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Abstract

We study how rich visual semantic information is repre-
sented within various layers and denoising timesteps of dif-
ferent diffusion architectures. We uncover monosemantic
interpretable features by leveraging k-sparse autoencoders
(k-SAE). We substantiate our mechanistic interpretations
via transfer learning using light-weight classifiers on off-
the-shelf diffusion models’ features. On 4 datasets, we
demonstrate the effectiveness of diffusion features for rep-
resentation learning. We provide an in-depth analysis of
how different diffusion architectures, pre-training datasets,
and language model conditioning impacts visual represen-
tation granularity, inductive biases, and transfer learning
capabilities. Our work is a critical step towards deepening
interpretability of black-box diffusion models. Code and
visualizations available at: https://github.com/
revelio-diffusion/revelio

1. Introduction

Generating high-quality photo-realistic and creative visual
content using diffusion models is a thriving area of research.
For a generative model to accurately simulate the visual
world around us, its latent space should in principle cap-
ture rich visual semantics and the physical dynamics of the
real world. A direct empirical evidence is in recent efforts
that leverage diffusion features for discriminative tasks such
as detection [11], segmentation [9, 64], classification [30],
semantic correspondence [33], depth estimation [63, 68], or
visual reasoning [62] tasks. Yet, they do not offer clear in-
sights on how this rich semantic information is represented
within the model. Some prior attempts that visualize atten-
tion maps [7] or use PCA [60] on the intermediate features,
though valuable, operate on per-image basis and thus, do
not offer a more holistic in-depth interpretation of diffusion
models’ internal representations.

In this work, we go beyond harnessing the rich repre-
sentations of diffusion models and aim to fundamentally
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Figure 1. k-sparse autoencoders (k-SAE) trained on complex visual
features help identify monosemantic visual properties represented within
black-box diffusion models. We show sample k-SAE neurons and top-4
images that yield highest activations when the k-SAE is trained on inter-
mediate diffusion layer’s features on Oxford-IIIT Pet [41] dataset. Note
how these features encapsulate distinct fine-grained information about dif-
ferent breeds like Keeshond and Samoyed. Best viewed in color.

understand and interpret diffusion models’ internal states.
Concretely, we address the following questions: what fla-
vors of visual information is captured in different layers
and time-steps of a diffusion model? How do they inter-
act with and complement each other and the overall learnt
visual information? Do different layers benefit differently
from external conditioning and why? What inductive bi-
ases are uniquely captured in convolution-based diffusion
models compared to transformer-based ones?

Understanding how a model learns visual information
offers several key benefits. First, current visual generative
models are black box in nature: it is not clear why a be-
nign prompt sometimes produces an unsafe output or why a
very slight tweak to the same prompt generates a very differ-
ent output [5]. Answering the above fundamental questions
will be a crucial step towards interpreting black box gener-
ative models. Second, distilling the granularity of semantic
information represented across different layers, timesteps,
and model architectures can aid in designing more efficient
algorithms that offer semantic and style control.

To reveal the visual knowledge learnt by diffusion mod-
els, we adopt “mechanistic interpretation” techniques and
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learn a sparse dictionary of monosemantic visual con-

cepts. It is physiologically proven that human visual sys-

tem sparsely encodes the most recurring visual patterns
using a small set of basis functions [39]. Motivated by
this, we aim to uncover interpretable features by leverag-
ing k-sparse auto-encoders (k-SAE) [36], which have been
shown to help interpret language models [14, 56]. We
illustrate how the semantic visual information is packed
differently depending on the representation granularity of
the test dataset, across different diffusion layers, denois-
ing timesteps, model architectures, and pre-training data.

Going beyond this, we corroborate our mechanistic in-

terpretation by learning very light-weight classifiers on top
of off-the-shelf diffusion models’ features. Through rig-
orous analysis against multiple baselines and benchmarks,
we show the surprising effectiveness of diffusion features
across a variety of tasks: coarse and fine-grained classifica-
tion and complex visual reasoning. Unlike all prior works,
our classifier, dubbed, Diff-C, bypasses the need to em-
ploy additional losses [30], training a student model [65],
or training a feature map fusing method [33], thereby offer-
ing significant computational benefits (4 orders of magni-
tude inference speedup compared to [30]'). We summarize
our empirical and interpretable analysis below, which align
perfectly across datasets, tasks, and model architectures.

¢ Representation granularity varies non-linearly with
model depth, with different diffusion layers captur-
ing varying levels of visual semantic information, from
coarse-grained shape, texture, or local color patterns to
fine-grained animal breed details, to more global visual
concepts like camera angles and object poses.

* Representation granularity and generalizability
varies with diffusion architectures, pre-training data,
latent or pixel space, cross and self-attention mecha-
nisms — design choices made to improve the overall pixel
generation quality and training efficiency.

¢ k-sparse autoencoders help isolate monosemantic vi-
sual properties systematically across model states and
help interpret black box diffusion models.

2. Related Work

Diffusion features for discriminative tasks: Diffusion
models have achieved remarkable results in generating
semantically rich high-resolution images [8, 17, 25, 43,
48, 50]. Several recent works leverage diffusion features
beyond image and video synthesis: for zero-shot clas-
sification [13, 30, 65], detection [11], segmentation [9,
64], semantic correspondence [24, 33], rendering novel
views [60], image editing and semantic image manipulation
tasks [29, 60], and so on. Our work is different from prior
works in two important ways. First, we propose a simple

'Our method requires training a classifier to achieve this.

method to adapt diffusion features for discriminative tasks
without the need to distill [65], train an expensive hyper-
network [33], or generate synthetic data [26]. Second, we
go beyond leveraging diffusion features and interpret how
visual information is packed with the model’s architecture.
Interpreting diffusion features: Some recent studies aim
at understanding and interpreting diffusion models. Plug-
and-Play [60] performs PCA analysis on intermediate fea-
tures of Stable Diffusion [48] and finds that intermediate
features reveal localized semantic information shared across
objects, while early layers capture high-frequency details.
However, their analysis is based only on 20 real and gen-
erated humanoid images, limiting the generalizability of
their findings to different domains and model architectures.
Authors of [22] explore how diffusion features vary with
the underlying architecture. Similarly, the effect of cross-
attention layers to image attributes [61] and semantic infor-
mation at different timesteps [34, 42] have been studied by
progressively conditioning text prompts. While valuable,
these analyses are also done on a per-image basis and do not
offer a holistic and in-depth interpretation of the models’ in-
ternal states. Diffusion Lens [58] analyzes the text encoder
of diffusion models by generating images from its interme-
diate representations. By contrast, our work mechanisti-
cally interprets the opaque visual diffusion features when
conditioned on blank prompts using sparse autoencoders.

Recent works have demonstrated that sparse autoen-
coders (SAE) could recover monosemantic features in large
language models (LLMs) [10, 14, 20] and CLIP vision fea-
tures [15, 19]. Concurrent work [54] investigates the pos-
sibility of using SAEs to learn interpretable features from
residual updates within the U-Net to investigate how the
cross-attention layer integrates the input text prompt. By
contrast, our focus is to understand how visual information
is packed within the diffusion models’ internal states and
the interplay between representation abstraction and model
design choices. We propose a method to reveal valuable
human interpretable visual patterns baked within black box
diffusion models.

3. Approach

Our goal is to interpret and expand our understanding
of black box diffusion models. We address this from
two different perspectives: first, we train k-sparse autoen-
coders [36] to recover interpretable monosemantic visual
semantic features across different layers, timesteps, and dif-
fusion architectures. Second, we substantiate each inter-
pretability finding by training light-weight classifiers on the
exact same diffusion features.

