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Abstract
Poetry generation, and creative language gener-
ation in general, usually suffers from the lack of
large training data. In this paper, we present a
novel framework to generate sonnets that does
not require training on poems. We design a
hierarchical framework which plans the poem
sketch before decoding. Specifically, a con-
tent planning module is trained on non-poetic
texts to obtain discourse-level coherence; then
a rhyme module generates rhyme words and a
polishing module introduces imagery and simi-
les for aesthetics purposes. Finally, we design
a constrained decoding algorithm to impose
the meter-and-rhyme constraint of the gener-
ated sonnets. Automatic and human evalua-
tion show that our multi-stage approach with-
out training on poem corpora generates more
coherent, poetic, and creative sonnets than sev-
eral strong baselines.1

1 Introduction

A sonnet is a fourteen-line poem with rigorous
meter-and-rhyme constraints. In this paper, we aim
at generating full-length sonnets that are logically
and aesthetically coherent, without training on po-
etic texts.

There are several challenges for this ambitious
goal. First, there are limited number of sonnets
available to train a fully supervised model. The
only resource is a mere 3,355 sonnets collected by
Lau et al. (2018) in Project Gutenberg (Hart, 2004),
one of the largest free online libraries for English
literature. While it is possible to train on related
corpus such as general poems or English lyrics
(Ghazvininejad et al., 2016), such approaches are
not applicable to many languages for which sizable
poetry/lyrics data do not exist. Moreover, even
if large-scale creative texts exist, learning from
and mimicking existing corpora is not creative by
definition and is unlikely to result in novel content.

1Our code and data are available at https://github.
com/PlusLabNLP/Sonnet-Gen.

a. Content Planning 
(trained on news and stories)

Title: A Retrospect

Line 1: recall, time, consider
Line 2: dark, gaze, stars
Line 3: day, bright, [R3]
Line 4: fog, white, [R4]
…
Line 13: know, youth, trust
Line 14: romantic, love, [R14] 

b. Rhyme Pairs Generation
(the CMU dictionary)

Line 1:  Recall, time, consider

Line 3: day, bright, glitter

…

Line 2:  dark, gaze, stars

Line 4: fog, white, Mars

Rhyme Scheme:     ABAB CDCD EFEF GG 

Recall the time and having me consider,
x/x / /x x / x x/ 

d. Sonnet Generation
(trained on news and stories) Meter-

Constrained
Decoding

c. Polishing for Aesthetics
(Imagery pairs, simile phrases)

Imagery:
Line 3:   day à sun
Line 14: love à rose

Simile: 
Line 3:   bright like diamond
Line 4:   white like snow 

Discourse-
level
Coherence

Aesthetics

…

(/x/)
(/x/x)

Figure 1: An overview of our approach. The content
planning module generates keywords while maintain-
ing discourse-level coherence. The second module form
rhyming pairs and the polishing module enrich the imag-
ination and add poetic flavor. (The keywords underlined
in the first step have been polished.) Finally, we generate
the sonnet with a meter-constrained decoding algorithm.
Note that all four steps do not require poem/sonnet data.

Second, coherence remains a known issue
among previous works on poetry generation. Ex-
isting works mainly focus on conforming to the
format constraints (i.e., meter-and-rhyme), or gen-
erating a small stanza with a typical length of four
(Lau et al., 2018; Liu et al., 2019; Yi et al., 2020).
For full-length sonnets, Ghazvininejad et al. (2016)
propose to use topical words as rhyme words to
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achieve topical relatedness, but the generated son-
nets are not discourse-level coherent. They later
generate discourse-level coherent English sonnets
through French-English translation (Ghazvininejad
et al., 2018). Generating logically and aesthetically
ordered poems without relying on content transla-
tion from other languages remains a challenge.

With all these in mind, we propose Zest, a Zero-
shot sonnet generation model that does not require
training on any poetic data. Our framework, as is
shown in Figure 1, consists of four components:
content planning, rhyme pairing, polishing for aes-
thetics, and final decoding. The first three steps
provide salient points for the sketch of a sonnet.
The last step is responsible for “translating” the
sketch into well-formed sonnets.

To achieve zero-shot generation, the content
planning and the final decoding components are
both trained on a combination of news and story
corpora. The trained planning module is aimed
to generate several keywords for each sentence to
equip the system with general world knowledge
to construct a coherent text world. However, the
language used by poems is different from that of
standard texts because it follows certain rhetorical
rhythm and is full of vivid descriptions that appeals
to readers’ senses and imagination (Gibbs Jr et al.,
1994). To this end, in the polishing step we leverage
external knowledge and incorporate two figurative
speeches (i.e., simile and imagery) into the planned
keywords to boost vividness and imagination. The
rhyme and final decoding steps are designed to
impose the meter-and-rhyme constraints.

