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Abstract001

The Incremental Named Entity Recognition002
(INER) task aims to update a model to ex-003
tract entities from an expanding set of entity004
type candidates due to concerns related to data005
privacy and scarcity. However, conventional006
sequence labeling approaches to INER often007
suffer from the catastrophic forgetting prob-008
lem, which leads to the degradation of the009
model’s performance on previously encoun-010
tered entity types. In this paper, we formalize011
INER as a unified seq2seq generation task and012
propose a parameter-efficient dynamic prefix013
method. By employing the Dynamic Prefix014
as a task Instructor (DPI) to guide the gener-015
ative model, our approach can preserve task-016
invariant knowledge while adapting to new en-017
tities with minimal parameter updates, making018
it particularly effective in low-resource scenar-019
ios. Additionally, we introduce a generative020
label augmentation strategy with dual optimiza-021
tion objectives including a self-entropy loss022
and a task-aware similarity loss to enable op-023
timal balance between stability and plasticity.024
Through extensive empirical evaluation on stan-025
dard NER benchmarks, we demonstrate that026
our approach significantly outperforms existing027
methods, achieving up to 13.6% improvement028
in low-resource scenarios while maintaining029
strong performance on previously learned en-030
tity types.031

1 Introduction032

Named Entity Recognition (NER) is a fundamen-033

tal problem in information extraction. Traditional034

NER systems typically require extensive annotated035

training data encompassing all predefined entity036

types. However, as new entity types emerge, re-037

training the entire model becomes impractical. Fur-038

thermore, obtaining sufficient supervised training039

data is challenging due to concerns related to data040

privacy and scarcity (Ma et al., 2020). Conse-041

quently, continual learning (or incremental learn-042

ing) for NER has been proposed (Monaikul et al.,043

t t+1t-2 t+2t-1 ······Task ID

[MISC][PER][LOC] [TIME]

Inputs: Austrian Judith 
Wiesner overcame  Iva 

Majoli of Croatia yesterday

Current 
Label:

[MISC] [O] [O] [O] [O] [O] [O]

Full    
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[MISC] [PER] [O] [PER] [O] [LOC] [TIME]
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Pred:

[MISC] [PER] [O] [PER] [O] [O] [O]

···

Figure 1: Challenges in INER. At the current incremen-
tal step t, the data is only annotated with the current
entity type [MISC], while previous entity types [LOC]
and [PER] are annotated with [O]. [TIME] is a future
entity type. “Current Pred” indicates that the model
forgets previous entity type [LOC] after step t.

2021) as a solution to train the model incremen- 044

tally on new datasets labeled exclusively with new 045

entity types, addressing the issues associated with 046

retraining and data availability. 047

While incremental learning aims to mirror hu- 048

man capability in continuously acquiring knowl- 049

edge (Ke and Liu, 2022), it faces the challenge 050

of catastrophic forgetting (McCloskey and Co- 051

hen, 1989), where models lose previously acquired 052

knowledge while learning new tasks. This is par- 053

ticularly problematic in NER, where information 054

about previous and future entity types is absent dur- 055

ing current learning steps. Ma et al. (2023) identify 056

that most INER errors arise from confusion be- 057

tween pre-defined entities and non-entities (“O”). 058

As shown in Figure 1, the model that successfully 059

learned to recognize “PER” (person) and “LOC” 060

(location) in one step would be trained to anno- 061

tate “PER” or “LOC” as “O” in the current and 062

subsequent steps. At step t, only the entity type 063

“MISC” (miscellaneous) is labeled, which leads to 064

the wrong prediction of the entity “Croatia”. This 065

indicates that the model has forgotten the entity 066

information of “LOC” learned in previous tasks. 067

Training directly on new data will exacerbate 068

the background shift (Zhang et al., 2023) problem, 069

where old and future entity types are mislabeled as 070
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the non-entity type. This results in a significant per-071