We begin by providing an overview of diffusion mod-
els (Sec. 3.1), followed by motivation and architecture used
for training k-SAE (Sec. 3.2), followed by the light-weight
classifier, Diff-C (Sec. 3.3).
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Figure 2. k-SAE visualizations across layers of the U-Net in SD 1.5 and sample images from different neurons yielding highest activations when k-SAEs
are trained on different layers for ¢ = 25 on Oxford-IIIT Pet. We note that across 3 random neurons of k-SAEs, the bott leneck layer captures very
coarse-grained information, where foreground objects positioned similarly are activated by the same neuron. up_ft1 captures valuable breed specific
domain information while up_ft 2 seems to capture high-frequency visual patterns.

3.1. Preliminaries on diffusion models

Several powerful open and close-sourced diffusion models
have emerged just in the last two years [1, 2, 21, 43, 45, 47,
48, 50]. Broadly, diffusion models are probabilistic genera-
tive models that aim to learn a data distribution p(x) through
an iterative denoising process. During the forward diffusion
process, the input image x is gradually perturbed with noise
over T timesteps. The reverse process consists of iterative
denoising steps, where each step estimates the added noise
eg(xy,t), parameterized by 0, with ¢ = 1,...,T. Each iter-
ation takes a noisy image x; as input and predicts the added
noise €. The objective of the diffusion model is given by:

Loy = Eqpenno [lle — oz, 1)|13] (D

Instead of operating on images x, latent diffusion models
(LDM) [48] operate on a latent representation z, obtained
by mapping the image into a lower-dimensional space us-
ing a variational autoencoder [27] which consists of an en-
coder £ and decoder D. The diffusion process models the
distribution of these latent embeddings, allowing for more
efficient computation. The revised objective is:

Lipm =Eg)peanon [le — oz, )[3]
3.2. Preliminaries on k-sparse autoencoders

Our aim is to gain insight into how visual information is en-
capsulated in a diffusion model. Given the very high non-
linearity and complex architectures of generative models,
identifying interpretable components directly from layer ac-
tivations is not viable. In this work, we isolate monose-
mantic features by training k-sparse autoencoders (k-SAEs)
on the activations from different diffusion layers, timesteps,
and architectures, which we describe next.

Sparse autoencoders [37] are neural networks to learn
compact feature representations in an unsupervised manner.

They contain an encoder and a decoder, and are trained with
a sparsity penalty and a sample reconstruction loss to en-
courage only a few neurons to be maximally activated for
a given input. However, the sparsity penalty term in SAEs
presents significant training challenges [36, 57]. A k-sparse
autoencoder is an extension of sparse autoencoder [37] de-
signed to improve the training challenges by explicitly reg-
ulating the number of active neurons during training to k.
Specifically, in each training step, a top-k activation func-
tion is used to retain only the k largest neuron activations,
while zeroing out the rest.

Let « denote the d-dimensional spatially-pooled diffu-
sion activations®. Let We,. € R™*¢ and Wy, € Ré*n
denote the weight matrices of the k-SAE’s encoder and de-
coder respectively (Fig. 1), where n denotes the dimension
of the autoencoder’s hidden layer. n is equal to d multiplied
by a positive integer, called the expansion factor. Follow-
ing [10], bpre € R¢ denotes the bias term added to input x
before feeding to the encoder (aka pre-encoder bias), while
bene € R™ denotes the bias term for encoder. Upon passing
x through the encoder, we obtain z defined as:

z = TOPK(Wenc(z - bpre) + benc)a 3

where the TopK activation function retains only the top k
neuron activations and sets the rest to zero [36]. The de-
coder then reconstructs z, given by:

T = Waeez + bpre “4)

The training loss is the normalized reconstruction mean
squared error (MSE) between the reconstructed feature ()
and the original feature (z), given by:

Lise = ||z — fH% )

2For notational simplicity, we describe our setup for an arbitrary layer
and denoising timestep, but the same method applies for activations from
any model state.



As we show in results (Sec. 4), k-SAE plays a key role in
qualitatively interpreting visual semantic information.

3.3. Diffusion Classifier (Diff-C)

Next, to quantitatively study the visual semantic informa-
tion packed within pre-trained diffusion models, we design
a lightweight classifier called Diff-C to adapt diffusion fea-
tures to downstream tasks. Diff-C (shown in Table 10 in
suppl. material) comprises a series of convolutional layers
to progressively reduce the spatial dimensions of the dif-
fusion features, followed by a pooling and a downstream
task-dependent fully-connected layer. Despite the inher-
ently unique architectures of convolutions-based U-Net [49]
and diffusion-based DiT [43], we adapt the outputs of dif-
ferent U-Net layers and DiT blocks into 2D feature maps
and process them using Diff-C.

4. Experiments

In this section, we first share the implementation details and
training setup, followed by detailed analyses while dissect-
ing diffusion models.

4.1. Implementation details

Unless otherwise stated, we use Stable Diffusion (SD) 1.5
model [48], DDIM scheduler [53], and an empty prompt
used as the text conditioning.

k-SAE: For training a k-SAE, we empirically found that
k = 32 yields the best results for different datasets, based
on training stability and overall sparsity. Diffusion activa-
tions are extracted by passing images from a target dataset
into the VAE of a pretrained diffusion model. For SD, we
spatially pool diffusion activations resulting in d = 1280
for bottleneck, up-ft0, and up_ft1 layers. We set
the expansion factor for the k-SAE to 64, following prior
work [19], resulting in n = 1280 x 64 = 81,920 latents
for SD and n = 1152 x 64 = 73, 728 latents for DiT. We
apply a unit normalization constraint [51] on the decoder
weights W, of the k-SAE after each update. We use the
Adam [28] optimizer with a learning rate of 0.0004 and ap-
ply a constant warm up for 500 steps. The total training
time approximately 1 hour on 1 NVIDIA RTX A6000 GPU
trained for 10M steps.

Diff-C has 4 convolutional layers (conv1-conv4) as shown
in Table 10. The final feature dimension is 1024. For all
classification tasks and datasets, we train on a NVIDIA
RTX A6000 GPU, use a batch size of 16, optimize using
AdamW [32], a learning rate of 1 x 10~*. We train Diff-C
for 30 epochs with cosine annealing learning rate sched-
ule and set a minimum learning rate 7y, (5 X 1075). We
randomly crop and resize input images to 512 x 512 and
augment with random horizontal flip transformations.

4.2. Setup

Datasets and tasks: We interpret and analyze diffusion
features of on four image datasets and against competitive
baselines on two tasks: (a) classification Transfer learn-
ing onto Oxford-IIIT Pet [41], FGVC-Aircraft [35], and
Caltech-101 [18], (b) visual reasoning as in [59], we inter-
leave two visual features with CLIP: DINO [40] and diffu-
sion features. We use the LLaVA-Lightning * configuration
and MPT-7B-Chat [55] as the base language model. We use
CC595k [52] for stage 1 pre-training and LLaVA-Instruct-
80K [31] for stage 2 fine-tuning.

Notation: We focus on interpreting the bottleneck and the
decoder layers of the UNet, as the information from the
encoder is fed into the decoder through the skip connec-
tions. As illustrated in Fig. 2, features extracted from a
given upsampling (decoder) block_index are denoted as
up-ft{block_index}. bottleneck refers to the cen-
tral block which has the smallest spatial resolution in U-Net.
Following the standard convention of reverse denoising of
diffusion models [25, 53], ¢ = 0 corresponds to the timestep
where a final, fully denoised image is achieved and higher
values of ¢ represent noisier images, with ¢ = 1000 denot-
ing pure noise. For referring to the features from DiT we
use block_index to denote the transformer block from
which we extract the features.