While there are previous works on creative gen-
eration using the plan-and-write paradigm (Wang
et al., 2016; Martin et al., 2018; Peng et al., 2018;
Yao et al., 2019; Gao et al., 2019; Goldfarb-Tarrant
et al., 2019), they all rely on training data from
the target task domain (e.g., use story data to train
storyline-planning). We on the other hand adopt
content planning to disentangle the training from
the decoding step to circumvent the shortage of
training data for poetry generation. We summarize
our contributions as follow:

• We propose Zest, a Zero-Shot sonnet genera-
tion framework, by disentangling training from
decoding. Specifically, we first learn to predict
context and rhyme words from news and story
dataset, and then polish the predicted keywords to
promote creativity. A constrained decoding algo-
rithm is designed to impose the meter-and-rhyme

constraints while incorporating the keywords.

• We develop two novel evaluation metrics to mea-
sure the quality of the generated poems: auto-
matic format checking and novelty evaluation
(i.e., diversity and imageability).

• Human evaluation shows that Zest generates
more discourse-level coherent, poetic, creative,
and emotion-evoking sonnets than baselines.

2 Background

In this section, we introduce the characteristics of
sonnets in terms of structure, meter and rhyme. We
then define important terminologies.

2.1 The Structures of Sonnets
We aim to generate the two most representative
sonnets: Shakespearean and Petrarchan. Sonnets
make use of rhymes in a repeating pattern called
rhyme schemes as shown in Table 1. For example,
when writing a Shakespearean sonnet, poets usually
adopt the rhyme scheme of ABABCDCDEFEFGG.
Although all sonnets have 14 lines, a Petrarchan
sonnet consists of an 8-line stanza called an octave
followed by a 6-line stanza called a sestet. On
the other hand, a Shakespearean sonnet consists of
three 4-line quatrains and a 2-line rhyming couplet
which leaves the reader with a lasting impression.

# of
Lines

Iambic
Penta Structure Rhyme

Scheme

Shakespearean
Sonnet 14 Yes 3 quatrain

1 couplet

ABAB
CDCD
EFEFGG

Petrarchan
Sonnet 14 Yes 1 octave

1 sestet

ABBA
ABBA
CDECDE

Table 1: Comparison between a Shakespearean sonnet
and a Petrarchan sonnet.

2.2 Meter Constraints
Most sonnet conform to iambic pentameter, a se-
quence of ten syllables alternating between un-
stressed (x or da) and stressed syllables (/ or DUM).
Strictly speaking, each line reads with the rhythm
(da-DUM)5, which enhances the tone for the poem
and operates like an echo. In reality, there are many
rhythmic variations. For example, the first foot is
often reversed to sound more assertive, and can be
written as (DUM-da * (da-DUM)4). Another de-
parture from the standard ten-syllable pattern is to
append an addition unstressed syllable to the end,
forming feminine rhymes which can be written as
((da-DUM)5*da).



2.3 Rhyme Words, Couplets and Patterns
A pair of rhyme words consists of two words that
have the same or similar ending sound. A rhyming
couplet is a pair of rhymed lines. For example,
Line 1&3, 2&4 in Figure 1 are two pairs of rhyming
couplets. From the CMU pronunciation dictionary
(Weide, 1998), we know that “fall" and “thaw"
in Figure 1 are strict rhyming pairs because they
have exactly the same phonetic endings: "AO L".
“Leaves" ("IY V Z") and “trees" ("IY Z") are
slant rhymes, because they have the same stressed
vowels, while the ending consonants are similar
but not identical.

2.4 Terminology
We formally define the following terms:
• Keywords K: content words and rhyme words

combined. They contain main ideas of a poem
and define the rhyming pattern.

• Content words C: keywords that do not appear
in the end of each line. We target at predicting 2
context words per line, Ci1 and Ci2.

• Rhyme words R: words in the end of each line.
For example, in a Shakespearean sonnet with the
rhyme scheme ABABCDCDEFEFGG, there are
seven pairs of rhyme words: R1R3, R2R4, ...,
and R13R14.

