Under review as a conference paper at ICLR 2022

HEAD2TOE: UTILIZING INTERMEDIATE REPRESEN-
TATIONS FOR BETTER OOD GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transfer-learning methods aim to improve performance in a data-scarce target do-
main using a model pretrained on a data-rich source domain. A cost-efficient
strategy, linear probing, involves freezing the source model and training a new
classification head for the target domain. This strategy is outperformed by a more
costly but state-of-the-art method—fine-tuning all parameters of the source model
to the target domain—possibly because fine-tuning allows the model to leverage
useful information from intermediate layers which is otherwise discarded by the
later pretrained layers. We explore the hypothesis that these intermediate layers
might be directly exploited by linear probing. We propose a method, Head-to-Toe
probing (HEAD2TOE), that selects features from all layers of the source model to
train a classification head for the target-domain. In evaluations on the Visual Task
Adaptation Benchmark (VTAB), Head2Toe matches performance obtained with
fine-tuning on average, but critically, for out-of-distribution transfer, Head2Toe
outperforms fine-tuning.

1 INTRODUCTION

Tranfer learning is a widely used method for obtaining strong performance in a variety of tasks
where training data is scarce—see |Zhu et al.| (2020); |Alyafeai et al.| (2020); [Zhuang et al.| (2020)
for recent application-specific surveys. A well-known recipe for transfer learning involves the su-
pervised or unsupervised pretraining of a model on a source task with a large training dataset (also
referred to as upstream training). After pretraining, the model’s output head is discarded, and the
rest of the network is used to obtain a feature embedding, i.e., the output of what was formerly the
penultimate layer of the network. When transferring to a farget task, a new output head is trained on
top of the feature extractor (downstream training). This approach makes intuitive sense: if a linear
combination of embedding features performs well on the source task, we expect a different linear
combination of features to generalize to the target domain, provided the source and target tasks are
similar.

This approach of training a new output head, referred to as linear probing (LINEAR), often yields
significant improvements in performance on the target task over training the network from scratch
(Kornblith et al.l 2019). An alternative to LINEAR is fine-tuning (FINETUNING), which uses target-
domain data to adapt all weights in the feature extractor together with the new output head. This
procedure requires doing forward and backward passes through the entire network at each training
step and therefore its per-step cost is significantly higher than LINEAR. Furthermore, since the
entire network is fine-tuned, the entire set of new weights needs to be stored for every target task,
making FINETUNING impractical when working on edge devices or with a large number of target
tasks. However, FINETUNING is often preferred over LINEAR since it consistently leads to better
performance on a variety of target tasks even when data is scarce (Zhai et al.|[2019).

FINETUNING’s superior generalization in the low-data regime is counterintuitive given that the num-
ber of model parameters to be adapted is often large relative to the amount of available training data.
How does FINETUNING learn from few examples successfully? We conjecture that FINETUNING
better leverages existing internal representations rather than discovering entirely new representa-
tions; FINETUNING exposes existing features buried deep in the net for use by the classifier. Under
this hypothesis, features needed for transfer are already present in the pretrained network and might
be identified directly without fine-tuning the backbone itself.

Under review as a conference paper at ICLR 2022

O Linear |
natural
o 30 « structured
§ specialized
520 ;
N\ E
|
Head2Toe 10)
/’.\\ ke
________) 5 L
A -&(\)8\?‘%@1)'\ LResBER
0 . . |
oo
-40 -20) 5] il |
Domain Affinity

Figure 1: (left) HEAD2TOE selects the most useful features from the network and trains a linear head
on top. (right) HEAD2TOE improves OOD generalization. Domain affinity refers to the difference
between linear probe and scratch accuracies (defined in Section [2) and the y-axis represents the
improvements (delta accuracy) made by HEAD2TOE over linear probe.

In this work, we propose and explore methods for selecting useful features embedded in internal lay-
ers of a pretrained net, concatenating them to the embedding produced by the pretrained net, and then
applying the LINEAR transfer approach to the augmented representation (Fig. [T}left). Our approach
leads to significant improvements over LINEAR as shown in Fig. [T}right. Our key contributions are
as follows:

1. We perform analyses to better understand two factors that affect the benefit of incorporating
intermediate representations: feature selection and the degree to which a target domain is
out-of-distribution (OOD).

2. We introduce head-to-toe probing (HEAD2TOE), a simple recipe for selecting relevant fea-
tures from intermediate representations for few-shot generalization. On the VTAB collec-
tion of data sets, we show that HEAD2TOE outperforms LINEAR and matches the perfor-
mance of more computationally costly FINETUNING.

3. Critically, HEAD2TOE outperforms FINETUNING on OOD target domains. If a practitioner
can make an educated guess about whether a target domain is OOD with respect to a source,
using HEAD2TOE improves on the state of the art for transfer learning

2 PRELIMINARIES

Source domain and backbone models. In our experiments, we use source models pretrained
on ImageNet-2012 (Russakovsky et al.| [2015), a large scale image classification benchmark with
1000 classes and over million natural images. We benchmark HEAD2TOE using convolutional
(ResNet-50, Wu et al.,2018) and attention-based (ViT-B/16, Dosovitskiy et al.,2021) architectures
pretrained on ImageNet-2012.

Target domains. In this work, we focus on target tasks with few examples (i.e., few-shot) and use
Visual Task Adaptation Benchmark-1k (Zhai et al., 2019)) to evaluate different methods. Visual Task
Adaptation Benchmark-1k consists of 19 different classification tasks, each having between 2 to 397
classes and a total of 1000 training instances. The domains are grouped into three primary categories:
(1) natural images (natural), (2) specialized images using non-standard cameras (specialized), and
(3) rendered artificial images (structured).

Characterizing out-of-distribution domains. Consider the relationship between source and tar-
get domains. If the domain overlap is high, then features extracted for linear classification in the
source domain should also be relevant for linear classification in the target domain, and LINEAR
should yield performance benefits. If the domain overlap is low, then constraining the target domain
to use the source domain embedding may be harmful relative to training a model from scratch on

Under review as a conference paper at ICLR 2022

580
[q0]
(-
- 3 60
P o
A)
< 40 ,
47) \ ,/ <-me- Linear
L 20 ! ' —— Fine-tuning
=+~ Scratch winkied (45)
0
N A~
CLIT FEEF £55 S &¥F
TES SISY FFFPEYS 52 =
S & ¥9 5 40 §¢5s &8 £ & % g
S o & L ITQ I3 £ 0 7 & S v a e
gL 3 S o < S S W S T S o LS & orange dahlia (58)
9 $08 so Jdg ¥ G 9 T
P 5 © & C 9 oy @,

Figure 2: Characterizing out-of-distribution domains Generalization performance of various
baselines on the VTAB-1k benchmark using ResNet-50 architecture and 224 image size. The ar-
chitecture is pretrained on ImageNet-2012 for the transfer learning (TL) baselines. Datasets (and
the three groups of the benchmark) are ordered according to their Domain Affinity scores in as-
cending order from left to right. Examples from the left- and right-most datasets are also shown on
corresponding sides.

the target domain. Therefore, we might quantify the source-target distribution shift in terms of how
beneficial LINEAR is relative to training a model from scratch (denoted SCRATCH):

DomainAffinity = AcCingar — ACCscrarch-

In Fig. 2] we sort the 19 VTAB-1k target tasks by their domain affinity to ImageNet-2012—from
low to high—for a pretrained ResNet-50 backbone. The Figure shows examples of the three target
domains with the most and least distribution shift (Ieft and right sides, respectively). These examples
seem consistent with intuitive notions of distribution shift.

Baselines. Fig. 2] also presents transfer test accuracy of LINEAR, FINETUNING, and SCRATCH
baselines. Consistent with the literature, FINETUNING performs as well or better than the other two
baselines. For in-distribution targets (right side of graph), LINEAR matches FINETUNING; for OOD
targets (left side of graph), LINEAR is worse than FINETUNING. With distribution mismatch, the
source network may filter information available in lower layers because it is not needed for the source
task but is essential for the target task. Observing FINETUNING performs better than SCRATCH
even in OOD tasks, we hypothesize that intermediate features are key for the FINETUNING, since
if learning novel features was possible using limited data, training the network from scratch would
work on-par with FINETUNING. Motivated by this observation, HEAD2TOE probes the intermediate
features of a network directly and aims to eliminate the need for fine-tuning.

