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Abstract

Virtual jewelry try-on systems offer an innovative way for users to experience
personalized, realistic jewelry interactions in an online setting. This paper intro-
duces PM-Jewelry, a virtual try-on framework designed to leverage multimodal
learning and personalized adaptation techniques for an enhanced user experience.
By integrating data from multiple modalities—such as images, text descriptions,
and user interaction data—the model generates lifelike simulations of jewelry
on various users. Using a latent diffusion framework, PM-Jewelry captures the
intricate details of different jewelry types (e.g., rings, earrings, necklaces), ensuring
high precision in aspects like texture, shine, and fit. The model further incorporates
personalized adaptation mechanisms, allowing users to tailor the virtual experience
to their preferences. Extensive experiments demonstrate the system’s ability to
handle diverse jewelry types while preserving critical details, making PM-Jewelry
a scalable and robust solution for virtual jewelry try-on. This work also explores
challenges such as realistic rendering, jewelry alignment, and material texture
simulation, offering insights into future developments in multimodal virtual try-on
technologies.

1 Introduction

The rapid rise of e-commerce has revolutionized consumer interactions, particularly in the fashion
and jewelry industries, where Virtual Try-On (VTO) systems now enable customers to visualize
products without physical trials [1]. While virtual clothing try-ons have been widely researched,
jewelry presents unique challenges due to its small, intricate, and highly reflective nature. This
paper introduces PM-Jewelry, a novel framework leveraging multimodal learning and personalized
adaptation to address these complexities [2]. By integrating images, text, and user preferences,
PM-Jewelry generates high-fidelity simulations of various jewelry types—earrings, rings, necklaces,
and bracelets—using a latent diffusion model to accurately render texture, color, shine, and fit.
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The system also allows real-time personalization, enabling users to adjust fit and style, enhancing
engagement. Despite the challenges of handling jewelry’s reflective surfaces and fine details across
diverse body types and lighting conditions, PM-Jewelry demonstrates scalability and flexibility,
offering a high-quality virtual try-on experience supported by advanced multimodal learning and
diffusion modeling.Our main contribution are:

• Personalized Multimodal Adaptation: We introduce a framework that combines image and
latent diffusion models to adaptively fit jewelry on diverse user images. Using multimodal
inputs such as the model image, salience map, and earring mask, we enhance personalization.
Our dual-pathway network processes both image data (e.g., face and body for jewelry like
necklaces or earrings) and latent embeddings that capture user-specific attributes like skin
tone, facial structure, and personal style.

• Attention-Based Latent Diffusion for 3D Jewelry from 2D Images: Jewelry positioning
and angles, such as earrings, vary with head movements. We incorporate a depth map for
accurate alignment of jewelry to the user’s body, ensuring realistic interactions, such as how
a necklace drapes across the chest or how earrings hang and move.

• Personalization and User Preferences: We introduce a personalization mechanism that
allows users to input style preferences (e.g., modern, traditional, minimalistic), tailoring
the try-on experience to individual tastes. A feedback loop enables users to adjust features
(e.g., necklace length or earring style), fine-tuning the system for improved interaction and
engagement.

• State-of-the-art Performance: Our model delivers superior results in virtual jewelry try-on
tasks, achieving high levels of realism in both visual quality and user satisfaction.

2 Related Work

With the rapid development of e-commerce, virtual try-on technology has become a key tool in the
fashion industry, allowing users to preview the appearance of clothing and accessories without actually
wearing them. The successful application of Generative Adversarial Networks (GANs)[3] in the field
of image synthesis has inspired researchers to apply such models to virtual try-on[4, 5, 6, 7, 8, 9]. By
learning how garments deform and fit on different body types, these methods are able to generate
realistic fitting effects while maintaining the texture and style of the garment. To further enhance
the realism of fitting images, the latest research trend has shifted towards utilizing diffusion models
to generate more detailed and realistic images [10, 11, 12, 13, 14, 15]. For example, StableVITON
[15] based on conditional generative modeling have achieved higher quality fitting effects through
potential diffusion modeling techniques, while ensuring accurate rendering of garment details and
image realism. Although a great deal of research has been conducted in the field of virtual clothing
fitting, the complex details and diverse characteristics of jewelry present unique challenges. The
PM-Jewelry framework presented in this paper is based on these state-of-the-art technologies to
overcome the challenges in jewelry fitting by integrating multimodal learning and personalized
adaptation mechanisms.

