobalt binding. A-C) Co_1 binding: Enrichment between positive
(MT) control and binder compared to negative controls in eluted phage. D) Additional Co Binders:
Enrichment of additonal binders, Co_3 and Co_4.

To validate the structural stability and metal-binding capability of our generated sequences, we
performed detailed molecular dynamics simulations. Our analysis of the Cu2+-binding and Cd2+-
binding peptides (Figure S4 S5) revealed stable structural characteristics with low backbone RMSD
values and well-maintained coordination geometry. The binding site analysis confirmed the design’s
stability in holding the metal ions. Free energy landscape analysis further confirmed a well-defined
global minimum state with low RMSD and radius of gyration, indicating stable conformational
preferences.

4.2 In vitro EVALUATION OF HEAVY METAL BINDERS

While our computational analysis initially focused on Cu and Cd to establish the generalizability of
our approach across different transition metals, we sought to validate our generative pipeline with
an independent experimental system (Figure S2). Given practical considerations of phage display
experiment, we focused our in vitro validation on cobalt-binding peptides. Our phage selection
experiments confirmed that the Metalorian-generated sequences successfully enriched for Co binders
(Figure 2), reinforcing the effectiveness of our computationally designed sequences in capturing
metal-specific binding properties. Future work will focus on establishing high throughput metal
binder screens, extending to multi-metal binding scenarios, further refining our ability to generate
custom metal-binding peptides with high specificity.
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5 CONCLUSION

In this work, we present Metalorian, a conditional diffusion model that leverages the MetaLATTE
classifier embedding space Zhang et al. (2024) to generate de novo metal-binding peptides. Through
our co-evolving diffusion framework and contrastive learning approach, we successfully generated
peptides with significantly reduced sequence lengths while maintaining essential physicochemical
properties and metal-binding capabilities, as validated through molecular dynamics simulations.
While current in silico tools like AlphaFold3 Abramson et al. (2024) have limitations in evaluating
diverse metal-binding peptides, here, we have developed novel experimental validation methods,
including high-throughput phage display, to directly assess binding affinities and specificities. Overall,
our model provides a promising platform for designing selective metal-binding peptides, with potential
applications in environmental remediation. Future work will focus on extending our experimental
validation to additional heavy metals, evaluating multi-metal binding scenarios, and developing a
user-friendly platform where researchers can specify target metals and desired peptide lengths for
custom sequence generation.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 DATA

Training data for metal-binding proteins was sourced from the MbPA database Li et al. (2023),
focusing on 14 transition and heavy metals (Ag, Cd, Co, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Pt, V, W, Zn)
with at least 6 samples per metal class. Non-binding proteins from the mebipred database Aptekmann
et al. (2022) were included as negative samples to balance the dataset. The data was split into 80%
training and 20% validation sets using balanced stratification Sechidis et al. (2011) to maintain label
distribution across stages.

Figure S1: Metalorian Schematic.

A.2 EVALUATION

Initial characterization using Biopython package (v1.78) Cock et al. (2009) focused on key biophys-
ical properties. For detailed structural and dynamics analysis, we performed molecular dynamics
simulations on randomly selected sequences from our generated peptide pools. The simulation
pipeline began with structural prediction using AlphaFold3 Abramson et al. (2024), followed by
metal ion docking using Autodock VINA Trott & Olson (2010) to ensure consistent binding pose
generation across different metal ions. The molecular dynamics system was prepared using Amber-
tools24 Case et al. (2023) and MCPB.py Li & Merz Jr (2016) for specific metal-protein interactions.
Trajectory analysis was conducted using CPPTRAJ Roe & Cheatham III (2013), and binding stability
was assessed through free energy calculations using MM-PBSA Kollman et al. (2000). Final structural
visualization was performed using Pymol Schrödinger, LLC (2015) (v 3.1), where the residues in
the protein targets with polar contacts to the peptide binder with distances closer than 2.8 Å are
annotated.

A.3 MODEL ARCHITECTURES AND TRAINING DETAILS

We adapted the original Co-evolving Contrastive Diffusion Model with the original ESM model as
the continuous diffusion part and tabular Unet for the discrete diffusion part. Metalorian was trained
on in-house 7xA100 Nvidia GPUs. The model’s configuration encompassed a batch size of 140 and a
learning rate set at 2× 10−4. The AdamW optimizer Loshchilov & Hutter (2019) was employed for
optimization. A length restriction of with a range of 30 to 80 is applied during training and sampling,
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thus generated sequences are controlled within a range. The entire implementation and parallelization
is performed with the PyTorch Lightning framework Falcon & The PyTorch Lightning team (2019).
The specific hyperparameters of our model are given below.