formance drop on historical entities. We validate072

the problem through experiments comparing three073

training paradigms (Figure 2). Multi-task learning074

(upperbound, green line) preserves all annotations,075

naive fine-tuning (blue line) shows catastrophic076

forgetting with F1 score plunging, while contin-077

ual learning methods (orange line) maintain stable078

performance close to the upperbound.079

Existing methods (Monaikul et al., 2021; Zheng080

et al., 2022; Zhang et al., 2023) treat INER as a se-081

quence labeling classification task, which may en-082

counter limitations, particularly in the era of Large083

Language Models (LLMs). Following traditional084

NER approaches, these methods use a text encoder085

to extract context representations, followed by a086

classification layer to assign entity types to individ-087

ual tokens. This paradigm presents three critical088

challenges: 1. Structural Inflexibility: Adding new089

entity types requires expanding the classification090

layer and retraining the entire model, even when091

attempting to preserve existing weights. This ar-092

chitectural modification inevitably interferes with093

previously learned knowledge. 2. Parameter In-094

efficiency: The need to update both the encoder095

and classification layer parameters leads to sig-096

nificant computational overhead and increases the097

risk of catastrophic forgetting. 3. Limited Entity098

Modeling: The token-level classification paradigm099

struggles with complex scenarios such as nested100

or overlapping entities, often requiring specialized101

architectural modifications (Yan et al., 2021).102

Motivated by these challenges, in this paper,103

we formalize INER as a seq2seq generation task,104

which aligns well with the generative nature of105

NER and facilitates prompt tuning more intu-106

itively. Our proposed method employs a parameter-107

efficient dynamic prefix strategy tailored for incre-108

mental learning in INER. By dynamically assign-109

ing separate and task-specific prefixes as instruc-110

tors during the incremental process, our model in-111

spires the model to acquire new knowledge while112

retaining old prefixes to maintain stability. This113

structure inherently enables knowledge separation,114

where each prefix functions as a modular “expert”115

encoding specific entity-type patterns. During in-116

cremental learning, new prefixes are dynamically117

appended as lightweight instructors, while old pre-118

fixes remain intact, enabling parallel knowledge119

acquisition and retention. This approach is partic-120

ularly effective for INER for two reasons: 1. Nat-121

ural Entity Handling: The generative framework122

naturally supports complex scenarios such as over- 123

lapping entities by decoding entity spans autore- 124

gressively, overcoming the structural limitations of 125

sequence labeling. 2. Efficient Knowledge Sepa- 126

ration: The decoupled prefix architecture avoids 127

overwriting shared parameters or expanding classi- 128

fication layers, ensuring smooth adaptation to new 129

entity types. 130

Specifically, we integrate manually constructed 131

task instructions and entity type options in the in- 132

put sentence (as shown in Figure 3). Then, we 133

introduce dynamic prefix as an instructor to guide 134

the frozen Pre-trained Language Model (PLM) in 135

learning new entity types. At each incremental 136

step, we expand the prefix set while keeping new 137

prefixes as the only trainable parameters (approxi- 138

mately 0.1% of the base model). All prefixes are 139

pluggable and require no modifications to the base 140

model. This results in significantly fewer parame- 141

ters to fine-tune compared to prior INER methods. 142

During inference, all prefixes collaborate to gener- 143

ate a sequence of entity types from current options 144

and their corresponding entities. We further en- 145

hance the framework with a generation-based label 146

augmentation strategy with a self-entropy loss and 147

a task-aware similarity loss to achieve a more re- 148

fined equilibrium between stability and plasticity. 149

Our main contributions are: 150

• We propose a dynamic prefix method to re- 151

tain task-invariant capabilities and preserve 152

task-specific knowledge in INER, requiring 153

updates to only 0.1% of model parameters. 154

• We propose a generation-based label augmen- 155

tation strategy with a self-entropy loss and a 156

task-aware similarity loss, achieving an equi- 157

librium between stability and plasticity. 158

• Comprehensive empirical validation shows 159

significant improvements over existing meth- 160

ods, particularly in low-resource scenarios, 161

while using orders of magnitude fewer param- 162

eters than traditional sequence labeling INER 163

approaches. 164

2 Related Work 165

2.1 Class-Incremental Learning 166

Prior approaches to class-incremental learning can 167

be divided into three categories: (1) Architecture- 168

based methods dynamically adjust the model archi- 169

tecture to learn new knowledge while mitigating 170
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Figure 2: An illustration of catastrophic forgetting. We
conduct the comparison with three different settings on
the CoNLL03 (Sang and De Meulder, 2003) dataset.