• Initial rhyming lines IInit: index of the lines
that the first rhyme word in a rhyming couplet
appears (e.g., IInit = [1, 2, 5, 6, 9, 10, 13] for a
Shakesperean sonnet and IInit = [1, 2, 9, 10, 11]
for a Petrarchan sonnet).

• Sketch: The sketch of a poem contains three
aspects: 1) content words that cover the key con-
cepts or main ideas, 2) the rhyme words to appear
at the end of each line, and 3) the modification of
keywords for aesthetics.

3 Approach

Overview As is shown in Figure 1, our sonnet
generation model can be divided into four steps. At
step a, we train a title-to-outline module by finetun-
ing T5 (Raffel et al., 2019) on keywords extracted
from news reports and stories. During inference
time, we generate a fourteen-line sonnet sketch that
contain those content words C (Section 3.1). At
step b, we aim at forming the correct rhyming pairs.
We first select the initial rhyme words from Ci for
i ∈ IInit, and then generate the remaining rhyme
words (i.e., for i ∈ IInit) by forcing the decoder to
sample from a vocabulary pool that contains strict

Generate keywords 
given the title: 
Prince Andrew loses 
military titles. 

prince, stop, highness.
face, assault, allegation.

…
huge, rapid, retreat. 

A.

Title: Prince Andrew 
loses military titles. 
Line 1: [K11, K12, K13]. 
Line 2: [K21, K22, K23].

…
Line N: [KN1, KN2, KN3]. 

Title: Prince Andrew loses 
military titles. 
Line 1: [prince, stop, highness]. 
Line 2: [face, assault,
allegation].

…
Line N: [huge, rapid, retreat]. 

B.

Figure 2: A comparison diagram of two input-output
formats to train the first module. While format A is most
straight-forward, there is no control over the output
structure. Therefore, we purposefully design the prompt
shown in format B to control the number of keywords
and the number of lines to be generated. Kij represents
the mask tokens at the i-th sentence.

and slant rhyme words (Section 3.2). At step c, we
infuse imagery and simile as two figurative devices
to C (Section 3.3). In the last step, we leverage
a fine-tuned language model with constrained de-
coding algorithm to impose the meter-and-rhyme
constraints (Section 3.4).

3.1 Content Planning

For each piece of news or stories, we train a title-to-
keywords framework that predicts the outline. To
this end, we first extract three most salient words
per line using the RAKE (Rose et al., 2010) al-
gorithm, which is a domain-independent keyword
extraction technique.

Controllable Text Formatting We then leverage
the task adaptability of the pretrained T5 (Raffel
et al., 2019) to predict the keywords of the whole
body. As a unified framework that treats every
text processing task as a “text-to-text” problem,
T5 can be easily adapted to our task as shown in
Figure 2.A, where the input is an instruction to
generate the sketch given the title, and the outputs
are multiple keywords for each line. However, we
need a mechanism to specify the number of lines
and keywords to be generated, since we train on
prosaic texts with varying formats but infer only on
the 14-line sonnets.

To solve this problem and gain control over the
poem structures, we format the input and output as
shown in Figure 2.B. Specifically, we use [MASK]
tokens as placeholders for the keywords. Now that
one [MASK] token on the input side corresponds
to exactly one word on the output side, we are able
to specify the number of lines and keywords during
the inference time.



“Title: The Four Seasons.
Keywords: [plums, autumn, leaves].
Keywords: [trees, quivering, fall].
Keywords: [tangled, branches, R3].
Keywords: [fog, snow, R4].

…
Keywords: [blossoming, lemon, fell].
Keywords: [swirl, air, R14].”

Figure 3: An example input to query the remaining
rhyme words during the inference time. Rhyme words
in the same background color form a rhyming pair.
3.2 Generating Rhyme Words
Our title-to-outline model is trained to generate
keywords, regardless of the rhyme constraints. In
this section, we describe the procedure to generate
rhyme pairs. Specifically, we force the model to
generate a 14-line outline, with two or three content
words for each line depending on whether the line
is an initial rhyming line:

Keywordsi =
{

[Ki1,Ki2,Ki3] , if i in IInit
[Ki1,Ki2] , otherwise.

(1)
where Kij represents the j-th keyword in the i-
th line. Among the three keywords in the initial
rhyming lines, we select the last word as the initial
rhyme word.

