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Abstract
Out-of-Domain (OOD) generalization is the abil-
ity of a model trained on one or more domains to
generalize to unseen domains. In the ImageNet
era of computer vision, evaluation sets for measur-
ing a model’s OOD performance were designed
to be strictly OOD with respect to their style.
However, the emergence of foundation models
and expansive web-scale datasets has obfuscated
this evaluation process, as datasets cover a broad
range of domains and risk test data contamina-
tion. In search of the forgotten domain gener-
alization, we create large-scale datasets subsam-
pled from LAION—LAION-Natural and LAION-
Rendition—that are strictly OOD to correspond-
ing ImageNet and DomainNet test sets in terms
of style. By training CLIP models on these
datasets, we find that OOD generalization chal-
lenges from the ImageNet era still prevail. Fur-
thermore, through a systematic exploration of
combining natural and stylistic datasets at varying
proportions, we identify optimal ratios for model
generalization across several style domains. Our
datasets and results re-enable meaningful assess-
ment of OOD robustness at scale—a crucial pre-
requisite for improving model robustness. Over-
all, we make the sobering point that large-scale
data merely obscures the issue of OOD general-
ization, which remains an unsolved problem.

1. Introduction
Foundation models have revolutionized our world, demon-
strating remarkable capabilities in solving grade school math
problems, writing creative essays, generating stunning im-
ages, and comprehending visual content. One notable exam-
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ple is CLIP (Radford et al., 2021), a vision-language model
pre-trained on a vast dataset of image-text pairs, which
forms the backbone of numerous other foundation models.
CLIP has achieved unprecedented performance in various
benchmarks across many domains—a stark difference to
models in the ImageNet era, which struggled to generalize
to unseen domains. This raises an important question:

Does CLIP solve out-of-domain generalization?

Out-of-domain (OOD) generalization refers to a model’s
ability to perform well on data from domains other than
its training (or source) domain. A domain is usually not
rigorously defined and rather arises from collecting data
in different contexts or environments. Nevertheless, some
domains like the domain of natural images or the domain
of renditions are delineated sufficiently clearly to enable the
collection of datasets like ImageNet-Sketch (Wang et al.,
2019), ImageNet-R (Hendrycks et al., 2020), or Domain-
Net (Peng et al., 2019) for rigorous evaluation.

CLIP’s impressive performance and generalization ability
is primarily attributed to its extensive web-scale training
set (Fang et al., 2022). Despite the large diversity of natural
images in the training set, CLIP is likely to learn robust
representations through exposure to many test domains dur-
ing training. Indeed, Mayilvahanan et al. (2024) showed
that CLIP’s training distribution contains exact or near du-
plicates of all commonly used OOD datasets but were also
able to demonstrate that CLIP’s generalization performance
remains high when correcting for this contamination. How-
ever, their analysis was only concerned with contamination
on a data set level and failed to account for entire data
domains. For example, even after their correction many
rendition images remain in the training distribution (refer to
Tab. 9). It is therefore unclear if CLIP will generalize to do-
main shifts if all datapoints from that domain are removed.
We address this question with the following contributions:

• We develop a domain classifier that effectively distin-
guishes between natural images and renditions. We
achieve this by labeling 19 000 random data points from
LAION-400M for training and 6000 datapoints each from
ImageNet and DomainNet test sets for evaluation.

• By applying the domain classifier to a deduplicated ver-
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Figure 1: Evaluated correctly, CLIP does not generalize across domains. A Models used to be trained on a single domain
like natural images from ImageNet (Russakovsky et al., 2015) and evaluated for out-of-domain (OOD) generalization on
a different domain like renditions from test sets such as ImageNet-R (Hendrycks et al., 2020), ImageNet-Sketch (Wang
et al., 2019). B Today, large foundation models like CLIP (Radford et al., 2021) are trained on web-scale datasets such as
LAION-400M (Schuhmann et al., 2021) containing images from many domains. Tested on a specific domain like renditions,
CLIP exhibits unprecedented performance and appears robust. C We subsample from a deduplicated LAION-400M (Abbas
et al., 2023) to obtain LAION-Natural, web-scale data set containing only natural images, which re-enables a meaningful
assessment of CLIP’s generalization performance to renditions. D CLIP trained on LAION-Natural performs noticeably
poorer on renditions, demonstrating that CLIP does not solve OOD generalization. The models are evaluated on refined test
datasets containing samples only from their intended domains.

sion of LAION-400M, we create two datasets: LAION-
Natural, containing 57 million natural images, and
LAION-Rendition, with 16 million renditions of objects
and scenes. Additionally, we use the domain classifier to
refine common OOD benchmarks by removing a small
number of samples from an incorrect domain.

• Via our proposed LAION-Natural dataset, we demonstrate
that CLIP trained on a single domain performs signifi-
cantly worse on naturally-occurring domain shifts (see 1
for a summary). This indicates that CLIP’s strong per-
formance is due to domain-contamination of the training
data, rather than an inherent ability to generalize OOD.

2. Abridged Related Work
On gauging the OOD generalization performance of CLIP,
Mayilvahanan et al. (2024) remove images that are highly
similar to the test sets to show that data contamination
and high perceptual similarity between training and test
data does not explain generalization performance. While
their data pruning technique removes some samples from
LAION-400M that are somehow close to the test datapoints
they give no guarantee that all images of a given domain
were removed. We refer the reader to Sec. B for a thorough
literature review.

3. Building a Domain Classifier
Our work hinges on filtering out datapoints that belong to
specific domains from web-scale datasets. There is no pre-
cise definition for what constitutes a domain in general. Still,
the community has come to agree on an implicit demarca-

tion of the natural image and renditions domains by virtue
of ImageNet compared to ImageNet-Sketch and ImageNet-
R as well as DomainNet-Real compared to DomainNet-
Sketch, -Quickdraw, -Infograph, -Clipart, and -Painting.
Derived from the overall quality of an image, there is an in-
tuitive, texture-centric notion of style us humans use which
we adopt in this work. Further, we borrow methods from
prior work that successfully classify images into different
domains. We defer the reader to Sec. D for a thorough
description of how we train and test our domain classifiers.