Evaluation metrics: For Diff-C, we report top-1 accuracy
for all classification tasks. For the visual reasoning task, we
evaluate on the LLaVA-Bench (in-the-wild) [31] and MM-
Vet benchmarks [67], where model outputs are scored rela-
tive to reference answers generated by text-only GPT-4 [4].
For k-SAE, to quantify the granularity of semantic informa-
tion captured in diffusion features, we measure how “pure”
the activated k-SAE neurons are. We do this by measuring
the average standard deviation in the class labels (gjgper)
of the top-10 most highly activating images among the top
1000 most highly activating features of the learned k-SAE.
We stress that the class labels are not used for training but
only to measure activated neurons’ purity of the k-SAE. We
also visualize images which result in highest activation for
a given k-SAE neuron. Furthermore, to further reduce sub-
jectivity, we frame the task of quantifying the granularity
of semantic information in diffusion features as a multiple-
choice question-answering problem for GPT-40 [3]. We as-
sess the level of semantic detail captured by different diffu-
sion features (prompt details in suppl. material). We note
that GPT-4o0 predictions can be noisy, hence we primarily
relied on label purity (o4p;) for accurate quantification.

4.3. Information granularity across diffusion layers

In this section, we study how the visual semantic informa-
tion arranges itself across different layers of a pre-trained

3We use LLaVA-Lightning due to compute constraints.



bottleneck

(e) Black and white (f) Grass background

Figure 3. k-SAE visualizations on Oxford-IIIT Pet of bottleneck,
up-ft1, and up_ft2 U-Net layers at ¢ = 25. bottleneck isolates
very coarse patterns of objects positioned similarly with respect to the
background. For up_ft1, clear class-specific features are observed help-
ing us isolate different fine-grained breeds. up_ft2 captures more global
texture information such as that of grass.
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bottleneck up_ft0 up_ftl up_ft2
Layer

Figure 4. Top-1 accuracy of different SD 1.5 layer features. Features
from up_ft1 consistently yield best performance for SD 1.5.

Layer 1. fine-grained 2. Moderately granular 3. Very coarse 4. No patterns
bottleneck 25 52 22 1
up_fto 33 46 20 1
up-ftl 47 41 11 1
up-_ft2 28 50 20 2

Table 1. Accuracy (%) of GPT-4o predictions among four multiple-choice
options, given the top 10 most highly activating images among the top 100
most highly activating neurons of the k-SAE trained on Oxford-IIIT Pet.
Of the 4 layers, note how up_ft1 features are most fine-grained. We note
that GPT-4o predictions can be noisy and very sensitive to system prompt.

diffusion network. Specifically, how does the diffusion
training objective of minimizing global reconstruction loss
impact the visual information granularity across layers? To
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Figure 5. k-SAE visualizations on Caltech-101 of bottleneck and
up-ft1 UNet layers at ¢ = 25. Unlike for fine-grained dataset (Fig. 3),
bottleneck captures class information, likely due to distinct object
shapes (sailing ships v/s elephants). up_ft1 captures more abstract in-
formation such as sketches or objects with white background.

this end, we extract diffusion features from bottleneck,
up-ft0, and up_ft1l, train separate k-SAE and Diff-C
models, and report evaluation metrics listed in Sec. 4.2.
Fine-grained classification task: From Table 2a, we note
that up_ft1 yields the lowest o4p¢;, indicating that the
features corresponding to this layer contain most class-
specific information compared to other layers. This is qual-
itatively corroborated by Fig. 3 where images that k-SAE
neurons get most activated by, have very clear class-specific
characteristics when using up_ft1 features compared to
bottleneck and up_ft2. Moreover, the accuracy of
GPT-40 predictions (Table 1) suggests that up_ft1 cap-
tures more fine-grained information, whereas other layers
tend to capture moderately granular or very coarse features.
This finding is also consistent with Diff-C results presented
in Fig. 4 for Oxford-IIIT Pet and for another fine-grained
dataset: FGVC-Aircraft [35]. Note that there is a sharp
decline in performance at up_ft2 layer and beyond, sug-
gesting that up_ft 2 features may be more aligned with the
pre-training task objective of pixel reconstruction for image
generation, thus are less generalizable for transfer learning.
A similar observation was made about the later layers when
mechanistically interpreting language models [38].

Does the trend hold for coarse-grained classification
task? To deconflate the effect of task-granularity from dif-
fusion feature granularity, we study the diffusion features
from Caltech-101 dataset. From Table 2a, it is evident that
bottleneck features yields a significantly smaller g;4pe; -
Also note that the difference between o;,p.; values between
layers is quite larger for Caltech-101 compared to Oxford-
IIT Pet. To understand this better, we visualize the highest
activated images from different layers. From Fig. 5, we note
that those from bottleneck are more class-centric and
thus “purer” compared to up_ft 1, which may be capturing
more style or texture specific information. We hypothesize
that for the task of classifying Caltech-101, coarser shape
information is sufficient which is compactly provided by
bottleneck. This can be clearly seen from Fig. 4, where,
compared to Oxford-IIIT Pet, the performance gap between
up-ftl and bottleneck is significantly low. However,
for challenging tasks where finer-grained information is re-
quired, higher-level layers (up_ft 1) are more beneficial.



Layer Oxford-IIIT Pet  Caltech-101 ImageNet t

Oxford-IIIT Pet

bottleneck 9.48 9.35 25.35 (up_ft1)
up-_ft0 9.90 15.65 29.10 0 8.99
up-ftl 8.59 21.33 343 25 8.59
up-ft2 9.67 25.61 36.38 100 8.87
200 8.94
300 9.01
500 9.53

(a) o1qpe; for different layers: For Oxford-IIIT Pet, up_ft1
achieves the lowest 0j4pe;, Whereas bottleneck yields
lowest 04 pe; for Caltech-101, indicating the interplay of rep-
resentation and task granularity.

(b) 01ape; for different diffusion timesteps: For
Oxford-IIIT Pet up_ft 1, t = 25 yields the lowest
Olabel» Whereas for Caltech-101 bottleneck,
t = 200 yields the lowest 0jgpe-

Caltech-101 Model  Oxford-IIIT Pet Block  Oxford-IIIT Pet
(bottleneck) SD 1.5 8.59 6 10.18
11.91 SD2.1 9.67 10 9.44
9.35 14 9.05
8.72 18 9.55
8.17 22 9.84
10.41
16.65

(¢) olaper for SD 1.5 vs.
SD 2.1: SD 1.5 captures
more class-specific informa-
tion than SD 2.1.

(d) o1qpe; for different DiT
blocks at t = 25. Mid-blocks
of DiT yield the lowest 0 gpe;
than other layers.

Table 2. Label purity (0;4p¢;) measured by computing the average standard deviation in the class labels (gj4p¢;) Of the top-10 most highly activating
images among the top 1000 most highly activating features of the learned k-SAEs for different diffusion layers, timesteps, models, and architectures on

Oxford-1IIIT Pet, Caltech-101and ImageNet.
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Figure 6. Top-1 accuracy of up_ft1 at different timesteps: Earlier
timesteps perform better on fine-grained datasets (Oxford-IIIT Pet, FGVC-
Aircraft); interim ones on coarse-grained dataset (Caltech-101).

Does the dataset size matter? We conduct the same anal-
ysis on ImageNet [16], a relatively coarser-grained dataset.
From Table 2a, we observe that even on a larger dataset, the
bottleneck layer captures more class-specific informa-
tion, exhibiting similar behavior as on Caltech-101.

4.4. Information packed across diffusion timesteps

We now examine the interplay between diffusion denois-
ing timesteps and visual semantic information granularity.
To this end, we extract diffusion features from up_ft1 at
different timesteps t = {25, 100, 200, 300, 400, 500}, train
separate k-SAE and Diff-C models. From Table 2b, we
observe that ¢ = 25 yields the lowest 0j4p¢;. This is val-
idated both by top activated images shown in Fig. 3 and
Diff-C performance in Fig. 6. k-SAE neurons are being ac-
tivated by images with very clear class-specific characteris-
tics when using features extracted at ¢ = 25 (more visual-
izations in suppl. material). This finding is also consistent
with Diff-C results presented in Fig. 6 for Oxford-IIIT Pet
and FGVC-Aircraft. By contrast, from Table 2b, we find
that for Caltech-101, features extracted at ¢ = 200 yield
lowest oqpe;. This finding is also consistent with Diff-C
results from Fig. 4. This finding is corroborated in [9, 30].
We hypothesize that the additional noise added at ¢ = 200
could be helping in making features more generalizable, but
deeper investigation is needed in the future.

