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Abstract— Climate change and other factors are causing in-
creasingly frequent and intense forest fires worldwide. Robotics
systems can improve the feasibility of prevention and mitigation
efforts. In this work, we propose an unmanned aerial vehicle
that can map a forest region to allow an unmanned ground
vehicle to autonomously clear fuel to prevent the spread
of fire. We developed a multi-sensor payload consisting of
cameras, LiDAR, and GPS with onboard processing. We also
implement a SLAM system to understand the 3D structure
of the environment, a semantics system to identify fuel and
other features in the environment, and a traversability system
that predicts which region a UGV can navigate. This approach
provides a 3D map of the environment and geo-registered maps
describing the locations of fuel and traversable regions. We
validate our method with preliminary field trials and show that
this is a promising approach.

I. INTRODUCTION

In recent years, the number of wildfires has been above
the 10-year average in the United States and Europe [1], [2].
According to NIFC [3], the main factors that increase fire
susceptibility are hot and dry conditions that can turn vege-
tation into highly combustible material. Wildfire researchers
have studied the mitigation of these factors by mapping
potential zones that contain fuels that provide favorable con-
ditions for fire propagation [4], [5]. The capability of satellite
imagery to cover large regions have made remote sensing
the most popular method to this aim [6]. However, both low
spatial resolution and infrequent visitations preclude precise
mapping.

Unmanned aerial vehicles (UAVs) have been proposed
as an alternative for preventing, monitoring, and fighting
wildfires. The ability to cover large areas and create higher
resolution maps with data available on-demand makes UAVs
especially suitable for these tasks. UAVs can also carry
different types of sensors (e.g., visual, thermal, or spectral
cameras, laser scanners) that provide more information for
decision making and sometimes actuated hoses to fight
fires [6]. Given the typically unstructured nature of forests,
there are several challenges in processing all the sensor
measurements to robustly map or actuate in the environment.

Considering the danger that wildfires represent for human
firefighters, significant effort has been oriented toward the

∗Authors contributed equally
1The Robotics Institute, Carnegie Mellon University, Pittsburgh,

PA, USA {davidrus, chinmayg, wkuang, fyandun, dw0s,
gkantor}@andrew.cmu.edu

2Department of Electronics, Universidad Técnica Federico Santa Marı́a,
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use of robots in fire fighting [7]. However, robotic forestry
maintenance can play a key role in prevention tasks, espe-
cially when teaming aerial and ground vehicles. For example,
effectively cleaning combustible vegetation can be a suitable
way to prevent wildfires [8].

We developed an aerial sensing system based on visual
imagery, inertial, and LiDAR data to identify fuel clusters
and characterize the terrain morphology. In that way, we
can create a multilayer map that a ground robot can use to
remove hazardous material and navigate the environment. We
propose the use of a SLAM system that tightly couples the
state estimations from each sensor and fuse them in a factor
graph scheme. The resulting odometry, along with a deep
learning semantic segmentation approach, is used to create a
map that localizes fuel clusters in the scene. We also evaluate
the traversability of the terrain using the 3D point cloud
generated by the SLAM system. Finally, we create a two-
layer map that fuses both fuel localization and traversability
information for a ground robot to navigate. The contributions
of our work are twofold: first the thorough evaluation of each
component of our system and second the complete system
itself, which provides a novel perception system for wildfire
prevention and forestry management.

This work is organized as follows: Section II summarizes
previous related work. In Section III we describe our aerial
vehicle and the sensing payload. Section IV describes the
localization and mapping algorithm. The image processing
methods to detect and localize fuel clusters are presented in
Section V. Section VI introduces our early efforts to create
the traversability layer of the map. The results of the tests for
each part of the system are summarized in Section VII-A.
Finally Section VIII describes the conclusions of our work.