3 HEAD2TOE UTILIZATION OF PRETRAINED BACKBONES

3.1 YOUR REPRESENTATIONS ARE RICHER THAN YOU THINK

In this section, we conduct a simple experiment to demonstrate the potential of using representa-
tions from intermediate layers. We concatenate the feature embedding of a pretrained ResNet-50
backbone (features from the penultimate layer) with features from one additional layer and train a
linear head on top of the concatenated features. When extracting features from convolutional layers,
we reduce the dimensionality of the convolutional stack of feature maps using strided average pool-
ing, with a window size chosen so that the resulting number of features is similar to the number of
embedding features (2048 for ResNet-50).

In order to estimate an upper bound on how much the performance can be improved over LINEAR
by including a single intermediate layer, we use an oracle to select the layer which yields the largest
boost in test performance (for each target task separately). Percentage improvement over LINEAR
using this ORACLE is shown in Fig. [Bleft. We observe a negative correlation (-0.745, Spearman)

Under review as a conference paper at ICLR 2022

" | 1o Clevr-Dist 100 Pets
8 ‘ ° natura > . Linear 5\ --- Linear
& x o = structured © D09
o |, 5 045 2
e = specialized S O 0.90
56 X < <]
< + 040~ e s ARRRRRN R RN 7]
x 0] 0.85
| : -
4 * 0355 o 0805 ass Qb &
© n ° g g
6 2 Layer Layer
< oo ® Method Avg Spcl Strc Natr
0 T o Linear 56.53 80.70 36.36 65.79

“40 20 0 20 40 60 80 Control 5896 81.00 40.88 67.03
Domain Affinity Oracle 60.15 8152 4344 67.03

Figure 3: (left) Accuracy gains when prelogits are augmented with an additional layer correlates
negatively (-0.745, Spearman) with domain affinity. (right-top) effect of using features from inter-
mediate layers for Clevr-Dist (low domain affinity) and Pets (high domain affinity) tasks (right-
bottom) Test accuracies of various baselines on VTAB-1k. Linear uses only prelogits, Oracle
averages are obtained by using the layer that gives best generalization (test) for each task. Con-
trol experiment uses a second feature embedding from a second pretrained network trained using a
different seed. We use ResNet-50 models pretrained on ImageNet-2012.

between the domain affinity of a target task and the accuracy gain. As predicted earlier, adding
intermediate representations does not improve in-domain generalization because feature embedding
already contains the most useful features. In contrast, generalization on out-of-domain tasks are
improved significantly when intermediate features are used.

In Fig. B}top-right, we show test accuracy as a function of the ResNet-50 layer whose internal repre-
sentation is used to augment the feature embeddings to boost LINEAR transfer. Figures for remaining
tasks can be found in Appendix [D} Different tasks on VTAB benchmark prefer inclusion of differ-
ent layers to obtain the best generalization accuracy, emphasizing the importance of selecting the
right set of features for optimal generalization. Overall, the ORACLE that selects the layer with best
test performance for each task yields an average of 3.5% improvement on VTAB-1k benchmark.
One possible explanation for the improvement in performance with the augmented representation
is simply that it has more degrees of freedom (4096 features instead of 2048). To demonstrate that
the improvement is due to inclusion of intermediate layers and not simply due to increased dimen-
sionality, we formed a 4096-element feature representation by using a second feature embedding
obtained from a second ResNet-50 backbone pretrained on ImageNet-2012 (CONTROL). Note that
this experiment bears similarity to ensembling (Zhou et al., 2002), which is known to bring sig-
nificant accuracy gains on its own (Mustafa et al.| 2020). Utilizing a second backbone doubles the
amount of resources required, yet it falls 1% shy of the Oracle performance demonstrating the extent
to which using intermediate representations can be helpful for generalization.

3.2 HEAD2TOE

Motivated by our observations in the previous section, we hypothesize that we can attain—or pos-
sibly surpass—the performance of FINETUNING without changing the backbone itself by using
LINEAR augmented with well-chosen intermediate activations. However, this approach introduces
the problem of selecting features. The number of possible features to include is large relative to the
amount of training data available, leading to the potential of overfitting. In this section, we explore
various regularization and feature selection methods, which we then incorporate into our method,
HEAD2TOE.

Notation. Our method applies to any network with any type of layers, but here, for simplicity and
without loss of generality, we consider a network with L fully connected layers, each layer receiving
input from the layer below:

zg=he Wy 5 hy= f(z) (1)

Under review as a conference paper at ICLR 2022

where the subscript denotes a layer index, hy = « is the input, f is the activation function, W7 is
the weight matrix of layer ¢, and z, is the logit vector used for classification. When transferring a
pretrained network to a target task using LINEAR, we discard the last layer of the pretrained network
and train a new set of linear weights, W7 , such that predictions (logits) for the new task are obtained
by ZIL = hL_1W£.

Head2Toe. Consider a simple scheme that augments the backbone embedding with activations
from all layers of the network, such that:

Z/L =huWau ; hg = COIlCth((Zl(hl)7 a2(h2), . aL(hL)) 2)

where a(.) denotes a fixed function to reduce the dimensionality of the activation vector at a given
layer ¢. Such functions become valuable when considering network architectures that generate large
number of intermediate features. For example, for convolutional networks, where the representations
at each layer are structured as multi-channel spatial arrays of detectors, we perform two-dimensional
average pooling as explained in Section [3.1] and Section [5] Even with dimensionality reduction,
h,y; can exceed a million elements, and Wy;; is underconstrained by the training data, leading to
overfitting. Further, without care W,;; may become so large as to be impractical for deploying this
model We can address these issues by selecting a subset of features before training the target-
domain classifier. Equivalently, we can zero out the non-selected rows of W,;;. We will show that
appropriate selection of a subset of features leads to better generalization than using all features.

Feature selection based on group lasso. Group lasso (Yuan & Lin} [2006)) is a popular method for
selecting relevant features in multi-task adaptation settings (Argyriou et al., 2007} Nie et al.,[2010).
When used as a regularizer on a weight matrix W, the group-lasso regularizer encourages the /5
norm of the rows of the matrix to be sparse, and is defined as:

(Wiaa =lsli = |si| \/Ziw @)
i J

To determine which features are most useful for the task, the linear head is trained with group-lasso
regularization on Wy;;. In contrast to the approach taken by |Argyriou et al.| (2007) and [Nie et al.
(2010), which use costly matrix inversions, we incorporate the regularization as a secondary loss and
train with stochastic gradient descent. Following training, the /5 norms of the rows of Wy, s, are
used to decide which features are most relevant. We refer to s; as the relevance score for feature 7.
We pick a fraction F' of all features with the greatest relevance and train a new linear head to obtain
the final logit mapping. Feature selection alone provides strong regularization, therefore during the
final training we don’t use any additional regularization.

We make two comments on this. First, because the initial round of training W,;; with the group-lasso
regularizer is used only to rank features by importance, the method is quite robust to the regulariza-
tion coefficient; it simply needs to be large enough to distinguish the contribution of the individual
features. Second, interpreting s; as the importance of feature ¢ depends on all features having the
same dynamic range. This constraint will often be satisfied naturally due to the normalization layers
found in the architecture itself (we read out representations after normalization). To cover the re-
maining cases (where no normalization exists between two layers) we normalize the representations
of each layer to a unit norm.

Selection of F' and the cost of HEAD2TOE. The fraction F' determines the total number of fea-
tures retained. One would expect the optimal value to depend on the target task. We select F' based
on validation performance. This validation procedure is inexpensive compared to the cost of the ini-
tial phase of the algorithm (i.e., training of W,; to obtain s) due to the reduced number of features
in the second step. Overall, HEAD2TOE together with its validation procedure requires 18% more
operations compared to training W, alone (details shared in Appendix [B).

Verifying HEAD2TOE. In Fig. [d}left, we demonstrate the effectiveness of group lasso on identi-
fying relevant intermediate features of a ResNet-50 for transfer from ImageNet. We rank all features

'For example, using a pooling size of 2, ResNet-50 generates 1.7 million features and storing W, requires
6.6e8 parameters (2.6GB for float32) for SUN-397.