3.1. Domain Composition of LAION-200M

We now deploy the chosen classifiers from Sec. 3 and label
each sample in LAION-200M as natural, rendition, or am-
biguous. We apply the classifiers with their strict thresholds
at 98% validation precision which yields a strong lower
bound for the number of samples in each domain, as well as
with their default thresholds which yields a more rounded
estimate. From Tab. 9, it is clear that the LAION-200M
contains a considerable portion of strictly stylistic images
(with a lower bound of 7.90% corresponding to 16 mil-
lion images), and potentially many more images with some
rendition elements are contained in the ambiguous group.
We detail the domain composition of ImageNet-Train and
datasets from (Mayilvahanan et al., 2024) in Sec. D.5.

3.2. Creating Single-Domain Datasets

To measure the true OOD performance of CLIP, we need
to create a large dataset with only natural examples. We
now use our trained domain classifiers at 98% validation-
precision to subsample LAION-200M. We obtain LAION-
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Figure 2: Across scales, CLIP fails to generalize to unseen domains. The relative corrected OOD accuracy shows
performance losses or gains of a CLIP model trained exclusively on the natural domain via LAION-Natural to a CLIP
model trained on a domain-contaminated dataset like LAION-200M. We evaluate on the original ImageNet and DomainNet
test sets (left) and our cleaned versions of them (right, see Sec. 3.2 Without samples from the rendition domain, CLIP’s
domain generalization ability suffers significantly and consistently across scales.

Table 1: Domain composition of LAION-200M. We apply
our natural and rendition domain classifiers with their strict
thresholds at 98% validation precision to get a lower bound
of samples from each domain and with their default thresh-
olds to obtain a more balanced estimate. Irrespective of the
thresholding, LAION-200M still contains a large amount of
renditions.

Classifier Precision % Samples

Natural Rendition Natural Ambiguous Rendition

0.79 0.77 60.74 25.41 13.86
0.98 0.98 28.40 63.70 7.90

Natural with roughly 57 million samples and LAION-
Rendition with roughly 16 million samples. Figure 7 shows
random samples from both datasets, more samples are
shown in Figs. 19 and 20. We also deploy the domain
classifiers on the ImageNet and DomainNet test sets to re-
move the domain-contamination reported above. The exact
number of datapoints and the number of classes for each
test set are detailed in Tab. 11. These datasets enable us to
fairly assess CLIP’s domain generalization performance in
the following sections.

4. Measuring CLIP’s OOD performance
For all our experiments, we train CLIP ViT-B/32 (Dosovit-
skiy et al., 2020) from scratch for 32 epochs with a batch size
of 16 384 on one node with either four or eight A100 GPUs

(training takes several days, depending on dataset size). We
use the implementation provided by Ilharco et al. (2021)
and stick to their hyperparameters. We first train CLIP on
the 57M LAION-Natural and random subsets of it with
45M, 30M, and 16M samples. We compare the classifi-
cation accuracy of these models to that of CLIP models
trained on random subsets of LAION-200M of the same
sizes by reporting the accuracy ratio, which we refer to as
relative corrected OOD accuracy. We measure this quan-
tity on the original ImageNet and DomainNet test sets and
their cleaned versions (see Sec. 3.2). Fig. 2 summarizes the
results.

Across the board, we find that the relative corrected OOD
accuracy on the clean datasets is around or above 1.0 for nat-
ural test sets, but drops to around 0.4 for most rendition test
sets. This demonstrates that without domain-contamination
of the training distribution, CLIP does not generalize across
domains nearly as effectively as previously assumed. No-
tably, the relative corrected OOD accuracy is very consis-
tent across dataset scales, allowing us to conjecture that
this result holds also for CLIP models trained on much
larger data sizes. To further reinforce this observation, we
build LAION-Mix-nM by replacing n million samples from
LAION-Natural with samples from LAION-Rendition. We
show in Tab. 2 that adding 13 or 16 million renditions has lit-
tle effect on performance on the natural domain, but greatly
improves performance on the rendition domain, highlighting
the effect of domain-contamination.

To put the corrected OOD accuracy in context, we evaluate
effective robustness (Fang et al., 2022; Taori et al., 2020)
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Table 2: Performance on the rendition domain is driven by renditions in the training data. We compare CLIP trained
without renditions on LAION-Natural to CLIP trained on datasets of the same size with renditions: LAION-Mix-nM
contains n million renditions, LAION-Rand is a random subset of LAION-200M with an estimated fraction of 7.9-13.86%
renditions (see Tab. 9). Training with renditions greatly impacts performance on the rendition domain.

Standard Datasets top-1 Acc. Clean Datasets top-1 Acc.

Dataset Natural Rendition Natural Rendition

LAION-Natural 36.88 % 21.98 % 39.72 % 18.75 %
LAION-Mix-12M 37.28 % 40.48 % 38.97 % 43.09 %
LAION-Mix-16M 36.92 % 41.46 % 38.58 % 41.46 %
LAION-Rand-57M 37.63 % 40.66 % 36.99 % 41.32 %
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Figure 3: CLIP’s effective robustness to renditions is driven by domain-contamination. We evaluate effective robust-
ness (Fang et al., 2022; Taori et al., 2020) for models trained on different LAION-200M subsets. Most notably, CLIP trained
on LAION-Natural matches the effective robustness of a LAION-200M-trained CLIP on the natural domain (left), but
has significantly lower effective robustness on the rendition domain, indicating that CLIP requires rendition samples in its
training distribution to perform well on this domain.

on the natural and rendition domain. To this end, Fig. 3
shows the top-1 classification accuracy of multiple CLIP
models trained on LAION-200M, LAION-Natural, LAION-
Rendition, LAION-Mix-13M, and ResNets trained on Ima-
geNet (see Sec. F for details). We include LAION-Mix-13M
as opposed to LAION-Mix-16M since it matches the effec-
tive robustness results for LAION-200M most closely. As
usual, models with the same training regimen lie on a line
and the y-distance of a model to the ImageNet line indi-
cates it’s effective robustness. While all LAION-trained
models achieve a similar effective robustness on the natural
domain (Fig. 3 left), effective robustness on the rendition
domain varies greatly and is notably lowest for LAION-
Natural-trained models. Effective robustness plots on the
individual datasets can be found in App. G. Together, the
findings in this section demonstrate that CLIP’s unprece-
dented OOD generalization performance is a direct result of
the domain-contamination of its training distribution. We de-
fer a detailed discussion of Comparison of LAION training
to ImageNet-training, Short-cut Learning, Domain Classifi-

cation and Ambiguous Datapoints to Appx. C.