the forgetting of previously learned tasks (Chen171

et al., 2016; Rusu et al., 2016; Mallya et al., 2018).172

(2) Regularization-based methods constrain the173

updates of parameters that are important to the174

learned tasks to retain previous knowledge (Li and175

Hoiem, 2017; Kirkpatrick et al., 2016; Aljundi176

et al., 2018). (3) Rehearsal-based methods keep177

exemplars from previous tasks in memory. (Lopez-178

Paz and Ranzato, 2017; Chaudhry et al., 2019;179

de Masson d’Autume et al., 2019).180

2.2 Prompt Tuning in Continual Learning181

As a lightweight alternative to fine-tuning, prompt-182

based methods often learn a prompt pool or a se-183

ries of soft prompts to instruct the model while184

keeping the base model frozen (Wang et al.,185

2022b;Razdaibiedina et al., 2023;Wang et al.,186

2022a). These prompts serve as both task-invariant187

and task-specific instructions. When learning new188

tasks, the prompt pool is updated, or new prompts189

are introduced, ensuring the preservation of knowl-190

edge from previous tasks. Some works have al-191

ready demonstrated that prompts can alleviate the192

problem of catastrophic forgetting to a certain ex-193

tent (Smith et al., 2023). For instance, Razdaibied-194

ina et al. (2023) propose Progressive Prompts and195

demonstrate their efficacy across 15 text classifica-196

tion tasks.197

2.3 Incremental Named Entity Recognition198

Monaikul et al. (2021) introduce the incremental199

learning paradigm into NER (i.e., INER) and pro-200

pose AddNER and ExtendNER to alleviate catas-201

trophic forgetting. L&R (Xia et al., 2022) adopts a202

replay-based approach to synthesize samples of old203

entity types. CFNER (Zheng et al., 2022) and RDP 204

(Zhang et al., 2023) focus on extracting information 205

from non-entity type and task relationships. Ma 206

et al. (2023) proposes an entity-aware contrastive 207

learning method that adaptively detects entity clus- 208

ters in the “O” class. In line with CFNER and RDP, 209

our method is rehearsal-free and does not keep any 210

exemplars from previous tasks. 211

2.4 Generation based Named Entity 212

Recognition 213

A seq2seq architecture is introduced with a pointer 214

mechanism in Yan et al. (2021) to generate en- 215

tity index sequences. Lu et al. (2022) introduce a 216

universal information extraction model based on 217

a unified generation structure. Chen et al. (2023) 218

propose a collaborative prefix method based on 219

the generative paradigm for knowledge transfer. 220

However, in INER, it is essential to consider the 221

performance not only in the target domain but also 222

across all tasks. As a consequence, these methods 223

show limited performance when directly applied to 224

INER since they are not designed for incremental 225

scenarios. 226

3 Methodology 227

In this section, we introduce our dynamic prefix 228

method designed to facilitate INER by seq2seq 229

generation framework. We start with providing a 230

formalized definition of INER in Section 3.1, fol- 231

lowed by the working mechanism of prefix tuning 232

for NER in Section 3.2. In Section 3.3 we propose 233

a dynamic prefix method as a task-invariant and 234

task-specific instructor based on seq2seq genera- 235

tion framework. Finally, Section 3.4 outlines the 236

strategy employed to achieve a balance between 237

stability and plasticity of INER. 238

3.1 Problem Definition 239

Following previous works (Monaikul et al., 240

2021;Xia et al., 2022;Zheng et al., 2022;Zhang 241

et al., 2023;Ma et al., 2023), we focus on class- 242

incremental learning on NER (INER). Formally, 243

INER contains N incremental steps, each associ- 244

ated with its corresponding task {T1, T2, . . . , TN}. 245

Every task has its own dataset {D1,D2, . . . ,DN}. 246

Specifically, the task at the t-th step can be de- 247

scribed as Tt = (Dtr
t ,Ddev

t ,Dtest
t , Cnew

t , Cold
t ), 248

where Cnew
t is the label set (i.e., new entity types) 249

of the current task (e.g., {“PER”, “ORG”}) and 250

Cold
t =

t−1⋃
i=1

Cnew
i represents the label set contain- 251
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Instruction: Please extract entities and 
their types from the input sentence 
according to the entity type options.

Entity type options: [Ent] location [Ent] 
misc [Ent] organisation [Ent] person

Input sentence: Attacking midfielder 
Adrian Ilie, who recently moved from 
Steaua to Turkish club Galatasaray, is 
ruled out after two yellow-card offences.

Seq2Seq 
Model

person: Adrian Ilie 
organisation: Steaua
misc: Turkish 
organisation: Galatasaray❄

Prefixes

Figure 3: An illustration of the unified seq2seq approach for NER.