Under review as a conference paper at ICLR 2022

----------) Feature (Acc: 63.8%)

> 300
&)
g} 200
—
3 100
O
(W] 0
<
= Layer (Acc: 44.1%)
q_) & 000
— 0. & — feature-wise 1500
§ === layer-wise 1000
; + layer-wise (group) 500
0 5000 10000 15000 20000 25000 04962 00 0°
Offset #Features Selected

Figure 4: (left) Over all VTAB tasks, average accuracy of HEAD2TOE when selecting 2048 con-
secutive features sorted by their relevance score, starting with an index specified by offser. (center)
Average accuracy over all VTAB tasks as a function of the number of features included. In this
experiment, we only use features from the first layer of each of the 18 ResNet blocks and adjust
pooling to have around 2048 features for each layer, totalling 29800 features. Results show that
selecting layers performs worse than selecting features when adapting to a target domain. (right)
Distribution of 2048 intermediate features retained from a ResNet-50 when using feature-wise and
layer-wise scores on the SVHN transfer task.

by their relevance score, s;, and we select groups of 2048 consecutive features beginning at a par-
ticular offset in this ranking. Offset O corresponds to selecting the features with largest relevance.
We calculate average test accuracies across all VTAB tasks. As the figure shows, test accuracy de-
creases monotonically with the offset, indicating that the relevance score predicts the importance of
including a feature in the linear classifier.

HEAD2TOE selects individual features independent of the layer in which they are embedded. We
compare this feature-wise strategy to selecting layers as whole (i.e., selecting all features in a layer
or none). One might expect layer-wise selection to be superior because it involves fewer decisions
and therefore less opportunity to overfit to the validation set that is being used for selection. Further,
layer-wise selection may be superior because the relevance of one feature in a layer may indicate
the relevance of others. To obtain a layer-wise relevance score, we compute the mean relevance
score of all features in a layer and then rank layers by relevance. We also run an alternative layer
selection algorithm, in which we group weights originating from the same layer together and select
layers using the ¢, norm of the groups (layer-wise (group)). Fig. Blcenter compares feature-wise
and layer-wise selection methods, matched for number of features retained. Feature-wise selection
performs better than layer-wise selection on average and the best performance is obtained when
around 1000 features are kept. We share figures for all 19 datasets in Appendix [E} Fig. @}right
shows the distribution of features selected over different layers for both strategies.

Note that HEAD2TOE’s use of a fixed backbone means that as we search for features to include, the
extracted features themselves are not changing. Consequently, we can calculate them once and re-
use as necessary, instead of recalculating at every step, as required for FINETUNING. Furthermore,
since the backbone is frozen, the only additional weight storage required for each target task is
the output head. Such properties are key for transfer-learning methods to be practical when using
models with billions of parameters.

4 RELATED WORK

Transfer Learning is studied extensively in the literature and used widely in practice. Most similar
to our work is ELMo (Peters et al., [2018]), which averages intermediate representations of a lan-
guage model (2 LSTM embeddings) using a learned linear combination (a softmax). ELMo requires
embeddings to be same size and is most similar to the suboptimal layer-selection baseline shown in
Fig. f}center. [Peters et al| (2019) compared FINETUNING with LINEAR and reported a small gap
in performance for ELMo and BERT models. [Kornblith et al.| (2019) showed that ImageNet-2012
performance correlates highly with LINEAR and FINETUNING. Using a large pool of pretrained
models, |Renggli et al.[(2020) examined various metrics to decide which backbone to transfer. Given
the ever increasing size and never saturating performance of pretrained models, the importance of
reducing the cost of FINETUNING models is stated in the literature regularly. Methods like feature-
wise transformations (Bilen & Vedaldi, |2017)), residual adapters (Houlsby et al.,[2019; Rebuffi et al.,

Under review as a conference paper at ICLR 2022

2017), Diff-pruning (Guo et al.|[2021)) and selective fine-tuning (Guo et al.,|2019;|Fu et al., 2021])) are
proposed in order to reduce the cost of storing fine-tuned models. Zhang et al.| (2021) showed that
selecting a sub-network of a pretrained model can increase OOD generalization. However, none of
these methods match the simplicity of training (and storing) a linear classifier. Teerapittayanon et al.
(2016), [Kaya et al.| (2019), and |[Zhou et al.| (2020) studied intermediate representations to reduce
“overthinking” and thus provide better early-exit criteria. Similarly [Baldock et al.|(2021)) showed a
correlation between early classification of a sample and how easy its classification is.

Alternatives to transfer learning exist to learn from few labeled examples. Meta-learning (Thrun &
Pratt, 1998} |Schmidhuber, |1987; [Schmidhuber et al.l |1997) is used (among other things) to tackle
the few-shot learning problem (i.e learning from limited data) from a learning-to-learn perspective;
see Hospedales et al.| (2020) for a comprehensive survey. In-between the representation learning
and learning-to-learn paradigms lie approaches that use multi-domain training as an inductive bias,
either without (Dvornik et al.l [2020; [Triantafillou et al., 20215 [L1 et al., 2021bga)) or with (Liu et al.,
2021) meta-learning. However, in the large-scale setting FINETUNING remains a top-performing
approach to few-shot classification (Dumoulin et al., 2021).

Feature selection aims to find the most relevant features from the input and is studied extensively
in the machine-learning literature. Approaches can be grouped according to whether labeled data
is used—supervised (Nie et al., 2010) or unsupervised (He et al., 2005} Balin et al., 2019 Atash-
gahi et al.l |2020)—or what high-level approach is taken—filter methods (Blum & Langley, |1997),
wrapper methods (Kohavi & John, [1997)), or embedded methods (Yuan & Lin, 2006). Most rel-
evant to our work are embedded supervised methods as they have good scaling properties while
achieving the best performance which is vital in our setting with over a million features. Embedded
supervised feature selection methods use a cost function to iteratively refine the subset of features
selected and popular approaches include forward selection (Viola & Jones| 2001} Borboudakis &
Tsamardinos} 2019), backward selection (pruning) (Mozer & Smolensky} |1989; Guyon et al., [2004)
and regularization/feature-ranking based methods (Yuan & Lin,2006; Blum & Langley, 1997} Zhao
et al., 2010). Most relevant to our work is |Argyriou et al.| (2007); [Nie et al.| (2010), both of which
uses /o 1 regularization to select features, however their approach requires matrix inversions which
is not practical in our setting. We point interested readers to the survey of|Gui et al.| (2017 and book
of Boln-Canedo et al.|(2015)) for a detailed discussion on the topic.

5 EVALUATING HEAD2TOE

We evaluate HEAD2TOE on the VTAB-1k benchmark using two popular vision architectures,
ResNet-50 (Wu et al., [2018) and ViT-B/16 (Dosovitskiy et al., 2021), both pretrained on ImageNet-
2012. ResNet-50 consists of 50 convolutional layers. To utilize the intermediate convolutional
features, we aggregate spatial information using average pooling on non-overlapping patches, as ex-
plained in Section[3] We adjust the pooling size to target a fixed dimensionality of the representation.
For example, for a feature map of shape 20 x 20 x 128 and a target size of 512, we average-pool
disjoint patches of size 5 x 5, resulting in 4 features per channel and 1024 features in total. This
helps us to balance different layers in terms of number features they contribute to the concatenated
embedding. We normalize features coming from each layer to a unit norm. This scaling preserves
the relative magnitude of features within a layer while accounting for inter-layer differences and
works better than normalizing each feature separately or not normalizing at all. ViT-B/16 consists
of 12 multi-headed self-attention layers. When we aggregate the output of the self-attention lay-
ers, we perform 1-D average pooling over the patch/token dimension choosing the pooling size to
match a target number of features as before. Given that token dimension is permutation invariant,
1-D average pooling might not be the best choice here and better aggregation function can provide
further gains. We share a detailed list of intermediate representations utilized for each architecture

in Appendix

HEAD2TOE selects a subset of features and trains a linear classifier without regularization on top of
the selected features. We compare HEAD2TOE with regularization baselines that utilize all features
without doing feature selection. These baselines are denoted as +All-¢1, +All-f5 and +All-¢5 ;
according to the norm they use.