Table S1: Co-evolving Conditional Diffusion Model Architecture

Hyperparameter Value
ESM Model Base ESM2_t33_650M_UR50D
Max Sequence Length 1280
Training Batch Size 140
Diffusion Steps (T) 50

Continuous Model (DiffusionProteinModel)
Input Dimension 1280
Output Dimension 1280
Time Embedding Dimension 1280
Condition Projection 15 → 1280
Output Projection 1280

Discrete Model (TabularUnet)
Input Dimension 15
Condition Projection 1280 → 15
Output Dimension 15
Encoder Dimensions [64, 128, 256]
Decoder Dimensions [256, 128, 64]
Output Layer 64 → 15

A.4 EXPERIMENTAL DESIGN

Figure S2: Schematic of the experimental pipeline for screening Metalorian-generated metal-binding
peptides. Binder sequences were cloned into a phage display vector, expressed in TG1 cells, and
displayed on phage particles. Phage libraries were incubated with immobilized metal on agarose
beads, and bound phages were eluted, amplified, and analyzed using next-generation sequencing to
assess binding enrichment.
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A.5 AMINO ACID COMPOSITION ANALYSIS

Figure S3: Amino Acid Composition Analysis between the database and the generated peptides. UP:
histograms of direct comparison of the frequency of amino acid distribution. Bottom: histograms of
the discrepancy. Green indicates increase of the frequency, and red indicates the opposite.

A.6 EXTENDED MOLECULAR DYNAMICS ANALYSIS OF CU2+ AND CD2+ BINDING PEPTIDES

Figure S4: Structural stability and coordination geometry of the Cu2+ binding site analysis based on
the trajectory from the molecular dynamics results. A) Root Mean Square Deviation (RMSD): The
average RMSD of the protein backbone was 1.577 ± 0.419 Å, reflecting global structural stability.
B) Cu-O Distances: Distances between Cu2+ and its coordinating oxygen atoms (O1, O2, O3) are
presented, with O3 showing the most consistent interaction at an average distance of 1.552 ± 0.073
Å. C) O-Cu-O Angles: Angles between Cu2+ and coordinating oxygen atoms reveal a distorted
square planar geometry, consistent with Cu2+’s coordination preferences O’Brien & Chancey (1993).
D) Root Mean Square Fluctuation (RMSF): The binding site residues (50, 64, and 65) showed
minimal flexibility (<0.2 Å), indicating a rigid and stable coordination environment. E) Pymol
visualization of the examined peptide. F) Energy landscape visualization. Free energy landscape
of Cu2+ binding showing favorable interaction energy dominated by electrostatic and solvation effects,
calculated from molecular dynamics simulations using direct interaction terms.
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Figure S5: Structural stability and coordination geometry of the Cd2+ binding peptide based on
molecular dynamics simulations. A) Root Mean Square Deviation (RMSD): The average backbone
RMSD was 1.686 ± 0.306 Å, demonstrating overall structural stability. B) Cd-O Distances: Coordi-
nation distances (Cd-O1: 3.792 ± 0.276 Å, Cd-O2: 2.690 ± 0.125 Å, Cd-O3: 3.331 ± 0.437 Å) suggest
a dynamic metal-binding environment. C) O-Cd-O Angles: The coordination angles (O1-Cd-O2:
40.43° ± 4.00°, O1-Cd-O3: 58.11° ± 5.21°, O2-Cd-O3: 96.17° ± 8.08°) indicate flexibility in the
binding geometry, with some distances exceeding typical Cd-O coordination bonds (2.2-2.5 Å). D)
Root Mean Square Fluctuation (RMSF): The binding site maintains overall stability despite slight
flexibility in the coordination environment. E) Molecular visualization: PyMOL representation of
the examined peptide. F) Free energy landscape: The energy landscape of Cd2+ binding shows
a well-defined global minimum with favorable interaction energy dominated by electrostatic and
solvation effects.
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A.7 SAMPLING PSEUDOCODE

Algorithm 1 Progressive Verification Sampling

Require: Continuous model fC
θ , Discrete model fD

θ , Predictor P , Target label idx ytarget, Control
start step Tc, Total steps T , Success threshold τ

1: Initialize xC
T ∼ N (0, 0.9I)

