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Abstract

Motivation: Second generation sequencing technologies are being increasingly used for genetic

association studies, where the main research interest is to identify sets of genetic variants that con-

tribute to various phenotypes. The phenotype can be univariate disease status, multivariate re-

sponses and even high-dimensional outcomes. Considering the genotype and phenotype as two

complex objects, this also poses a general statistical problem of testing association between com-

plex objects.

Results: We here proposed a similarity-based test, generalized similarity U (GSU), that can test the

association between complex objects. We first studied the theoretical properties of the test in a

general setting and then focused on the application of the test to sequencing association studies.

Based on theoretical analysis, we proposed to use Laplacian Kernel-based similarity for GSU to

boost power and enhance robustness. Through simulation, we found that GSU did have advan-

tages over existing methods in terms of power and robustness. We further performed a whole gen-

ome sequencing (WGS) scan for Alzherimer’s disease neuroimaging initiative data, identifying

three genes, APOE, APOC1 and TOMM40, associated with imaging phenotype.

Availability and Implementation: We developed a Cþþ package for analysis of WGS data using

GSU. The source codes can be downloaded at https://github.com/changshuaiwei/gsu.

Contact: weichangshuai@gmail.com; qlu@epi.msu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The ongoing sequencing studies allowed researchers to comprehen-

sively investigate the role of a deep catalog of human genome vari-

ations in complex diseases (Cirulli and Goldstein, 2010). Although

these studies hold great promise for uncovering novel disease-

associated variants, the massive sequencing data bring tremendous

computational and statistical challenges to data analysis.

Sequencing data are characterized with high-dimensionality and

sparsity, where a large portion of genetic variants are rare variants

with minor allele frequency (MAF) smaller than 5%. Even with a

large effect size, a rare variant is hard to detect because of its low

MAF. Moreover, the massive number of rare variants raises compu-

tational burden and multiple comparison issue.

The common strategy is to perform a joint association test,

namely, testing the joint effect of a set of single nucleotide variants

(SNVs) on a genomic region, a functional unit (e.g. a gene) or a func-

tional pathway. By combining multiple SNVs, the association infor-

mation is aggregated and the number of tests is greatly reduced.

Among these approaches, methods based on variance component

score tests (VCscore) are widely used (Lin, 1997; Wu et al., 2011).

The methods considered the effects of the multiple variants as a ran-

dom effect, and then test the effect by testing the variance compo-

nent under the framework of the linear mixed model or the

generalized linear mixed model.

There are also increasing interests in studying shared genetic con-

tribution to multivariate phenotype. The multivariate phenotype can
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be multiple measurements evaluating different aspects of a disease,

which better reflect the underlying biological mechanism of the dis-

ease. It can also be multiple disease phenotypes that used for studying

co-morbid genes or pleiotropic gene (Dick and Agrawal, 2008). A few

methods can test the association of SNV-set with multivariate pheno-

type, yet, most of the current methods cannot handle multivariate

phenotype when the outcome variables are of different types (e.g.

some variables are binary while others are continuous). Besides con-

ventional multivariate phenotype, modern data types, such as shapes,

images and trees, are emerging in biomedical researches. These com-

plex objects are difficult to be integrated in traditional statistical

frameworks, whose primary interests are variables in vector spaces

(e.g. continuous, ordinal and categorical variables). Yet, it is relatively

easy to define distance metric or similarity metric for complex objects.

As a consequence, many distance and similarity based methods have

been proposed for modern data analysis.

In this paper, we present a similarity-based test using U statistic,

referred to as the Generalized Similarity U test (GSU). GSU can be

used to test the association of high-dimensional and sparse pre-

dictors with univariate, multivariate or complex-object responses

from sequencing association studies or other association studies. We

first studied the theoretical properties of GSU in a general setting in

Section 2, where we investigated the finite-sample properties and

asymptotic properties of the test. In Section 3, we then focused on

the applications of GSU to genetic sequencing studies. Extensive

simulation studies were conducted to evaluated the performance of

GSU in Section 4, followed by a whole genome sequencing (WGS)

data application in Section 5.

2 Generalized similarity U

2.1 General setting and rational
We start with a formal set-up. Let ðX;A;PÞ and ðW;G; dÞ be a prob-

ability space and a metric space, respectively. Consider random

elements Y and G taking values on metric space ðWY ;GY ; dYÞ and

ðWG;GG;dGÞ with distribution PYand PG, respectively. Here, the

random elements can be random variables (e.g. W ¼ R), random

vectors (e.g. W ¼ R
p), random matrix (e.g. W ¼ R

p�p), random

graph (e.g. trees) or random objects (e.g. shapes).

Let y and g denote the realization of the random response elem-

ent Y and random predictor element G. Given a sample of data

fðyi; giÞg1� i� n, we are interested in testing the association of re-

sponse Y and predictor G. Since Y and G may not live in a natural

vector space, it is not straight forward to construct a regression

model, such as EðYjGÞ ¼ f ðGÞ. However, it is easier to construct

similarity measurement for pairs fðyi; yjÞgi 6¼j and fðgi; gjÞgi 6¼j with

the distance metrics dY and dG. Intuitively, if Y and G are associ-

ated, then high similarity between gi and gj should lead to high simi-

larity between yi and yj.

The similarity measurement can be defined by a real-valued func-

tion quantifying the similarity between two elements. For example,

we can define the similarity between yi and yj as hðyi; yjÞ ¼ e�dY ðyi ;yjÞ,

so that the closer yi and yj are in the metric space, the more similar yi

and yj are. Other possible transformations from distance to similar-

ity include inverse transformation hðyi; yjÞ ¼ ðdYðyi; yjÞ þ eÞ�1 (for

some e > 0) and thresholding transformation hðyi; yjÞ ¼ 1fdY ðyi ;yjÞ< eg
(for some e > 0). Loosely speaking, any monotonically non-

increasing function can be used to transform distance to similarity.

Here, we list some examples of similarity measurements.

Example 1 (vector similarity): Let yi; yj 2 R
p. We can use

Gaussian kernel (hðyi; yjÞ ¼ expð�jjyi � yjjj22Þ) or cross-product

kernel (hðyi; yjÞ ¼< yi; yj >) to measure similarity. Here, < yi; yj >

can be considered as a transformation from Euclidean distance jj � jj22,

using the fact that < yi;yj>¼�1=2ðjjyi�yjjj22�jjyijj22�jjyjjj22Þ.
Example 2 (graph similarity): Let y ¼ ðV;EÞ be a graph with adja-

cency matrix A, where V is the set of vertices and E is the set of edges.