Rhyme Pairs Generation Given the initial
rhyme words, we then retrieve all the possible
rhyme words R based on their phonetics informa-
tion from the CMU prounounciation dictionary
(Weide, 1998). This include strict rhymes and
slant rhymes. For instance, in Figure 3, the re-
trieved rhyme word candidates R for ‘leaves’ are
[‘achieves’, ‘believes’, ‘Steves’, ‘trees’, ...]. The
probability distribution for generating the rhyme
word wR from the candidate list R is modified as:

P ′(wR) =

{
p(wR|context)∑
x∈R p(x|context) , if wR ∈ R

0 , otherwise.
(2)

where p(wR|·) is the original word probability
yielded by the title-to-outline decoder.

3.3 Polishing Context Words for Aesthetics
Now, we have the generated context words and
rhyme words that are discourse-level coherent yet
less vivid. To this end, we use external knowl-
edge to incorporate two figurative devices into the
planned keywords: imagery and simile.

Imagery We leverage the <symbol, imagery>
pairs (e.g., <love, rose>) in the ConceptNet knowl-
edge base (Liu and Singh, 2004) and finetune a

Algorithm 1 Gen Valid Tokens
1: function GEN( gent, stresst)
2: Parameter: Int - t ▷ current time step
3: Parameter: Int - N ▷ num of return samples
4: Parameter: List - CW ▷ context words yet to include
5: Input: List of strings - gent, stresst ▷ generated beams

at time step t and corresponding 0/1 stress series
6: Output: List of strings - gent+1, stresst+1

7: Initialize gent+1, stresst+1 to empty
8: for gen, stress in zip(gent, stresst) do
9: ▷ repeat topk sampling N times and return all generations

10: tokens = generate_next(gen, N ).to_set()
11: for c in CW do
12: if c not in tokens then
13: tokens.append(c)
14: for t in tokens do ▷ check for meter constraints
15: if satisfy(t, stress) then
16: update gent+1, stresst+1, CW
17: else
18: continue

return gent+1, stresst+1 ▷ call recursively until
10 or 11 syllables are generated and disregard the metric
line unless all three keywords are incorporated.

imagery generation model from a pretrained model
called COMmonsEnse Transformer (Bosselut et al.,
2019) (COMeT). It is trained on imagery pairs to
generate the imagery word given the symbolism
word as input. At inference time, we randomly
sample multiple nouns from the sketch to predict
their imageries, and only make replacement for the
two most confident generations. For example in
Figure 1, both <day, sun> and <love, rose> are
generated, yet we only replace ‘love’ with ‘rose’,
because the probability of generating the latter pair
is much higher than the former pair.

Simile A simile phrase consists of two parts:
the adjective and the figurative vehicle. For ex-
ample, ‘sudden like a flash’ is a simile phrase
where ‘a flash’ is the figurative vehicle of ‘sud-
den’. We leverage the simile generation model
by Chakrabarty et al. (2020) as an off-the-shelf
tool2 to generate simile vehicles from adjectives
to extend the sketch keywords. At inference time,
we randomly sample multiple adjectives from the
sketch to predict their figurative vehicles, and only
keep the most confident ones. In addition, we also
make sure the generated simile phrase conforms to
the iambic-meter constraint. For example in Figure
1, the phrase ‘bright like diamond’ (/x/x) follows
the iambic meter, whereas another phrase such as
‘shining like diamond’ (/xx/x) will be disregarded.



3.4 Sketch to Sonnet Generation
In order to write fluent and poetic languages that
meet the meter-and-rhyme constraints, we make
the following adaptations. First, generating the full
sonnet requires more powerful pretrained model
than generating the outlines. Therefore, we fine-
tune GPT-Neo-2.7B on the same combination of
news and stories data as a language model to gen-
erate the sonnet. Second, to effectively incorporate
the rhyme words at the end of each line, we fol-
low previous methods (Ghazvininejad et al., 2016;
Van de Cruys, 2020) and generate the whole son-
net line-by-line in reverse, starting from the final
rhyme word to the first word. That is to say, our
language model is finetuned to generate from right
to left to better enforce rhyming. Third, we include
the sketch in the prompt, so that the decoder will
learn to give higher probability for these keywords.
We then use lexically constrained decoding simi-
lar to that of Grid Beam Search (Hokamp and Liu,
2017) to incorporate the keywords. In addition,
we also include the previously generated lines in
the prompt to generate the next line in a sonnet
to promote discourse-level coherence. A simile
phrase in the sketch is considered fixed that can-
not be modified. Namely, we force to generate the
whole phrase when the first word in the phrase is
decoded. Lastly, we modifies the beam search al-
gorithm to impose the meter-and-rhyme constraint.
Algorithm 1 displays the skeleton of our decoding
strategy. At each decoding step, we apply rhythm
control, so that only those tokens that satisfy the
iambic-pentameter and its two variations (listed in
Section 2.2) are kept in the beams. We recursively
generate the next token until 10 or 11 syllables are
generated and make up a metric line where all the
context words are incorporated.