4.5. Effect of different models and architectures

Next, we inspect how diffusion models that differ in their
underlying architectures, pre-training datasets, attention
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Figure 7. k-SAE visualizations of up_£t1 of SD 2.1 on Oxford-IIIT Pet
at t = 25. Contrary to SD 1.5 (Fig. 3 (c), (d)) where 8 out of 9 images
depict the same breed, SD 2.1 features results in 4 in 9 images in (a) as
Wheaten Terriers and (b) 5 in 9 images are Great Pyrenees in (b).
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Figure 8. Stable Diffusion vs DeepFloyd-IF: The performance dip at
up-ft0 is not observed for DeepFloyd-IF across both datasets.

mechanisms differ in their internal encoding of visual se-
mantic information.

Stable diffusion variants: We study two stable diffusion
models (SD 1.5 v/s SD 2.1) which primarily differ in the
underlying text encoder and pre-trained datasets. We first
extract diffusion features from bottleneck and up_ft1l
at t = {25,200} on Oxford-IIIT Pet dataset and train k-
SAE and Diff-C models. From Table 2c, we note that oj4pe;
is lower for SD 1.5 indicating that SD 1.5 captures more
object-specific information compared to SD 2.1. This is
qualitatively supported by Fig. 3 and Fig. 7 where k-SAE
neurons are being activated by images with clearer object-
specific information when using SD 1.5 features compared
to SD 2.1. This is also consistent with Diff-C results in Ta-
ble 3, where bottleneck features of SD 2.1 are particu-
larly under-performing compared to SD 1.5. Even though
there is a sharp performance boost of 13.17% from using



Model Params (M) Layer t Test Acc

25 56.80
bottleneck 200 56.15

25 8474
200 81.77

SD 2.1 900

up_ftl

25 69.97
200 68.03

25  88.61
200 86.89

25 8749
200 80.89

2! 88.61
200 83.02

25  6l.16
200 54.08

bottleneck
SD 1.5 893

up_ftl

blockl0

blockl4d

bottleneck
DeepFloyd-IF 1-900M 900

84.08

5
uP-FEL 900 76.09

Table 3. Top-1 accuracy of different diffusion architectures on Oxford-
IIT Pet. SD 1.5’°s up_ft 1 and DiT’s block 14 perform best overall.
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Figure 9. k-SAE visualizations of DiT blocks on Oxford-IIIT Pet. Block
14 captures fine-grained information; others capture less distinct features.

up_ft1 for both architectures (t = 25), SD 1.5 performs
better overall across timesteps. Similar behavior was noted
for zero-shot classification in [30] but not well-understood
and is a fruitful topic for future research.

Latent v/s pixel space: We next examine how diffusion
denoising in the pixel space impacts the learnt visual infor-
mation differently from those learnt in the latent space. To
this end, we compare classification performance of stable
diffusion features with those from DeepFloyd-IF [6] which
operates directly in the pixel space*. Unlike SD 1.5, we
note an uptick in the performance of features from up_ft 0
layer of DeepFloyd-IF by 1.74% for Oxford-IIIT Pet, and
2.85% for Caltech-101 for ¢=25 as illustrated in Fig. 8. Fur-
thermore, from Table 3, we observe that DeepFloyd-IF’s
performance is more sensitive to timesteps than Stable Dif-
fusion. For instance, SD 1.5 has a dip of 1.97% in top-

4We acknowledge that despite having similar number of model param-
eters, both models have different pre-training data, cross-attention connec-
tions, and different initial input image resolution.
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Figure 10. Visualizing top-3 PCA components of diffusion features
from SD 1.5 and DiT. bottleneck, up_ft0, and up_ft1 of SD 1.5
capture spatially localized information at varied granularity. This property
is missing from DiT features across different blocks.

1 accuracy when using bottleneck features at ¢ = 25
v/s t = 200, while DeepFloyd-IF has a significant drop
of 7.08%. Given DeepFloyd-IF operates directly in the
pixel space, we think that each denoising step is introduc-
ing larger shifts in the underlying semantic structure than in
latent space, contributing to these differences.

Different diffusion architectures: We also study how se-
mantic information representation varies with the choice of
diffusion architecture. To this end, we compare features
from U-Net based diffusion model against transformer-
based model. Specifically, we extract features from dif-
ferent encoder blocks of DiT [43] and interpret them via
both k-SAE and Diff-C. From Table 2d, we observe that the
middle block of DiT (block14) yields the lowest oyqpe;
compared to earlier and later layers. This is qualitatively
supported by Fig. 9, where the block14 features contain
more class-specific information than other blocks. While
with U-Net based features we saw images with spatially re-
lated photographic styles emerge (e.g., similar postures or
photographic compositions as shown in Fig. 3 (a), (b)), we
did not find similar patterns emerge from earlier or later
layers of DiT. Though the selected DiT and U-Net based
diffusion models have similar number of parameters (Ta-
ble 3), transformer-based DiT may have less spatial induc-
tive biases compared to the convolutional-based U-Net. Ad-
ditional visualizations of DiT features in suppl. material.
Inductive biases in diffusion models: To more deeply un-
derstand the difference between DiT and SD 1.5 in how
spatial information is internally encoded, we follow the ap-
proach from [60] and apply principle component analysis
(PCA) on the diffusion features, and visualize the first three
principal components of images from UnRel [44] dataset.
From Fig. 10, it is evident that bottleneck features
of SD 1.5 capture very coarse spatial information, while
up-ft1 capture very clear localized semantic information,
even on images where common objects occur out of con-
text. As we go deeper into SD 1.5, layer up_£t 2 tends to
capture more low-level information (more visualizations in
suppl. material). By contrast, DiT’s maps exhibit blended
colors across all layers, indicating no clear spatially local-
ized information. This property aligns with transformers’
tendency to capture more global context by attending to the
entire image, and supports k-SAE’s interpretations in Fig. 9



LLaVA Vision Encoder Relative Score
CLIP 56.6
CLIP + DINO-v2 47.0
CLIP +SD 1.5 (up_ft1 att = 25) 59.9
CLIP + SD 1.5 (up_ft 1 at t = 200) 56.8

Table 4. Performance of multi-modal reasoning task: SD 1.5’s up_ft1
features when integrated with CLIP into LLaVA lead to significant boosts
on LLaVA-Bench(In-the-Wild), reflecting alignment with the reference an-
swer generated by text-only GPT-4 responses.

Model Num Params (/) Oxford-IIIT Pet FGVC-Aircraft
Diffusion Classifier (SD-2.0)t [30] 900 87.3% 26.04*
SD-2.0 features [30] 1420 75.9 352
Diff-C (up_ft1) - empty 800 88.69 65.07
Diff-C (up_ft1) - from_CLIP 800 90.97* 64.98%
CLIP ResNet-50 T [46] 102 854 19.3
OpenCLIP (VIT-H/14)T [12] 630 94.39 42.75

Table 5. Top-1 accuracy on Oxford-IIIT Pet and FGVC-Aircraft.
Among models that use diffusion features (top), Diff-C performs best and
competes well with CLIP (bottom) T : zero-shot. *: uses text-conditioning.

that there is less spatially-rich information in DiT.