For any two graphs yi and yj, we can construct a product graph

yi � yj, with adjacency matrix Ai � Aj. The similarity between the

two graphs can be calculated using random walk on the product

graph, hðyi; yjÞ ¼
P

kwkqT
�Wk

�p� (Vishwanathan et al., 2010), where

k is the length of the random walk, wk is the weight for size-k random

walk, p� is the initial probability for vertices on yi � yj; W� is the

transition probability obtained from Ai �Aj, and q� is the stopping

probability for vertices on yi � yj. Beside random walk, graph similar-

ity can also be calculated using graphlet and subtree pattern.

Example 3 (image similarity): Image similarity can be calculated

from local features and global features of the images by using trad-

itional computer vision techniques such as scale invariant feature

transformation (SIFT) and histogram of gradients (HOG). Both

SIFT and HOG are human designed feature extraction. With large

datasets, we can use modern machine learning methods, such as

deep neural network (LeCun et al., 2015), to automatize the feature

extraction, and construct more meaningful image similarity from

high level representation of image.

2.2 A motivating model
Given the predictor elements and the response elements for the sub-

jects i and j, we denote their response similarity Si;j by

Si;j ¼ hðyi; yjÞ;

and denote their predictor similarity Ki;j by Ki;j ¼ f ðgi; gjÞ . The simi-

larity measurements hð�; �Þ :WY�WY!R and f ð�; �Þ :WG�WG!R

can be of a general form as long as they satisfy the finite second mo-

ment condition, i.e. Eðh2ðY1;Y2ÞÞ<1 and Eðf 2ðG1;G2ÞÞ<1,

where Y1 and Y2 (G1 and G2) are independent identical copy of Y

(G). We center the response similarity ~Si;j¼ ~hðyi;yjÞ by

~hðyi; yjÞ ¼ hðyi; yjÞ � Eðhðyi;YjÞÞ � EðhðYi; yjÞÞ þ EðhðYi;YjÞÞ; (1)

and center the predictor similarity, ~Ki;j ¼ ~f ðgi; gjÞ, in the same manner.

Based on the definition of the centered similarity, we can show that

Eð~f ðGi;GjÞÞ ¼ 0 and Eð~hðYi;YjÞÞ ¼ 0 (Supplementary Appendix S1).

We can investigate the relationship of the two similarities using a

similarity regression model (Elston et al., 2000; Tzeng et al., 2009),

Eð~Srj ~KrÞ ¼ b ~Kr 8r 2 fði; jÞ; i < jg:

Since the similarities have been centered, the regression has zero inter-

cept. The association can then be evaluated by testing null hypothesis

b¼0, where b can be estimated by bb ¼Pi< j
~Ki;j

~Si;j=
P

i< jð ~Ki;jÞ2: By

the form of bb, testing b¼0 is equivalent to testing the numerator

Ub¼0, where Ub ¼
P

i< j
~Ki;j

~Si;j. As we shall see soon, Ub is in the

same form as the generalized similarity U.

2.3 Weighted U statistic
The generalized similarity U (GSU) is defined as the summation of

the centered response similarities weighted by the centered predictor

similarities,

U ¼ 1

nðn� 1Þ
X
i 6¼j

~Ki;j
~Si;j; (2)

where ~Ki;j is considered as the weight function and ~Si;j is considered

as the U kernel. In our definition of GSU, the role of response
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similarity and predictor similarity are interchangeable. In other

words, we can also treat ~Si;j as the weight function and ~Ki;j as the U

kernel.

Under the null hypothesis, when the predictor element G is inde-

pendent of response element Y (i.e. Y??G), we have

EðUÞ ¼ 1

nðn� 1Þ
X
i6¼j

Eð~f ðGi;GjÞÞEð~hðYi;YjÞÞ ¼ 0:

Under alternative hypothesis, when Y is associated with G, we

expect that the response similarity is concordant with the predictor

similarity. In other words, the positive response similarities are

weighted heavier and the negative response similarities are weighted

lighter, leading to a positive value of U statistic. A statistical test can

be formed to test the association, and P-value can be calculated by P

ðU > UobsÞ under null hypothesis, where Uobs is the observed value

of U.

Define a population parameter lU as

lU ¼ Eð~f ðG1;G2Þ~hðY1;Y2ÞÞ:

It is easy to show that GSU is an unbiased estimator of lU, i.e.

EðUÞ ¼ lU. In addition, knowing that lU ¼ Eð~f ðG1;G2Þ~hðY1;Y2ÞÞ
�Eð~f ðG1;G2ÞÞEð~hðY1;Y2ÞÞ; we can consider lU as a population co-

variance. In this sense, a scale invariant ‘correlation’, Uc, can be

calculated

Uc ¼
P

i 6¼j
~Ki;j

~Si;jP
i 6¼jð ~Ki;jÞ2

P
i 6¼jð~Si;jÞ2

� �1=2
;

as an indicator of strength of association.

2.4 Strongly positive definite similarity
We have already shown that Y??G) lU ¼ 0, which ensures the

correct Type I error. It is of interest now whether lU ¼ 0) Y??G,

so that we can control Type II error (i.e. improve power) and reject

null hypothesis whenever ??= . The establishment of lU ¼ 0) Y??G

needs additional assumptions on the similarity measurements and

metric spaces. For the completeness, we first introduce several

preliminaries.

Define a ‘kernel’ as a real symmetric function h : W�W! R.

A kernel is called positive definite if
Pn

i;j cicjhðyi; yjÞ � 0; 8 ci; cj 2 R

and 8 yi; yj 2 W. A kernel is called negative definite if
Pn

i;j cicjhðyi; yjÞ
� 0; 8 ci; cj 2 R; yi; yj 2 W and

P
ici ¼ 0.

A positive definite kernel is called strictly positive definite when

the equality
Pn

i;j cicjhðyi; yjÞ ¼ 0 implies ci¼0 8i. The kernel func-

tion here can be used to define similarity measurement. To consider

lU ¼ 0) Y??G; however, we need the kernel function to exhibit a

property of ‘strong’ positive definiteness in the integral form. Using

similar notions of Rachev et al. (2013), we define a strongly positive

definite kernel as follows.

Definition 1: Let Q be a finite positive measure on ðW;G; dÞ and

q be a function integrable with respect to Q. We say h is strongly

positive definite if it is positive definite and the equality
Ð
W

Ð
Whðx; yÞ

qðxÞqðyÞdQðxÞdQðyÞ ¼ 0 implies q¼0 a.e. 8Q.

Let # be a finite signed measure dominated by Q s.t. d# ¼ qdQ.