ing all seen entity types in old tasks. Each task252

has its unique training set Dtr
t = {Xj

t , Y
j
t }nj=1,253

where Xj
t = {xj,1t , . . . , xj,lt } (with l as the se-254

quence length) and Y j
t = {yj,1t , . . . , yj,lt }, yj,kt ∈255

Cnew
t (k = 1, . . . , l) are annotated with only the256

new entity types or “O”. At step t, with the model257

Mt−1 trained at step t − 1, we update Mt−1258

at Tt in order to train a model Mt which is ex-259

pected to perform well on all seen entity types260

Call
t = Cnew

t ∪ Cold
t .261

3.2 Prefix Tuning for Seq2Seq Generation in262

Named Entity Recognition263

Prompt-based learning has been widely applied264

in NLP tasks, especially with the rise of LLMs.265

By providing manually designed hard prompts or266

attaching a set of soft prompts, they can serve267

as instructions for Pre-Trained Language Models268

(PLMs) in downstream tasks.269

Specifically, given the input (Xj , Y j) ∈ Dtr,270

a sequence of soft prompts can be prepended to271

each layer of the transformer to obtain the input272

as: Zj = [PREFIX;Xj ; PREFIX′;Y j ] (Li and273

Liang, 2021). The activations of the prefix are274

always in the left context and will therefore affect275

subsequent activations to the right.276

Based on prompt-based learning, we tackle the277

NER problem in a seq2seq paradigm, which of-278

fers an intuitive framework for integrating prompt-279

based techniques. Figure 3 shows the unified280

seq2seq procedure. The trainable prefixes serve as281

a guide for the seq2seq model, prompting it to ex-282

tract all entities and the corresponding entity types283

in the input sentence. Formally, given the manually284

constructed task instruction (s) specific to NER, at285

each step t the model takes the input sentence Xt286

with the entity type options (ot), and generates a287

sequence ŷt which is expected to contain all entity288

types and their corresponding entities:289

ŷt = LMϕ,θ(s;ot;Xt), (1)290

where the language model parameters ϕ are frozen 291

and the prefix parameters θ are the only trainable 292

parameters in our continual steps. Note that we can 293

obtain the label sequence ŷt by post-processing the 294

original output ŷt. 295

3.3 Dynamic Prefix 296

When it comes to the incremental setting, the ob- 297

jective of the seq2seq INER is: 298

max
θ

N∑
t=1

∑
(x,y)∈Tt

log p(y|x, ϕ, θ) (2) 299

To adapt our method to the incremental set- 300

ting, we propose a Dynamic Prefix method as il- 301

lustrated in Figure 4. We dynamically increase 302

the number of prefixes which are expected to learn 303

task-specific knowledge. Simultaneously, by con- 304

catenating newly added prefixes with the existing 305

ones, we prevent forgetting knowledge pertaining 306

to previous entity types, while adapting to new enti- 307

ties with minimal parameter updates and maximal 308

knowledge acquisition. Specifically, when train- 309

ing the incremental task Tt, a set of new prefixes 310

Pt ∈ R|Lt|×d with length of |Lt| parameterized 311

by θt are inserted into each layer while keeping 312

the LM parameters (ϕ) and all old prefix param- 313

eters (θ1, . . . , θt−1) frozen. The objective of our 314

dynamic prefix approach at step t becomes: 315

max
θt

∑
(x,y)∈Tt

log p(y|x, ϕ, θ1, . . . , θt) (3) 316

As shown in Figure 4, we concatenate the new 317

prefixes with the old prefixes along the prefix length 318

dimension. Then the entire set of prefixes P is split 319

into Pk and Pv, which are concatenated with the 320

original keys K and values V to compute each head 321

vector. The computation of the i-th head vector 322

headi can be written as: 323
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❄

❄

Inputs: Austrian Judith Wiesner overcame  Iva Majoli of Croatia yesterday

Full label: [MISC] [PER] [O] [PER] [O] [LOC] [TIME]

Multi-head
Attention

!× !×
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+
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+
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Label  Augmentation
Data 
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[MISC] Current Entity Types [PER][LOC] Old Entity Types [TIME] Future Entity Types [O] Other Entity Types

❄
PLM

FFN

Figure 4: The overall architecture of our proposed DPI for INER. Here “+” denotes the concatenation operation.

headi = Attn(xW (i)
q , [P

(i)
k ;CW

(i)
k ], [P(i)

v ;CW (i)
v ]) (4)324

The activation vector hi ∈ Rd at time step i is325

computed as:326

hi =

{
P[i, :], if i ∈ L

LMϕ(Zi, h<i), otherwise
(5)327

where P ∈ R|L|×d is a partially trainable matrix328

with L = [L1; . . . ;Lk; . . . ;Lt]. Lk denotes the329

sequence of prefix indices of new prefixes at incre-330

mental step k.331

Then we optimize the new prefix parameters θt332

by minimizing the negative log-likelihood over the333

training set Dtr
t of task Tt.334

Lnll(θt)335

= −
∑

(x,y)∈Dtr
t

log p(y|[Pt, . . . ,P1, x], ϕ, θ1, . . . , θt) (6)336

where the only trainable parameters are θt related337

to new prefixes.338

3.4 Equilibrium Between Stability and339

Plasticity340

In this section, we introduce the strategy employed341

to achieve a balance between stability and plasticity342

of INER.343

Label Augmentation Strategy. The entities344

annotated with “O” at the current step may belong345

to the previous entity types Cold
t or the future entity 346

types
N⋃

i=t+1
Cnew
i . Obviously, the future entity types 347

cannot be seen in the current task. For entities that 348

belong to Cold
t , we employ a generation-based label 349

augmentation strategy. This strategy leverages the 350

capabilities of the old model. By leveraging the 351

old entity type information contained in tokens 352

annotated with “O”, the stability is enhanced when 353

learning new entity types. Before training each task, 354

we utilize the old model Mt−1 to predict a “pseudo” 355

entity type for entities annotated with “O”. The 356

augmented labels are then fused with the current 357

labels for training the current task. As mentioned 358

above, the original true label of the current task is 359

denoted as Y j
t = {yj,1t , . . . , yj,lt }. To obtain the 360

augmented label ỹj,kt for the kth token of the jth 361

input, we employ the strategy as follows: 362

ỹj,kt =

{
ŷj,kt−1, if yj,kt = “O”

yj,kt , otherwise
(7) 363

where 364

ŷjt−1 = argmax
o∈ot−1

Mt−1(s;ot−1;Xt) (8) 365

After applying the label augmentation strat- 366

egy, we obtain the final training set D′tr
t = 367

{Xj
t , Ỹ

j
t }nj=1 for the current step t. The label aug- 368

mentation strategy is expected to enhance the sta- 369

bility of our model. Then the Equation (6) can be 370

formulated as follows: 371
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Lnll(θt)372