We perform five-fold cross validation for each task and method in order to pick the best hyper-
parameters. All methods search over the same learning rates and training steps (two values of

Under review as a conference paper at ICLR 2022

Natural Specialized Structured

g >

g = g = =y g 2 z E Eo

% = E ., 5 2 £ % E ¢ a2 g 2 335 2 3
£ 22 3 » £ 2 E £ 2 £ 5 5 8 E £ £ S O &
S S 8 & & 5 S8 & & & T U A& X % % % % =
[] ° [] L] [] o ° L] o L] L] L[] °
Linear 48.5 86.0 67.8 84.8 87.4 475 344 83.2 924 733 73.6 39.7 39.9 36.0 66.4 404 37.0 19.6 255 57.0
+All-¢o 44.7 87.0 67.8 842 86.1 81.1 31.9 82.6 95.0 76.5 74.5 50.0 56.3 38.3 65.5 59.7 44.5 37.5 40.0 63.3
+All-¢1 50.8 88.6 67.4 842 87.7 842 34.6 809 949 756 747 499 57.0 41.8 729 59.0 44.8 37.5 40.8 64.6
+All-03 1 49.1 86.7 68.5 84.2 88.0 84.4 34.8 81.5 949 757 743 483 58.4 42.0 744 588 452 37.8 344 643
Head2Toe 47.1 88.8 67.6 85.6 87.6 84.1 329 82.1 943 76.0 74.1 553 59.5 43.9 72.3 649 51.1 39.6 43.1 65.8
Fine-tuning* 54.6 89.8 65.6 88.4 89.1 86.3 34.5 79.7 95.3 81.0 72.6 41.8 52.5 42.7 75.3 81.0 47.3 32.6 358 65.6
Scratch* 11.0 37.7 23.0 40.2 133 593 39 735 84.8 41.6 63.1 38.5 54.8 358 369 87.9 373 209 369 42.1

Natural Specialized Structured

- £ 3

=4 s g = E g 2 z o :: ﬁo

s 2 ¢ .5 2 %% L33 58535 3 ¢
£ 2 2 2 2 £ ¢ E £ ¢4 £ £ 5 s E & & S O §
S S 6 & & % 43¢ & & & C o B 2 % % %2 % 3
o L] [] ° [] ° L] L] ° L] L] L] °
Linear 55.0 81.0 53.6 72.1 853 38.7 32.3 80.1 90.8 67.2 74.0 38.5 36.2 33.5 55.7 34.0 31.3 182 263 528
+All-02 573 87.0 643 82.8 84.0 75.7 32.4 82.0 94.7 79.7 74.8 47.4 57.8 41.4 62.8 46.6 33.3 31.0 38.8 61.8
+All-¢1 58.4 87.3 64.9 83.3 84.6 80.0 344 823 95.6 79.6 73.6 47.9 57.7 422 65.1 44.5 334 324 384 624
+All-£2 1 59.6 87.1 64.9 852 854 79.5 353 82.0 953 80.6 74.2 479 57.8 40.7 649 46.7 33.6 31.9 39.0 62.7

Head2Toe 58.2 87.3 64.5 85.9 854 829 35.1 812 95.0 79.9 74.1 49.3 584 41.6 644 533 329 33.5 394 63.3
Fine-tuning 62.6 83.1 61.5 80.4 86.8 83.0 33.7 83.2 949 78.0 73.6 583 59.2 43.6 39.8 61.4 44.8 27.1 262 62.2
Fine-tuning+ 65.2 82.1 60.5 852 86.9 86.7 36.9 824 952 81.3 73.0 68.2 60.6 41.7 73.9 69.3 28.0 25.7 36.1 65.2

Table 1: Median test accuracy over 3 seeds on the VTAB-1k benchmark using pretrained (top)
ResNet-50 and (bottom) ViT-B/16 backbones. Regularization baselines that use all layers are indi-
cated with the +All prefix. ”*” indicates results obtained fromZhai et al. (2019). Fine-tuning results
for ViT-B/16 are obtained using code and checkpoints provided by [Dosovitskiy et al.[(2021).

each). Methods that leverage intermediate features (i.e., regularization baselines and HEAD2TOE)
additionally search over regularization coefficients and the size of the aggregated representation at
each layer. The FINETUNING baseline searches over 4 hyper-parameters; thus the comparison of
HEAD2TOE, which searches over 24 values, to fine-tuning might seem unfair. However, this was
necessary due to fine-tuning being significantly more costly than training a linear classifier, even
with intermediate features. We repeat each evaluation using 3 different seeds and report median
values and share standard deviations in Appendix [C] More details on hyper-parameter selection and
best values can be found in Appendix [A]

5.1 RESNET-50

The top half of Table[I| presents results on the 19 VTAB-1k target domains when transferring from a
pretrained ResNet-50 architecture. On average, HEAD2TOE slightly outperforms all other methods,
including FINETUNING (see rightmost column of Table). HEAD2TOE, along with the regularization
baselines that use intermediate layers, is far superior to LINEAR, indicating the value of the inter-
mediate layers. And HEAD2TOE is superior to the regularization baselines, indicating the value of
explicit feature selection. Among the three categories of tasks, HEAD2TOE excels relative to the
other methods for the specialized category, but does not outperform FINETUNING for the natural
and structured categories.

Does HEAD2TOE select different features for each task? Which layers are used more frequently? In
Appendix [F] we show the distribution of features selected across different layers and the amount of
intersection among features selected for different tasks and seeds. We observe a high variety among
layers and features motivating the importance of performing feature selection for each task sepa-
rately. HEAD2TOE exceeds FINETUNING performance, but requires only 0.5% of FLOPs during
training on average. Similarly, the cost of storing the adapted model is reduced to 1% on average.
We discuss HEAD2TOE’s computational and storage costs in detail in Appendix [B]

Under review as a conference paper at ICLR 2022

ResNet-50 VIiT-B/16
0.70
- Groupl Group2
o) 3065 /—\ DMLab | CIFAR-100
o . © DTD Clevr-Count
o o 2 sNORB-Azim|dSpr-Orient
% é:) S SVHN |Retinopathy
C 060 e c - dSpr-Loc | Resisc45
[®) % o groth Pets EuroSAT
S 4 Group1 = Group1
© — Group2 © Group2 sNORB-Elev | Flowers102
g 0.55 n_layers E n_layers Camelyon
< — 116 o 116 Caltech101
—— /4 1/4 Clevr-Dist
050{ 7/ " all all KITTI-Dist
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 30000
Target Size Target Size

Figure 5: Effect of increasing the number of intermediate features that HEAD2TOE uses from the
(left) ResNet-50 backbone and (right) ViT-B/16 backbone. The abscissa of the graph indicates the
dimensionality of the representation extracted from each layer of the backbone (target size). The
tasks are split into two groups (see right side of Figure), which show different behavior. The solid,
dashed, and dotted lines indicate the fraction of layers selected for forming the representation used
by HEAD2TOE: 1/16, 1/4, and 1, respectively. Scaling curves for individual tasks can be found in

Appendix [G]
5.2 VIT-B/16

Results for ViT-B/16 are shared in the bottom half of Table [[I As with the ResNet-50 archi-
tecture, HEAD2TOE achieves the best accuracy among methods that keep the backbone fixed:
HEAD2TOE improves accuracy over LINEAR by about 10% on average (in absolute performance),
and HEAD2TOE outperforms the regularization baselines that include intermediate features but that
do not explicitly select features. The story for HEAD2TOE versus FINETUNING is a bit more com-
plicated. The FINETUNING recipe used by [Dosovitskiy et al.|(2021) includes many tweaks such as
selective data-augmentation, image upsampling, learning rate warm-up, and gradient clipping. In
order to make a direct comparison with LINEAR, in the next-to-last row of the Table we report the
performance of FINETUNING without all of these tweaks; HEAD2TOE obtains about a 1% absolute
accuracy improvement over FINETUNING in this setting. However, when some of the tweaks are
incorporated into FINETUNING—in particular gradient clipping—FINETUNING achieves a 3% im-
provement over HEAD2TOE. Since it is a linear classifier, adding gradient clipping to HEAD2TOE
doesn’t improve the results. That being said, HEAD2TOE retains its competitive advantage in terms
of resource costs and its accuracy would likely similarly benefit from the development of more
sophisticated tricks (notably moving beyond the naive 1-D pooling of ViT features), much like
FINETUNING has gained over time.

5.3 SCALING HEAD2TOE

In Fig. [5] we vary the number of intermediate features used for each of our pretrained backbones.
We observe that including all layers always performs better on average. However when varying the
number of target features for each layer, we observed 2 distinct sub-group of target tasks that behave
differently as the number of features increases. This observation informed our discussion to include
both small and large target sizes in our validation hyper parameter search.

6 CONCLUSION

In this work, we introduced HEAD2TOE, an approach that extends linear probing (LINEAR) by se-
lecting the most relevant features among a pretrained network’s intermediate representations. We
show that doing so greatly improves performance over LINEAR and allows the approach to reach a
performance competitive with—and in some cases superior to—FINETUNING. Our findings chal-
lenge the conventional belief that FINETUNING is required to achieve good performance on OOD
tasks. While more work is needed before HEAD2TOE can realize the full computational benefits
of linear probing, our work paves the way for applying new and more efficient feature selection
approaches and for experimenting with HEAD2TOE probing in other domains such as regression,
video classification, object detection, reinforcement learning, and language modelling domains.