4.6. Performance on visual reasoning

Next, we study the generalizability of diffusion features for
visual reasoning by integrating them into the LLaVA [31]
framework. Specifically, on the LLaVA-Lightning config-
uration [31], we extract features from CLIP [46], DINO-
v2 [40], and up_ft1 layer from SD 1.5 and pass them in-
dependently through separate multi-layer projection layers.
We then interleave the projected embeddings as done in [59]
and pass them into the language model in LLaVA [31]
(implementation details in suppl. material). We use dif-
ferent visual features but keep the language model fixed
on the LLaVA-Bench (In-the-Wild) [31] evaluation bench-
mark. We report the relative scores of the model compared
to GPT-4 obtained answers aggregated over three categories
(complex reasoning, conversational, and descriptive tasks),
more details in suppl. material. From Table 4, it is clear that
interleaving CLIP with up_ft 1 diffusion features extracted
at t = 25 improves the relative score by 3.3%. By contrast,
interleaving CLIP with DINO-v2 features led to a dip in the
performance by 9.6%. Additionally, we evaluate LLaVA
on MM-Vet benchmark [67] and find that diffusion features
yield a correctness score of 26.4, as assessed by GPT-4o-
mini, which is a +1.1 improvement over using only CLIP
features. Notably, for the OCR sub task we see a boost
of +2.2 compared to CLIP features. These results suggest
that diffusion features, like CLIP, enjoy the benefit of being
multi-modal. However, unlike CLIP, diffusion features also
encode strong local semantic information (Fig. 10) making
them very powerful feature representations.

4.7. State-of-the-art performance

Finally, we compare Diff-C with other models that use dif-
fusion features for representation learning (Table 5 top row)

and also with CLIP variants (Table 5 bottom row). In addi-
tion to passing an empty prompt which is our default setting,
we also experiment with providing a CLIP-inferred prompt
during diffusion feature extraction for a fairer comparison
with [30]. We note that having access to prompts which pre-
sumably can have information about the object in the image
puts these models at an unfair advantage, but do this only for
comparison. From Table 5, we see that Diff-C performs sig-
nificantly better than the best reported numbers in [30]: an
improvement of +1.39% on Oxford-IIIT Pet (88.69) and
a huge boost of +39.03% for FGVC-Aircraft. “SD-2.0
features” baseline from [30] inputs bott leneck features
into ResNet [23] like architecture consuming 520M model
parameters. On the other hand, Diff-C is a significantly
lighter model (40M model parameters) and yet, achieves a
huge boost of +15.07% for Oxford-1IIT Pet and +29.87%
for FGVC-Aircraft from using up_ft 1 features. This boost
clearly illustrates the effectiveness of interpreting the dif-
fusion model states and making an informed selection for
achieving the best transfer learning performance on target
tasks. It also highlights the benefit of selecting the right
visual features over using complex, highly parameterized
models. Crucially, the diffusion classifier from [30] takes
~ 24 sec / sample (using their default settings on Oxford-
IIT Pet) on a single NVIDIA RTX A6000, while Diff-C
takes only =~ 0.13 sec / sample, thereby yielding a 4 orders
of magnitude speedup during inference.

Effect of text conditioning: We note that text-conditioning
yields mixed results: it leads to performance improvement
of Diff-C (rows 3 v/s 4 in Table 5) by +2.28% on Oxford-
IIIT Pet, but a slight dip of —0.09% on FGVC-Aircraft
dataset. This detrimental effect of text-conditioning is more
pronounced when comparing Diffusion Classifier with SD-
2.0 features (rows 1 v/s 2 in Table 5), where the former
uses text information, while SD-2.0 features is based purely
on visual features. This behavior is not well understood
and could be because of the low frequency of occurrence of
specific aircraft model names in the natural language cap-
tions used for pre-training or a misalignment between pre-
training and the domain-specific aircrafts image data.

5. Discussion and Future work

In this work, we present k-sparse auto-encoders as an effec-
tive tool to dissect diffusion models of different architec-
tures, across different layers, and inference timesteps. Our
qualitative and quantitative analysis shows that the abstrac-
tion of visual information oscillates from coarse-grained to
fine-grained and then back to coarse-grained as we traverse
along the depth of a diffusion model. Fruitful research di-
rections entail effective ways to leverage the interpreted in-
formation to design better semantic editing algorithms. We
hope that our work will spark more interest on the topic of
diffusion model interpretability in the research community.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

(13]

(14]

[15]

Midjourney. https://www.midjourney.com/home.
3

Introducing gen-3 alpha. 2024. https://runwayml.
com/blog/introducing-gen-3-alpha/. 3
gptdo.2024. https://openai.com/index/hello
gpt-40/. 4,14

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,
F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S.
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774,2023. 4

C. Anil, E. Durmus, M. Sharma, J. Benton, S. Kundu, J. Bat-
son, N. Rimsky, M. Tong, J. Mu, D. Ford, et al. Many-shot
jailbreaking. In NeurIPS, 2024. |

DeepFloyd Lab at StabilityAl. DeepFloyd IF: a novel state-
of-the-art open-source text-to-image model with a high de-
gree of photorealism and language understanding. https:
//www.deepfloyd.ai/deepfloyd—-1if, 2023. Re-
trieved on 2023-11-08. 7

Y. Ban, R. Wang, T. Zhou, M. Cheng, B. Gong, and C. J.
Hsieh. Understanding the impact of negative prompts:
When and how do they take effect? arXiv preprint
arXiv:2406.02965, 2024. 1

F. Bao, S. Nie, K. Xue, Y. Cao, C. Li, H. Su, and J. Zhu. All
are worth words: A vit backbone for diffusion models. In
CVPR, 2023. 2

D. Baranchuk, I. Rubachev, A. Voynov, V. Khrulkov, and A.
Babenko. Label-efficient semantic segmentation with diffu-
sion models. arXiv preprint arXiv:2112.03126, 2021. 1, 2,
6

T. Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn,
T. Conerly, N. Turner, C. Anil, C. Denison, A. Askell,
R. Lasenby, Y. Wu, S. Kravec, N. Schiefer, T. Maxwell,
N. Joseph, Z. Hatfield-Dodds, A. Tamkin, K. Nguyen, B.
McLean, J. E Burke, T. Hume, S. Carter, T. Henighan,
and C. Olah. Towards monosemanticity: Decomposing
language models with dictionary learning. Transformer
Circuits Thread, 2023. https://transformer—
circuits.pub/2023/monosemantic—features/
index.html. 2,3

S. Chen, P. Sun, Y. Song, and P. Luo. Diffusiondet: Diffusion
model for object detection. In ICCV, 2023. 1,2

M. Cherti, R. Beaumont, R. Wightman, M. Wortsman, G. II-
harco, C. Gordon, C. Schuhmann, L. Schmidt, and J. Jitsev.
Reproducible scaling laws for contrastive language-image
learning. In CVPR, 2023. 8

K. Clark and P. Jaini. Text-to-image diffusion models are
zero shot classifiers. In NeurIPS, 2024. 2

H. Cunningham, A. Ewart, L. Riggs, R. Huben, and L.
Sharkey. Sparse autoencoders find highly interpretable fea-
tures in language models. arXiv preprint arXiv:2309.08600,
2023. 2

G. Daujotas. Interpreting and steering features in im-
ages. 2024. https:
posts / Qugekpvx8BGMMcaem / interpreting —
and-steering-features—in-images. 2

/ /www . lesswrong .com/

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
CVPR, 2009. 6

P. Dhariwal and A. Nichol. Diffusion models beat gans on
image synthesis. In NeurIPS, 2021. 2

L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of
object categories. In IEEE TPAMI, 2006. 4

H. Fry. Towards multimodal interpretability: Learn-
ing sparse interpretable features in vision transformers.
2024. https://www.lesswrong.com/posts/
bCtbuWragYTDtuARg / towards
interpretability—-learning-sparse. 2,4

L. Gao, Tom D. la T., H. Tillman, G. Goh, R. Troll, A. Rad-
ford, I. Sutskever, J. Leike, and J. Wu. Scaling and evaluat-
ing sparse autoencoders. arXiv preprint arXiv:2406.04093,
2024. 2

R. Girdhar, M. Singh, A. Brown, Q. Duval, S. Azadi, S. S.
Rambhatla, A. Shah, X. Yin, D. Parikh, and I. Misra. Emu
video: Factorizing text-to-video generation by explicit image
conditioning. arXiv preprint arXiv:2311.10709, 2023. 3