II. RELATED WORK

Unmanned aerial vehicles (UAVs) have proven to be
useful and effective in forestry applications as they provide
a targeted approach for monitoring and conducting multi-
temporal surveys for canopy closure monitoring, tree height
estimation or vegetation classification [9], [10]. Specifically,
for fire risk management and mitigation, drones have proven
to be useful by reducing the human intervention in such
dangerous scenarios [6], [11]. For example, a drone equipped
with visual and thermal cameras was used in [12] to detect
hotspots in a controlled wildfire. A swarm of drones has also
been proposed as a decentralized and more efficient way to



monitor fires, as in [13] and [14]. However, only simulated
results are presented in both works.

While fighting wildfires has received much attention, using
robots for management tasks to prevent or reduce the risk
of uncontrolled wildfires is still at an early stage. Recently,
Couceiro et. al. [8] described the concept of a muti-robot
system where a UAV explores the environment and creates
a map of the fuel clusters, and a ground robot removes
them. Nevertheless, to the best of our knowledge, there is
no implementation of such a system either in simulated
or real environments. Our work fits in this scheme, by
using the drone and the sensing payload to create a map
of the environment with fuel cluster localization and terrain
traversability information.

Simultaneous Localization and Mapping (SLAM) is nec-
essary to enable UAVs and generally mobile robots to have a
level of autonomy so that they could precisely capture fine-
level details from the environment. Over the years, research
has explored equipping UAVs with a sensor suite such that
each sensor modality exploits the strengths of another sensor
to compensate for its weaknesses (i.e., repeating structures,
insufficient lighting, lack of visual features) [15], [16]. For
instance, a LiDAR inertial odometry via smoothing and
mapping (LIO-SAM) [17] expands the well-known LOAM
[18] framework by including a loop closure method and
feedback from absolute measurements, namely GPS and
compass heading.

Including semantics in a SLAM pipeline is especially
useful for our application visual information can be used
to detect the fuel clusters and then locate them in a global
reference frame. Precisely, semantic SLAM allows such a
joint 3D representation with classification information. It has
gained attention in recent years especially for applications
like autonomous driving or assistive robotics [19], [20].
Unfortunately, many of these advances are not well-suited to
being directly applied to the forestry domain, to the best of
our knowledge. The different visual appearance of vegetation
and other natural structures, along with artifacts in the images
produced by the movement of the drone make the use of
available state of the art methods like SuMa++ [21] and
Kimera [22] especially challenging in our application.

Terrain characteristics form an integral part of the naviga-
tion strategy of an autonomous ground vehicle, and therefore
its estimation and mapping have been an important research
topic. Many works in this area have been used for different
types of robotic systems where parameters such as slope,
roughness, and step height are commonly employed [23],
[24]. Based on the type of sensor information used and their
characteristics, approaches based on proprioceptive data, the
geometry of the scene, or its visual appearance have been
used [25], [26].

III. AERIAL PLATFORM AND SENSING PAYLOAD

The aerial platform we used in this work is the commercial
drone DJI M600. The drone was equipped with a sensing
payload that consists of two 1.4 Megapixel cameras in

(a) (b)

Fig. 1: DJI M600 with sensor payload: (a) isometric view of
DJI M600 with sensor payload; (b) Exploded view of sensor
payload and key components.

Fig. 2: General scheme of the multi-sensor SLAM system.

a stereo configuration with a baseline of 0.25m, an iner-
tial measurement unit (XMTi-30-AHRS Development Kit,
XSens), a three-dimensional LiDAR (Velodyne VLP-16), and
a consumer-grade computer with an Intel Core i7 (5Ghz)
processor. To synchronize the sensor data acquisition, we
used a custom-built board that generated pulse per second
(PPS) signals mimicking a GPS receiver [15]. In this way,
we ensure the time synchronization is maintained even in
absence of a GPS signal. The telemetry and geo-localization
data from the drone computer were also retrieved by the
payload computer using serial communication. Figure 1
shows the CAD rendering of the sensing kit and its mounting
on the drone.