4 Experimental Setup

4.1 Dataset
Our approach does not require poem data. The
training dataset for the content planing module and
the decoding module is a combination of 4,500
CNN news summary (Hermann et al., 2015) and
16,000 short stories crawled from Reddit.3 We
remove those articles that contain conversations,
urls, or are too long (>50 lines) or too short (<8
lines). During decoding, we generate sonnets using

2https://github.com/tuhinjubcse/SimileGeneration-
EMNLP2020

3https://www.reddit.com/r/shortscarystories/

top-k sampling and set no_repeat_ngram_size to 3
to promote creativity and avoid repetition.

We finetune the pretrained T5 for 10 epochs for
the “content planning” component, and finetune
GPT-Neo-2.7B for 6 epochs for the decoding com-
ponent. We use one Nvidia A100 40GB GPU. The
average training time is 5∼10 hours for each exper-
iment.

4.2 Baselines

Hafez A program that is trained on lyrics
data and generates sonnets on a user-supplied
topic (Ghazvininejad et al., 2018). It combines
RNNs with a finite state automata to meet the meter
and rhyme constraints. Hafez is the state-of-the-art
model that generates full-length sonnets but it does
not train on standard, non-poetic texts.

Few-shot GPT-3 We utilize the most capable
model in the GPT-3 family (Brown et al., 2020),
GPT3-davinci4, as a strong baseline to follow in-
structions and generate sonnets. In the prompt, we
provide two examples of standard sonnets and then
instruct the model to generate a sonnet given the
title. We force the output to be exactly 14 lines.

Ablations of our own model To test the effec-
tiveness of our sketch-before-writing mechanism,
we also compare variations of our own model:

Prosaic An stronger version of nmf (Van de
Cruys, 2020), the first (and only) model to gen-
erate rhyming verses from prosaic texts. Topical
and rhyme consistency are achieved by modifying
the word probability of rhyme and topical words.
For fair comparison, we replace the original vanilla
encoder-decoder with GPT2 that Zest is finetuned
on, and force the output to be 14 lines. Model
comparison between Prosaic and Zest serves as
ablations of the keyword-planning component (ver-
sus end-to-end generation).

Zest w/o fig The model consisting of step a, c,
and d as illustrated in Figure 1, but without the
polishing the sketch for figurative devices. Our full
model consisting of 4 modules is called Zest.

4.3 Decoding Strategy

For decoding, we generate sonnets from our models
using a top-k random sampling scheme where k is
set to 50. At each time step, the GPT2 model gener-
ates subwords instead of complete words. In order

4https://beta.openai.com/docs/engine



to impose the meter and rhyme constraints while de-
coding for each word, we ask the language model
to continue to generate until a complete word is
generated as indicated by special space token ‘Ġ’.
To avoid repetition and encourage creativity, we
set no_repeat_ngram_size to 3 and use a softmax
temperature of 0.85.

4.4 Automatic Evaluation
It is difficult and thus uncommon to automati-
cally evaluate the quality of poems. For exam-
ple, Ghazvininejad et al. (2016) and Van de Cruys
(2020) exclude automatic evaluation, with the later
stating “Automatic evaluation measures that com-
pute the overlap of system output with gold refer-
ence texts such as BLEU or ROUGE are of little
use when it comes to creative language generation."
In addition, Yang et al. (2021) show current metrics
have very low correlation with human. Hence, we
propose to evaluate the generated poems in two
novel aspects: format and novelty.

Format Checking For rhyme checking, we
count the percentage of rhyme pairs that belong to
strict or slant rhymes. For meter checking, we con-
sider the following most common scenarios men-
tioned in Section 2.2: the standard Iambic Pentame-
ter; the first foot reversed; and a feminine rhyme.
In all scenarios, words that are monosyllables can
serve as both stressed and unstressed syllables. For
a looser standard, we also calculate the percentage
of valid lines that contain either 10 or 11 syllables.