= −
∑

(x,y)∈D
′tr
t

log p(y|[Pt, . . . ,P1, x], ϕ, θ1, . . . , θt)

(9)

373

Self-entropy Loss. To further extend the374

model’s plasticity, we introduce a self-entropy loss375

to encourage the model to make more confident376

predictions. We minimize the self-entropy loss to377

promote the model’s confidence in learning the new378

entity types:379

Lse = −1

l

l∑
k=1

ŷk log ŷk (10)380

Here ŷk denotes the output probability distribution.381

Task-aware Similarity Loss. To maintain382

distinction across tasks while enabling effective383

knowledge transfer, we introduce a dynamic reg-384

ularization mechanism for prefix parameter opti-385

mization. The key insight is that tasks with sim-386

ilar entity types require more careful parameter387

separation to prevent interference. We quantify388

this through task-level semantic similarity, com-389

puted from entity type representations for simplic-390

ity. Specifically, we first obtain the representation391

ci of the entity type definition ci (as shown in Ap-392

pendix A.2).393

ci = Encoder(ci) ∈ Rd (11)394

For a task t containing K entity types, we com-395

pute its task-level semantic representation Tt by396

aggregating individual entity type embeddings:397

Tt =
1

K

K∑
i=1

ci (12)398

Then we minimize the task-aware similarity loss399

to adaptively regulate the optimization of new pre-400

fix parameters based on semantic overlap with pre-401

vious tasks.402

Lsim =

t−1∑
i=1

max(0, cos(Tt,Ti))Sim(Pt,Pi)
2

(13)403

In summary, the objective function of our pro-404

posed method is:405

Loverall = Lnll + λ1Lse + λ2Lsim (14)406

4 Experiment 407

4.1 Experimental Settings 408

Datasets. We conduct experiments on three 409

widely used NER dataset: CoNLL03 (Sang and 410

De Meulder, 2003), I2B2 (Murphy et al., 2010) 411

and OntoNotes5 (Hovy et al., 2006) for evaluat- 412

ing the effectiveness of our method. The dataset 413

statistics are shown in Table 7 in Appendix A.1. 414

Following CFNER (Zheng et al., 2022), for each 415

dataset, a greedy sampling strategy is adopted to 416

partition the training set into disjoint slices to better 417

simulate realistic scenarios. Each slice corresponds 418

to an incremental step. Specifically, FG entity 419

types are used to train the initial model, and PG 420

entity types are used for training in each subsequent 421

incremental step. For example, under the “FG-8- 422

PG-2” setting, 8 entity types are annotated in the 423

first step and 2 entity types are annotated in each 424

subsequent step. After dividing the original dataset 425

into slices, we utilize UIE1 for data pre-processing. 426

Finally, the data annotated with “BIO” schema is 427

converted into the UIE format (Lu et al., 2022) (i.e., 428

the “Data Format” module in Figure 4) for seq2seq 429

generation. 430

Training. Different from previous works (Zheng 431

et al., 2022;Zhang et al., 2023) using BERT- 432

base (Devlin et al., 2018) for INER, we use T5- 433

base (Raffel et al., 2019) as the backbone model 434

for INER via seq2seq generation. Instead of fine- 435

tuning almost all parameters, including the back- 436

bone model, at each incremental step as in previ- 437

ous methods, our dynamic prefix tuning method 438

keeps the parameters of the backbone model frozen. 439

The pluggable new prefixes are the only trainable 440

parameters (approximately 0.1% of the backbone 441

model). The implementation details can be found 442

in Appendix B. 443

Baselines. We compare our method (DPI) with 444

representative INER methods, including Extend- 445

NER (Monaikul et al., 2021), CFNER (Zheng et al., 446

2022), and RDP (Zhang et al., 2023). Additionally, 447

PODNet (Douillard et al., 2020) and LUCIR (Hou 448

et al., 2019) are adapted to INER scenario by Zheng 449

et al. (2022). We re-implement RDP which is the 450

previous state-of-the-art INER method, while the 451

results of the other baselines are directly cited from 452

CFNER (Zheng et al., 2022). 453

1https://github.com/universal-ie/UIE
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Task ID t=1 t=2 t=3 t=4 Avg.Method Trainable Param. [LOC] +[MISC] +[ORG] +[PER]
Directly Fine-tune ~0.1% of 220M 86.14 35.83 41.85 41.97 51.45