3 Proposed Framework for Virtual Jewelry Try-On

As illustrated in Figure 1, our approach, named PM-Jewelry, is inspired by garment-centric method-
ologies such as those introduced in the StableVITON framework [15]. The PM-Jewelry model
incorporates several types of input data, including agnostic maps, dense pose, jewelry features, and
depth maps, all of which work together to optimize the spatial arrangement and preservation of
jewelry details. The objective function can be formalized as follows:

LPMJ = Eζ,Ih,Mj ,Dj ,Sh,ϵ,t

[
∥ϵ− ϵθ(ζ, t, Ih,Mj , Dj , Sh)∥22

]
, (1)

where we introduce the variable ζ = [zt; Ih;Mj ;Dj ;Sh]. Here, zt represents the latent space, Ih
refers to the head image, Mj corresponds to the jewelry mask (e.g., earrings, necklaces, rings)
generated by SAM [16], Dj indicates the depth map obtained from DepthFM [17], and Sh denotes
the salience map. By utilizing a zero cross-attention mechanism, similar to the method employed in
STABLEVITON [15], jewelry features are seamlessly integrated with the multimodal inputs, while

2



Figure 1: (a) The model integrates text and jewelry encoders with the SD encoder to generate realistic
try-on images. Cross-attention ensures proper alignment and detailed rendering. (b) The shadow
prediction module refines shadows using SD encoders and convolution layers, optimizing with dice
loss and binary cross-entropy loss.

an ATV (Attention Total Variation) Loss is applied to reduce attention dispersion, thus improving
placement accuracy:

LATV =
∑
i,j

∥Fij −Gij∥1 , (2)

where Fij denotes the attention-driven coordinate for the i, j-th point, and Gij is the target coordinate
representing the correct positioning of the jewelry feature. For further refinement of the PM-Jewelry
model, the final loss function is a weighted combination of losses:

Lfinetune = LPMJ + λATV LATV , (3)

Here, the coefficient λATV adjusts the influence of the ATV Loss. Additionally, the model incorpo-
rates Binary Cross-Entropy (BCE) Loss, Dice Loss, and a Shadow-Weighted Noise Loss (Lmwsq). The
predicted shadow mask M̃ is progressively refined through U-Net’s upsampling layers, leveraging
modified VGG blocks [18], while a mask alignment loss ensures precise matching with the ground
truth mask M :

Lmask = Lbce(M̃,M) + Ldice(M̃,M), (4)
This loss ensures alignment between predicted and actual shadow regions. To control the shadow
intensity, noise values ϵ̃ are adjusted using channel-specific scaling factors s and biases b:

ϵ̂ = (s⊙ ϵ̃+ b)⊙ M̃ + ϵ̃⊙ (1− M̃), (5)

where M̃ controls the noise distribution within the shadow regions. The shadow-weighted noise loss
is formulated as:

Lshadow = Et,ϵ∼N (0,1)

[
∥Wfs ⊙ (ϵ− ϵ̂)∥22

]
, (6)

where Wfs represents the weights extracted from VGG extracted features related to the shadow
foreground. The total shadow loss integrates both mask prediction and noise adjustment losses:

Lshadow = Lmask + λLshadow, (7)