Under review as a conference paper at ICLR 2022

REFERENCES

Zaid Alyafeai, Maged Saeed AlShaibani, and Irfan Ahmad. A survey on transfer learning in natural
language processing. arXiv preprint arXiv:2007.04239, 2020.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learning. In
B. Scholkopf, J. Platt, and T. Hoffman (eds.), Advances in Neural Information Processing Sys-
tems. MIT Press, 2007.

Zahra Atashgahi, Ghada Sokar, Tim van der Lee, Elena Mocanu, Decebal Constantin Mocanu, Ray-
mond N. J. Veldhuis, and Mykola Pechenizkiy. Quick and robust feature selection: the strength
of energy-efficient sparse training for autoencoders. ArXiv, abs/2012.00560, 2020.

R. Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of example
difficulty. ArXiv, abs/2106.09647, 2021.

Muhammed Fatih Balin, Abubakar Abid, and James Zou. Concrete autoencoders: Differentiable
feature selection and reconstruction. In Proceedings of the 36th International Conference on
Machine Learning, 2019.

Hakan Bilen and Andrea Vedaldi. Universal representations: The missing link between faces, text,
planktons, and cat breeds. arXiv preprint arXiv:1701.07275, 2017.

Avrim L. Blum and Pat Langley. Selection of relevant features and examples in machine learning.
Artificial Intelligence, 1997.

Vernica Boln-Canedo, Noelia Snchez-Maroo, and Amparo Alonso-Betanzos. Feature Selection for
High-Dimensional Data. Springer Publishing Company, Incorporated, 1st edition, 2015. ISBN
3319218573.

Giorgos Borboudakis and I. Tsamardinos. Forward-backward selection with early dropping. J.
Mach. Learn. Res., 20:8:1-8:39, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Vincent Dumoulin, Neil Houlsby, Utku Evci, Xiaohua Zhai, Ross Goroshin, Sylvain Gelly, and
Hugo Larochelle. Comparing transfer and meta learning approaches on a unified few-shot classi-
fication benchmark. arXiv preprint arXiv:2104.02638, 2021.

Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Selecting relevant features from a multi-
domain representation for few-shot classification. In European Conference on Computer Vision,
pp- 769-786. Springer, 2020.

Cheng Fu, Hanxian Huang, Xinyun Chen, Yuandong Tian, and Jishen Zhao. Learn-to-share: A
hardware-friendly transfer learning framework exploiting computation and parameter sharing. In
ICML, 2021.

Jie Gui, Zhenan Sun, Shuiwang Ji, Dacheng Tao, and Tieniu Tan. Feature selection based on struc-
tured sparsity: A comprehensive study. IEEE Transactions on Neural Networks and Learning
Systems, 28:1490-1507, 2017.

Demi Guo, Alexander M. Rush, and Yoon Kim. Parameter-efficient transfer learning with diff
pruning. In ACL/IJCNLP, 2021.

Yunhui Guo, Humphrey Shi, Abhishek Kumar, Kristen Grauman, Tajana Simunic, and
Rogério Schmidt Feris. Spottune: Transfer learning through adaptive fine-tuning. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4800—4809,
2019.

10

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Under review as a conference paper at ICLR 2022

Isabelle Guyon, Jason Weston, Stephen D. Barnhill, and Vladimir Naumovich Vapnik. Gene se-
lection for cancer classification using support vector machines. Machine Learning, 46:389-422,
2004.

Xiaofei He, Deng Cai, and Partha Niyogi. Laplacian score for feature selection. In Proceedings of
the 18th International Conference on Neural Information Processing Systems, 2005.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In ICML, 2019.

Yigitcan Kaya, Sanghyun Hong, and T. Dumitras. Shallow-deep networks: Understanding and
mitigating network overthinking. In ICML, 2019.

Ron Kohavi and George H. John. Wrappers for feature subset selection. Artif. Intell., 1997.

Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better imagenet models transfer better?
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2656—
2666, 2019.

Wei-Hong Li, Xialei Liu, and Hakan Bilen. Improving task adaptation for cross-domain few-shot
learning. arXiv preprint arXiv:2107.00358, 2021a.

Wei-Hong Li, Xialei Liu, and Hakan Bilen. Universal representation learning from multiple domains
for few-shot classification. arXiv preprint arXiv:2103.13841, 2021b.

Lu Liu, William Hamilton, Guodong Long, Jing Jiang, and Hugo Larochelle. A universal rep-
resentation transformer layer for few-shot image classification. In International Conference on
Learning Representations, 2021.

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat
from a network via relevance assessment. In Advances in Neural Information Process-
ing Systems, 1989. URL https://proceedings.neurips.cc/paper/1988/file/
07elcd’7dca89al678042477183b7ac3f-Paper.pdf.

Basil Mustafa, Carlos Riquelme, Joan Puigcerver, andAndr’e Susano Pinto, Daniel Keysers, and
Neil Houlsby. Deep ensembles for low-data transfer learning. ArXiv, abs/2010.06866, 2020.

Feiping Nie, Heng Huang, Xiao Cai, and Chris Ding. Efficient and robust feature selection via joint
{5 1-norms minimization. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta
(eds.), Advances in Neural Information Processing Systems, 2010.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In NAACL, 2018.

Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. To tune or not to tune? adapting pretrained
representations to diverse tasks. In RepL4NLP@ACL, 2019.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. arXiv preprint arXiv:1705.08045, 2017.

Cédric Renggli, André Susano Pinto, Luka Rimanic, J. Puigcerver, Carlos Riquelme, Ce Zhang,
and Mario Lucic. Which model to transfer? finding the needle in the growing haystack. ArXiv,
abs/2010.06402, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. International Journal of Computer Vision
(1JCV), 2015.

Jirgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universitit Miinchen, 1987.

11

https://proceedings.neurips.cc/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf

Under review as a conference paper at ICLR 2022

Jirgen Schmidhuber, Jieyu Zhao, and Marco Wiering. Shifting inductive bias with success-story
algorithm, adaptive levin search, and incremental self-improvement. Machine Learning, 28(1):
105-130, 1997.

Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast inference via early
exiting from deep neural networks. 2016 23rd International Conference on Pattern Recognition
(ICPR), pp. 2464-2469, 2016.

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to
learn, pp. 3—17. Springer, 1998.

Eleni Triantafillou, Hugo Larochelle, Richard Zemel, and Vincent Dumoulin. Learning a universal
template for few-shot dataset generalization. In International Conference on Machine Learning,
2021.

Paul A. Viola and Michael J. Jones. Rapid object detection using a boosted cascade of simple
features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001, 1:1-1, 2001.

Songtao Wu, Shenghua Zhong, and Yan Liu. Deep residual learning for image steganalysis. Multi-
media Tools and Applications, 2018.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of The Royal Statistical Society Series B-statistical Methodology, 68:49-67, 2006.

Xiaohua Zhai, J. Puigcerver, Alexander Kolesnikov, P. Ruyssen, Carlos Riquelme, Mario Lu-
cic, Josip Djolonga, André Susano Pinto, Maxim Neumann, A. Dosovitskiy, L. Beyer, Olivier
Bachem, M. Tschannen, Marcin Michalski, O. Bousquet, S. Gelly, and N. Houlsby. The visual
task adaptation benchmark. ArXiv, abs/1910.04867, 2019.

Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, and Aaron C. Courville. Can subnetwork
structure be the key to out-of-distribution generalization? In ICML, 2021.

Zheng Zhao, L. Wang, and Huan Liu. Efficient spectral feature selection with minimum redundancy.
In AAAI 2010.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses pa-
tience: Fast and robust inference with early exit. ArXiv, abs/2006.04152, 2020.

Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: Many could be better than
all. Artificial Intelligence, 2002. URL https://www.sciencedirect.com/science/
article/pii/S000437020200190X.

Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep reinforcement learning: A
survey. arXiv preprint arXiv:2009.07888, 2020.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,
and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):
43-76, 2020.

12

https://www.sciencedirect.com/science/article/pii/S000437020200190X
https://www.sciencedirect.com/science/article/pii/S000437020200190X

Under review as a conference paper at ICLR 2022

A VALIDATION PROCEDURE FOR DIFFERENT ALGORITHMS

We perform hyper-parameter validation for each VTAB task separately. For all methods, we
chose the learning rate and the total number of training steps using the grid [r = 0.1,0.01 and
steps = 500, 5000, following the lightweight hyper-parameter sweep recommended by the VTAB
benchmark (Zhai et al.l 2019).

For regularization baselines ¢;, f2 and ¢5; we search for regularization coefficients using
(0.00001,0.0001,0.001). We include an extra value in this setting in order to account for the over-
head introduced by HEAD2TOE.