IV. SIMULTANEOUS LOCALIZATION AND
MAPPING

We employed a multi-sensor system for simultaneous
localization and mapping to detect the fuel clusters in the
environment by obtaining its geometric and visual informa-
tion. Our implementation is inspired by [15], [17], where the
camera, LiDAR, inertial, and -optionally- GPS measurements
are coupled in a factor graph scheme to obtain the 6 degrees
of freedom pose of the platform and a three-dimensional map
of the environment in the form of a point cloud. Thus, the
estimated state of the robot is represented as a 6-dimensional
vector corresponding to the position of the drone and its
orientation in space. The SLAM system uses three tightly
coupled factor graphs: inertial, visual, and LiDAR, as shown
in Figure 2.

The inertial factor graph (Figure 3) uses the IMU mea-



Fig. 3: IMU preintegration graph. Visual and LiDAR factors
refer to the odometry data generated from these sensors. The
Si is the current optimized state (position and orientation).

surements and a preintegration process [27] to constrain the
relative pose between states. When available, the latest visual
or LiDAR odometry estimations are included as prior factors
to obtain an optimized inertial state S.

The second factor graph employs the approach described
in [15]. It uses the images from the stereo pair, and obtains
Oriented FAST and Rotated BRIEF [28] visual features that
serve as the landmarks to estimate the constraints between
states. The IMU preintegration is also included as another
edge between states, while the LiDAR odometry is used as
a prior factor, when available. Figure 4 depicts the overall
graph, whose result is the optimized visual state ζ.

The LiDAR factor is created following the approach
proposed in [18]. We first calculate the relative position
and orientation between LiDAR scans using a scan to map
registration algorithm. It is initialized using the odometry
from the IMU S, which improves the accuracy of the regis-
tration process. This results in the constraint edge between
LiDAR states in the graph. Additionally, we included here
loop closure and GPS factors, in a similar way to proposed
in [17]. The first result of this graph is the optimized LiDAR
state S , which is used in the inertial and visual graphs. The
second result comes from the scan to map registration, which
provides a three-dimensional point cloud of the environment.
Figure 5 shows a general scheme of the implemented LiDAR
factor graph.

V. SEMANTIC SEGMENTATION FOR FUEL
LOCALIZATION

The final objective of this work is to localize flammable
regions which could be removed by the UGV. To this aim,

Fig. 4: Visual factor graph. LiDAR odometry is used as prior
factor to constrain camera odometry.

Fig. 5: LiDAR factor graph. A scan to scan algorithm
computes raw LiDAR odometry using a initial estimation.
The, lidar factor is completed with the GPS and loop closure
restrictions.

we used a image-based semantic segmentation deep network
to predict features of the scene which cannot be determined
from the SLAM system’s 3D point cloud. The main classes
we segment are: trunks, canopies, background and fuel.
Fuel is specially important and consists of any vegetation
that is at ground level so a ground vehicle can remove
it. Trunks and canopy will be employed in future work
for improving our SLAM pipeline. Background basically
contains miscellaneous objects like dirt or the sky.

A. Data

We explored several sources of data with imagery of
forest scenes and chose two datasets that best matched our
application domain. The first dataset used a graphics engine
to render photorealistic viewpoints from a procedurally-
generated forest scene [29]. Using a different texture, the
same scene was used to render ground-truth classification
images representing the class of the object at each pixel in
the scene. From this dataset, which we will call the synthetic
dataset, we used 3154 images with a consistent resolution of
848 x 480. The second dataset contains 151 real images from
a forest located in the Setes Fontes region and described
in [30]. These images were manually labeled with precise
polygons and had a resolution of 1280 x 720. We will refer
to this dataset as the Setes Fontes dataset.

B. Semantic SLAM

The goal of semantic SLAM is to fuse the semantic
observations from different observations into a global map
that captures both the shape and semantics. To accomplish
this task, we used a loosely coupled approach to fuse the
semantic segmentation (at image level), the LiDAR readings,
and the drone odometry given by the SLAM system. We call
it a loose coupling as there is no feedback from the semantic
mapping into the SLAM pipeline.