Finally, the PM-Jewelry model is trained using a comprehensive loss function that combines the main
model loss LPMJ, Attention Total Variation Loss LATV, shadow noise loss Lshadow, a depth consistency
loss Ldepth to maintain consistency between the generated and original images, and a perceptual loss
Ladv based on minimizing the cosine similarity in VGG feature space. The overall loss is formulated
as:

Ltotal = LPMJ + λATV LATV + λshadowLshadow + λdepthLdepth + λperceptionLperception, (8)
where each component is scaled by its respective hyperparameter λ, allowing for balanced optimiza-
tion of the various model aspects.
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Figure 2: PM-Jewelry demonstrates superior alignment and detail preservation compared to baseline
models, accurately aligning jewelry with the user’s facial feature

4 Experimental Results

We evaluate the PM-Jewelry framework using SSIM [19], LPIPS [20], and FID (Fréchet Inception
Distance). Our evaluation involves comparisons against several baselines as well as ablation studies.
For this purpose, we introduce a novel jewelry try-on dataset consisting of 6,157 paired images,
including 4,248 earrings, 3,332 necklaces, and 6,766 rings, showcasing diverse jewelry styles, wear
effects, and adaptations on the human body.This dataset, split into 90% training and 10% testing,
provides a comprehensive foundation for training diffusion models tailored to jewelry try-on tasks.

4.1 Quantitative Evaluation

Table 1 provides a comprehensive comparison of different models across Earrings, Necklaces, and
Rings datasets using SSIM, LPIPS, and FID metrics. SSIM indicates structural similarity, LPIPS
reflects perceptual distance, and FID measures the quality of generated images relative to real ones.
Across all categories, our model achieves the highest SSIM values, indicating superior structural
preservation, and the lowest LPIPS scores, showing minimal perceptual distortion. Additionally, our
model consistently attains the lowest FID values, indicating a high degree of similarity to real data
and producing visually coherent images. These results demonstrate that our model outperforms all
others, particularly in preserving intricate jewelry details and achieving realistic rendering quality.
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Figure 3: Ablation study on the model modules, highlighting the importance of data augmentation,
zero cross-attention mechanism, jewelry encoder, and text encoder in integrating features and main-
taining style consistency.

Table 1: Performance metrics (SSIM, LPIPS, FID) for various models across Earrings, Necklaces,
and Rings datasets

Model Earrings Necklaces Rings
SSIM (↑) LPIPS (↓) FID (↓) SSIM (↑) LPIPS (↓) FID (↓) SSIM (↑) LPIPS (↓) FID (↓)

Stable Diffusion v1.5 [21] 0.7135 0.1278 24.732 0.7018 0.1351 25.823 0.7092 0.1234 25.578
ControlNet [22] 0.7123 0.1292 25.176 0.7068 0.1313 26.512 0.7074 0.1247 25.981
PICTURE [23] 0.7809 0.1223 19.057 0.7607 0.1268 19.984 0.7729 0.1195 19.674
Gal4way/TPD [24] 0.6752 0.1307 28.245 0.6546 0.1419 29.887 0.6629 0.1368 28.582
StableVITON [15] 0.6704 0.1015 30.298 0.6699 0.1116 30.834 0.6718 0.1073 29.621
ComfyUI [25] 0.7942 0.1214 29.769 0.7783 0.1227 30.165 0.7847 0.1192 30.456
Ladi-VTON [12] 0.7134 0.1273 24.612 0.7064 0.1298 26.055 0.7087 0.1246 25.735
GP-VTON [8] 0.7119 0.1264 25.411 0.7046 0.1322 26.213 0.7072 0.1238 25.619
DCI-VTON [10] 0.7295 0.1259 24.831 0.7081 0.1345 26.356 0.7084 0.1211 25.945
Ours 0.8127 0.0972 13.529 0.9065 0.1003 9.805 0.8913 0.1094 10.854

4.2 Qualitative Evaluation

In addition to the quantitative evaluation, we provide visual comparisons of the generated jewelry
images. As illustrated in Figure 2, our model demonstrates its ability to produce visually realistic
jewelry try-ons. Each intermediate stage, such as the depth map, masked image, and saliency map,
contributes to the overall quality of the final rendered jewelry. Specifically, our approach effectively
preserves intricate details like color, gloss, and texture while ensuring accurate placement and
alignment with the user’s facial features. The model’s output images, shown in the "Model Wearing
Jewelry" column, highlight its effectiveness in maintaining the realism of the jewelry’s physical
characteristics. For necklace and ring examples, please refer to Figure 4 and Figure 5 in the appendix
for more detailed visual results.