For HEAD2TOE we choose (2, regularization coefficients from (0.001,0.00001) and tar-
get feature sizes from (1024,16384,40000) for ResNet-50 and (768,15360,32448) for
ViT-B/16. After calculating feature scores HEAD2TOE validates the following fractions:
(0.0005, 0.001, 0.002, 0.005, 0.01,0.02,0.05,0.1) and thus requires 18% more operations com-
pared to other regularization baselines. Note that this is because initial training to obtain feature
scores s; is performed once and therefore searching for optimal number of features has a small
overhead. Hyper parameters selected by HEAD2TOE for each VTAB task are shared in Table[2]and
Table[3] Next we explain how this overhead is estimated.

Dataset Target Size F LR Steps {3, Coef.
Caltech101 8192 0.010 0.01 5000 0.00001
CIFAR-100 512 0.200 0.01 500 0.00001
Clevr-Dist 8192 0.001 0.01 500 0.00100
Clevr-Count 512 0.005 0.10 5000 0.00100
Retinopathy 8192 0.200 0.01 500 0.00001
DMLab 8192 0.020 0.01 500 0.00001
dSpr-Orient 512 0.200 0.01 500 0.00001
dSpr-Loc 8192 0.005 0.10 500 0.00100
DTD 24576 0.005 0.01 5000 0.00001
EuroSAT 512 0.100 0.01 500 0.00001
KITTI-Dist 8192 0.020 0.01 500 0.00001
Flowers102 512 0.100 0.01 5000 0.00001
Pets 8192 0.002 0.01 5000 0.00001
Camelyon 512 0.020 0.10 500 0.00100
Resisc45 8192 0.020 0.01 500 0.00001
sNORB-Azim 24576 0.002 0.01 500 0.00001
sNORB-Elev 8192 0.050 0.01 500 0.00100
Sun397 512 0.100 0.01 5000 0.00100
SVHN 24576 0.005 0.01 500 0.00001

Table 2: Hyper parameters selected for the VTAB-1k benchmark tasks when using pretrained
ResNet-50 backbone. F: fraction of features kept, LR: learning rate, Steps: Training Steps.

B CosT OF HEAD2TOE

We evaluate different values of F' and pick the value with best validation performance. Cost of
HEAD2TOE consists of three parts: (1) Cj: Cost of calculating the representations using the pre-
trained backbone. (2) Cyy;: cost of training the initial head W;; (in order to obtain s;’s) (3)
> 7 Cr=y: total cost of validating different values of F'. Cost of validating a fraction value f,
assuming equal number of training steps, is equal to Cy = Cgy * f. Therefore relative cost of
searching for F' is equal to the sum of fractions validated (in comparison to the initial training of

(s)).

In Table] we compare cost of running HEAD2TOE adaptation with FINETUNING. HEAD2TOE
uses the backbone once in order to calculate the representations and then trains the W,,;;, whereas
FINETUNING requires a forward pass on the backbone at each step. Therefore we calculate the cost

13

Under review as a conference paper at ICLR 2022

Dataset Target Size F LR Steps {3, Coef.
Caltech101 768 0.050 0.01 5000 0.00100
CIFAR-100 768 0.020 0.01 500 0.00001
Clevr-Dist 15360 0.002 0.01 500 0.00100
Clevr-Count 768 0.050 0.10 5000 0.00001
Retinopathy 768 0.010 0.01 500 0.00100
DMLab 32448 0.005 0.01 500 0.00001
dSpr-Orient 768 0.100 0.01 5000 0.00001
dSpr-Loc 32448 0.002 0.10 500 0.00100
DTD 768 0.100 0.01 500 0.00100
EuroSAT 768 0.100 0.01 500 0.00100
KITTI-Dist 32448 0.050 0.01 5000 0.00100
Flowers102 768 0.020 0.01 500 0.00001
Pets 768 0.020 0.01 5000 0.00100
Camelyon 768 0.100 0.01 500 0.00100
Resisc45 768 0.050 0.01 5000 0.00001
sNORB-Azim 32448 0.010 0.01 500 0.00001
sNORB-Elev 15360 0.200 0.01 500 0.00100
Sun397 768 0.050 0.01 5000 0.00100
SVHN 32448 0.005 0.01 500 0.00001

Table 3: Hyper parameters selected for the VTAB-1k benchmark tasks when using pretrained ViT-
B/16 backbone. F': fraction of features kept, LR: learning rate, Steps: Training Steps.

FLOPs Size Size

Dataset F N C (vs FINETUNING) (vs FINETUNING) (vs LINEAR)
Caltech101 0.010 467688 102 0.013932 0.020750 2353167
CIFAR-100 0200 30440 100 0.002876 0.025743 2.977301
Clevr-Dist 0.001 467688 6 0.002808 0.000741 1.417419
Clev-Count 0.005 30440 8 0.000270 0.000092 0.132278
Retinopathy ~ 0.200 467688 5 0.002673 0.020531 47.099634
DMLab 0.020 467688 6 0.002808 0.003011 5.756287
dSpr-Orient 0200 30440 16 0.002140 0.004183 3.001686
dSpr-Loc 0.005 467688 16 0.004154 0.002212 1.587624
DTD 0.005 1696552 47 0.023153 0.019157 4.692396
EuroSAT 0.100 30440 10 0.002088 0.001336 1.532776
KITTI-Dist ~ 0.020 467688 4 0.002539 0.002215 6.350983
Flowers102 0.100 30440 102 0.001094 0.013146 1.490882
Pets 0.002 467688 37 0.005181 0.002089 0.649417
Camelyon 0020 30440 2 0.002018 0.000092 0.529114
Resiscds 0.020 467688 45 0.008058 0.018474 4.725480
sNORB-Azim 0.002 1696552 18 0.010791 0.004851 3.094923
SNORB-Elev 0.050 467688 9 0.003212 0.009578 12.210897
Sun397 0.100 30440 397 0.003678 0.049781 1.487498
SVHN 0.005 1696552 10 0.006884 0.005865 6.730334

Average 0.005282 0.010729 5.674742

Table 4: Relative cost of HEAD2TOE when compared with FINETUNING and LINEAR. F'is the
fraction of features kept, N is the total number of features and C' is the number of classes. On
average HEAD2TOE requires 0.5% of the FLOPs required by FINETUNING during the adaptation.
Cost of storing each adapted model is also small: requiring only 1% of the FINETUNING and only
5.7x more than LINEAR. See main text for details on how the numbers are calculated.

of finetuning for ¢ steps as C7 - t. Similarly, cost of HEAD2TOE is calculated as C; 4+ Cyy; - t. The
overall relative cost of C,;; increases with number of classes C' and number of features considered

14

Under review as a conference paper at ICLR 2022

N. As shown in Table [THtop, HEAD2TOE obtains better results than FINETUNING, yet it requires
0.5% of the FLOPs needed on average.

After adaptation, all methods require roughly same number of FLOPs for inference due to all meth-
ods using the same backbone. The cost of storing models for each task becomes important when
the same pre-trained backbone is used for many different tasks. In Table 4] we compare the cost of
storing different models found by different methods. A finetuned model requires all weights to be
stored which has the same cost as storing the original network, whereas LINEAR and HEAD2TOE
requires storing only the output head: Wj;,eq,. HEAD2TOE also requires to store the indices of the
features selected using a bitmap. Even though HEAD2TOE considers many more features during
adaptation, it selects a small subset of the features and thus requires a much smaller final classifier
(on average 1% of the FINETUNING). Note that hyper parameters are selected to maximize accu-
racy, not the size of the final model. We expect to see greater savings with an efficiency oriented
hyper-parameter selection.

C STANDARD DEVIATIONS FOR TABLE[]]

In Table [5] we share the standard deviations for the median test accuracies presented in Table [I]
On average we observe LINEAR obtains lower variation as expected, due to the limited adaptation
and convex nature of the problem. Head2Toe seem to have similar (or less) variation then the other
regularization baselines that use all features.