Q. Guo and D. Yue. Dit-visualization. ht tps://github.
com/guogincode/DiT-Visualization, 2024. Ex-
ploring the differences between DiT-based and Unet-based
diffusion models in feature aspects using code from dif-
fusers, Plug-and-Play, and PixArt. 2

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 8

X.He, W. Feng, T. J. Fu, V. Jampani, A. Akula, P. Narayana,
S. Basu, W. Y. Wang, and X. E. Wang. Discftusion: Dis-
criminative diffusion models as few-shot vision and language
learners. arXiv preprint arXiv:2305.10722, 2023. 2

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion proba-
bilistic models. In NeurIPS, 2020. 2, 4

A. Jahanian, X. Puig, Y. Tian, and P. Isola. Generative mod-
els as a data source for multiview representation learning.
arXiv preprint arXiv:2106.05258, 2021. 2

D. P Kingma. Auto-encoding variational bayes.
preprint arXiv:1312.6114,2013. 3

D. P Kingma. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. 4

M. Kwon, J. Jeong, and Y. Uh. Diffusion models al-
ready have a semantic latent space. arXiv preprint
arXiv:2210.10960, 2022. 2

A. C Li, M. Prabhudesai, S. Duggal, E. Brown, and D.
Pathak. Your diffusion model is secretly a zero-shot clas-
sifier. In ICCV,2023. 1,2,6,7,8

H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning.
In NeurIPS, 2024. 4, 8, 11

L. Loshchilov. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101,2017. 4, 14

G. Luo, L. Dunlap, D. H. Park, A. Holynski, and T. Darrell.
Diffusion hyperfeatures: Searching through time and space
for semantic correspondence. In NeurlIPS, 2024. 1,2

S. Mahajan, T. Rahman, K. M. Yi, and L. Sigal. Prompt-
ing hard or hardly prompting: Prompt inversion for text-to-
image diffusion models. In CVPR, 2024. 2

multimodal

arXiv


https://www.midjourney.com/home
https://runwayml.com/blog/introducing-gen-3-alpha/
https://runwayml.com/blog/introducing-gen-3-alpha/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://www.deepfloyd.ai/deepfloyd-if
https://www.deepfloyd.ai/deepfloyd-if
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
 https://www.lesswrong.com/posts/Quqekpvx8BGMMcaem/interpreting-and-steering-features-in-images
 https://www.lesswrong.com/posts/Quqekpvx8BGMMcaem/interpreting-and-steering-features-in-images
 https://www.lesswrong.com/posts/Quqekpvx8BGMMcaem/interpreting-and-steering-features-in-images
 https://www.lesswrong.com/posts/bCtbuWraqYTDtuARg/towards-multimodal-interpretability-learning-sparse
 https://www.lesswrong.com/posts/bCtbuWraqYTDtuARg/towards-multimodal-interpretability-learning-sparse
 https://www.lesswrong.com/posts/bCtbuWraqYTDtuARg/towards-multimodal-interpretability-learning-sparse
https://github.com/guoqincode/DiT-Visualization
https://github.com/guoqincode/DiT-Visualization

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. arXiv preprint
arXiv:1306.5151,2013. 4,5, 11

A. Makhzani and B. Frey. K-sparse autoencoders. arXiv
preprint arXiv:1312.5663,2013. 2,3

A. Ng et al. Sparse autoencoder. CS294A Lecture notes, 72
(2011):1-19, 2011. 3

Nostalgebraist. Interpreting gpt:  The logit lens.
2024. https://www.lesswrong.com/posts/
AcKRB8wDpdaN6v6ru/interpreting-gpt—-the-
logit—-1lens. 5

B. A Olshausen and D. J Field. Sparse coding with an over-
complete basis set: A strategy employed by v1? Vision re-
search, 1997. 2

M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec,
V. Khalidov, P. Fernandez, D. Haziza, F. Massa, A. El-
Nouby, et al. Dinov2: Learning robust visual features with-
out supervision. arXiv preprint arXiv:2304.07193, 2023. 4,
8, 11

O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar.
Cats and dogs. In CVPR, 2012. 1,4, 11

O. Patashnik, D. Garibi, I. Azuri, H. Averbuch-Elor, and D.
Cohen-Or. Localizing object-level shape variations with text-
to-image diffusion models. In /ICCV, 2023. 2

W. Peebles and S. Xie. Scalable diffusion models with trans-
formers. arXiv preprint arXiv:2212.09748, 2022. 2, 3, 4,
7

J. Peyre, 1. Laptev, C. Schmid, and J. Sivic. Weakly-
supervised learning of visual relations. In ICCV, 2017. 7,
13

D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn,
J. Miiller, J. Penna, and R. Rombach. Sdxl: Improving latent
diffusion models for high-resolution image synthesis. arXiv
preprint arXiv:2307.01952, 2023. 3

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S.
Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al.
Learning transferable visual models from natural language
supervision. In ICML, 2021. 8, 11

A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen.
Hierarchical text-conditional image generation with clip la-
tents. arXiv preprint arXiv:2204.06125, 2022. 3

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Om-
mer. High-resolution image synthesis with latent diffusion
models. In CVPR, 2022. 2, 3, 4

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In MIC-
CAI 2015. 4

C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L Den-
ton, K. Ghasemipour, Raphael Gontijo L., B. Karagol Ayan,
T. Salimans, et al. Photorealistic text-to-image diffusion
models with deep language understanding. In NeurlIPS,
2022. 2,3

L. Sharkey, D. Braun, and B. Millidge. Taking features out
of superposition with sparse autoencoders, 2022. Al Align-
ment Forum, 2023. https://www.alignment forum.
org / posts / z6QQJIbtpkEAX3A0]j]j / interim -
research-report-taking-features—-out-of-
superposition. 4

(52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]

P. Sharma, N. Ding, S. Goodman, and R. Soricut. Conceptual
captions: A cleaned, hypernymed, image alt-text dataset for
automatic image captioning. In ACL, 2018. 4, 11

J. Song, C. Meng, and S. Ermon. Denoising diffusion im-
plicit models. arXiv preprint arXiv:2010.02502, 2020. 4

V. Surkov, C. Wendler, M. Terekhov, J. Deschenaux, R.
West, and C. Gulcehre. Unpacking sdxl turbo: Interpret-
ing text-to-image models with sparse autoencoders. arXiv
preprint arXiv:2410.22366, 2024. 2

MosaicML NLP Team. Introducing mpt-7b: A new standard
for open-source, commercially usable llms. 2023. www.
mosaicml.com/blog/mpt-"7b. 4,11

A. Templeton, T. Conerly, J. Marcus, J. Lindsey, T. Bricken,
B. Chen, A. Pearce, C. Citro, E. Ameisen, A. Jones, H.
Cunningham, N. L Turner, C. McDougall, M. MacDiarmid,
C. D. Freeman, T. R. Sumers, E. Rees, J. Batson, A. Jermyn,
S. Carter, C. Olah, and T. Henighan. Scaling monose-
manticity: Extracting interpretable features from claude 3
sonnet.  Transformer Circuits Thread, 2024. https:
//transformer-circuits.pub/2024/scaling-
monosemanticity/index.html. 2

R. Tibshirani. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society Series B: Sta-
tistical Methodology, 58(1):267-288, 1996. 3

M. Toker, H. Orgad, M. Ventura, D. Arad, and Y. Belinkov.
Diffusion lens: Interpreting text encoders in text-to-image
pipelines. arXiv preprint arXiv:2403.05846, 2024. 2

S. Tong, Z. Liu, Y. Zhai, Y. Ma, Y. LeCun, and S. Xie. Eyes
wide shut? exploring the visual shortcomings of multimodal
Ilms. In CVPR, 2024. 4, 8, 11

