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Abstract

Recent methods for imitation learning directly learn a Q-function using an implicit
reward formulation rather than an explicit reward function. However, these meth-
ods generally require implicit reward regularization to improve stability and often
mistreat absorbing states. Previous works show that a squared norm regulariza-
tion on the implicit reward function is effective, but do not provide a theoretical
analysis of the resulting properties of the algorithms. In this work, we show that
using this regularizer under a mixture distribution of the policy and the expert
provides a particularly illuminating perspective: the original objective can be under-
stood as squared Bellman error minimization, and the corresponding optimization
problem minimizes a bounded x2-Divergence between the expert and the mixture
distribution. This perspective allows us to address instabilities and properly treat
absorbing states. We show that our method, Least Squares Inverse Q-Learning
(LS-1Q), outperforms state-of-the-art algorithms, particularly in environments with
absorbing states. Finally, we propose to use an inverse dynamics model to learn
from observations only. Using this approach, we retain performance in settings
where no expert actions are available.

1 Introduction

Inverse Reinforcement Learning (IRL) techniques have been developed to robustly extract behaviors
from expert demonstration and solve the problems of classical Imitation Learning (IL) methods [Ng
et al.| |1999, [Ziebart et al., [2008]]. Among the recent methods for IRL, the Adversarial Imitation
Learning (AIL) approach [Ho and Ermon| 2016, |Fu et al.,[2018| |Peng et al., [2021]], which casts the
optimization over rewards and policies into an adversarial setting, have been proven particularly
successful. These methods, inspired by Generative Adversarial Networks (GANs) [Goodfellow et al.|
2014], alternate between learning a discriminator, and improving the agent’s policy w.r.t. a reward
function, computed based on the discriminator’s output. These explicit reward methods require
many interactions with the environment as they learn both a reward and a value function. Recently,
implicit reward methods [Kostrikov et al.,[2020, |Arenz and Neumannl 2020, |Garg et al.,[2021]] have
been proposed. These methods directly learn the Q-function, significantly accelerating the policy
optimization. Among the implicit reward approaches, the Inverse soft Q-Learning (IQ-Learn) is the
current state-of-the-art. This method modifies the distribution matching objective by including reward
regularization on the expert distribution, which results in a minimization of the y2-divergence between
the policy and the expert distribution. However, whereas their derivations only consider regularization
on the expert distribution, their practical implementations on continuous control tasks have shown
that regularizing the reward on both the expert and policy distribution achieves significantly better
performance.

The contribution of this paper is twofold: First, when using this regularizer, we show that the resulting
objective minimizes the y? divergence between the expert and a mixture distribution between the
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expert and the policy. We then investigate the effects of regularizing w.r.t. the mixture distribution on
the theoretical properties of IQ-Learn. We show that this divergence is bounded, which translates
to bounds on the reward and Q-function, significantly improving learning stability. Indeed, the
resulting objective corresponds to least-squares Bellman error minimization and is closely related
to Soft Q-Imitation Learning (SQIL) [Reddy et al.l 2020]]. Second, we formulate Least Squares
Inverse Q-Learning (LS-IQ), a novel IRL algorithm. By following the theoretical insight coming
from the analysis of the x? regularizer, we tackle many sources of instabilities of the IQ-Learn
approach: the arbitrariness of the (Q-function scales, exploding )-functions targets, and reward
bias Kostrikov et al.|[2019], i.e., assuming that absorbing states provide the null reward. We derive the
LS-IQ algorithm by exploiting structural properties of the QQ-function and heuristics based on expert
optimality. This results in increased performance on many tasks and, in general, more stable learning
and less variance in the QQ-function estimation. Finally, we extend the implicit reward methods to
the IL from observations setting by training an Inverse-Dynamics Model (IDM) to predict the expert
actions, which are no longer assumed to be available. Even in this challenging setting, our approach
retains performance similar to the one where expert actions are known.