5. Conclusion
With the emergence of models trained on enormous web-
scale datasets containing abundant samples from seemingly
all possible domains, the study of domain generalization
mostly came to a halt. Hence, the question of how dataset
scale actually effects the ability of models to generalize
between domains remains mostly unanswered. Here, we
try to answer this question thoroughly by fully controlling
the domain of training samples models are trained on. By
creating clean subsets of LAION containing either natural
images or renditions, and by training models on various
mixtures and dataset sizes, we show that the generalization
performance of CLIP trained on only one domain drops
to levels similar to what we observe for ImageNet-trained
models. Hence, we conclude that the domain generalization
problem remains unsolved even for very large-scale datasets.
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Reproducibility Statement
We describe the methodology to create all of the datasets
we use in Sec. 3.2, D.1, D.2. We also sketch the train-
ing details of all our models in Sec. D.3,4, F. This should
be sufficient to reproduce all our datasets and experimen-
tal results. We aim to host our datasets and models
shortly. The code to train the domain classifiers is avail-
able at https://anonymous.4open.science/r/
clip-dg-68D1/.
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A. Understanding Domain Mixtures
We now expand on the experiment from Tab. 2 to understand how different ratios of domains in the training data affect
downstream performance, and whether this effect transfers across scales. To this end, we show performance on the natural
and rendition domain for models trained on LAION-Mix of different proportions and scales in Fig. 4, left and middle.
The possible mixing ratios at larger scales are limited by the size of LAION-Rendition (16 million images), but we can
nonetheless observe that the optimal mixing ratio is consistent across scales. Interestingly, as we slowly increase the fraction
of natural / renditions samples starting from purely renditions / natural datasets, the performance steeply increases on natural
/ renditions shifts while remaining stable on the other domain.

Rendition DomainNatural Domain

Figure 4: Optimal data mixture transfers across scales. We show the average accuracy on the natural and rendition
domains for models trained with LAION-Mix of different absolute sizes and ratios. As expected, performance on each
domain increases with the number of samples from that domain (left). The optimal mixing ratio for each scale is found at
the intersection with the highest overall average accuracy iso-line. This ratio seems to be consistent across scales at 0.25,
but our analysis is limited by the number of LAION-Rendition samples used for mixing (16 million images).

B. Related Work
Measuring the OOD Generalization of CLIP Models. We aim to understand the OOD generalization capabilities of
CLIP from a data-centric viewpoint. While multi-modal training with rich language captions does seem to contribute to
robustness against distribution shifts (Xue et al., 2024), Fang et al. (2022) demonstrated that the nature of CLIP’s training
distribution (as opposed to its mere size, its specific training objective, or natural language supervision) causes strong
performance on various distribution shifts.

However, it is unclear what aspects of the data distribution drive the robustness gains. Mayilvahanan et al. (2024) remove
images that are highly similar to the test sets to show that data contamination and high perceptual similarity between training
and test data does not explain generalization performance. While their data pruning technique removes some samples from
LAION-400M that lie outside the natural image domain, they do not address domain generalization: They only account for
the part of a domain covered by existing test sets and give no guarantee that all images of a given domain were removed.
In another line of work, Nguyen et al. (2022) discover that a model’s effective robustness (Fang et al., 2022; Taori et al.,
2020) on a test set interpolates when training data is compiled from various sources. While they combine different training
datasets covering a mixture of domains, the authors have not analyzed the changes in effective robustness on a distributional
similarity level. In this work, we take their analysis further and show that mixing two data sources similar to the test
datasets interpolates the effective robustness. Our study’s title is inspired by Gulrajani and Lopez-Paz (2020), who studied
generalization from multiple distinct source domains. In contrast, we focus on generalization from single or mixed source
domains to unseen domains.

Domain Classification. The primary goal of our work necessitates creating web-scale datasets of different domains. This
entails building a robust domain classifier that can reliably distinguish natural images from renditions. This task can be
regarded as classifying the style of an image, which Gatys et al. (2015) proposed to measure using Gram Matrices and which
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has been widely explored since then (Sandoval et al., 2019; Menis-Mastromichalakis et al., 2020; Sandoval Rodriguez et al.,
2018; Joshi et al., 2020; Garcia and Vogiatzis, 2018; Chu and Wu, 2018; Bai et al., 2021). More recently, Cohen-Wang
et al. (2024a) use a fine-tuned CLIP model from OpenCLIP (Ilharco et al., 2021) to distinguish between ImageNet and
shifted versions of ImageNet, such as ImageNet-Sketch, ImageNet-R, and ImageNet-V2 (Recht et al., 2019). Wang et al.
(2023) and Somepalli et al. (2024) develop a dataset classifier using a backbone trained by self-supervised learning and
classification through retrieval via a database. Liu and He (2024) report high performance when training image classifiers to
distinguish between different large-scale and diverse classifiers.

C. Discussion
Comparison to ImageNet To the best of our knowledge, this work is the first to cleanly transfer the evaluation of
domain generalization from the ImageNet era into the era of foundation models. While we do observe a somewhat similar
generalization gap, it is difficult to quantitatively compare models trained on LAION and ImageNet for (at least) two
reasons: For one, the distribution shifts from ImageNet-Val to LAION and ImageNet-Train are very different. Second, we
are comparing a very noisy unsupervised learning method (CLIP + LAION) with a clean supervised learning method (CE +
ImageNet), which is why LAION-trained models need 50×–100× more samples to reach the same ImageNet-Val accuracy
as ImageNet-trained models.

Short-cut Learning Parts of the domain generalization gap of ImageNet models has been attributed to short-cut learning:
models learn to solve a given task (like image classification) using features (like textures) that are misaligned to how humans
solve the same task (like focusing on shape). The widely echoed notion of emergent abilities that models acquire at larger
model and dataset sizes have fueled hopes that some parts of short-cut learning get mitigated simply by training on much
larger and more diverse data. While some effect cannot be ruled out, our results also show that just adding more natural
samples is unlikely to mitigate the effects of short-cut learning.

Domain Classification By labeling a small subset of images, we built a classifier that separates images into three
categories: natural, artificial renditions, and ambiguous images. While accuracy and recall of our classifier was high, it
should be noted that we did no further controls in potential biases (like favouring specific classes within domains) or the
overall class distribution across all training and test sets. We also leave it to future work to study domain classifiers that
distinguish between more domains, thus enabling a more fine-grained study of domain generalization.