For strongly positive definite kernel h, the equality
Ð
W

Ð
Whðx; yÞd#ðxÞ

d#ðyÞ ¼ 0 implies # ¼ 0 8 #. Now let # ¼ PGY � PGPY be a measure

on WG �WY , we can show (in Supplementary Appendix S1) that

lU ¼
ð ð

f ðg1; g2Þhðy1; y2Þd#ðg1; y1Þd#ðg2; y2Þ

If the tensor product kernel ðf � hÞððg1; y1Þ; ðg2; y2ÞÞ ¼ f ðg1; g2Þ
hðy1; y2Þ is strongly positive definite, then lU ¼ 0 implies # ¼ 0 (i.e.

lU ¼ 0) Y??G). In fact, we can show lU ¼ 0) Y??G as long as f

and g are both strongly positive definite.

Theorem 2: Assume both f ð�; �Þ and hð�; �Þ are strongly positive def-

inite. Let ~hðY1;Y2Þ and ~f ðG1;G2Þ be the centered similarities as

defined in (1). Define lU ¼ Eð~f ðGi;GjÞ~hðYi;YjÞÞ. Then, lU ¼ 0()
Y??G.

The proof is given in Appendix A by employing measures embed-

ding into the reproducing kernel Hilbert space. Many popular kernels

such as radial basis kernel hðy1;y2Þ¼ expð�jjy1�y2jjqÞ (0< q� 2)

are strongly positive definite kernel on R
p (Sriperumbudur et al.,

2010). However, the cross product kernel hðy1;y2Þ¼< yi;yj> is not

strongly positive definite on R
p, by observing that

Ð Ð
< y1;y2>

d#ðy1Þd#ðy2Þ¼0()
Ð

yd#ðyÞ¼0 6)#¼0.

2.5 Asymptotic test
For high-dimensional data, it is computationally expensive to calcu-

late P-values PðU > UobsÞ using permutation. Here, we derive the

asymptotic distribution of GSU under null hypothesis.

By considering the predictor similarity as the weight function and

the response similarity as the U kernel, GSU is a weighted U statistic

(Lindsay et al., 2008; Wei et al., 2016). More specifically, because its

kernel satisfied VarðEð~hðY1;Y2ÞjY2ÞÞ ¼ 0 (Supplementary Appendix

S1), GSU is a degenerated weighted U statistic. To derive the limiting

distribution of GSU, we can decompose the centered response similar-

ity by, ~hðy1; y2Þ ¼
P1

s¼1 ks/sðy1Þ/sðy2Þ; where fksg and f/sð�Þg are

eigenvalues and eigenfunctions of the U kennel ~hð�; �Þ, and all the

eigenfunctions are orthogonal, i.e.
Ð

/sðy1Þ/s0 ðy1ÞdFðy1Þ equals 0 if

s 6¼ s0 and equals 1 if s ¼ s0. Similarly, we can decompose the centered

predictor similarity by, ~f ðGi;GjÞ ¼
P1

t¼1 gtutðg1Þutðg2Þ. We can

then rewrite the GSU as,

U ¼ 1

n� 1

X1
t¼1

X1
s¼1

1ffiffiffi
n
p
Xn

i¼1

g?t ðGiÞ/?
s ðYiÞ

 !2

� 1

n� 1

X1
t¼1

X1
s¼1

1

n

Xn

i¼1

ðg?t ðGiÞ/?
s ðYiÞÞ2;

where u?
t ðGiÞ ¼ g0:5

t utðGiÞ and /?
s ðYiÞ ¼ k0:5

s /sðYiÞ. Using the form

above, we can show that the limiting distribution of GSU is a

weighted sum of independent v2 random variables. This is the result

of Theorem 3, which is proved in Appendix B.

Theorem 3: Assume EðhðY;YÞÞ < 1; Eðf ðG;GÞÞ < 1, and

Y??G. Let ~hðY1;Y2Þ and ~f ðG1;G2Þ be the centered similarities as

defined in (1). Define U as U ¼ 1
nðn�1Þ

P
i6¼j

~f ðGi;GjÞ~hðYi;YjÞ. Then,

nU!D
P1

t¼1 gt

P1
s¼1 ksðv2

st � 1Þ, where fv2
stg are independent v2 ran-

dom variables with 1 degree of freedom.

Using the similar techniques, we can show that a weighted V statis-

tic in the following form, V ¼ 1
n2

P
i;j

~f ðGi;GjÞ~hðYi;YjÞ; also converges

to a weighted sum of v2 variables, i.e. nV !D
P1

t¼1 gt

P1
s¼1 ksv2

st:

2.6 Power and sample size
In this subsection, we derive the asymptotic distribution of GSU

under the alternative hypothesis, and provide asymptotic power and

sample size calculations for association analysis.

Denote f1 ¼ Varð~f ðG1;G2Þ~hðY1;Y2ÞjðG2;Y2ÞÞ. Assume under

the alternative hypothesis that lU > 0 and f1 > 0. Using the

Hoeffding projection, we can show that GSU asymptotically follows

Generalized similarity U 1965
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a normal distribution, with mean lU and variance 4f1=n. This is

the result of Theorem 4, which is proved in Supplementary

Appendix S4.

Theorem 4: Let ~hðY1;Y2Þ and ~f ðG1;G2Þ be the centered similar-

ities as defined in (1). Suppose Y is associated with G, and the fol-

lowing conditions are satisfied: Eð~f ðG1;G2Þ~hðY1;Y2ÞÞ ¼ lU > 0,

Varð~f ðG1;G2Þ~hðY1;Y2ÞÞ ¼ f0 < 1, and Varð~f ðG1;G2Þ~hðY1;Y2Þj
ðG2;Y2ÞÞ¼ f1>0. Define U as U¼1=nðn�1Þ

P
i6¼j

~f ðGi;GjÞ~hðYi;YjÞ.
Then,

ffiffiffi
n
p
ðU�lUÞ!D Nð0;4f1Þ.