4.3 Ablation Study

Ablation of Loss Design: Depth consistency, perception, Attention Total Variation (ATV), and
shadow-weighted noise losses are crucial for precise jewelry alignment, perceptual similarity, accurate
placement, and realistic shadows. Figure 6 in the appendix illustrates how removing these losses
degrades visual quality, with results summarized in Table 2 in appendix A.1
Ablation of Modules: Data augmentation, zero cross-attention, the jewelry encoder, and the text
encoder are essential for generalization, multimodal integration, detail capture, and style consistency.
Figure 3 demonstrates the performance impact of removing any of these components, with results
presented in Table 3 in appendix A.1
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5 Conclusion and Future work

In this paper, we introduced the PM-Jewelry framework, a personalized multimodal adaptation system
for virtual jewelry try-on, which effectively integrates latent diffusion techniques with user preferences
to achieve realistic and tailored jewelry simulations. Our experimental results demonstrate significant
improvements in both visual quality and user satisfaction across various jewelry types. In the
future, we will focus on enhancing real-time interaction capabilities and expanding the framework’s
adaptability to a wider range of jewelry designs and body types. Additionally, we plan to incorporate
advanced texture rendering techniques to further refine visual details and explore the integration of
augmented reality features for an immersive virtual try-on experience.
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A Appendix / supplemental material

A.1 Ablation Study

Ablation of Loss design

Table 2 shows that the PM-Jewelry framework achieves the highest SSIM and lowest LPIPS and FID
scores across all jewelry categories, with the ablation study confirming that omitting any key loss
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Figure 4: Qualitative comparison of PM-Jewelry with baseline models. PM-Jewelry preserves jewelry
details and aligns with the user’s face more accurately.

Table 2: Ablation study results for PM-Jewelry across different jewelry categories. The effect of
including or excluding key loss components on performance metrics.

Model Variation Earrings Necklaces Rings
SSIM (↑) LPIPS (↓) FID (↓) SSIM (↑) LPIPS (↓) FID (↓) SSIM (↑) LPIPS (↓) FID (↓)

w/o Depth Consistency Loss 0.851 0.153 12.07 0.843 0.164 12.58 0.835 0.176 13.03
w/o Perception Loss 0.861 0.144 11.57 0.853 0.153 12.06 0.844 0.162 12.54
w/o ATV Loss 0.872 0.135 11.11 0.864 0.142 11.51 0.852 0.154 12.13
w/o Lmwsq Loss 0.883 0.126 10.53 0.873 0.133 11.07 0.862 0.145 11.54
w All Losses (Full Loss) 0.912 0.098 9.75 0.905 0.102 10.21 0.894 0.113 11.12

(Depth Consistency, Perception, ATV, or Lmwsq) consistently degrades performance, validating the
integrated loss approach.
Ablation of Modules The ablation study demonstrates that removing augmentation, zero cross-
attention, jewelry encoder, or text encoder results in degraded performance across all jewelry cate-
gories, highlighting the importance of each module in maintaining high SSIM, low LPIPS, and FID
scores.

B Architecture and Training Details

B.1 Architecture Details

Our model builds upon the foundation of Stable Diffusion v1.5 [21] . The core of our system is
the latent diffusion model, which consists of a denoising U-Net and a VAE-based autoencoder.
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Figure 5: Qualitative comparison of PM-Jewelry with baseline models. PM-Jewelry preserves jewelry
details and aligns with the user’s face more accurately.