Ambiguous Datapoints Our work does not examine the impact of ambiguous samples, i.e., samples exhibiting elements
of both natural and rendition. To gain a clearer understanding of their effect, it is essential to distinguish between such
ambiguous samples and those that exhibit neither. We anticipate that the former category significantly enhances performance
and sample efficiency, while the latter does not contribute substantially. A more thorough analysis of this distinction is left
for future work.

D. More Details on the Domain Classifier
We describe our labeling procedure based on this demarcation in Sec. D.1 and explore different ways to train a domain
classifier on the resulting dataset in Sec. D.3. In Sec. D.5, we employ the best-performing classifier to analyze the
composition of different training and test sets and finally use it to subsample LAION-Natural and LAION-Rendition in
Sec. 3.2. For the remainder of this work, we substitute LAION-400M by LAION-200M, which we obtain by de-duplicating
LAION-400M based on perceptual similarity as introduced by Abbas et al. (2023). They demonstrate that CLIP trained on
LAION-200M obtains comparable downstream performance while greatly increasing data efficiency.

D.1. Labeling

LAION-200M contains diverse images from a multitude of sources. The images vary from naturally occurring to synthetically
generated. We encourage the reader to glance at Fig. 19 to get a sense of the dataset and the difficulty of determining the
domain of each image. As explained above, we aim to classify images belonging to the natural image or rendition domain.
We also add an ambiguous class for images with elements of both domains and edge-cases.

We provide the human annotator with a comprehensive set of guidelines derived from analyzing the existing OOD test sets,
which we outline in App. D.2. In general, we adopt a texture-centric approach to distinguish renditions of a scene or object
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Figure 5: Labeled Natural, ambiguous, and rendition samples from different data sets. Natural images are photos or
high-quality renders with minor filters that preserve fine-grained textures, while renditions are typically sketches, paintings,
or graphics with flat or simplified textures. Images with elements of both, such as collages or natural images with large
stylized elements, and images that mainly contain text are labelled as ambiguous.

from their natural depictions. That is, depictions where fine-grained texture information is preserved are generally considered
natural, while depictions with simplified or flat textures are considered renditions. Fig. 5 illustrates this demarcation on
samples from LAION-200M, ImageNet test sets and DomainNet test sets.

Overall, we label 19 000 random images from LAION-200M and 1000 images from each of the ImageNet and DomainNet
distribution shifts (12 000 in total). Notably, almost all ImageNet and DomainNet test sets that are usually assumed to
contain only images of a single domain exhibit some domain contamination. We discuss this in detail in Sec. D.5. Tab. 3
contains a detailed breakdown of labels for each data set. We show more samples grouped by domain for each data set in
Figs. 22- 33.

D.2. Labeling

As mentioned in Sec. D.1, we take a texture-centric approach in domain labeling. We resolve further ambiguities with
respect to labeling in the following way:

• Natural objects with watermark or text, infographs with natural objects, signs with human symbol (eg. walking signal),
objects with common logos (eg. Nike), naturalistic books or movie covers, images that are retro / low resolution /
blurry / grainy / or with fake background but with texture information preserved, graphically altered natural images
with significant texture information, and real objects with fake backgrounds are all classified as natural.

• Stylistic: Infographs with stylized objects, stylized books or movie covers, retro / low resolution / blurry / grainy
/graphically altered images with significant loss in texture information, stylized objects on plain or common natural
background (eg. wall, bedsheet etc.) are all classified as stylistic.

• Ambiguous: Tattoos where hand / back is very visible, sculpture with real objects around, real images with distinct
drawing of logos with objects, images that are retro / low resolution / blurry / grainy / or with fake background but with
little texture information preserved are all classified as ambiguous.

To further ease the labeling procedure, we first build a rough binary classifier by fine-tuning CLIP ViT-L/14 with a linear
readout to differentiate between some of the natural ImageNet and DomainNet test sets (namely, ImageNet-Val, Object-
Net (Barbu et al., 2019), ImageNet-V2 (Recht et al., 2019), ImageNet-A (Hendrycks et al., 2021), and DomainNet-Real)
and stylistic test sets (namely, ImageNet-Sketch, ImageNet-R, DomainNet-Painting, DomainNet-Sketch, and DomainNet-
Clipart). We use this classifier to roughly pre-label samples and provide the annotator with 25 images from the same group
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at a time. This setup is shown in Fig. 6. The labeling was done by one labeler who labeled about 750-1000 images per hour.
The labeler also did a checking of these labels by regrouping and going over them again. Below we visualize our labeling
setup:

Final labeled images breakdown:

Table 3: Number of labeled data points from several datasets and their domain-wise breakdown. For training our
domain classifier, we use the LAION-200M (Train), and LAION-200M (Val) for validation, and everything else to evaluate
the final test performance.

Dataset Natural Stylistic Ambiguous Total

LAION-200M (Train) 7268 2978 2754 13000
LAION-200M (Val) 1000 1000 1000 3000
LAION-200M (Test) 1000 1000 1000 3000

ImageNet-A 974 7 19 1000
ObjectNet 917 2 81 1000
ImageNet-R 22 859 119 1000
ImageNet-Sketch 49 937 14 1000
ImageNet-V2 945 5 50 1000
ImageNet-Val 934 16 50 1000

DomainNet-Clipart 48 933 19 1000
DomainNet-Infograph 134 720 146 1000
DomainNet-Painting 101 795 104 1000
DomainNet-Quickdraw 0 1000 0 1000
DomainNet-Real 836 111 53 1000
DomainNet-Sketch 24 942 34 1000

D.3. Training and Choosing the Domain Classifier

With the domain-labeled dataset, we can train a domain classifier to partition all of LAION-200M into natural images,
renditions, or ambiguous images. Since we aim to obtain datasets that contain only images from a single domain we need a
domain classifier that is as precise as possible. To this end, we train classifiers on 13 000 labelled LAION-200M images,
retaining 3000 samples each for a validation and test set. From the domain classification literature discussed in Sec. B, we
evaluate four methods with publicly available code that we outline below. All methods build on CLIP ViT-L/14 pretrained
on LAION-2B, which we choose for its balance between accuracy and inference speed.