The power of GSU at the significance level a can be calculated

by, PfnU > q1�ag ¼ UðnlU � q1�a=2
ffiffiffiffiffiffiffi
nf1

p
Þ; where q1�a is the 1� a

quantile for
P1

t¼1 gt

P1
s¼1 ksðv2

st � 1Þ and Uð�Þ is the CDF of a stand-

ard normal distribution. The sample size required to achieve power

b can be calculated by solving UðnlU � q1�a=2
ffiffiffiffiffiffiffi
nf1

p
Þ � b. By denot-

ing Zb as the b quantile for a standard normal distribution, the

required sample size is given by, n ¼ minn2Nfn : n � ðZb
ffiffiffiffiffi
f1

p
þ

ðZ2
bf1 þ lUq1�aÞ1=2Þ2=l2

Ug:

3 Generalized similarity U for sequencing
association

3.1 Settings for sequencing data analysis
In a sequencing association study, the response element is called

phenotype and the predictor element is called genotype. Common

forms of phenotype and genotype are scalars or vectors. Suppose

that n subjects are sequenced in a study, where we are interested in

testing the association of L phenotypic variables (yi;l; 1 � i � n,

1 � l � L) with M genetic variants (gi;m; 1 � i � n,

1 � m � M). For each subject i, we observe a phenotype vector yi

(yi ¼ ðyi;1; yi;2; . . . ; yi;LÞ) and a genotype vector gi (gi ¼ ðgi;1; gi;2; . . . ;

gi;MÞ). In the special case when L¼1 (or M¼1), it is simplified to a

univariate analysis (or a single-locus analysis). When L>1 (or

M>1), it extends to a multivariate analysis (or a multi-locus ana-

lysis). Here, we allow multiple phenotypes to be of different types

(e.g. continuous or categorical), and do not assume any distribution

of phenotypes. The number of genetic variants M and the number of

phenotypes L can be larger than the sample size. For example, the

genetic data can be sequencing data (high-dimensional genotype)

and the phenotype data can be imaging data (high-dimensional

phenotype).

3.2 Similarity measurement
The choices for the phenotype similarity hð�; �Þ and the genetic simi-

larity f ð�; �Þ are flexible. According to different types of genetic vari-

ants and the purpose of the analysis, we can choose different types

of phenotype similarities and genetic similarities.

For phenotype similarity, one popular approach is to use a cross

product kernel, i.e. hðyi; yjÞ ¼< yi; yj > (Tzeng et al., 2009). Yet, as

discussed in previous theoretical analysis, cross product kernel may

not fit for robust association analysis. Here, we propose a similarity

measurement for both categorical and continuous phenotype using

radial basis kernel with L1 norm [Laplacian Kernel (LK)],

SLK
i;j ¼ exp ð�

XL

l¼1

xljyi;l � yj;ljÞ;

where xl represents the weight for the lth phenotypes given based on

prior knowledge. If there is no prior knowledge, we can use an equal

weight, xl ¼ 1=L. The LK-based phenotype similarity can be modi-

fied to take the correlation among the phenotypes into account,

SLK
i;j ¼ expð�ð1=LÞdT

ij CdijÞ; where dij ¼ ðjyi1 � yj1j0:5; . . . ; j
yiL � yjLj0:5ÞT . C can be chosen to reflect the correlations among the

phenotypes. For example, we can define C as C ¼ 1
n

Pn
i¼1

yiy
T
i

� ��0:5

:

For the categorical SNVs data, the popular way of measuring

genetic similarity is to use IBS function or the weighted IBS function

(Lynch and Ritland, 1999). Assuming the genetic variants

(gi;m; 1 � i � n; 1 � m � M) are coded as 0, 1 and 2 for AA, Aa

and aa, respectively, the IBS-based genetic similarity is defined as

KIBS
i;j ¼

1

2M

XM
m¼1

2� jgi;m � gj;mj:

Alternatively, the weighted-IBS (wIBS) genetic similarity can be defined

to emphasize the effects of rare variants, KwIBS
i;j ¼

PM
m¼1 wmð2�

jgi;m � gj;mjÞ=ð2!Þ; where wm represents the weight for the mth

SNV in the SNV-set, and ! is a scaling constant, defined as

! ¼
PM

m¼1 wm. wm is usually defined as a function of MAF

(denoted as cm). For example, the weight wm can be calculated

using inverse variance, i.e. wm ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cmð1� cmÞ

p
. However, IBS-

based similarity cannot be used for other genetic data, such as

copy number variation (count) or expression data (continuous).

Here, we propose a unified LK-based genetic similarity by general-

izing wIBS,

KLK
i;j ¼ exp �

XM
m¼1

wmjgi;m � gj;mj
!

 !
;

where gi;m can be categorical, count or continuous variables, and

wm can be calculated as function of variance r2
m of gm, i.e.

wm ¼ 1=rm.

Thus, we defined a unified measurement for genetic similarity

and phenotype similarity with LK expð�j � � � jÞ. Since LK is

strongly positive definite, we know that (from Theorem 2) the cor-

responding GSU has the property lU ¼ 0() G??Y, so that it can

control Type II error for the detection of any types of association.

Since LK is bounded similarity measurement, i.e. 0 � hð�; �Þ � 1

and 0 � f ð�; �Þ � 1, we know the regularity conditions in Theorem

3 is satisfied and the asymptotic test for corresponding GSU is ro-

bust against distribution assumptions (for large sample size).

3.3 Computation and covariates adjustment
Let S ¼ fSi;jgn�n and K ¼ fKi;jgn�n be the matrix form of the pheno-

type similarity and genetic similarity, the centered similarity matri-

ces ~S and ~K can be obtained by, ~S ¼ ðI � JÞSðI � JÞ; and
~K ¼ ðI � JÞKðI � JÞ; where I is an n-by-n identity matrix, and J is an

n-by-n matrix where all elements are 1=n (Supplementary Appendix

S5). Then GSU can be expressed as, U ¼ ð1=nðn� 1ÞÞ
P

i 6¼j
~Ki;j

~Si;j:

In this form, U can be viewed as a sum of the element-wise product

of the two matrices, ~K0 and ~S0, which are obtained by assigning 0 to

the diagonal elements of matrices ~K and ~S.

To allow for covariates adjustment, we can perform two sided

projection on the zero-diagonal centered similarity matrices, ~K0 and
~S0. Suppose that there are P covariates that need to be adjusted. Let

X ¼ fxi;pgn�P represents the covariate matrix, we can calculate the

covariate centered similarity matrices by (Supplementary Appendix

S6), bS ¼ ðI �XðXTXÞ�1XTÞ~S0ðI �XðXTXÞ�1XTÞ; and bK ¼ ðI �X

ðXTXÞ�1XTÞ ~K0ðI �XðXTXÞ�1XTÞ: The covariate adjusted GSU

can be expressed as

bU ¼ 1

n2

X
i;j

bKi;j
bSi;j:
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We include the diagonal terms in the covariate-adjusted similarities

because they also contain the similarity information after the adjust-

ment. In fact, the covariate-adjusted GSU is a weighted V statistic,

and its asymptotic distribution can be attained similarly as weighted

U statistic. We use matrix eigen-decomposition to approximate the

eigen-values in function decomposition. Let fbksg and fbgtg be the

eigen-values for matrices bK and bS, respectively, the limiting distribu-

tion of U is given by (Supplementary Appendix S7),

n bU � 1

nðn� P� 1Þ
Xn

t¼1

bgt

Xn

s¼1

bksv
2
st

where fv2
stg are independent v2 random variables with 1 degree of

freedom. The P-value can be calculated by using the Davies’ method

(Davies, 1980), the Liu’s method (Liu et al., 2009) or the Kuonen’s

method (Kuonen, 1999). To facilitate the high-dimensional data

analysis, we developed a Cþþ package based on GSU (https://

github.com/changshuaiwei/gsu).