Related Work. The vast majority of IRL and IL methods build upon the Maximum Entropy
(MaxEnt) IRL framework [Ziebart, 2010]]. In particular, Ho and Ermon/[2016] introduce Generative
Adversarial Imitation Learning (GAIL), which applies GANS to the IL problem. While the original
method minimizes the Jensen-Shannon divergence to the expert distribution, the approach is extended
to general f-divergences [Ghasemipour et al.,2019], building on the work of Nowozin et al.| [2016].
Among the f-divergences, the Pearson x* divergence improves the training stability for GANs [Mao
et al., [2017] and for AIL [Peng et al.,|2021]]. |[Kostrikov et al.| [2019] introduce a replay buffer for
off-policy updates of the policy and discriminator. The authors also point out the problem of reward
bias, which is common in many imitation learning methods. Indeed, AIL methods implicitly assign
a null reward to these states, leading to survival or termination biases, depending on the chosen
divergence. [Kostrikov et al.|[2020]] improve the previous work introducing recent advances from
offline policy evaluation [Nachum et al.,|2019]. Their method, ValueDice, uses an inverse Bellman
operator that expresses the reward function in terms of its ()-function, to minimize the reverse
Kullback-Leibler Divergence (KLD) to the expert distribution. |Arenz and Neumann| [2020] derive a
non-adversarial formulation based on trust-region updates on the policy. Their method, O-NAIL, uses
a standard Soft-Actor Critic (SAC) [[Haarnoja et al., |2018]] update for policy improvement. O-NAIL
can be understood as an instance of the more general 1Q-Learn algorithm [Garg et al.| |2021]], which
can optimize different divergences depending on an implicit reward regularizer. (Garg et al.|[2021]
also show that their algorithm achieves better performance using the x? divergence instead of the
reverse KLD.|[Reddy et al.|[2020] propose a method that uses SAC and assigns fixed binary rewards
to the expert and the policy. Swamy et al.| [2021]] provide a unifying perspective on many of the
methods mentioned above, explicitly showing that GAIL, ValueDice, MaxEnt-IRL, and SQIL can be
viewed as moment matching algorithms. Lastly, Sikchi et al.|[2023]] propose a ranking loss for AIL,
which trains a reward function using a least-squares objective with ranked targets.

2 Preliminaries

Notation. A Markov Decision Process (MDP) is a tuple (S, A, P, 7,7, 1i9), where S is the state
space, A is the action space, P : Sx AxS — R is the transition kernel, 7 : S x.A — R is the reward
function, + is the discount factor, and pg : S — R is the initial state distribution. At each step, the
agent observes a state s € S from the environment, samples an action a € A using the policy 7 :
S x A — R™, and transitions with probability P(s’|s,a) into the next state s’ € S, where it receives
the reward r(s,a). We define an occupancy measure pr(s,a) = m(a|s) > o, 17 (s), where
ur(s') = fs’a uf(s)m(a|s)P(s'|s,a)dads is the state distribution for ¢ > 0, with uf(s) = po(s).
The occupancy measure allows us to denote the expected reward under policy 7 as E,_[r(s,a)] £
E[Y 2o v'r(se, ar)], where sg ~ po, ar ~ (.|s;) and s¢41 ~ P(.|s¢, a) for ¢ > 0. Furthermore,
RS*A = {7 : S x A — R} denotes the set of functions in the state-action space and R denotes the
extended real numbers R U {+o00}. We refer to the soft value functions as V' (s) and Q(s, a), while
we use V (s) and (s, a) to denote the value functions without entropy bonus.

Maximum Entropy Inverse Reinforcement Learning. Given a set of demonstrations consisting
of states and actions sampled from an expert policy mg, IRL aims at finding a reward function
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the expert policy g and low reward to other policies. We consider the framework presented in
Ho and Ermon! [2016], which derive the maximum entropy IRL objective with an additional convex

reward regularizer 1), : RS*A — R from an occupancy matching problem

iy Ly () = ma (i ~BH,(7) = By r(6,0)] ) + By 0] = (), )
with the space of policies II = RS*, the discounted cumulative entropy bonus H,(m) =

E,.[—1log(m(a|s))], and a constant 3 controlling the entropy bonus. Note that the inner optimization
is a maximum entropy Reinforcement Learning (RL) objective [Ziebart, 2010, for which the optimal
policy is given by

7 (als) = - exp (Qs,0)) @)

where Z, = [ exp Q(s, @) da is the partition function and Q(s, a) is the soft action-value function,

which is given for a certain reward function by the soft Bellman operator (B Q)(s,a) = r(s,a) +
VEg o p(]s,a) V™ (8"), where V™ (s') = Equn(|s)[Q(s,a) — log m(als)].