Contrastive Style Descriptors (CSD) (Somepalli et al., 2024) fine-tune pre-trained backbones via multi-label supervised
contrastive learning and self-supervised learning with only style-preserving augmentations (random flips, resize, rotation).
The resulting final-layer embeddings serve as style descriptors: During inference, they find the k stylistically nearest
neighbors in a database of labelled images (e.g., the training set) by computing pairwise embedding-similarities to the test
images. An image is classified as belonging to a style if at least one of the k neighbors has that style. We can directly set up
their method using the 13 000 labelled LAION-200M images as both the training set and the database for inference. From
that, we obtain two binary classifiers, CSD-N (classifying natural vs. non-natural) and CSD-R (classifying renditions vs.
non-renditions) that, together, can be used for our ternary classification.

Density Ratios (Cohen-Wang et al., 2024b) aim to estimate the probability that a given sample is drawn from a reference
distribution pref. Since high dimensional density estimation is challenging, they build a classifier to distinguish between
a reference and a shifted distribution and compute the density ratio pref

pshifted
which they threshold at 0.2 to classify a given

sample. We deploy their method unchanged to our task. We again obtain two binary classifiers, DR-N (classifying natural
vs. non-natural) and DR-R (classifying renditions vs. non-renditions).

Centroid Embeddings Inspired by the baselines in (Somepalli et al., 2024), we implement a simple model (embedding
model plus linear readout) where we take the pretrained CLIP ViT-L/14 as the embedding model and create a linear readout
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Table 4: We chose the best natural classfier and the best rendition classifier amongst binary classifiers based on
Contrastive Style Descriptors (CSD) (Somepalli et al., 2024) and Density Ratios (DR) (Cohen-Wang et al., 2024b) as well
as ternary classifiers using a linear readout based on either each domain’s centroid embedding (CE) or a fine-tuned CLIP
(FT). All models use CLIP ViT-L/14 pretrained on LAION-2B. We report precision and recall on for the natural class (top)
and rendition class (bottom) on ImageNet (IN) and DomainNet (DN) test sets and average performance across all test sets.
Model hyperparameters are chosen for a validation precision of 98% if possible. For each class, we select the classifier with
the highest recall on the validation.

cls=natural Val Test IN-Val IN-v2 IN-A ON DN-R Average

Model P R P R P R P R P R P R P R P R

CSD-N k=1 0.61 0.85 0.58 0.85 0.96 0.93 0.97 0.92 0.98 0.91 0.93 0.94 0.92 0.88 0.85 0.90
CSD-R k=23 0.98 0.26 0.99 0.29 1.00 0.22 1.00 0.27 1.00 0.27 1.00 0.59 0.99 0.32 0.99 0.32
DR-N 0.98 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00
DR-R 0.98 0.08 0.72 0.08 1.00 0.00 1.00 0.00 1.00 0.00 0.95 0.20 1.00 0.00 0.95 0.05
CE 0.98 0.35 0.89 0.33 0.95 0.02 1.00 0.04 1.00 0.02 0.99 0.16 0.99 0.11 0.97 0.15
FT 0.98 0.41 0.95 0.44 1.00 0.36 0.99 0.40 1.00 0.46 0.99 0.53 1.00 0.42 0.99 0.43

cls=rendition Val Test IN-R IN-S DN-S DN-Q DN-P DN-C DN-I Average

Model P R P R P R P R P R P R P R P R P R P R

CSD-N k=6 0.98 0.26 0.99 0.24 1.00 0.20 1.00 0.18 1.00 0.25 0.00 0.00 1.00 0.24 1.00 0.22 0.98 0.34 0.88 0.21
CSD-R k=1 0.64 0.56 0.68 0.60 0.93 0.62 0.98 0.63 0.98 0.62 0.00 0.00 0.92 0.59 0.98 0.63 0.82 0.46 0.77 0.52
DR-N 0.98 0.20 0.98 0.23 1.00 0.29 1.00 0.20 1.00 0.27 1.00 0.01 1.00 0.28 1.00 0.28 0.98 0.11 0.99 0.21
DR-R 0.98 0.35 0.98 0.41 1.00 0.60 1.00 0.71 1.00 0.74 1.00 0.33 0.99 0.60 1.00 0.65 0.98 0.39 0.99 0.53
CE 0.98 0.11 0.99 0.12 0.99 0.43 1.00 0.39 1.00 0.30 1.00 0.09 0.98 0.47 1.00 0.38 1.00 0.01 0.99 0.26
FT 0.98 0.27 0.95 0.26 1.00 0.38 1.00 0.57 1.00 0.61 1.00 0.68 1.00 0.21 1.00 0.50 1.00 0.30 0.99 0.42

by comparing to the centroid embeddings for each domain. We use this as a ternary untrained nearest-neighbor classifier,
dubbed CE.

Fine-Tuning We fine-tune the pretrained CLIP ViT-L/14 with a linear readout on the training dataset to obtain a ternary
classifier, dubbed FT.

For the baselines (Cohen-Wang et al., 2024b; Somepalli et al., 2024), we simply use the training code detailed in their works
and their public code. For the FT (Finetuning) model, as mentioned in Sec. D.3, we finetune a CLIP ViT-L/14 pretrained
on LAION-2B with a linear readout. We finetune all models on 4 A100 GPUs, using a batch size of 256, weight decay of
5e − 4, using an SGD optimizer, with step scheduler (0.1 every 20 epochs), at a learning rate of 0.1, for 50 epochs. All
models converge. Each model took about 2 A100 GPU hours to train, therefore all the models took around 30 A100 GPU
hours. The storage requirement for these datasets were less than 100 GB memory.

We use the validation set to determine the two best classifiers, one for natural images and one for renditions. Since the
domain classifier should maximize precision above all else, we set the confidence threshold for each model such that it
achieves 98% per-class precision. For CSD, we instead choose k to reach this precision. We then pick the classifier with
the highest per-class recall to minimize the number of datapoints that are discarded when subsampling LAION-200M to
build LAION-Natural and LAION-Rendition. We end up with FT, the fine-tuned ternary classifier, as our classifier for
natural images, and DR-R, the binary classifier using density ratios as our rendition classifier. We use these classifiers
for all subsequent experiments. Tab. 4 reports each model’s precision and recall on the natural and rendition class across
ImageNet and DomainNet test sets. For raw accuracy numbers of all models, which in general are high for most, please
refer to Tabs. 5 and 6 in App. D.4.