4 Simulation study

4.1 Simulation method
To mimic real genetic structure, we used genetic data from the 1000

Genome Project (Abecasis et al., 2010). Based on the genetic data,

we then simulated phenotype values. In particular, we used a 1 Mb

region of the genome (Chromosome 17: 7344328-8344327) from

the 1000 Genome Project. For each simulation replicate, we ran-

domly chose a 30-kb segment from the 1 Mb region and formed a

SNV-set for the analysis, in which only rare variants (i.e. MAF

<0.05) are used except otherwise specified. From the SNV-set, we

set a proportion of the SNVs as causal. A number of individuals

were randomly chosen from the total 1092 individuals as the simula-

tion sample to study the performance of the methods. We set sample

size n¼50 by default.

To investigate the robustness against different phenotype distri-

butions, we simulated four types of phenotypes:

1. A binary-distributed phenotype (denoted as B), by

logitðPðYi ¼ 1ÞÞ ¼ li þGT
i b,

2. A Poisson-distributed phenotype (denoted as P), by Yi�PoisðaiÞ;
logðaiÞ¼liþGT

i b,

3. A Gaussian-distributed phenotype (denoted as G), by Yi ¼ liþ
GT

i bþ ei; ; ei � Nð0;r2Þ,
4. And a Cauchy-distributed phenotype (denoted as C), by Yi �

cauchyðai; bÞ; ai ¼ li þGT
i b,

Here, Yi and Gi were the phenotype value and the genotype vector

(coded as 0, 1 and 2) for the ith individual, respectively. We set

li ¼ 0 except otherwise specified. b were the effects of the SNVs,

which were sampled from a uniform distribution with a mean of lb

and a variance of r2
b.

Three sets of simulations were performed. In Simulation I, we

considered a single phenotype; in Simulation II, we considered

multivariate phenotype; in Simulation III, we considered multivari-

ate phenotype under the influence of confounding effects. Details of

simulation settings are in Supplementary Appendix S8.

We evaluated the performance of GSU by comparing it with

variance component score (VCscore) test under univariate or multi-

variate linear mixed model (Wu et al., 2011; Maity et al., 2012). For

each simulation, we created 1000 simulation replicates to evaluate

Type I error and power. Type I error rates and powers are calculated

using percentage of P-values smaller than a given threshold (e.g.

0.05) under null models and alternative models, respectively.

4.2 Result for Simulation I
The Type I error rates and powers are summarized in Table 1. GSU

had a well-controlled Type I error (around 0.05) for all four pheno-

types, while VCscore had an inflated Type I error rates (0.113) for

Cauchy-distributed phenotype and over-conservative Type I error

rates (0.005) for Binary-distributed phenotype.

For the disease model where half of the causal SNVs were dele-

terious (Table 1), GSU had slightly lower power than VCscore for

Gaussian-distributed (0.258 versus 0.345) and Poisson-distributed

phenotype (0.506 versus 0.651), but had significantly higher power

than VCscore for Cauchy-distributed (0.503 versus 0.21) and

Binary-distributed phenotype (0.402 versus 0.083). The same com-

parison was observed for the second disease model in which a ma-

jority of the SNVs were deleterious.

We performed additional simulations by including both common

and rare variants (Supplementary Table S4). Under this setting, the

power of VCscore increased significantly for Binary phenotype

(0.764), though still lower than that of GSU (0.807). GSU attained

higher power than VCscore for Poisson (0.813 versus 0.795) and

Cauchy (0.885 versus 0.573) phenotype. Nevertheless, GSU was still

less powerful than VCscore for Gaussian phenotype (0.853 versus

0.878).

4.3 Result for Simulation II
The Type I error rates and powers for the multivariate analysis are

summarized in Table 2. Similar to the results of the univariate ana-

lysis, GSU can correctly control Type I error at the level of 0.05

(Table 2), while VCscore had inflated Type I error when the pheno-

type contained variables with heavy tailed distribution (e.g. CGG

and BCG). GSU attained higher power than VCscore for BBG, CGG

and BCG phenotypes, and similar power as VCscore for BPP

phenotype.

We examined the Type I error rates at more stringent signifi-

cance levels (Table 3) by simulating 1 million replicates. In general,

GSU can control the Type I error better than VCscore. For example,

at 5� 10�3 and for BPP phenotype, GSU had Type I error near 5

�10�3 (i.e. 7:4� 10�3), while, VCscore had Type I error much

Table 1. Type I errors and powers for the univariate analysis

Model Method Distribution

B C G P

Null VCscore 0.005 0.113 0.019 0.047

GSU 0.044 0.051 0.047 0.058

lb ¼ 0; r2
b > 0 VCscore 0.083 0.21 0.345 0.651

GSU 0.402 0.503 0.258 0.506

lb > 0; r2
b > 0 VCscore 0.023 0.434 0.747 0.942

GSU 0.458 0.753 0.628 0.864

Note: B, C, G, P represent binary-distributed, Cauchy-distributed,

Gaussian-distributed and Poisson-distributed phenotype, respectively.

Table 2. Type I errors and powers for the multivariate analysis

Model Method Distribution

BPP CGG BBG BCG

Null VCscore 0.054 0.194 0.049 0.179

GSU 0.051 0.043 0.049 0.055

Alt VCscore 0.939 0.273 0.478 0.309

GSU 0.84 0.664 0.716 0.684
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higher than 5� 10�3 (i.e. 1:1� 10�2). While simulation demon-

strated robustness of GSU over VCscore on controlling Type I error,

we observe GSU has slightly inflated Type I errors at 5� 10�3 level.

We suspect this is because of the small sample size. We therefore

conducted another set of simulation with sample size of 200, and

the results showed Type I errors of GSU are better controlled for

stringent significant levels under larger sample size (Supplementary

Table S5).

To separate influences of different distributions, we also com-

pared GSU and VCscore when phenotype have the same distribu-

tions (i.e. BBB, CCC, GGG, PPP). The results (Supplementary Table

S6) are similar to those for univariate phenotype. In general, GSU

can control Type I errors better than VCscore. GSU had slightly

lower power than VCscore for GGG phenotype (0.882 versus

0.958) and PPP phenotype (0.862 versus 0.966), but attained signifi-

cantly higher power for BBB phenotype (0.862 versus 0.26) and

CCC phenotype (0.724 versus 0.284). We further increased the di-

mension of phenotype to 10 for each type, and the comparisons

showed that GSU have better control of Type I error and attain

higher power for most cases (Supplementary Fig. S1).