Novelty We follow the settings in exsiting works
Yi et al. (2018, 2020) and calculate the Distinct-2
scores (Li et al., 2015) to measure the diversity of
generated poems. Besides, imagery is another im-
portant feature of poems as pointed out by linguis-
tic studies Kao and Jurafsky (2012); Silk (2006).
Here, we calculate Imageability score to assess how
well a poem invokes mental pictures of concrete ob-
jects. Specifically, we extracted the features from
the resource by Tsvetkov et al. (2014), who use
a supervised learning algorithm to calculate the
imageability ratings of 150,114 terms. For each
poem, we average the ratings of all its words after
removing the stop words.

4.5 Human Expert Judgement
Considering the expertise required to appreciate
sonnets, we recruit 6 professionals that hold a bach-
elor’s degree in English literature or related majors
as domain experts to annotate the generated sonnets.

Model Name Format Checking Novelty

Rhyme Meter Syllable Dist-2 Img

Hafez 98.3% 76.8% 95.7% 84.8 0.44
Fewshot GPT-3 14.0% 17.6% 30.9% 85.3 0.48

Prosaic 100% 10.1% 19.0% 84.9 0.46
Zest w/o fig 100% 77.7% 98.6% 86.6 0.49
Zest 100% 75.6% 98.4% 86.6 0.51

Human 94.6% 70.7% 81.8% 87.4 0.52

Table 2: Automatic evaluation results for rhyme, meter,
syllable checking, distinct scores, and imageability (Img
in the table). Best machine scores are underlined.

We provide detailed instructions and ask them to
evaluate the each poem on a scale from 1 (not at all)
to 5 (very) on the following criteria: 1) Discourse
Coherence: whether the sonnet is well organized,
with the sentences smoothly connected and flow
together logically and aesthetically, 2) Original-
ity/Creativity: the usage of original ideas in the
poem, including imagination, rhetorical devices,
etc., 3) Poetic in language: how well the poem
adopts descriptive and vivid language that often
has an economical or condensed usage, 4) Emo-
tion Evoking: if the poem is emotionally abundant
and make the readers emphasize with the writer. At
last, we ask the annotators to judge if the sonnet is
written by a poet with serious goals to write a poem.
In total, we evaluate 50 sonnets for each baseline
and the gold standard (human) model. Each sonnet
is rated by three professionals.

The average inter-annotator agreement (IAA) in
terms of Pearson correlation is 0.61 with p-value
<0.01, meaning that our collected ratings are highly
reliable. We also conduct paired t-test for signif-
icance testing. The difference between our best
performing model and the best baseline is signif-
icant. Considering the expertise required, human
evaluators are paid $25 per hour.

5 Results and Analysis

5.1 Results of Automatic Evaluation
Table 2 summarizes the format checking and nov-
elty scores of our model compared to the baselines.
We can see that human poets tend to incorporate
more variations and do not strictly follow the me-
ter and rhyme constraints, which computers are
good at. GPT-3 fails to learn the sonnet formats
through massive pretraining and few-shot learn-
ing despite its gigantic size. Prosaic falls short of
meter-checking because is only trained to generate
rhyming verses. Since we utilize the the phonetics



DC O P E WH

Hafez 3.09 3.01 3.05 2.95 41.3%
Few-shot GPT3 3.43 3.10 2.86 3.11 52.7%

Prosaic 3.25 2.95 2.97 2.98 46.0%
Zest w/o fig 3.57* 3.25 3.35 3.13 58.7%
Zest 3.52 3.41* 3.66* 3.22* 62.0%*

Human 3.82 3.54 3.68 3.56 83.3%

Table 3: Expert ratings on several criteria to assess son-
net quality: discourse-level coherence (DC), original-
ity/creativity (O), poeticness in language (P), emotion
evoking (E), and written by human (WH). We show
average scores with 1 denoting the worst and 5 the best.
We boldface/underline the best/second best scores. ∗ de-
notes that paired t-test shows that our model variations
(Zest w/o fig, and Zest) outperform the best baseline in
all aspects with statistical significance (p-value < 0.05).

information provided in the CMU dictionary, Zest
achieves 100% success in rhyme words pairing. As
for novelty, Zest generates most diversely and is
best at that arousing mental pictures of concrete
objects among machines.

5.2 Results of Human Evaluation
Table 3 presents the performance of the aforemen-
tioned evaluation criteria: coherence, originality,
poeticness, and emotion-evoking. Our models
(Zest w/o fig, and Zest) outperform the baselines
in all aspects by a large margin.