N. Tumanyan, M. Geyer, S. Bagon, and T. Dekel. Plug-and-
play diffusion features for text-driven image-to-image trans-
lation. In CVPR, 2023. 1,2, 7

A. Voynov, Q. Chu, D. Cohen-Or, and K. Aberman. p+:
Extended textual conditioning in text-to-image generation.
arXiv preprint arXiv:2303.09522, 2023. 2

W. Wang, Q. Sun, F. Zhang, Y. Tang, J. Liu, and X. Wang.
Diffusion feedback helps clip see better. arXiv preprint
arXiv:2407.20171,2024. 1

W. Wu, Y. Zhao, H. Chen, Y. Gu, R. Zhao, Y. He, H. Zhou,
M. Z. Shou, and C. Shen. Datasetdm: Synthesizing data with
perception annotations using diffusion models. In NeurIPS,
2023. 1

J. Xu, S. Liu, A. Vahdat, W. Byeon, X. Wang, and S.
De Mello. Open-vocabulary panoptic segmentation with
text-to-image diffusion models. In CVPR, 2023. 1,2, 11

X. Yang and X. Wang. Diffusion model as representation
learner. In ICCV, 2023. 2

J. Ye, N. Wang, and X. Wang. Featurenerf: Learning gen-
eralizable nerfs by distilling foundation models. In ICCV,
2023. 2

W. Yu, Z. Yang, L. Li, J. Wang, K. Lin, Z. Liu, X. Wang,
and L. Wang. Mm-vet: Evaluating large multimodal models
for integrated capabilities. arXiv preprint arXiv:2308.02490,
2023. 4,8

W.Zhao, Y. Rao, Z. Liu, B. Liu, J. Zhou, and J. Lu. Unleash-
ing text-to-image diffusion models for visual perception. In
ICCV,2023. 1


https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
www.mosaicml.com/blog/mpt-7b
www.mosaicml.com/blog/mpt-7b
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

Revelio: Interpreting and leveraging semantic information in diffusion models

Supplementary Material

A. Text Conditioning in Diffusion Models

Following the findings from [64], we report the perfor-
mance of Diff-C in two text conditioning scenarios: i)
empty prompt and ii) a meaningful prompt, e.g., “a photo
of a {class_name}, a type of pet”, with the class_name
first inferred through a zero-shot classification with CLIP.
The motivation behind reporting both scores is to provide
a comprehensive understanding of how text conditioning
affects visual features at each layer. We report the clas-
sification performance with and without CLIP-inferred
captions in Tables 6, 7, and 8. We note that passing
specific class information inferred from CLIP generally
helps across all three datasets, layers, and timesteps. To
further understand how specific the captions should be, we
experiment by passing a generic prompt, e.g., “a photo of a
pet” during the diffusion process. As shown in Table 9 for
up_ft1l layer, on Oxford-IIIT Pet [41], compared to the
base setting of passing in an empty prompt, using a generic
prompt leads to a performance drop by 3.14%. This indi-
cates that the specificity of the text being used to condition
directly impacts feature representation quality, where more
targeted prompts align better with class-relevant features,
thereby improving model accuracy. Consequently, using
precise text conditioning can lead to considerable gains
in performance, particularly in distinguishing nuanced
categories. However, this may not always be the case as
described in Sec. 4.7, where for FGVC-Aircraft [35] con-
ditioning with the class names led to a dip in classification
performance.

B. Layer-wise PCA Analysis of Feature Maps

Figures 11 and 12 provides more evidence to the findings
in Sec. 4.5. by highlighting differences in how SD 1.5 and
DiT encode spatial information. In SD 1.5, the feature maps
reveal well-defined spatial structures, with consistent colors
and textures that correspond to specific regions in the im-
age. By contrast, the feature maps of DiT display blended
patterns, suggesting a stronger focus on capturing global
context rather than emphasizing distinct spatial details.

C. Additional Details on the Visual Reasoning
Task

Hyper-parameters: We adopt the same hyperparameters
used in the the LLaVA-Lightning [31] configuration across
all experiments. We use MPT-7B-Chat [55] as the language
model, and CLIP ViT-L/14 [46], DINOv2 ViT-L/14 [40],

SD 1.5 as the vision encoders. We show the training hyper-
parameters in Table 12. All experiments were conducted
using a maximum of 4 NVIDIA RTX A6000 GPUs.

Pre-training datasets: Following LLaVA-Lightning [31],
we use CC595k [52] for stage 1 pre-training, to align the vi-
sual encoder with the language model to establish a shared
vision-language representation, by tuning the adapter.
For stage 2 fine-tuning we use LLaVA-Instruct-80K [31]
to fine-tune the model to enhance instruction-following
capabilities.

Adapter settings: For experiments involving CLIP and
DINOv2 features, we use the standard 2 layer MLP
projector to align visual tokens with language tokens [31].
To obtain tokenized representations from the feature maps
obtained from SD 1.5, we first add a 2 layer convolutional
block and transform the feature map into pseudo-tokenized
representations that match the token embedding dimensions
of CLIP and DINOvV2. These pseudo-tokenized represen-
tations are then passed into the 2 layer MLP projector for
alignment.

Interleaving diffusion features with CLIP for visual
reasoning tasks: For the experiments reported in Sec. 4.6,
we first gradually reduce the spatial dimension of up_ft1
from 1280 x 32 x 32 to 256 x 1024 to match the token
dimensions of CLIP vision embeddings. Next, we pro-
cess these embeddings through two separate multi-layer
projection layers resulting in projected embeddings of
shape 256 x 4096. Finally, we interleave the projected
token embeddings as done in [59] before passing them into
LLaVA [31].

Performance: Table 11 compares the performance of dif-
ferent vision encoders in LLaVA, including CLIP (Ta-
ble 11a), CLIP+DINOvV2 (Table 11b), and CLIP+Diffusion
at timesteps ¢t = 25 (Table llc) and ¢ = 200 (Ta-
ble 11d). The evaluation is conducted on the LLaVA-Bench
(in-the-wild) [31] benchmark. The benchmark evaluates
models across four categories: overall performance (‘all’),
complex reasoning (‘LLaVA Bench complex’), conversa-
tional tasks (‘LLaVA Bench conversational’), and descrip-
tive tasks (‘LLaVA Bench detail’).

For the ‘detail’ category, CLIP+Diffusion at ¢ = 25
achieves the highest relative score of 56.2, outperform-
ing both CLIP (50.4) and CLIP+DINOv2 (37.7). This
demonstrates that the interleaved diffusion and CLIP fea-
tures effectively capture fine-grained visual details. In the



Timestep (t) bottleneck (empty / from_CLIP) up_ft0 (empty / from_CLIP) up_ftl (empty / from_CLIP) up_ft2 (empty / from_CLIP)

0 522715274 48.79 1 49.06
25 51.76 /1 54.88 50.49/51.19
100 51.07/55.12 49.48/51.10
200 50.91/52.51 49.63 /49.99

64.09/ 62.826 50.55/49.15
65.07/63.69 50.25/49.21
64.15/64.98 51.37/50.53
63.88/63.13 50.53/50.55

Table 6. Top-1 accuracy at different timesteps and layers for fine-grained task (FGVC-Aircraft).

Timestep (t) bottleneck (empty / from_CLIP) up_ft0 (empty / from_CLIP) up_ftl (empty / from_CLIP) up_ft2 (empty / from_CLIP)

0 68.79 / 84.33 66.99 /79.50
25 69.97 / 85.25 73.29/84.17
100 69.53 /85.88 67.07/81.33
200 68.03 /86.43 65.87/81.79

88.28/90.11 77.79 1 80.67
88.61/90.68 81.63/85.28
88.29/90.97 78.82 /84.36
86.89/90.32 78.49/84.79

Table 7. Top-1 accuracy at different timesteps and layers for fine-grained task (Oxford-IIIT Pet).