Full Data 86.14 87.99 87.98 89.97 88.02
PODNet (Douillard et al., 2020)

~100% of 110M

85.96 11.13 24.16 25.49 36.74
LUCIR (Hou et al., 2019) 85.96 73.85 62.81 73.78 74.15

ExtendNER (Monaikul et al., 2021) 85.96 74.42 69.27 75.78 76.36
CFNER (Zheng et al., 2022) 85.96 80.63 76.10 80.95 80.91
RDP* (Zhang et al., 2023) 84.53 77.31 76.67 79.22 79.43

DPI (Ours) ~0.1% of 220M 86.14 82.10 76.81 81.46 81.63

Table 1: Main results of the proposed method and baselines under the FG-1-PG-1 setting of the CoNLL03
dataset (Sang and De Meulder, 2003). Micro-F1 score is reported. * represents results from the provided code.
Other baseline results are directly cited from CFNER (Zheng et al., 2022).

Method Trainable Param. t=1 t=2 t=3 t=4 t=5 Avg.
PODNet (Douillard et al., 2020)

~100% of 110M

89.53 28.50 22.89 21.86 18.32 36.22
LUCIR (Hou et al., 2019) 90.23 72.00 63.18 60.96 56.32 68.54

ExtendNER (Monaikul et al., 2021) 89.39 53.84 42.25 39.31 36.47 52.25
CFNER (Zheng et al., 2022) 89.39 70.29 64.10 62.01 59.58 69.07
RDP* (Zhang et al., 2023) 90.94 77.86 69.16 63.95 53.36 71.05

DPI (Ours) ~0.1% of 220M 91.43 84.98 75.92 72.51 72.08 79.38

Table 2: Comparison with baselines under the FG-8-PG-2 setting of the I2B2 dataset (Murphy et al., 2010). Micro-
F1 score is reported. * represents results from the provided code. Other baseline results are directly cited from
CFNER (Zheng et al., 2022).

5 Results and Discussion454

5.1 Main Results455

We conduct experiments under INER settings and456

present the quantitative task-wise performance457

compared to the baselines.458

As shown in Table 1, the Full Data results,459

where all the seen entity types are annotated, are460

relatively stable, serving as an upperbound of our461

method. Directly Fine-tune represents the naive462

method where no incremental techniques are uti-463

lized, resulting in a sharp decline in performance.464

However, all the incremental learning methods465

show varying degrees of forgetting during the in-466

cremental process. Compared to the previous467

SOTA baselines CFNER (Zheng et al., 2022) and468

RDP (Zhang et al., 2023), our method demonstrates469

improvements in both average and task-wise results470

of CoNLL03 (Sang and De Meulder, 2003) under471

the FG-1-PG-1 INER setting.472

To simulate a realistic scenario allowing the473

model to acquire sufficient “base knowledge” be-474

fore incremental learning, we conduct experiments475

where we initially learn half of all entity types.476

The results of I2B2 (Murphy et al., 2010) and477

Ontonotes (Hovy et al., 2006) under FG-8-PG-2478

are summarized in Table 2 and Table 3, demonstrat-479

ing an improvement of approximately 7.5% and480

0.5% respectively compared to RDP.481

To delve deeper into the performance of DPI, we482

conduct experiments with a broader range of incre- 483

mental steps. As depicted in Figure 5, under the FG- 484

2-PG-2 setting of I2B2, a total of 8 steps are con- 485

sidered. The performance of CFNER (Zheng et al., 486

2022) declines significantly with deeper incremen- 487

tal steps. However, our method consistently out- 488

performs the previous SOTA method RDP (Zhang 489

et al., 2023) throughout the incremental steps. Fig- 490

ure 5 indicates that our method outperforms signifi- 491

cantly over the previous methods when encoun- 492

tering more entity types and incremental steps. 493

These quantitative results indicate that our pro- 494

posed method can achieve better performance and 495

alleviate catastrophic forgetting by fine-tuning sig- 496

nificantly fewer parameters. 497
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Figure 5: Task-wise results on the I2B2 (Murphy et al.,
2010) dataset.

5.2 Low-resource Settings 498

Due to concerns related to data privacy and scarcity 499

in realistic applications, INER often encounters 500
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Method Trainable Param. t=1 t=2 t=3 t=4 t=5 t=6 Avg.
PODNet (Douillard et al., 2020)

~100% of 110M

82.52 29.44 23.42 32.19 29.36 27.33 37.38
LUCIR (Hou et al., 2019) 82.67 78.80 75.43 76.14 75.03 68.94 76.17

ExtendNER* (Monaikul et al., 2021) 82.37 79.56 75.24 76.93 76.40 73.36 77.31
CFNER* (Zheng et al., 2022) 82.37 82.10 79.16 80.51 79.30 76.63 80.01

RDP* (Zhang et al., 2023) 85.01 83.68 82.08 83.26 82.43 79.1 82.59
DPI (Ours) ~0.1% of 220M 86.13 84.21 83.45 83.07 81.49 80.28 83.11