4.4 Result for Simulation III
We summarized the Type I errors in Table 4. Without covariates ad-

justment, both methods had inflated Type I errors. With covariates

adjustment, GSU showed robustness against confounding effects for

all 4 multivariate phenotypes, with Type I errors ranging from

0.056 to 0.061. VCscore can control Type I error for BBG pheno-

type (0.054), but had inflated Type I errors, ranging from 0.174 to

0.322, for the other 3 multivariate phenotypes.

In Figure 1, we generated the power curves by plotting the

powers of the two methods against different sample sizes (50–200).

GSU has higher power than VCscore for different sample sizes and

multivariate phenotypes, except for BPP phenotype. The ‘higher

power’ of VCscore for BPP phenotype is due to the fact that

VCscore has inflated Type I error (i.e. 0.322, as shown in Table 4).

5 Real data application

We analyzed the WGS data from Alzherimer’s disease neuroimaging

initiative (ADNI) using the GSU Cþþ package. ADNI is a large-

scale longitudinal study that collects and utilize various predictors

of Alzherimer’s disease (AD), including 3D brain imaging, cognitive

measurements and genetic data. The sample with WGS data con-

tains 808 individuals, with 280 normal controls (NC), 234 early

mild cognitive impaired (EMCI) patients, 246 late cognitive im-

paired (LMCI) patients, and 48 AD patients at study baseline.

WGS was performed on autosomal chromosomes for each sub-

ject. To form SNV-set, we group the genetic variants based on the

gene range list from GRch37 assembly, where we only used the non-

overlapping genes. For genetic variants outside of gene ranges, we

group them by evenly spacing the remaining genome with windows

of 50 kb. After completing quality control (e.g. delete variants with

high-missing rate) and grouping process, about 21 million genetic

variants remained for analysis, forming 61 683 SNV-sets.

We were interested in testing the association of the SNV-sets

with brain imaging summary matrices considered important to cog-

nitive impairment. In particular, we used six variables: 18F-fluoro-

2-deoxyglucose, Hippocampus, Entorhinal, 8F-florbetapir (AV45),

Fusiform and Ventricles measurements at base-line, as multivariate

phenotype. The phenotype similarity is calculated using weighted

LK, SLK
i;j ¼ expð�

PL
l¼1 xljyi;l � yj;ljÞ. We ‘fished’ the weight xl from

the case–control status. In particular, we regressed the case–control

status on the scaled multivariate phenotype and obtained regression

coefficient bl for lth variable, where we assigned xl ¼ jblj
(Supplementary Table S7).

Table 3. Type I errors at different significance levels

Level Method Distribution

BPP CGG BBG BCG

1� 10�2 Vcscore 0.017 0.133 0.013 0.138

GSU 0.013 0.015 0.011 0.015

5� 10�3 Vcscore 0.011 0.120 0.0078 0.124

GSU 0.0074 0.0091 0.0059 0.0093

Table 4. Type I errors for multivariate analysis with moderate con-

founding effects

Adj Method Distribution

BPP CGG BBG BCG

Yes Vcscore 0.322 0.174 0.054 0.184

GSU 0.061 0.056 0.056 0.057

No Vcscore 0.408 0.171 0.217 0.183

GSU 0.135 0.113 0.147 0.115

Note: Adj indicates whether covariate adjustments are performed.

Fig. 1. Power comparison for the multivariate analysis after adjusting for confounding effects
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In order to adjust the potential confounding effects, we included

age, gender, race and top 20 genome principle components as cova-

riates in the analysis. Two sets of whole genome association analysis

were performed. For the first scan, we include both common and

rare variants, while for the second scan we only include rare vari-

ants. The Quantile-Quantile plots (Supplementary Figs S2 and S3)

showed no systematical bias after adjusting covariates. We listed the

top 5 SNV-sets for each scan in Table 5. When both common and

rare variants were considered, 4 SNV-sets (i.e. APOE, Ch19-

45389309-45439308, APOC1, TOMM40) pasted the Bonferroni

threshold, among which the genes APOE and TOMM40 has been

reported in previous studies. As a comparison, we also performed

the analysis using VCscore (Supplementary Table S10). VCscore at-

tained similar results for the top association findings, though with

less significant P-values (e.g. P-value¼1:98� 10�26 for APOE).

When only rare variants are considered, no SNV-set past the

Bonferroni threshold. Interestingly, the gene APOC1 was listed as

one of the top 5 associated genes from both analyses. Further inves-

tigation will be needed to study its role in AD. More detailed results

are in Supplementary Tables S8 and S9. We further calculated the

P-value of the top SNV-sets using AD case–control status instead of

multivariate phenotype with 6 intermediate measurements. The uni-

variate analysis attained less significant result (Supplementary Table

S11). For example, the P-value of APOE is 3:44� 10�8 from ana-

lysis using AD case–control status, less significant than 2:77� 10�48

from analysis using brain imaging matrices.

6 Discussion

Many genetic studies collect multiple secondary phenotypes, or use

intermediate biomarkers, to study complex diseases. By considering

multiple phenotypes that measure the different aspects of underlying

diseases, the power of the association analysis can potentially be im-

proved (Zhang et al., 2010; Maity et al., 2012). Several methods

were recently developed to detect the joint effect of genetic variants

on multivariate phenotype(Tao et al., 2015; Wang et al., 2015).

Most were built on parametric framework that poses certain as-

sumptions on phenotype distribution. In this paper, we proposed a

non-parametric test, GSU, based on similarity measurement.

Simulation study showed that our methods can can control Type I

error for multiple different phenotypes and moderate level of con-

founding effects. In most cases, GSU also attained higher power

than the parametric method. Although the simulation results depend

on the simulation settings, and should always be interpreted in the

context of the simulation setting, we believe the results reflect the

advantage of GSU in a broader sense, because (i) the genetic data

used in the simulation comes from the 1000 Genome Project, which

reflects the LD pattern and the allele frequency distribution in the

general population; and (ii) we simulated a wide range of disease

models, including univariate phenotype and multivariate phenotype

with different distributions, to mimic real disease scenarios.

The test statistics in VCscore is a quadratic form, T ¼ bY T
K bY ,

where bY is the standardized residual under null, and K is the genetic

similarity matrix. If we rewrite T as T ¼
P

i;jKi;jð bY i
bYj Þ, VCscore is

actually a weighted V statistic with cross product kernel bSi;j ¼ bY i
bYj .