In the image domain, we use a segmentation network
based on a transformer architecture called SegFormer [31].
Given the relatively low amount of real-world images in our
training dataset, this network was especially suitable since
it showed strong performance on benchmark datasets and
good generalization capabilities. We trained this model using
the default parameters used in the MMSegmentation [32]
implementation.



Subsequently, we modified an approach for RGB-D se-
mantic SLAM [33] to project the detections from the image
to the LiDAR domain (i.e., three-dimensional). First, the im-
age is passed through the semantic segmentation network to
get a classification result for each pixel. Using the extrinsics
of the LiDAR relative to the camera, we transformed the
LiDAR measurements into the camera’s coordinate frame.
Then, using the calibrated camera intrinsic, we project each
LiDAR point into the image plane. Points within the field
of view of the camera are assigned a classification label
from the corresponding pixel in the semantic map. This
semantically-textured point cloud is transformed into the
inertial reference frame using the current pose of the drone
estimated by our SLAM system.

We use an octomap [34] representation to efficiently dis-
cretize the generated semantic point cloud into voxels. Each
voxel has a resolution of 0.05m and contains information
about the predicted classification. Each time a new semantic
point cloud is created, it is used to update this global
octomap. Since each voxel can contain multiple observations,
we use two approaches to determine the aggregate classifi-
cation. The first method assigns the class label using the
highest-confidence prediction from the neural network that
corresponds to that voxel. Alternatively, we use a Bayesian
method which maintains a probability distribution over the
classes. Each new observation is multiplied by the current
distribution and then re-normalized. The voxel is then labeled
with the most probable class.

VI. TERRAIN TRAVERSABILITY EVALUATION

Given that we have a 3D point cloud of the environment,
we also evaluated the traversability of the terrain to give a
ground robot a prior map for global planning and navigation.
In this way, we can use the versatility of the drone to cover
larger regions and get views of scenes that can be obstructed
at ground level. The traversability and semantic maps are
then fused forming a multi-layer map for the ground vehicle’s
operation.

As mentioned before, we used the 3D point cloud gen-
erated by the SLAM system as input. As the first step,
the Cloth Simulation Filtering algorithm [35] was used to
separate the cloud points into ground and non-ground points.
This separation allowed us to evaluate the traversability of
terrain patches based on the presence of non-ground points
in a particular area and further use the data to get the terrain
slope and roughness.

A. Heuristics-based Approach

The heuristics-based approach fundamentally uses the
ratio of non-ground and ground points to determine the
traversability of a region. First, the entire point cloud is
divided in the XY plane into a grid of 1m resolution in
each direction. This value was chosen to achieve a trade-
off between computational efficiency and spatial resolution.
Within each grid block, we then calculated the ratio between
the number of non-ground and ground points. If it exceeded a
threshold of 0.3, the grid block was assigned a traversability

index of zero (i.e., non-traversable). Otherwise, the index was
set to one (i.e., traversable). This threshold was selected by
trial and error in different experiments and was found to be
highly dependent on the scene.

This approach is computationally costly since it requires
the division of the point cloud into a grid and calculations
for each block, and as the map increases and the point cloud
data updates, this becomes highly inefficient. The complexity
depends on the resolution of the map, with higher resolutions
growing exponentially in complexity. Moreover, this makes
use of a simple heuristic that is not resilient to noise and
imperfections in the point cloud data.

B. DEM-based Approach

In this approach, the point cloud data is translated into a
Digital Elevation Map (DEM) representation. Using the topo-
toolbox from MATLAB [36], we calculated the roughness
and slope of the terrain. The more efficient implementation of
this toolbox allowed us to divide the point cloud in a grid of
0.3m resolution. Using these two indicators, we implemented
a fuzzy logic system inspired by [25] [37] to obtain a single
traversability index per terrain patch that ranges from 0 to 1
(low to high traversability).

(a) (b)

Fig. 6: Input Membership Function Plots (a) Roughness and
(b) Slope.