Table 3: Comparison with baselines under the FG-8-PG-2 setting of the Ontonotes5 dataset (Hovy et al., 2006).
Micro-F1 score is reported. * represents results from the provided code. Other baseline results are directly cited
from CFNER (Zheng et al., 2022).

low-resource scenarios. To further investigate the501

effectiveness of our method regarding the data502

scale, we conduct experiments on various datasets503

with low-resource settings. We report the results504

on the OntoNotes5 (Hovy et al., 2006) and the505

CoNLL03 (Sang and De Meulder, 2003) dataset in506

Table 4 and Table 5, respectively. For each incre-507

mental step, we respectively sample 5% and 10%508

of the training set while adopting a greedy sam-509

pling strategy to partition the training set. We com-510

pare our DPI method with the previous SOTA ap-511

proach RDP (Zhang et al., 2023). In a low-resource512

scenario with only 10% of the data available, our513

DPI method improves over RDP by approximately514

1.8% and 13.6% on OntoNotes5 and ConLL03,515

respectively. In a more stringent low-resource sce-516

nario, our method also outperforms RDP by ap-517

proximately 3.7% and 12.2%. In comparison, our518

approach maintains the ability to identify entities519

effectively, by fine-tuning significantly fewer pa-520

rameters at each step, and effectively capturing the521

patterns of different entity types in low-resource522

scenarios.523

Rate Method t=1 t=2 t=3 t=4 t=5 t=6 Avg.

10%
DPI (Ours) 79.53 75.54 72.02 76.44 72.61 70.59 74.46

RDP 78.50 74.79 70.92 73.43 70.10 68.25 72.67

5%
DPI (Ours) 72.79 70.33 65.81 66.58 66.09 65.49 67.85

RDP 68.70 62.01 62.28 65.32 65.17 61.50 64.16

Table 4: Performance in low-resource conditions on
the OntoNotes5 (Hovy et al., 2006) dataset under the
FG-8-PG-2 INER setting.

Rate Method t=1 t=2 t=3 t=4 Avg.

10%
DPI (Ours) 60.63 50.85 55.07 66.90 58.36

RDP 52.81 45.27 35.03 45.85 44.74

5%
DPI (Ours) 55.67 51.17 55.05 61.92 55.95

RDP 54.00 36.27 39.73 45.03 43.76

Table 5: Performance in low-resource conditions on the
CoNLL03 (Sang and De Meulder, 2003) dataset under
the FG-8-PG-2 INER setting.

5.3 Ablation Studies524

We conduct ablation studies to analyze the factors525

influencing the performance of our method. As526

shown in Table 6, all ablation factors degrade the 527

INER performance of DPI. DPI w/o DP represents 528

our method without the dynamic prefix strategy, 529

where prefixes with fixed size are trained through- 530

out the incremental process. The results indicate 531

that prefixes with fixed size lack the continual abil- 532

ity, which is exacerbated with more incremental 533

steps. DPI w/o LAS means no label augmentation 534

strategy is employed. By employing LAS and intro- 535

ducing self-entropy loss and task-aware similarity 536

loss, we further achieve an equilibrium between 537

stability and plasticity. 538

Method
CoNLL03 I2B2

FG-1-PG-1 FG-2-PG-1 FG-2-PG-2 FG-8-PG-2

DPI 81.63 83.10 80.16 79.38
w/o DP 76.48 79.33 71.28 72.64
w/o Lse 80.96 81.23 76.02 74.80

w/o Lsim 81.19 82.70 78.82 78.58
w/o LAS 59.45 61.40 54.26 57.03

Table 6: Ablation study of our DPI method. The average
Micro-F1 score is reported.

6 Conclusion 539

In this work, we introduce a dynamic prefix method 540

and formalize INER as a seq2seq generation task. 541

By employing the dynamic prefix based on a 542

seq2seq generation framework, our method re- 543

tains task-invariant capabilities and preserves task- 544

specific knowledge in INER. Additionally, we pro- 545

pose a generation-based label augmentation strat- 546

egy with a self-entropy loss and a task-aware simi- 547

larity loss to achieve a refined equilibrium between 548

stability and plasticity. Empirical experiments on 549

the INER benchmark demonstrate the effectiveness 550

of our proposed method. We further evaluate our 551

method on various datasets with low-resource set- 552

tings, and the results indicate the robustness and 553

practicality of our method in more realistic sce- 554

narios with limited training data. This work also 555

provides a potential direction that addresses the 556

INER task more naturally in a generative manner. 557
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7 Limitations558