D.4. Domain Classifier Performance without Precision Thresholding

In Sec.D.3 we only compute the precision and recall obtained from the threshold at which we get 98% precision on
LAION-200M Val domain dataset. We here report the accuracy of these classifiers on these test sets at their own standard
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precision of these models. We also train additional classifiers binary and ternary classifiers and by balancing the dataset
sizes. To compare with the models from Cohen-Wang et al. (2024b), we train binary classifiers where we club natural with
ambiguous and differentiate it from rendition (we name this FT-R), or we club rendition with ambiguous and differentiate it
from natural (we name this FT-N). Further, we create several subsets for each of the ternary and the binary classification
problem by balancing the number of datapoints in each class. We add the prefix ’(balanced)’ to these models.

Table 5: Accuracy on each of the natural test sets on class natural without thresholding. Some classifiers give the
illusion of being good but have very low precision or recall(see Sec. D.3).

Model (Val) (Test) IN-Val IN-V2 IN-A ON DN-R DN-I

FT 0.90 0.89 0.93 0.94 0.96 0.95 0.94 0.72
CE 0.75 0.78 0.80 0.84 0.86 0.95 0.81 0.19
FT-N 0.89 0.90 0.94 0.95 0.97 0.97 0.93 0.49
DR-N (balanced) 0.89 0.91 0.94 0.94 0.95 0.98 0.92 0.50
DR-R 0.98 0.97 0.99 0.99 1.00 1.00 0.97 0.90
FT (balanced) 0.78 0.82 0.84 0.86 0.86 0.88 0.83 0.46
FT-R 0.96 0.95 0.93 0.95 0.97 0.98 0.96 0.90
FT-N (balanced) 0.85 0.85 0.92 0.95 0.96 0.95 0.91 0.43
DR-R (balanced) 0.93 0.92 0.93 0.94 0.95 0.99 0.90 0.75
FT-R (balanced) 0.86 0.86 0.88 0.88 0.90 0.89 0.88 0.84
DR-N 0.93 0.92 0.94 0.95 0.94 0.99 0.92 0.76

Table 6: Accuracy on each of the rendition test sets on class natural without thresholding. Some classifiers give the
illusion of being good but have very low precision or recall(see Sec. D.3).

Model (Val) (Test) IN-R IN-S DN-S DN-Q DN-P DN-C DN-I

DR-R 0.77 0.80 0.93 0.98 0.98 0.96 0.92 0.93 0.88
FT (balanced) 0.78 0.88 0.82 0.94 0.94 0.91 0.80 0.85 0.77
FT 0.76 0.75 0.75 0.91 0.90 0.95 0.73 0.80 0.74
DR-N 0.89 0.92 0.99 0.99 0.99 0.98 0.97 0.97 0.94
FT-R 0.69 0.68 0.69 0.81 0.80 0.79 0.65 0.72 0.67
DR-N (balanced) 0.93 0.94 0.97 0.99 0.99 1.00 0.95 0.94 0.99
FT-R (balanced) 0.86 0.84 0.80 0.92 0.91 0.90 0.75 0.83 0.88
CE 0.61 0.62 0.95 0.90 0.89 0.96 0.95 0.93 0.32
DR-R (balanced) 0.90 0.93 0.99 0.99 0.99 0.99 0.98 0.97 0.96
FT-N 0.84 0.83 0.72 0.83 0.82 0.48 0.63 0.77 0.97
FT-N (balanced) 0.87 0.86 0.75 0.93 0.91 0.96 0.64 0.88 0.98

D.5. Analyzing the Domain Make-Up of Different Data Sets

Both ImageNet and DomainNet are web-scraped datasets that were refined through extensive human annotation. In contrast,
LAION-400M is obtained purely through web scraping without subsequent human domain filtering. Since human annotators
can make mistakes, and LAION-400M’s domain composition is inherently unknown, we use our domain classifiers to
understand it.

To this end, we deploy the chosen classifiers from Sec. 3 and label a sample ambiguous if the natural and rendition classifier
disagree. We apply the classifiers both with their strict thresholds at 98% validation precision which yields a strong lower
bound for the number of samples in each domain, as well as with their default thresholds which yields a more rounded
estimate. From Tab. 9, it is clear that the LAION-200M contains a considerable portion of strictly stylistic images (with
a lower bound of 7.90% corresponding to 16 million images), and potentially many more images with some rendition
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Table 7: Domain composition of training sets. We apply our natural and rendition domain classifiers with their strict
thresholds at 98% validation precision to get a lower bound of samples from each domain and with their default thresholds to
obtain a more balanced estimate. ImageNet-Train has a much smaller fraction of rendition samples than LAION-200M. We
also note that ‘combined-pruned’, the training set from Mayilvahanan et al. (2024) that corrected for test set contamination
still contains a large fraction of renditions.

Classifier Precision

Dataset # Samples Natural Rendition Natural Ambiguous Rendition

LAION-200M 199 663 250 0.79 0.77 60.74 % 25.41 % 13.86 %
0.98 0.98 28.40 % 63.70 % 7.90 %

ImageNet-Train 1 281 167 0.79 0.77 89.20 % 9.62 % 1.18 %
0.98 0.98 36.00 % 63.60 % 0.40 %

combined-pruned 187 471 515 0.79 0.77 62.98 % 25.18 % 11.83 %
0.98 0.98 29.58 % 64.02 % 6.40 %

elements are contained in the ambiguous group. In contrast, for ImageNet, we find a much smaller fraction of renditions
(at least 0.4% of samples). We additionally observe that many evaluation datasets are considerably domain-contaminated
(at least 5% of samples stem from the opposite domain), especially ImageNet-R, DomainNet-Real, DomainNet-Clipart,
DomainNet-Painting, and DomainNet-Infograph (refer to Tab. 8, App. D.6).

We also analyze the domain composition of datasets from Mayilvahanan et al. (2024), who created several subsets of LAION-
200M that do not contain samples that are perceptually highly similar to ImageNet OOD test sets. These removed images
are expected to be (near-) duplicates of test images in terms of both content and style. Their dataset ‘combined-pruned’ is a
subset of LAION-200M where highly similar images to ImageNet-Sketch, ImageNet-R, ImageNet-Val2, ImageNet-Val,
ImageNet-A, and ObjectNet were pruned. In their work, it remained unclear whether pruning also effectively removed
all images of the rendition domain, which we can now answer. Tab. 9 reveals that a considerable number of renditions
remains in the pruned dataset (at least 6.4% corresponding to around 11 million images). These remaining renditions might
have played a significant role in the generalization performance of their CLIP models, especially on ImageNet-Sketch and
ImageNet-R. As a result, CLIP’s domain generalization performance is yet to be evaluated fairly.