Fig. 7: Output Membership Function Plots.

Using the DEM data and the ground point cloud data, we
calculate a traversability index on a scale of 0 to 1, indicating
low to high traversability respectively. Using fuzzy logic
framework on the terrain data with inspirations from [25]
[37], a fuzzy traversability index is calculated. The fuzzy
traversability index quantifies the suitable terrain for the
ground rover to operate on using the roughness and slope in-
formation of the terrain. The terrain roughness and slope are
inputs represented by the linguistic fuzzy sets, {SMOOTH,
ROUGH, ROCKY} and {FLAT, SLOPED, STEEP} respec-
tively. The output is represented by the linguistic fuzzy set
{HIGH, MEDIUM, LOW} and a numeric score is computed



from this set using the centroid method. The final cost is
the complement of the fuzzy system output, calculated as
(1 − traversability). All the fuzzy sets are defined by
the Gaussian Combination fuzzy membership function plots
shown in figures 6 and 7. The following rules in the fuzzy
inference system govern the final output traversability index
:

1) If (Slope is FLAT) and (Roughness is SMOOTH) then
(Index is HIGH)

2) If (Slope is STEEP) or (Roughness is ROCKY) then
(Index is LOW)

3) If (Slope is FLAT) and (Roughness is ROUGH) then
(Index is MEDIUM)

4) If (Slope is SLOPED) and (Roughness is SMOOTH)
then (Index is MEDIUM)

5) If (Slope is SLOPED) and (Roughness is ROUGH)
then (Index is MEDIUM)

VII. RESULTS

To test the full system we used data collected with our
drone and sensing payload in a forestry region located at
41◦13′00.9”N 8◦31′38.6”W in Oporto, Portugal. All flights
lasted around five minutes and were performed under the
canopy with the sensing platform facing the drone’s left
side at an inclination of 62 degrees (pitch). The sensor
data was captured and processed using the robot operating
system (ROS), except for the traversability evaluation that
was performed offline. The unlabeled data produced in these
field trials is referred as the Oporto dataset.

We first evaluated if the odometry computed by the SLAM
system was suitable to obtain reliable pose estimations. This
part is especially important as the semantics and traversabil-
ity evaluation rely on the drone positioning and the map
generated. Thus, we compute the accumulative root mean
squared error (RMSE) during the complete trajectory. The
latitude and longitude GPS coordinates were transformed to
the x, y, z UTM reference system and used as ground truth.
Even though it is a suboptimal choice, a real-time kinematic
(RTK) was not available at the time of the experiments.

As Table I shows, the LiDAR odometry has a lower
RMSE compared to visual odometry in both aerial surveys.
This is likely because the drone produced blurred images,
which together with the presence of close or textureless
objects (e.g., the sky on the horizon) made the computation
of robust visual features highly prone to errors. In these
scenarios, the tightly coupled approach we used proved to
be useful as the LiDAR helped to keep the errors bounded.

TABLE I: Evaluation of the visual and lidar localization from
the SLAM system.

Coordinates
RMSE

Survey 1 Survey 2
Visual LiDAR Visual LiDAR

x 0.5630 0.3226 0.3136 0.3236
y 1.6503 0.3229 0.5461 0.5250
z 0.2957 0.2148 0.2293 0.1817

mean 0.8363 0.2867 0.3630 0.3434
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Fig. 8: Test mIoU for very few training images on the Setes
Fontes dataset. Error bars represent minimum and maximum
result across the five folds of Setes Fontes.
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Fig. 9: Confusion matrix for the Setes Fontes test datasets
normalized per class with the true fraction of each class
reported on the y axis labels.

The LiDAR odometry showed a better performance mainly
to the presence of the GPS and loop closure factors.

Considering the scale of the intended operation (the test
area spans approximately 4684m2) we considered these
errors acceptable to use the SLAM system for the semantic
and traversability mapping in the early stage of the drone
and ground robot integration.