Natural Specialized Structured

o - £ 3

g s g - FlE 4 z -

3 _ 5 =z 5+ 9% P98 g2is g
£ 2 2 2 2 £ ¢ E £ ¢4 £ £ 5 5 E & & o O §
S 8 8 & & % 40 4 & © © &% 3% 9 % %2 3
[] [] [] [] [] [] [] [] [) [] [) [] [) [] [] [) [] L] L] °
Linear 0.09 0.08 0.14 0.06 0.08 0.17 0.06 0.06 0.03 0.12 0.08 0.42 0.1 0.03 021 0.14 0.07 0.0 021 0.11
+All-Ly 0.09 0.78 0.44 029 022 0.02 0.04 0.02 0.06 0.05 0.02 0.09 02 0.1 131 032 0.08 0.03 0.35 0.24
+All-£y 0.14 0.11 0.11 0.11 0.11 0.12 0.03 0.06 0.04 0.2 0.02 047 033 0.18 02 0.34 0.07 0.06 0.44 0.17
+All-ly 4 0.09 1.0 0.3 0.1 0.1 0.18 023 0.15 0.07 0.09 0.05 0.03 0.08 0.11 041 051 024 0.16 0.07 0.2
Head2Toe 0.14 025 0.08 0.08 024 024 0.16 0.23 0.06 0.06 0.03 0.18 023 0.13 043 03 006 04 008 0.18

Natural Specialized Structured

- E =

8 S g = E § 3 2 o 2 é’

%z E ., 5 > 2 % 58 958 g3 835 2 3
£ 2 o0 ¢ 2 £ 2 E ¢ %2 £ 5 5 S E R LB B %
S S a8 E & 52 &3 48 & & T 0 & % % 8 %2 % 2
[] [] [] [) [] [] [] [] [) [] [] [] [) [] L] L] [] L] L] []
Linear 0.1 023 0.19 0.16 0.06 0.06 0.08 0.09 0.08 0.06 0.0 0.06 0.02 0.07 0.92 021 0.08 0.08 0.03 0.14
+All-Lo 0.13 0.17 0.0 0.66 0.36 0.04 0.56 0.02 0.59 0.01 0.04 023 0.13 0.12 1.24 0.28 0.09 0.84 02 0.3
+AIl-£y 0.06 0.11 0.15 0.08 0.19 0.31 0.08 0.08 0.06 0.12 0.05 0.28 0.17 0.23 0.87 0.34 0.07 0.22 0.28 0.2
+All-Ly o 1.55 0.03 0.12 0.04 0.06 041 0.13 0.18 0.08 0.1 0.04 0.09 0.13 0.15 0.87 0.66 0.1 023 022 0.27
Head2Toe 0.29 0.16 026 0.5 0.19 0.14 0.07 0.13 0.04 0.09 0.09 0.04 0.44 0.14 1.34 021 0.01 0.31 0.08 0.24

Table 5: Standard deviation of test accuracy over 3 seeds on the VTAB-1k benchmark using pre-
trained (top) ResNet-50 and (bottom) ViT-B/16 backbones. The mean column averages the standard
deviations for each dataset.

D ADDITIONAL PLOTS FOR EXPERIMENTS USING SINGLE ADDITIONAL
LAYER

Test accuracies when using a single additional intermedieate layer from a pretrained ResNet-50
backbone are shown in Fig. [6] natural datasets (except SVHN) are highly similar to upstream
dataset (ImageNet-2012) and thus adding an extra intermediate layer doesn’t improve performance
much. However performance on OOD tasks (mostly of the tasks in structured category) improves
significantly when intermediate representations are used, which correlates strongly with datasets in
which HEAD2TOE exceeds FINETUNING performance.

15

Under review as a conference paper at ICLR 2022

s,
Vo,
Sygoo4d
et

Retinopathy
EuroSAT
Resisc45

]

3 3 s 2
£oeindoy 159 |

Clevr-Count

DTD
Camelyon

S wm o wo oo
2 ¥ 8 @ 7

g 2 & 2 g
Aoeanddy 1sa

Sug,
m w\wmw&q
<

S S o
2 @
=

Clevr-Dist

dSpr-Loc
Pets

e g

3 s S
Aoeindoy 153

CIFAR-100

o 2o w2
8 3 ¢ 8
s o S o

Aoeindoy 153

2
3
S

Caltech101
DMLab
KITTI-Dist

foel nJoy 1S3

s,
V.,
Sygo4d
gt

T & & o~

foeinooy 159)

@ =) r

B
Aoeindoy 153

Sug,

5o
S
i/ S5

50
45
40

035

030

3}

S S S
£oeIndoy 1S

1

-
c
Q@
o
@]
L
a
%)
©

2 0 2 = g9
8 ¢ 8 8 A
S

3 3 s 3
Aoeinddy 153

R
§ = f
S

S 3 3
Aoeanddy 1sa)

45

s,
Vs,
Sygodd
gt

R R

3 3 s 3
£oeindoy 159 |

SVHN

~ooon o ooy o
ey
S e
F55RIIIIIIIS g

5 & oo~

w>um5uu< 1591

o
=

i

/3

g
kg

Sun397

5 =
et
SRS

Figure 6: Test accuracies when using a single additional intermedieate layer from a pretrained

ResNet-50 backbone.

TS & owm o~

- 223 8 3
Aoeanddy 1sa)

sNORB-Elev

Flowers102

3 & o o~

2 3 3 8
Aoeinddy 153

SNORB-Azim

oy o Soe0y ©
FSSSSesSesaRessse
B bR
3559000 IIITIIS 5

% = & i

3 s 3 3
£oeanoy 159 |

S h & w oo w
8 B 8 9 8 7
S 5 o & S o

Aoeandoy 1sa

Sug,
s

ng

n

2
DeINDDY 1S9

30

= P
B 3
S s
s

-.024
014

o
©
jid
3
o
vl
<<
oy
n
v
Foae

E ADDITIONAL PLOTS FOR LAYER/FEATURE-WISE SELECTION

COMPARISON

We compare layer-wise selection strategy discussed in Section [3] to HEAD2TOE in Fig. [7] For
allmost all datasets, feature-wise selection produces better results. Retinopathy and Flowers-102 are

the only two datasets where the layer-wise strategy performs better.

F ADDITIONAL PLOTS FOR RESNET-50 RESULTS

Improvement of HEAD2TOE over fine-tuning test accuracy for ResNet-50 backbone is shown in

Fig.[8] Similar to earlier plots, we observe a clear trend between being OOD and improvement in

accuracy: HEAD2TOE obtains superior few-shot generalization for most of OOD tasks. We also

share the distribution of features selected for each task in Fig.[TI0] Since different tasks might have

different number features selected, we normalize each plot such that bars add up to 1. Overall, fea-

tures from later layers seem to be preferred more often. Early layers are preferred, especially for

OOD tasks like Clevr and SNORB. We observe a diverse set of distributions for selected features,

which reflects the importance of selecting features from multiple layers. Even when distributions

fore, next, we compare the indices of selected features directly to measure the diversity of features

match, HEAD2TOE can select different features from the same layer for two different tasks. There-
selected across tasks and seeds.

Transfer across Tasks In Fig. O}left we investigate how features selected using a task ¢ performs
when evaluated on a task j. Each pixel represents the average accuracy over 3 seeds. For each
column we subtract the diagonal term (i.e. self-transfer, ¢ = j) to obtain delta accuracy for each

16

Under review as a conference paper at ICLR 2022

>

dSpr-Orien Sun397 Retinopathy KITTI-Dist SNORB-AZim
- Bt 0.7 .

o

Test Accuracy

EuroSAT Clevr-Count Flowers102

-

o
<C 0301 %+

Clevr-Dist DTD) dSpr-Loc

.specialized Caltech101

structured . average .natural

type
—— feature-wise
----- layer-wise

layer-wise (group)

102 10° 10% 102 10° 10%
#Features Selected

Figure 7: Test accuracies when varying the number of features selected for HEAD2TOE using a
pretrained ResNet-50 backbone.

N e natural
(@)
g + structured
S 5 n - L.
g .Rgﬁiﬁgw B! specialized
O ’: ‘E‘?W%T * a0
'R JE x;'ﬁ;v-) .,; ‘ ‘(\:\.v-v‘\ 15 .v ’
q .RQS\SCAB
| -5 -
T -10
<
-15

Domain Affinity

Figure 8: Accuracy improvement of HEAD2TOE compared to FINETUNING.

dataset. For most tasks, using a separate task for feature selection hurts performance. Results in
Flowers-102 and Pets get better when other datasets like SNORB-Elev is used. Crucially no single
dataset (rows of Fig. [O}left) seems to get best transfer, which highlights the importance of doing the
feature selection during the adaptation (not beforehand). Note that, in practice (and in the literature)
evaluation for each task is done in isolation, i.e. the data from other tasks are not available.