Comparison between our own models. Com-
pared with Prosaic which also generates poems
from non-poetic texts, our models generates more
coherent sonnets with great statistical significance
(p-value < 0.01), showing the superiority of explicit
sketch planning over generating from scratch (i.e.,
end-to-end generation).
Zest w/o fig generates more coherently than

Zest (p-value < 0.10). However, Zest achieves
high scores in originality, poeticness by a large mar-
gin (+0.2). Hence, we still consider it as our best
model. It is also noteworthy that Zest is the most
emotion-evoking system among all machines even
though we do not have explicit sentiment control.
Poem theories have shown that emotion appeals lie
in the following aspects: the general topic, the word
choice, vivid descriptions, figurative language, in-
sights and experience (Scheub, 2002). We posit
that aesthetic features in the Zest arouse emotion
appeals.

Analysis for high poeticness. Zest is on par
with humans in terms of poeticness score, meaning
that our models generate highly descriptive, vivid,

and condensed text. With manual examination,
we attribute such high poeticness to three aspects.
First, the imagery and similes clearly represents
traits of poems. Second, in keyword-planning we
ensure that at least three concepts will be presented
per line, and thus the generation module naturally
become economical in word usage to include all
the information. Lastly, with the constraint decod-
ing algorithm to insert keywords, we inevitably
become less natural (e.g., miss conjunctions and
auxiliary verbs). While this can be a drawback in
other generation tasks, the occasional omission of
such auxiliary words is just opportune for sonnets,
and adds to the flavor of a poem. The examples in
table 4 helps demonstrate these points.

6 Qualitative Analysis

6.1 Case Study

We conduct case study to better understand the
advantages of our model over the baselines. Table
4 lists the generated sonnets by Hafez, Prosaic and
Zest given the same title: “The Four Seasons".

Problems with the Baselines Hafez chooses
words that are related to the title as rhyme words.
However, topically related rhyme words are not
sufficient for overall coherence. While it is locally
understandable, the sonnet generated by Hafez is
divergent and disconnected when sentences are put
together. On the other hand, Prosaic mimics the
rhyme and topical properties of poems, but still
generate highly prosaic and colloquial sentences
that are not poetic at all.

Advantages of Our Model Thanks to content
planning, Zest w/o fig generates a well-organized
sonnet that describes the four seasons from winter
to autumn in a logical order. Despite minor gram-
mar errors, the full model Zest benefits from vivid
descriptions and natural imagery such as ‘whispers
rumors of a winter coming’, ‘blossom of the sea-
son’, and ‘sudden like a flash’.

6.2 Impact of Keywords

By comparing Zest w/o fig versus Prosaic, our hu-
man evaluation results already show that content
planning contributes to discourse-level coherence.
In addition, we provide the keywords along with
the sonnet generated by Zest, and ask human an-
notators to judge if the sonnet can be condensed
into those keywords. Results are shown in Figure
4. We observe that 82% of the time the planed



Hafez Score Prosaic Score

Delightful hours over long ago,
Succeed to hang the little hook and light.
The darker still and more extended snow,
The fresh invention bore the better night.

Another party started getting heavy,
And never had a little bit of summer.
And got a trigger on the finger really,
Or something going by the name of winter.

Retreat the colors and fun in afternoon
And bought the tickets loved a royal song
A sacred person join and ride in moon
Away the author go and winding long,

Oh maybe get a little out of sight,
And wounded victim suffered from the site.

C: 2.7

O: 3.0

P: 3.0

E: 3.0

The leaves fall and the air is cooler,
Were we known with seasons? Spring is coming,
Of course there isn’t that much humor,
And it is now blooming.

Even when everyone else’s warm,
Someone would want to know what we could do in may,
else we didn’t known – It was the first storm,
It’s how they used to do every other day.

What aren’t you looking up Right behind us, no clouds,
Just know no one’s will ever see the clouds or thunder,
And nobody other than the crowds,
Before now, we had just started to wonder.

We all aren’t sure what we can keep,
they couldn’t see me, like they were about to reap.

C: 3.3

O: 2.7

P: 3.0

E: 3.3

Zest w/o fig Score Zest Score

Falling snow, I feel a little cooler,
Is a sign of stormy winter coming,
Meet the honest friends and gather humor,
Happy spring and just admire the blooming.

The heat and ocean air becoming warm,
Little birds and beautiful songs in May,
Leaves and flowers probably just the storm,
Among the lunar moons and summer day.

Sudden rain and downpour from the thunder,
And summer always fill hotels with crowds,
Take a shower and give the spring a wonder,
Watch the blue sky and far behind the clouds.

In months the future vegetables reap,
The years and seasons never really keep.