A. Semantic Mapping

Given the limited availability of real data and the labor-
intensive nature of labeling to obtain ground truth, we ex-
plored the utility of models trained with simulated (synthetic)
data. We conducted three types of experiments: models
trained solely with synthetic data, models trained with real
data (Setes Fontes), and a mixture of both. For the last two
cases, we trained with an increasing number of real images
to evaluate the performance of the model with minimal real
images. Thus, we conducted training experiments using (or
adding) 7, 15, 21, 30, 60, 91, and 121 data points from the
Setes Fontes dataset. We trained for 10000 iterations and
evaluated each model in 30 Setes Fontes images not seen
in the largest training split are used for evaluation and we
replicate this experiment over five folds of the data. The three
models are a fine-tuned implementation as the base networks
were first trained with the CityScapes dataset [38].

We conducted experiments to determine how many real
training images were needed, with and without synthetic
pretraining, as seen in Figure 8. We used mean Intersection
over Union (mIoU) to evaluate the quality of the predictions



Fig. 10: Predictions on the Oporto dataset. Black is back-
ground, red is fuel, brown is trunks, and green is canopy.

on the test set. It is interesting to note the relatively high
performance of a model that used only 7 real images. Also,
the model trained solely on synthetic data fails to generalize
to real data, even after properly accounting for differences in
mean and variance of both datasets. We found that combined
real and synthetic data performs worse than training the same
model only using real data. This suggests that the synthetic
data comes from a completely different distribution than the
real one, making its contribution detrimental. In the future,
we plan to keep researching the causes of this interesting
outcome.

As the model trained in 121 images (80% of the Setes
Fontes dataset) showed the best performance and was used
for deployment in the Oporto dataset, which was never seen
during training. The confusion matrix on the Setes Fontes test
set can be found in Figure 9 and qualitative results are in
Figure 10. As we are mainly interested in the fuel instances,
we aggregated the background, trunks, and canopies in a
single non-fuel class. In that case we obtained an IoU of
78.2% and 95.3% for Fuel and Not Fuel, respectively,
which yields a mIoU of 86.7%. This shows that our system
performs well at its primary task of identifying fuel.

Finally, we tested the whole semantic SLAM system on
the Oporto dataset. The results can be seen in Figure 11.
The system was able to distinguish the region of fuel on the
ground. Accurate calibration and pose estimation allowed our
system to correctly predict the class of the small trunks.

B. Traversability

The heuristic and DEM-based approaches were used to
build the occupancy grids shown in Figures 12 a and b,
respectively. With the default settings, the heuristic grid
showed a more permissive layout, that better resembled the
real traversability conditions observed in the field experi-
ments. Conversely, the fuzzy approach is quite conservative,
leading to fewer traversable zones (reducing the viability
of obtaining a proper path). However, we believe the fuzzy
system has better potential as it is faster and provides a better
map resolution. Furthermore, we can tune the membership

Fig. 11: Semantic SLAM results. Fuel is red, trunks are
green, canopy is purple, and background is black. White
points are unlabeled.

(a) (b)

Fig. 12: Traversability Map Results from (a) Heuristics-based
Approach and (b) DEM-based Approach.

functions to reduce the sparsity of the traversable regions.
A traversability map with reduced sparsity and a more
generalized traversability estimate can be achieved with a
deep learning-based approach, but it evidently needs a lot
more forest data.

VIII. CONCLUSIONS

We presented an aerial system that, equipped with visual,
inertial, and LiDAR sensors, allowed us to identify fuel zones
in a forest environment and evaluate the traversability of
the terrain. A thorough evaluation of the SLAM, semantic,
and traversability subsystems were also presented. Special
attention was taken to evaluate the sim to real gap and find
insights about the use of a combination of simulated data for
specific applications like segmenting fuel clusters in forestry.
The overall system produced a geo-referenced two-layer map
containing fuel localization and an occupancy grid that a
ground robot can use to find the objectives to clear and
navigate in the environment.
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