17

Under review as a conference paper at ICLR 2022

Transfer of Selected Features

5 SVHN

Caltech101 5 0 Intersection of Features
CIFAR-100 Caltech101
Clevr-Dist CIFAR-100
c Clevr-Count 4 _ Clevr-Dist
O Retinopath Clevr-Count 0.8
) DMLag Retmo&)ﬂathg :
O dSpr-Orient DMLa
@ dSpr-Loc 3 _p dSpr-Orient
[DTD dSpr-Loc
2 EUroSAT DTD 0.6
O _ KITTI-Dist EuroSAT
= Flowers102 2 -3 KITTI-Dist
B Pets Flowers102
@ Camelyon Pets 0.4
) Resisc45 Camelyon
L SNORB-Azim 1 —4 Resisc45
SNORB-Elev SNORB-Azim
Sun397 sSNORB-Elev
SVHN Sun397 0.2

Pets
Camelyon
Resisc45
sNORB-Azim
Sun397
SVHN
r-Orient
Spr-
DTD
EuroSAT.
KITTI-Dist
Pets
Camelyon
Resisc45
Sun397
SVHN-

sNORB-Azim

o
y=o0
[v]
Q
=
©
U

Clevr-Count
Retinopathy
sNORB-Elev
Caltech101
Clevr-Count
dsp
d
Flowers102
sNORB-Elev

3
Evaluation

Figure 9: (left) Change in accuracy when features selected for a different task are used for adapta-
tion. Most tasks get their best accuracy when the same task is also used for feature selection. (right)
Intersection of features when selecting 2048 features from 29800 (same settings as in Fig.). The
intersection is calculated as the fraction of features selected in two different runs. Values are aver-
aged over 9 pairs of runs (3 seeds for each datasets), except the diagonal terms for which we remove
identical pairs resulting in 6 pairs.

Similarity of features selected In Fig.[O}right we investigate the intersection of features selected
by HEAD2TOE. We select 2048 features for each task from the pool of 29800 features (same ex-
periments as in Fig. @}center). For each task HEAD2TOE selects a different subset of features. We
calculate the fraction of features shared between each subset. For each target task we run 3 seeds
resulting in 3 sets of features kept. When comparing the similarity across seeds (diagonal terms), we
average over 6 possible combinations among these 3 sets. Similarly, when comparing two different
datasets we average over 9 possible combinations. Results show that features selected by comple-
mentary tasks like dSprites-Loc and dSpr-Orient (or sNORB tasks) have high overlap. Both dSprites
and sNORB images are generated artificially and have similar characteristics. This is reflected in
the heat-map (about 40% overlap). Similarly, features selected for CIFAR-100 and Caltech101 tasks
seem to have high overlap.

Features selected also vary across different runs (seeds). This variation seem to be higher for highly
in-domain datasets like Flowers102 and Pets, which seems to correlate with HEAD2TOE’s poor
performance. Similarly dSprites-Loc seems to have higher variance across different seeds, which
correlates with the outlier performance of HEAD2TOE on this task when compared with FINETUN-
ING (see Fig.[8). We believe that understanding and reducing the inconsistency among different runs
can be a promising direction to improve head-to-toe utilization performance.

Apart from a small fraction of datasets, most datasets seem to share less than 20% of the features,
which highlights the importance of doing the feature selection for each target task separately.

Effect of Training Data In Fig.[l1] we compare the performance of HEAD2TOE with other base-
lines using reduced training data. Fraction (ds)=1 indicates original tasks with 1000 training sam-
ples. For other fractions we calculate number of shots for each class as int(1000 * f/C) where C
is the number of classes and then sample a new version of the task accordingly. For SUN-397 task,
number of shots are capped at 1 and thus fractions below 0.75 lead to 1-shot tasks and thus results
are all the same. Overall we observe the performance of HEAD2TOE improves with amount of data
available, possibly due to the reduced noise in feature selection.

G ADDITIONAL PLOTS FOR SCALING BEHAVIOUR OF HEAD2TOE

Scaling behaviour of HEAD2TOE when using different feature target size and number of layers over
19 VTAB-1k tasks is shown in Fig. 12}

18

Under review as a conference paper at ICLR 2022

KITTI-Dist sNORB-Azim SNORB-Elev

0.4

1 I

o_o,@M Jl—-_-ﬂllllllllll__-L Jl-m-nlllmlmllllmmm"llhm
Clevr-Dist DMLab dSpr-Loc dSpr-Orient

0.4

» ol

oo,JI—_J“L-.IIIIIIIhIII.II— J-__A._JndﬂndllllL JI—-_llllllllll.IIIII"I“-i —JLJllnunthhl.IIIIIL
EuroSAT Resisc45 Retinopathy Clevr-Count

0.4-

X |

00,4-__._._-_.4J|I|IIIIIIIL JI—._IL-.-Jllllll"lIL M JI—JMW"JL

Pets Sun397 SVHN Camelyon

04]

d |

0.0 “—IIIlIIIL - | FY] “IlIIII-II-II-lL w AMI-IL—II-—II-“-“JI-'MI-II]IILI-“IF—
Caltech101 CIFAR-100 DTD Flowers102

0.4

0.2 IIII oy 1

0.0 """IHIIIIIIL - --IlIIIIIIIL —._.._._._IIIIII"IIIL JI—.._-JL-IuIlllhllllmlL

prelogitsO
15gits
logits
prelogitsO
15gits
logits
prelogitsO
logits
logits
prelogitsO
1ogits
logits

prel
prel
prel
prel

Figure 10: Distribution of selected features over different ResNet-50 layers for VTAB-1k tasks for
results presented in Table[T} We group the layers in each block (group of 3 layers) to reduce numbers
of bars.

H DETAILS OF INTERMEDIATE REPRESENTATIONS INCLUDED

ResNet-50 has 5 stages. First stage includes a single convolutional layer (root) followed by pool-
ing. We include features after pooling. Remaining stages include 3,4,6 and 3 bottleneck units (v2)
each. Bottleneck units start with normalization and activation and has 3 convolutional layers. We
includes features right after the activation function is applied, resulting in 3 intermediate feature sets
per unit. Output after 5 stages are average-pooled and passed to the output head. We include features
before and after pooling. with the output of the final layer (logits), total number of locations where
features are extracted makes 52.

ViT-B/16 models consists of multiple encoder units. Each attention head consists of a self attention
module and followed by 2 MLPs. For each encoder unit, we include features (1) after layer-norm
(but before self-attention) (2) features after self-attention (3-4) features after MLP layers (and after
gelu activation function). Additionally we use patched image (i.e. tokenized image input), pre-logits
and logits.

19

Under review as a conference paper at ICLR 2022

Test Accuracy

Test Accuracy

Caltech101

CIFAR-100

Clevr-Dist

Clevr-Count

Retinopathy

0925
0.900
0.875

0.850{ /

Flowers102

07

0.6

0.5

Test Accuracy

Sun397

0.2 04 06 08
Fraction of Data

1.0

type
—— Head2Toe
————— 12,1

Linear

Figure 11: Effect of data available during training to the test accuracy. Fraction=1 indicates original
tasks with 1000 training samples. Overall we observe the performance of HEAD2TOE improves
with amount of data available, possibly due to the reduced noise in feature selection.

20

Under review as a conference paper at ICLR 2022

Caltech101 - CIFAR-100

@ 087
N
0 086
Y

[}
000.85
fa

0.83

Clevr-Dist Clevr-Count

0.735

0.730

0.740] -

Retinopathy

Target Size

0.945

0.940

0.935

10° 104

KITTI-Dist

Target Size

0.920

0915

0.910

0.905

10° 10*

Pets Camelyon

10° 10°

SNORB-Azim SNORB-Elev

Target Size
> o

o
=

CIFAR-100

0.825

0.800

0.775

Target Size

0.750

#Target Features Per Layer
Clevr-Dist Clevr-Count

0.475

1716

Target Size
S s o
8 & ®

o
w
&

10°

dSpr-Loc

107

Target Size
S o o
% = @
g 8 2

o
3
&

Target Size
S g 7

o
W

10°

#Target Features Per Layer

Figure 12: Scaling Behaviour over 19 VTAB-1k tasks when varying feature target size and number
of layers utilized for (top) ResNet-50 and (bottom) ViT-B/16

21

	Introduction
	Preliminaries
	Head2Toe Utilization of Pretrained Backbones
	Your Representations are Richer Than You Think
	Head2Toe

	Related Work
	Evaluating Head2Toe
	ResNet-50
	ViT-B/16
	Scaling Head2Toe

	Conclusion
	Validation Procedure for Different Algorithms
	Cost of h2t
	Standard Deviations for table:main
	Additional Plots for Experiments using Single Additional Layer
	Additional Plots for Layer/Feature-wise Selection Comparison
	Additional Plots for ResNet-50 Results
	Additional Plots for Scaling Behaviour of Head2Toe
	Details of Intermediate Representations Included