The limitations of this work include: (1) More com-559

plex NER problems are not considered in this work,560

such as coarse-to-fine INER. Our approach is not561

designed to address the problem that a new entity562

type might be entailed in an old entity type, for563

example, “Doctor” emerging after “Person”. Addi-564

tionally, while our seq2seq generation framework565

is capable of addressing nested or discontinuous566

NER problems, we do not evaluate its performance567

on nested or discontinuous NER datasets due to568

the absence of suitable split algorithms for the in-569

cremental setting. (2) Our proposed label augmen-570

tation strategy relies on the old model to predict571

“pseudo” entity types, which may lead to error prop-572

agation. More refined label augmentation strategies573

will be explored in our future work.574
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A Dataset 774

A.1 Dataset Statistics 775

The dataset statistics are shown in Table 7. 776
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Dataset # Entity Type # Sample Entity Type

CoNLL03 4 21k LOCATION, MISC, ORGANISATION, PERSON

I2B2 16 141k
AGE, CITY, COUNTRY, DATE, DOCTOR, HOSPITAL,

IDNUM, MEDICALRECORD, ORGANIZATION,PATIENT,
PHONE, PROFESSION, STATE, STREET,USERNAME, ZIP

OntoNotes5 18 77k
CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE,

LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT,
PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

Table 7: Statistics of the NER datasets CoNLL03 (Sang and De Meulder, 2003), I2B2 (Murphy et al., 2010) and
OntoNotes5 (Hovy et al., 2006).

A.2 Entity Type Definition777

Entity types and their definitions are illustrated in778

Table 8.779

B Implementation Details780

The model is implemented in the PyTorch frame-781

work on top of the T5 Huggingface implementa-782

tion. Consistent with RDP, we train the model for783

20 epochs if PG=2, and 10 epochs otherwise. The784

learning rate, batch size, prompt length, prompt785

hidden dim, λ1 and λ2 is set to 7e-5, 32, 10, 1024,786

0.1 and 0.2 respectively. All experiments are con-787

ducted on a single NVIDIA GeForce RTX 3090788

GPU with 24GB of memory.789

C Additional Experimental Results790

C.1 Visualization of Entity Type Similarity791

Figure 6, Figure 7 and Figure 8 show the entity792

type similarity on the Ontonotes5 (Hovy et al.,793

2006), the I2B2 (Murphy et al., 2010) and the794

CoNLL03 (Sang and De Meulder, 2003) dataset.795
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Figure 6: Entity type similarity of the Ontonotes5 (Hovy
et al., 2006) dataset.
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Figure 7: Entity type similarity of the I2B2 (Murphy
et al., 2010) dataset.

C.2 Category-wise Results 796

To illustrate the performance variation of a sin- 797

gle category throughout the incremental pro- 798

cess, we present the results of four categories 799

(“DATE”, “EVENT”, “GPE”, “LAW”) at step 1 800

in Figure 9, under the FG-8-PG-2 setting of the 801

Ontonotes5 (Hovy et al., 2006) dataset. 802

C.3 Low-resource Results 803

The low-resource result of the I2B2 (Murphy et al., 804

2010) dataset is shown in Table 9. On the I2B2 805

dataset, RDP consistently fails to recognize almost 806

all entities at every step. A possible reason is that 807

it fine-tunes nearly all parameters during the incre- 808

mental process, which hampers its ability to extract 809

useful information when training data is limited. 810
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Entity type Definition

CARDINAL Numerals that do not fall under another type.
DATE Absolute or relative dates or periods.
EVENT Named hurricanes, battles, wars, sports events, etc.
FAC Facility (Buildings, airports, highways, bridges, etc.).
GPE Geopolitical entities: countries, cities, states.
LANGUAGE Any named language.
LAW Named documents made into laws.
LOC Locations excluding geopolitical entities, mountain ranges, bodies of water.
MONEY Monetary values, including currency units.
NORP Nationalities or religious or political groups.
ORDINAL Ordinal numbers like “first”, “second”.
ORG Organizations (Companies, agencies, institutions, etc.)
PERCENT Percentage values (including “%”).
PERSON Person, including fictional characters.
PRODUCT Commercial products (Vehicles, weapons, foods; excludes services).
QUANTITY Measurements, as of weight or distance.
TIME Sub-day time expressions.
WORK_OF_ART Creative works.

Table 8: Entity type and definition of the Ontonotes5 dataset.
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Figure 8: Entity type similarity of the CoNLL03 (Sang
and De Meulder, 2003) dataset.

Rate Method t=1 t=2 t=3 t=4 t=5 Avg.

10%
DPI(Ours) 82.85 71.40 56.95 48.86 42.76 60.56

RDP 1.21 0.04 0.32 0.28 0.23 0.42

5%
DPI(Ours) 77.43 65.28 49.12 40.65 38.16 54.13

RDP 1.21 0.42 0.31 0.06 0.15 0.43

Table 9: Performance in low-resource conditions on the
I2B2 (Murphy et al., 2010) dataset under the FG-8-PG-2
INER setting.
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Figure 9: Category (Entity type) F1 of the Ontonotes5(Hovy et al., 2006) dataset under the FG-8-PG-2 setting.
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