In this respect, VCscore can be considered as a special case of GSU.

Nonetheless, there are several key differences: (i) GSU allows gen-

eral forms of similarity and thus can be used for association analysis

of elements in general metric space; (ii) for multivariate association

analysis, GSU with LK-based similarity has the ability to detect any

types of association (strongly positive definite similarity) and its

asymptotic test is robust against distribution assumptions (bounded

similarity); (iii) for covariates adjustment, GSU used a centralized

similarity ~S0 and then perform two sided projection, i.e.bS ¼ ðI �XðXTXÞ�1XTÞ~S0ðI �XðXTXÞ�1XTÞ, while, VCscore per-

formed two sided projection on original similarity (S ¼ YYT ), i.e.bS ¼ ðI �XðXTXÞ�1XTÞSðI �XðXTXÞ�1XTÞ; (iv) Asymptotic distri-

bution of GSU is in the form of
P1

t¼1 gt

P1
s¼1 ksv2

st, where distribu-

tion of VCscore is in the form of
P

s ksv2
s ; (v) for multivariate

phenotype with L variables, the dimension for similarity matrix is

n�n in GSU and nL�nL in VCscore.

In simulation studies, we observed higher power of GSU over

VCscore. This is mainly due to the fact that GSU is equipped with

strongly positive definite kernel which can detect any type of associ-

ation while the cross product kernel in VCscore does not have this

property. We performed another set of simulations by generating de-

pendence structure via rotation operator (Supplementary Appendix

S9). In particular, we first generate two i.i.d. multimodal continu-

ously distributed variables and then rotate the vector with angle h
2 ð0; p=4Þ (Supplementary Fig. S4). The data generated thus does

not have first-order dependence structure (correlation) nor second

order dependence structure. The result (Supplementary Fig. S5)

showed that GSU (with LK-based similarity) had power of 1 for

large enough sample size, while VCscore (with cross-product kernel)

cannot detect any association regardless of different sample sizes.

Though the ‘toy’ simulation may not represent common scenarios in

genetic association studies, it empirically explains the reason why

GSU attained higher power than VCscore. To further investigate the

influence of different kernels, we performed simulations using five

different kernels for GSU, including three strongly positive definite

kernels. The result shows that GSU with strongly positive definite

kernels have higher powers for the most of the time, among which

GSU with LK kernel have highest power (Supplementary Fig. S6).

In general, we recommend to use LK kernel for GSU. Nevertheless,

its performance may not guaranteed to be optimal. In this case, we

can perform kernel selection, for example, by using the procedure

proposed by Wu et al. (2013). Besides the choice of kernel, different

choices of weights can also influence the power of GSU for multi-

variate phenotype. In principle, we should use weights that represent

their relative importance with respect to the underlying ‘true pheno-

type’. For example, in real data analysis, we obtained the weights

based on their contributions to the AD disease status. Here in this

paper, we only considered the joint effect of SNV-sets. If gene envir-

onment interaction effects are to be considered, we can calculate

Table 5. Top association findings from the multivariate analysis of

ADNI whole genome sequencing data

SNV-set Chr Size P-value

Common and rare variants

APOE 19 17 2:77� 10�48

Ch19-45389309-45439308 19 162 1:64� 10�37

APOC1 19 37 3:38� 10�31

TOMM40 19 126 9:28� 10�19

RHPN2 19 758 2:54� 10�06

Rare variants

Ch1-107013494-107063493 1 240 1:96� 10�06

APOC1 19 26 6:28� 10�06

Ch17-40300052-40350051 17 64 2:51� 10�05

Ch4-189560456-189610455 4 314 3:14� 10�05

LOC101927616 12 107 3:16� 10�05

Note: SNV-set is named either using gene name, or with the format of

‘chromosome—starting position—ending position’, where the position is

referred to GRch37 assembly. Size, number of SNV in the SNV-set.
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a composite similarity using both the genetic information and envir-

onmental information (Tong et al., 2016; Wei et al., 2016), and

then construct GSU with the composite similarity and the phenotype

similarity.

The asymptotic test for GSU (with LK-based similarity) is shown

to be robust to distribution assumption. This is because the LK is

bounded between 0 and 1, and the resulting similarities hð�; �Þ and

f ð�; �Þ thus satisfy the regularity condition of asymptotic test, i.e.

EðhðY;YÞÞ < 1 and Eðf ðG;GÞÞ < 1. However, cross-product

kernel does not have this property. As a result, we observed that in

simulation studies GSU had more robust Type I errors than

VCscore. Nevertheless, we still observed slightly inflated Type I

error with stringent significant level (e.g. 5� 10�3) when n¼50.

This is because the asymptotic null distribution cannot approximate

the actually null distribution well when sample size is small com-

pared with when sample size is large (Supplementary Fig. S7). One

way to improve the robustness for small sample size is to take an

rank transformation for each variable [i.e. ri;j ¼ ðrankðyi;jÞ � 0:5Þ=n]

before calculating the similarity. We performed additional simula-

tion for GSU with rank transformation for n¼50 using same setting

as Simulation II. The results showed that GSU with rank transform-

ation (GSU-rk) can control Type I error well even with more strin-

gent significant level for small sample size (Supplementary Table

S12). Nevertheless, rank transformation can cause loss of informa-

tion, which might lead to lower power.

In simulations, we observe that VCscore, although designed for

Gaussian distributed phenotype, appears to be able to control Type

I error appropriately and attain slightly higher power for Poisson

phenotype. This may be due to that Poisson distribution can be rea-

sonably approximated by Gaussian distribution when its mean is

moderate to large. We performed additional simulation using heav-

ily right skewed Poisson distribution, and the results showed

VCscore had lower power for one simulation and inflated Type I

errors for another simulation (Supplementary Table S13). We can

use rank transformation to improve the robustness of VCscore (Wei

et al., 2016). We performed additional simulation to compare GSU-

rk to VCscore test with rank transformation (VCscore-rk). The re-

sult (Supplementary Table S14) showed that VCscore-rk can control

Type I errors under various setting. However, VCscore-rk still had

lower powers than GSU-rk for most cases.