D.6. Domain composition at different precision

We provide a detailed overview over the domain composition of datasets at standard precision in Table 8, and over the
domain composition of datasets at 98% precision in Table 9.

D.7. On the Domain Composition of (Mayilvahanan et al., 2024)

Please find in Tab. 10 the exact number of rendition examples calculated by deploying our domain classifier on each the 3
datasets (pruned using rendition test sets) from Mayilvahanan et al. (2024). We see that at least 11-13M images are not
pruned away from the datasets, therefore explaining the insignificant drop in performance.

D.8. Preparing clean datasets

In Sec. 3.2, we created several train and test sets from LAION-200M and ImageNet / DomainNet shifts respectively, by
deploying our classifier at 98% precision. The exact number of samples and the number of (remaining) classes are in Tab. 11.

E. Notes on the CLIP Models
E.1. Resources spent

We train about 28 CLIP ViT-B/32 models on several subsets of LAION-200M. These models took about 8000 A100 GPU
hours. We also needed about 18 TB of memory to store these datasets.
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Table 8: Domain composition of datasets at standard precision (without thresholding). The first three columns show the
fraction of samples in the original dataset classified as natural, stylistic, or ambiguous, respectively, while the latter column
shows the dataset’s total number of samples.

Dataset Natural [%] Stylistic [%] Ambiguous [%] Total

LAION-200M 60.74 13.86 25.41 199 663 250

ImageNet (Train) 89.2 1.18 9.62 1 281 167
ImageNet (Val) 89.1 1.18 9.72 50 000
ObjectNet 90.22 0.1 9.68 18 574
ImageNet-V2 88.49 1.38 10.13 10000
ImageNet-A 93.79 0.52 5.69 7 500
ImageNet-R 9.75 64.42 25.83 30 000
ImageNet-Sketch 3.69 85.34 10.97 50 889

DomainNet-Real 80.07 7.59 12.34 175 327
DomainNet-Quickdraw 1.35 93.27 5.38 172 500
DomainNet-Clipart 8.28 75.89 15.83 48 833
DomainNet-Painting 13.97 56.33 29.7 75 759
DomainNet-Sketch 3.1 84.18 12.71 70 386
DomainNet-Infograph 11.17 53.41 35.41 53 201

Table 9: Domain composition of datasets at 98% precision. The first three columns show the fraction of samples in the
original dataset classified as natural, stylistic, or ambiguous, respectively, while the latter column shows the dataset’s total
number of samples.

Dataset Natural [%] Stylistic [%] Ambiguous [%] Total

LAION-200M 28.4 7.9 63.7 199 663 250

ImageNet (Train) 36.0 0.4 63.6 1 281 167
ImageNet (Val) 35.73 0.37 63.9 50 000
ObjectNet 50.32 0.0 49.68 18 574
ImageNet-V2 36.04 0.29 63.67 10000
ImageNet-A 43.25 0.16 56.59 7 500
ImageNet-R 3.56 52.82 43.61 30 000
ImageNet-Sketch 1.21 67.92 30.87 50 889

DomainNet-Real 34.31 3.98 61.71 175 327
DomainNet-Quickdraw 0.09 34.41 65.5 172 500
DomainNet-Clipart 3.46 62.53 34.01 48 833
DomainNet-Painting 5.3 47.55 47.15 75 759
DomainNet-Sketch 1.38 69.58 29.04 70 386
DomainNet-Infograph 1.59 28.11 70.3 53 201

E.2. Raw Accuracy Numbers of CLIP Trained on LAION-N vs LAION

In Sec. 4, in Fig. 2, we only reported the relative numbers. Here, in Fig. 8, 10, 9, 11, we report the actual numbers as a
function of dataset size.

14



In Search of Forgotten Domain Generalization

Table 10: Number datapoints within the dataset vs number of datapoints pruned away in Mayilvahanan et al. (2024).

Dataset Size Within Pruned

sketch-pruned 191 481 491 24 016 047 3 654 180
r-pruned 194 088 525 24 304 991 3 365 236
combined-pruned 187 471 515 22 173 006 5 497 221

sketch-pruned (98% precision) 19 1481 491 13 266 999 2 482 751
r-pruned (98% precision) 194 088 525 13 338 759 2 410 991
combined-pruned (98% precision) 187 471 515 11 999 276 3 750 474

Table 11: Clean datasets composition. Obtained by deploying the domain classifiers from Sec.D.3 at 98% precision.

Dataset Classes Size

LAION-Natural - 56 685 759
LAION-Stylistic - 15 749 750

ImageNet-Val 985 17 864
ImageNet-V2 926 3 604
ImageNet-Sketch 991 34 564
ImageNet-R 200 15 847
ImageNet-A 197 3 244
ObjectNet 113 9 347

DomainNet-Real 339 60 148
DomainNet-Quickdraw 344 59 353
DomainNet-Infograph 345 14 957
DomainNet-Clipart 345 30 536
DomainNet-Sketch 344 48 974
DomainNet-Painting 345 36 020

F. Training ResNets on ImageNet
We deploy our natural domain classifier from Sec/ 3 at 90% precision (threshold obtain from LAION 13K Val set) on
ImageNet-Train to obtain about 1M datapoints belonging to the natural domain (dubbed ImageNet-N). We create several
datasets of smaller sizes subsampling from ImageNet-N. We also create randomly sampled datasets of similar sizes from the
original ImageNet. We train ResNet-50 models on all of these datasets. We follow the training recipe A3 of Wightman et al.
(2021) and train the models for 200 epochs. We then evaluate these models on standard test sets and clean test sets from
Sec.3.2. The accuracies of ResNets trained on subsets of original ImageNet is used for the effective robustness plots in
Sec. 4, G. Further, the comparison of accuracies between the models trained on subsets from ImageNet-N and ImageNet is
in Fig. 12, 14, 13, 15. As such there is no significant performance difference anywhere, thus indicating that ImageNet does
not have substantial domain leakage.
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Figure 6: Labeling setup. By clicking on the image, the border changes to red, green, or blue, each representing natural,
ambiguous, or rendition. By pressing the right or the left button the previous or next set of 25 images are rendered and the
labels of the previous images are updated in a json file.
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LAION-Rendition

LAION-Natural

Figure 7: Random samples from LAION-Natural and LAION-Rendition.