Timestep (t) bottleneck (empty / from_CLIP) up_ft0 (empty / from_CLIP) up_ftl (empty / from_CLIP) up_ft2 (empty / from_CLIP)

0 85.83/92.13 85.75789.68
25 87.59/91.32 86.54/90.81
100 88.28/92.41 88.18/90.66
200 88.36/91.65 87.23/90.73

86.75/88.18 79.11/80.28
87.72/91.08 81.07/82.69
87.99/92.05 82.02/84.73
89.22/92.26 82.69/85.63

Table 8. Top-1 accuracy at different timesteps for coarse-grained task (Caltech-101).

Timest
Prompt Type &
25 200
Empty Prompt  88.61  86.89
from_CLIP 2.34 3.94
generic 3141 313

Table 9. Performance vs Text Conditioning on Oxford-IIIT Pet using
up-_ft1: Using a generic prompt (“A photo of a pet”) leads to a dip in
classification performance compared to using an empty prompt. By con-
trast, using a targeted caption (“A photo of a {class-name}, a type of
pet”) leads to a boost in performance.

Layer Output Shape Description
convl [B,1024, H, W] conv2D, 3 X 3
conv2 B,1024, H/2, W/2 conv2D, 3 X 3, stride 2
conv3 B,1024, H/4,W/4 conv2D, 3 X 3, stride 2
conv4 B,1024, H/8, W/8 conv2D, 3 X 3, stride 2
GAP [B,1024,1,1] global average pooling
FC [B, NUM_CLASSES] flatten + FC layer

Table 10. Architecture of Diff-C (40M params).

‘complex’ category, CLIP+Diffusion at £ = 200 achieves
the highest relative score of 70.5, surpassing CLIP (68.4).
At t = 25, CLIP+Diffusion scores 67.9 indicating that
the coarser-grained features extracted at higher timesteps
(t = 200) seem more effective for this specific task that re-
quires broader contextual understanding. Next, for the ‘con-
versational’ category, CLIP+Diffusion at ¢ = 25 achieves a
relative score of 51.3, outperforming both CLIP (43.9) and
CLIP+DINOV2 (35.6). The interleaving of diffusion and

CLIP features significantly enhances the model’s ability to
handle visually grounded conversational tasks effectively.

Finally, we report the overall performance under the
‘all’ category and note that CLIP+Diffusion achieves a
superior performance with a score of 59.9 at { = 25,
outperforming CLIP’s standalone score of 56.6. This
reinforces the power of the visual representations learnt
from the diffusion process in achieving top-performance on
diverse vision-language tasks.

D. Additional k-SAE Visualizations

DiT vs U-Net: In this section, we provide additional
visualizations of k-SAE features. As shown in Fig. 13
(b), (e), Block 14 of DiT captures more class-specific
information than other blocks which is qualitatively cor-
roborated in Table 2d. However, compared to SD 1.5, DiT
captures less distinct class information, as seen in the snow
background in Fig. 13 (h). Moreover, the spatially related
photographic styles observed in Sec. 4.5 do not emerge in
DiT. We hypothesize that the transformer-based relies less
on inductive bias information compared to UNet-based SD
1.5, as discussed in Sec. 4.5.

Later timesteps: Figure 14 presents k-SAE visualization
at t = 500 for SD 1.5. Compared to ¢ = 25, features
at t = 500 focus more on low-level information, such as
texture and low-light, which is qualitatively corroborated in
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Figure 12. PCA Feature Maps DiT on images from UnRel [44] - The blending of colors suggests that the model encodes global relationships while
maintaining a holistic representation of spatial structures, rather than isolating precise local details.

Table 2b. We hypothesize that as the diffusion timestep in- E. Additional k-SAE Experiments
creases, so does the added noise, rendering the features less

useful for transfer learning, consistent with our observations

in Sec. 4.4.

Effect of image resolutions: To assess the robustness of
our method across varying input resolutions, we conduct
additional experiments examining the effect of image reso-
lution. As shown in Table 13, using different image resolu-
tions exhibits a similar trend in terms of 0;4p¢;, With smaller
resolutions resulting in slightly reduced variance across dif-



Category Relative Score GPT-4 Score LLaVA Score
All 56.6 82.7 46.8
LLaVA Bench complex 68.4 80.4 55.0
LLaVA Bench conversational 43.9 87.1 38.2
LLaVA Bench detail 50.4 82.0 41.3
(a) CLIP LLaVA
Category Relative Score GPT-4 Score LLaVA Score
All 47.0 84.8 39.8
LLaVA Bench complex 59.9 81.1 48.6
LLaVA Bench conversational 35.6 94.1 335
LLaVA Bench detail 37.7 81.3 30.7
(b) CLIP+DINOvV2 LLaVA
Category Relative Score GPT-4 Score LLaVA Score
All 59.9 83.2 49.8
LLaVA Bench complex 67.9 80.0 54.3
LLaVA Bench conversational 51.3 90.6 46.5
LLaVA Bench detail 56.2 80.7 45.3
(c) CLIP+Diffusion (¢ = 25) LLaVA
Category Relative Score GPT-4 Score LLaVA Score
All 56.8 83.7 475
LLaVA Bench complex 70.5 80.0 56.4
LLaVA Bench conversational 45.6 87.7 40.0
LLaVA Bench detail 45.7 86.0 39.3

(d) CLIP+Diffusion (t = 200) LLaVA

Table 11. Performance on the multi-modal reasoning task for various
LLaVA configurations. The integration of Diffusion features with CLIP
improves performance across all tasks, with notable gains in the ‘detail’
and ‘conversational’ categories.

Hyperparameter Stage

Stage 1 Stage 2
batch size 128 128
learning rate (Ir) 2e-3 2e-5
Ir schedule decay  cosine cosine
Ir warmup ratio 0.03 0.03
weight decay 0 0
epoch 1 1
optimizer AdamW [32]
deepspeed stage 2 3

Table 12. Hyperparameters for LLaVA-Lightning (default setting)

ferent DiT blocks on Oxford-IIIT Pet.

F. Additional Details of Evaluation

In this section, we provide additional details on how we
quantify the granularity of semantic information in diffu-
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Figure 13. k-SAE visualizations of the blocks on Oxford-IIIT Pet at
t = 25. Block 14 mainly captures class-specific information, while
other blocks focus more on less distinct features.

(a) Texture (d) Low-light

Figure 14. k-SAE visualizations on Oxford-IIIT Pet of up_ft1 UNet
layer at t = 500. In contrast to the earlier timestep (Fig 3), ¢ = 500
appears to focus more on low-level features.

Oxford-IIIT Pet

Block

(512)  (256)
6 10.18  10.36
10 9.44 10.16

14 9.05  10.06
18 9.55 10.11
22 9.84 10.13

Table 13. Label purity (o;4p.;) measured by computing the average
standard deviation of the class labels of the top-10 most highly activat-
ing images among the top 1000 most highly activating features of the
learned k-SAE:s for different DiT blocks with different resolutions on
Oxford-IIIT Pet. Lower is better.

sion features through a multiple-choice question-answering
task, as discussed in Sec. 4.3. Using GPT-4o0 [3], we eval-
uate the level of semantic detail captured by different diffu-
sion features. Table 14 presents the prompt used to query
the model for this evaluation. Specifically, we assess the



model’s predictions based on the top 10 most highly ac-
tivating images among the top 100 most highly activating
neurons of the learned k-SAE.

Prompt: Each set of images captures
different types of patterns:

1. Class-specific information (e.g., fine-
grained details, animals of the same
breed) .

2. Moderately granular features (e.g.,
similar-looking animals irrespective
of their position).

3. Very coarse information (e.g.,
foreground objects similarly placed
relative to the background) .

4. Could not detect patterns (e.g., noisy
or no specific patterns).

Select only one number (1, 2, 3, or 4)
that best describes the shared pattern

**xRespond with just the number and nothing

else.xx*

Table 14. Input prompt for GPT-40 based evaluation.
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