2: Let (lmin, lmax) be sequence length bounds
3: L← Uniform(lmin, lmax)B ▷ sample sequence lengths for batch
4: M ← [i < Lb]B×T ▷ create length mask matrix
5: xD

T ← log(OneHot(ytarget)) ∈ RB×C ▷ C-dim class embedding
6: Phase 1: Standard diffusion from T to Tc

7: for t = T, . . . , Tc + 1 do
8: µt,σt ← fC

θ (xC
t , t,x

D
t )

9: ϵ←
{
N (0, I) if t > 0

0 otherwise
10: xC

t−1 ← (µt + σt ⊙ ϵ)⊙M

11: xD
t−1 ← fD

θ (xD
t , t,xC

t−1)
12: end for
13: Phase 2: Controlled denoising from Tc to 0
14: sbest ← −1
15: (xC

best,x
D
best)← None

16: for t = Tc, . . . , 0 do
17: for k = 1, . . . ,K do ▷ K attempts per timestep
18: µt,σt ← fC

θ (xC
t , t,x

D
t )

19: ϵ←
{
N (0, (1− k/K)I) if t > 0

0 otherwise
▷ noise schedule

20: xC∗
t−1 ← (µt + σt ⊙ ϵ)⊙M ▷ candidate continuous

21: xD∗
t−1 ← fD

θ (xD
t , t,xC∗

t−1) ▷ candidate discrete
22: h← fC

θ decode(xC∗
t−1)

23: h← h⊙M
24: z← argmax(h, dim = −1)
25: pP ← P (z) ▷ predictor probabilities
26: pD ← exp(xD∗

t−1) ▷ discrete probabilities
27: s← 1

2 (pP [ytarget] + I[argmax(pD) = ytarget]) ▷ score
28: if s > sbest then
29: sbest ← s
30: (xC

best,x
D
best)← (xC∗

t−1,x
D∗
t−1)

31: end if
32: if argmax(pP ) = ytarget ∧ argmax(pD) = ytarget ∧ pP [ytarget] > τ then
33: (xC

t ,x
D
t )← (xC∗

t−1,x
D∗
t−1) ▷ successful candidate found

34: break
35: end if
36: end for
37: if no successful candidate and xC

best ̸= None then
38: (xC

t ,x
D
t )← (xC

best,x
D
best)

39: end if
40: end for
41: return Decode(xC

0 ),x
D
0 , P (Decode(xC

0 ))

13



Published at LMRL Workshop at ICLR 2025

Algorithm 2 Gradient-Guided Label Sampling

Require: Continuous model fC
θ , Discrete model fD

θ , Predictor P , Target label idx ytarget, Steps T ,
Guidance scale λ,

1: Initialize xC
T ∼ N (0, 0.9I)

2: L← Uniform(lmin, lmax)B
3: M ← [i < Lb]B×T

4: xD
T ← log(OneHot(ytarget)) ∈ RB×C

5: (xC
best,x

D
best)← (xC

T ,x
D
T )

6: for t = T, . . . , 0 do
7: µt,σt ← fC

θ (xC
t , t,x

D
t )

8: µt ← µt ⊙M
9: for k = 1, . . . ,K do ▷ K updates per timestep

10: h← fC
θ decode(xC

t )
11: h← h⊙M
12: z← argmax(h, dim = −1)
13: p← P (z)
14: s← exp(p[ytarget])− 0.1

∑
i ̸=ytarget

exp(p[i]) ▷ target score
15: ∇ ← ∂s

∂xC
t

16: λt ← λ · (2 · I[p[ytarget] < 0.5])
17: g← λt · ∇ ⊙M ▷ scaled gradient
18: α← 1− t/T
19: σnoise ← 0.3(1− α)2 ▷ noise schedule

20: ϵ←
{
N (0, σnoiseI) if t > 0

0 otherwise
21: xC

t ← µt + g + σt ⊙ ϵ
22: end for
23: xD

t ← fD
θ (xD

t , t,xC
t )

24: xD
t ← αxD

t + (1− α) log(OneHot(ytarget))
25: Update (xC

best,x
D
best) if improved based on P (Decode(xC

t ))[ytarget]
26: end for
27: return Decode(xC

best),x
D
best, P (Decode(xC

best))
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(a) MetaLATTE pipeline.

(b) Performance of MetaLATTE classifier compared to XGBoost. MetaLATTE’s prediction is more balanced
with the underrepresentative datasets.

Figure S6: MetaLATTE performance and pipeline overview. A more detailed description of Meta-
LATTE results can be found in Zhang, et al. Zhang et al. (2024)
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