Figure 8: CLIP trained on LAION v LAION-N performance on standard natural test sets.
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Figure 9: CLIP trained on LAION v LAION-N performance on standard rendition test sets.

Figure 10: CLIP trained on LAION v LAION-N performance on clean natural test sets.
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Figure 11: CLIP trained on LAION v LAION-N performance on clean rendition test sets.

Figure 12: Resnets trained on ImageNet v ImageNet-N performance on standard natural test sets.
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Figure 13: Resnets trained on ImageNet v ImageNet-N performance on standard rendition test sets.

Figure 14: Resnets trained on ImageNet v ImageNet-N performance on clean natural test sets.
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Figure 15: Resnets trained on ImageNet v ImageNet-N performance on clean rendition test sets.
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G. Detailed Effective Robustness plots on individual shifts
In Fig. 3 in the main manuscript, we report aggregated results where we average over natural and stylistic ImageNet
distribution shifts. We display the results on the individual distribution shifts in Fig. 16. On ImageNet-R and ImageNet-
Sketch (bottom row), we observe that the effective robustness of the CLIP models can be modulated by training it on the
different dataset splits, i.e. LAION-Natural, LAION-Rendition, LAION-Mix. The model trained on LAION-Natural is much
closer to the ImageNet trained model in terms of effective robustness compared to the model trained on LAION-Rendition.
In contrast, effective robustness is barely affected on the natural splits (top row). This can be explained by the final data
distributions of the different training splits: Our filtering procedure does not affect natural images which are most responsible
for the performance on natural datasets which explains the consistency in performance.

We also investigate effective robustness on the DomainNet shifts in Fig. 17. We note that the ImageNet model’s accuracy
numbers on DomainNet are not comparable to the CLIP models because the ImageNet model has been evaluated on a
subset of DomainNet (ImageNet-D, Rusak et al., 2022) which is compatible with ImageNet classes. DomainNet has many
classes which are not present in ImageNet, such as for example “The Great Wall of China” or “paper clip” which have been
removed in ImageNet-D to enable evaluating ImageNet trained models without the need for training an additional readout
layer. In contrast, we evaluate the CLIP trained models on the full DomainNet splits following standard zero-shot evaluation
procedure. We will add a Figure where we control for the missing classes and evaluate the CLIP models on ImageNet-D in
the next version of the manuscript.

On DomainNet, we similarly observe strong changes in effective robustness of the CLIP trained models when evaluating
on the stylistic domains (all domains except for DomainNet-Real), and barely any changes when evaluating on the
DomainNet-Real domain.

Figure 16: Effective Robustness of different models on different ImageNet distribution shifts. On ImageNet-R and
ImageNet-Sketch (bottom row), we observe that the effective robustness of the CLIP models can be modulated by training it
on the different dataset splits, i.e. LAION-Natural, LAION-Rendition, LAION-Mix. The model trained on LAION-Natural
is much closer to the ImageNet trained model in terms of effective robustness compared to the LAION-Rendition model.
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Figure 17: Effective Robustness of different models on different DomainNet distribution shifts. On the stylistic domains,
we observe that the effective robustness of the CLIP models can be modulated by training it on the different dataset splits,
i.e. LAION-Natural, LAION-Rendition, LAION-Mix. Effective robustness barely changes when evaluating different CLIP
models on DomainNet-Real.

H. Visualization of Errors made by the domain classifier
We show images which have been misclassified by our domain classifier Fig. 18. We observe that the errors are interpretable.
For example, the “natural” images which have been classified as “ambiguous” are indeed ambiguous: We see a sculpture in
one image, a large woodwork of an ant in another and a pencil drawing of an airplane with a partly visible human hand
drawing it in a third image.

I. Visualization of samples from the LAION dataset
We visualize random examples from the “Natural”, “Rendition” and “Ambiguous” domains from LAION in Figs. 19-21.

J. Visualizations of ImageNet Distribution Shifts
We visualize random examples from the “Natural”, “Rendition” and “Ambiguous” domains from the considered ImageNet
shifts datasets in Figs. 22-27. We show 20 images per split; occasionally, there are fewer than 20 images in some of these
splits, such as e.g. there are very few renditions in ImageNet-A. In that case, we plot all images from that split and leave the
remaining subplots blank.

K. Visualizations of DomainNet Distribution Shifts
We visualize random examples from the “Natural”, “Rendition” and “Ambiguous” domains from different DomainNet
datasets in Figs. 28-33. We show 20 images per split; occasionally, there are fewer than 20 images in some of these splits,
such as e.g. no natural images in the Quickdraw domain. In that case, we plot all images from that split and leave the
remaining subplots blank.
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Figure 18: Confusion matrix of example images which have been misclassified by our domain classifier.
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Figure 19: Random samples from LAION-200M. We omit NSFW images and images of humans.
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Figure 20: Random samples from LAION-Natural. We omit NSFW images and images of humans.
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Figure 21: Random samples from LAION-Rendition. We omit NSFW images and images of humans.
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Figure 22: Random samples of ImageNet-A grouped by domain. We omit NSFW images and images of humans.

28



In Search of Forgotten Domain Generalization

Figure 23: Random samples of ObjectNet grouped by domain. We omit NSFW images and images of humans.
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Figure 24: Random samples of ImageNet-R grouped by domain. We omit NSFW images and images of humans.

30



In Search of Forgotten Domain Generalization

Figure 25: Random samples of ImageNet-Sketch grouped by domain. We omit NSFW images and images of humans.
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Figure 26: Random samples of ImageNet-V2 grouped by domain. We omit NSFW images and images of humans.
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Figure 27: Random samples of ImageNet-Val grouped by domain. We omit NSFW images and images of humans.
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Figure 28: Random samples of DomainNet-Clipart grouped by domain. We omit NSFW images and images of humans.
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Figure 29: Random samples of DomainNet-Painting grouped by domain. We omit NSFW images and images of humans.
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Figure 30: Random samples of DomainNet-Real grouped by domain. We omit NSFW images and images of humans.
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Figure 31: Random samples of DomainNet-Infograph grouped by domain. We omit NSFW images and images of
humans.
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Figure 32: Random samples of DomainNet-Quickdraw grouped by domain. We omit NSFW images and images of
humans.
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Figure 33: Random samples of DomainNet-Sketch grouped by domain. We omit NSFW images and images of humans.
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