C: 3.7

O: 3.3

P: 3.3

E: 3.0

The snow is falling, whether getting cooler,
Whispers rumors of a winter coming,
Gather honest, peace and love and humor,
Blossom of the happy season blooming.

Wind gets heat and the air becoming warm,
The birds enjoy the little lovely may,
Beneath the leaves, flowers survive the storm,
The moon is shining on a summer day.

Sudden like a flash comes rain with thunder,
The summer vibes fill the running crowds,
Because of shower, spring became a wonder,
The sky is high and blue like sea with clouds.

The coming months are watching future reap,
Those years and seasons bring us all to keep.

C: 3.7

O: 4.0

P: 4.0

E: 3.3

Table 4: An example of the generated sonnets from four systems with the same title: “The Four Seasons". The
scores are average numbers of three human ratings on the following criteria: coherence (C), originality (O), poetic
in language (P), and emotion evokingness (E). We underline the planed keywords and highlight the figurative
languages in blue.

Figure 4: Pie chart showing whether the generated son-
net be condensed into the planed keywords.

keywords successfully guide the generation by pro-
viding salient points of the sonnet. We then conduct
error analysis on the rest 18%. Top two reasons
among the fail cases are: 1) the decoding step gen-
erates novel contents that are not represented by
the keywords (8%), and 2) the polishing step alters
the original meaning of planed keywords (6%).

6.3 Limitation and Future Direction

Sonnets are divided in to multiple stanzas. Lines
within a stanza are more interlaced than across
stanza, and the start of a new one usually indi-

cates transition to another viewpoint. Our current
approach could not capture such structural charac-
teristics during planning and generation, and we
hope to investigate these features in future work.

We also plan to extend this poem generation
pipeline to other languages. For example, pre-
trained LMs (e.g. multilingual T5) and existing
rhyming resources (r.g. rhymes.woxikon.com pro-
vides rhymes in 13 languages) already made the
first and second component transferable to other
languages.

7 Related Work

Poetry Generation Automatic poetry generation
before the deep learning age relies heavily on tem-
plates, norms, or rule-based approaches (Gervás,
2001; Manurung, 2004; Manurung et al., 2012).
Neural approaches to automatic poetry generation
pay little attention to the coherence issue of long
poems. For example, Wang et al. (2016); Lau
et al. (2018); Yi et al. (2018); Liu et al. (2019)

rhymes.woxikon.com


merely target at generating the first stanza (four
lines) of a poem. For longer poems such as sonnets,
Ghazvininejad et al. (2016) propose to use related
words as rhyme words to achieve topical related-
ness, and later propose to generate discourse-level
coherent English sonnets by French-English trans-
lation (Ghazvininejad et al., 2018). Van de Cruys
(2020) propose a naive RNN framework to gener-
ate rhyming verses from prosaic texts by imposing
a priori word probability constraints. We on the
other hand achieve discourse-level coherence by
learning from standard, non-poetic texts.

Other related works to boost the creativity of
generated poems include adding rhetorical (Liu
et al., 2019) and influence factors (e.g., historical
background) as latent variables (Yi et al., 2020).
To the best of our knowledge, we are the first to
explore adding both figurative speeches and meter-
and-rhyme constraints to poetry generation without
relying on poetry data.

Content Planning Content planning for auto-
matic text generation originates in the 1970s (Mee-
han, 1977). Recently, the plan-and-write genera-
tion framework has shown to be efficient in creative
content generation (Wang et al., 2016; Martin et al.,
2018; Peng et al., 2018; Yao et al., 2019; Gao et al.,
2019; Goldfarb-Tarrant et al., 2019). The frame-
work employs a hierarchical paradigm and helps
to produce more coherent and controllable genera-
tion than generating from scratch (Fan et al., 2019;
Goldfarb-Tarrant et al., 2020). However, all exist-
ing works under this line learn the storyline/plot
from the target domain for improved coherence.
We on the other hand adopt content planning to dis-
entangle the training from the decoding step which
aims at circumventing the shortage of sizable cre-
ative contents for training supervised models.

8 Conclusion

We investigate the possibility of generating sonnets
without training on poems at all. We propose a
hierarchical planning-based framework to generate
sonnets which first plans the high-level content of
the poem, refine the predicted keywords by adding
poetic features, and then achieve decoding-time
control to impose the meter-and-rhyme constraints.
Extensive automatic and expert evaluation show
that our model can generate sonnets that use rich
imagery and are globally coherent, poetic, and emo-
tion provoking.
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