Table 3: Ablation study results for PM-Jewelry across different jewelry categories. The effect of
augmentation, zero cross-attention, and encoder inclusion on performance metrics.

Variation Earrings Necklaces Rings
SSIM (↑) LPIPS (↓) FID (↓) SSIM (↑) LPIPS (↓) FID (↓) SSIM (↑) LPIPS (↓) FID (↓)

Full Model 0.884 0.123 10.53 0.872 0.132 11.07 0.863 0.147 11.37
w/o Aug 0.853 0.154 12.08 0.843 0.162 12.59 0.835 0.171 13.03
w/o Zero Cross-Attn 0.842 0.165 13.06 0.832 0.173 13.53 0.824 0.183 14.01
w/o Jewelry Enc 0.862 0.145 11.57 0.851 0.153 12.08 0.841 0.164 12.54
w/o Text Enc 0.879 0.136 11.02 0.862 0.144 11.51 0.857 0.155 12.12

The encoder and decoder of the U-Net feature 12 residual blocks, with three downsampling and
upsampling stages, producing feature maps at multiple resolutions (8×6, 16×12, 32×24, and 64×48).
We initialize the U-Net’s weights using pretrained models from Paint-by-Example [24], and utilize
a dual-branch pathway in the latent space for enhanced multimodal alignment. Specifically, the
U-Net leverages cross-attention at all resolutions except 8×6, improving feature fusion between
jewelry-specific attributes and input image features. The spatial encoder adopts a similar structure,
with attention mechanisms fine-tuned for capturing fine details like jewelry positioning, alignment,
and reflective textures. This enables the model to handle diverse jewelry types and variations across
user body types and poses.
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Figure 6: Ablation study on the loss design, illustrating the compromised rendering quality and
jewelry alignment when any of the key losses—Depth Consistency, Perception, ATV, or Lmwsq are
removed from the PM-Jewelry framework.

B.2 Training and Inference Details

We train our model using the AdamW optimizer with an initial learning rate of 1e−4, over 400k
iterations, using a batch size of 24. The model is fine-tuned with a total variation weight (λATV ) of
0.001 for an additional 40K iterations, maintaining the same learning rate and batch size. Training is
conducted on four NVIDIA A100 GPUs, taking approximately 120 hours.

For data augmentation, we apply a series of transformations to the input images, including horizontal
flips (p=0.5), random shifts (limit=0.2, p=0.5), random scaling (limit=0.2, p=0.5), as well as contrast
and HSV adjustments. These augmentations are crucial for enhancing the model’s robustness in
handling diverse lighting conditions and jewelry styles.

To address the challenge of jewelry alignment and facial distortion, we fine-tune the decoder separately
using the VITON-HD [5] and DressCode [23] datasets, applying the AdamW optimizer with a learning
rate of 5e−5 over 12k iterations. This step ensures that the final output preserves key jewelry attributes
like shine, texture, and fit while maintaining realism in facial regions.

During inference, we utilize the pseudo linear multi-step (PLMS) sampler [21], running with 50 steps
to ensure high-fidelity results with minimized noise and optimal detail preservation.

B.3 Augmentation and Regularization

Augmentation techniques, including contrast and HSV adjustments, were applied to both the clothing
and the jewelry regions to maintain consistency in the training process. We also incorporated an
attention-based loss function (λATV ) to reduce attention dispersion, particularly during the cross-
attention process in jewelry-specific regions. A shadow-weighted noise loss was introduced to
enhance the realistic rendering of shadows and reflective surfaces.

B.4 Inference Strategy

For inference, we adopt the PLMS sampler with a 50-step sampling strategy, similar to the approach
used in Stable Diffusion [21]. This allows us to balance computational efficiency with high-quality
output, enabling our model to generate detailed, lifelike jewelry try-on results efficiently.
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