For the analysis of multivariate phenotype, the difference on

the dimension of similarity matrix for GSU and VCscore influ-

enced the computation efficiency especially when the number of

variables in multivariate phenotype increases. The key reason is

the cost of the eigen decomposition. For analysis of L-variable

multivariate phenotype in a sample of size n, GSU needs to decom-

pose a n�n matrix, while VCscore needs to decompose a Ln�Ln

matrix. The time used for matrix decomposition are Oðn3Þ for

GSU and OðL3n3Þ for VCscore. For example, in real data applica-

tion when L¼6, the average time to analyze one SNV set is

36.75 s for VCscore and 1.3 s for GSU. For high-dimensional set-

ting (e.g. L	 n), VCscore is computationally infeasible. An add-

itional simulation shows that GSU is well behaved when the

dimension of phenotype increase to 100 (Supplementary Fig. S8).

Nevertheless, noises in high-dimensional phenotype or genotype

may reduce the power of GSU. In this case, dimension reduction

techniques, such as variable selection and principle component

analysis, can be used to increase power.

The covariate adjustment proposed in the paper is a heuristic

approach for adjusting confounding effect. Accurate adjustment

of confounding effects requires additional assumptions on the

distributions and the functional forms between responses and

covariates. In the paper, we showed GSU works well when the

confounding effects are moderate. Nonetheless, the heuristic cova-

riate adjustment in GSU should always be used with caution. If

there is a strong confounding effect, the heuristic approach might

not control Type I error very well. For this paper, covariate adjust-

ment is not the primary focus, and the issue will be investigated in

future studies.

Besides confounding effects, the correlation among variables in

multivariate phenotype may also influence the performance of as-

sociation testing. This is particularly important for regression

based methods, since it handles multivariate phenotype by stretch-

ing the phenotype matrix to a long phenotype vector. Without

considering correlations among variables in phenotype, the test

will lead to inflated Type I error. Nevertheless, GSU do not have

this issue, since its similarity matrix is calculated on subject level

and its inference only assume independence between subjects.

We performed additional simulations by introducing additional

correlation in the multivariate phenotype (Supplementary

Table S15). The results showed that, in general, GSU can

control Type I error and attain higher power than VCscore

(Supplementary Fig. S9).

In recent years, U-statistic-based methods became popular in

genetic data analysis, and have shown their robustness and flexibil-

ity for analyzing genetic data(Li et al., 2011; Schaid et al., 2005;

Wei and Lu, 2015; Wei et al., 2016). GSU is a general framework of

association analysis and is based on similarity measurements and U

statistics. In this paper, we have focused on the association analysis

between multivariate phenotype and categorical sequencing data

(i.e. SNV data). GSU can easily be applied to analyze other types of

genetic data, such as count data (CNV data) and continuous data

(expression data) with unified LK-based similarity (Section 3.2).

With appropriate similarity measurement (Section 2.1), GSU can

also be used for association testing of modern data types, such as

imaging, curves and trees.
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Appendix

Owing to space limit, we here only sketch the proofs. Detailed

proofs can be found at Supplementary Appendix S2 and S3.

Appendix A. Embedding into Hilbert space

For each positive definite kernel h, we can construct a unique repro-

ducing kernel Hilbert space (RKHS) H with reproducing kernel h

(Berlinet and Thomas-Agnan, 2004), such that, (i)

8y2WY ;hð�;yÞ2H, (ii) 8y2WY ;8u2H; < u;hð�;yÞ>H¼uðyÞ. We

can write hð�;yÞ¼ shðyÞ, and then represent a measure #2M as an

element in RKHS (Lyons, 2013) using an embedding map p:

M!H, s.t., phð#Þ¼
Ð
shðyÞd#ðyÞ¼

Ð
hð:;yÞd#ðyÞ. Furthermore, if h

is strongly positive definite, we can show the mapping ph is one-to-

one, i.e. #1¼#2()pð#1Þ¼pð#2Þ.
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Let shðyÞ ¼ hð�; yÞ and sf ðgÞ ¼ f ð�; gÞ. We can then write lU as,

lU ¼ jjpf�hð#Þjj2H, where, pf�hð#Þ ¼
Ð Ð

sf ðgÞshðyÞd#ðg; yÞ. If

lU ¼ 0, then we know pf�hð#Þ ¼ 0, i.e.ð
f ðg1; gÞhðy1; yÞd#ðg1; y1Þ ¼ 0; 8ðg; yÞ 2 WG �WY :

We then can show, by repeatedly using measure embedding, that

8A 
 WG; 8B 
 WY ;
Ð

1Aðg1Þ1Bðy1Þd#ðg1; y1Þ ¼ 0, i.e. G??Y.

Appendix B: Proof of Theorem 3

Because of the orthogonality of f/sð�Þg and the fact that

Eð~hðY1;Y2ÞjY1Þ ¼ 0, we can show E/sðYÞ ¼ 0;8 s > 1. Similarly,

EutðGÞ ¼ 0; 8 t > 1. Under the null hypothesis, predictor element

(Gi) is independent of response element (Yi). Therefore, for s>1 and

t>1,

Eðg?t ðG1Þ/?
s ðY1ÞÞ ¼ g0:5

t EutðG1Þk0:5
s E/sðY1Þ ¼ 0;

and

Eðg?t ðG1Þ/?
s ðY1Þg?t0ðG1Þ/?

s0ðY1ÞÞ ¼
gtks; if s ¼ s0 and t ¼ t0

0; otherwise:

(

Therefore, for any finite subset D of fðs; tÞgs>1;t>1, the multivariate

random variable

1ffiffiffi
n
p
Xn

i¼1

g?t ðGiÞ/?
s ðYiÞ

( )
ðs;tÞ2D

converges to a multivariate normal distribution.

Then, we need to show the convergence is uniform. Notice thatP
s>1;t>1 Eðg?t ðG1Þ/?

s ðY1ÞÞ2 ¼ EðhðY;YÞÞEðf ðG;GÞÞ < 1. Under

the condition
P

s>1;t>1 Eðg?t ðG1Þ/?
s ðY1ÞÞ2 < 1, the infinite count-

able sequence of function fg?t ð�Þ/?
s ð�Þg is a Donsker class (Theorem

2.13.1 in van der Vaart and Wellner, 2000). Therefore, the empirical

process, 1ffiffi
n
p
Pn

i¼1 g?t ðGiÞ/?
s ðYiÞ, converges weakly to the Gaussian pro-

cess Zs;t with mean zero and covariance function, covðZs;t;Zs0 ;t0 Þ ¼
Eðg?t ðG1Þ/?

s ðY1Þg?t0ðG1Þ/?
s0ðY1ÞÞ. With this uniform convergence (for

all s>1 and t>1), we can show that,

nU!D
X1
t¼2

X1
s¼2

ðZs;tÞ2 �
X1
t¼2

X1
s¼2

gtks ¼
X1
t¼1

gt

X1
s¼1

ksðv2
st � 1Þ;

where v2
st are i.i.d v2 random variables with a df of 1.
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