Garg et al. [2021] transform Equation |1| from reward-policy space toﬁ)—policy space using the
inverse soft Bellman operator (77Q)(s,a) = Q(s,a) — YEgp(|s,a)V ™ (s") to get a one-to-one

correspondence between the reward and the Q-function. This operator allows to change the objective
function L, from reward-policy to Q-policy space, from now on denoted as 7,

maxmin L, (r,m) = maxmig 7,(Q, ),

maxmin By, , [Q(5,) = Eormpi o[V ()] = BH,(m)

—E,, [Q(s,a) — YEsi b fs.a) Ww(sl)]} o (F0)

where Q = RS*4 is the space of Q-functions. Furthermore, they use Equation |2| to extract the
optimal policy % given a Q-function to drop the inner optimization loop in Equationsuch that

max 7,(Q,7g) = max By, |Q(5,0) = 1Ew (s [V ()] ~ BH,(rg) 3)
Qe Qeh ’ ' Q)
~Epryy [Q5:0) = 1Bt is V72 ()]~ 45(T72Q).

Practical Reward Regularization. |Garg et al.|[2021] derive a regularizer enforcing an Lo norm-
penalty on the reward on state-action pairs from the expert, such that ¢, (r) = cE,__ [r(s,a)?]
with ¢ being a regularizer constant. However, in continuous action spaces, this regularizer causes
instabilities. In practice, |Garg et al.|[2021]] address this instabilities by using the regularizer to the
mixture

Yo(r) = ack,, [r(s, a)2] +(1—a)cE,, [r(s, a)2] , 4
where « is typically set to 0.5. It is important to note that this change of regularizer does not allow the
direct extraction of the policy from Equation[I|anymore. Indeed, the regularizer in Equation ] also
depends on the policy. Prior work did not address this issue. In the following sections, we will provide
an in-depth analysis of this regularizer, allowing us to address the aforementioned issues and derive
the correct policy update. Before we introduce our method, we use Proposition[A.T]in Appendix [A]to
change the objectives L, and .7, from expectations under occupancy measures to expectations under
state-action distributions d ., and d,, from now on denoted as L and .7, respectively.

3 Least Squares Inverse Q-Learning

In this section, we introduce our proposed imitation learning algorithm, which is based on the
occupancy matching problem presented in Equation [T|using the regularizer defined in Equation 4]
We start by giving an interpretation of the resulting objective as a x? divergence between the expert
distribution and a mixture distribution of the expert and the policy. We then show that the regularizer
allows us to cast the original objective into a Bellman error minimization problem with fixed binary
rewards for the expert and the policy. An RL problem with fixed rewards is a unique setting, which
we can utilize to bound the )-function target, provide fixed targets for the ()-function on expert states
instead of doing bootstrapping, and adequately treat absorbing states. However, these techniques



need to be applied on hard @Q-functions. Therefore, we switch from soft action-value functions
to hard @-functions, by introducing an additional entropy critic. We also present a regularization
critic allowing us to recover the correct policy update corresponding to the regularizer in Equation 4]
Finally, we propose to use an IDM to solve the imitation learning from observations problem.

3.1 Interpretation as a Statistical Divergence

Ho and Ermon|[2016] showed that their regularizer results in a Jensen-Shannon Divergence (JSD) min-
imization between the expert’s and the policy’s state-action distribution. Similarly, Garg et al.|[2021]
showed that their regularizer v, (r) minimizes the x? divergence. However, the regularizer pre-
sented in Equation E] is not investigated yet. We show that this regularizer minimizes a x? divergence
between the expert’s state-action distribution and a mixture distribution between the expert and the
policy. Therefore, we start with the objective presented in Equation [[]and note that strong duality fol-
lows straightforwardly from the minimax theorem [Von Neumann, [1928] as —H (m), —=Eq, [r(s,a)]
and ¢(r) are convex in dr, and —Eq_[r(s,a)], Eq, _[r(s,a)] and 9 (r) are concave in r [Ho and
Ermon| |2016]. Since policies corresponding to state-action distributions are unique, we get the
minmax duality max,cg mingem L = ming e max,cg L. We express the X2 divergence between
the expert’s distribution and the mixture distribution using its variational form,

20 (dnp | =557%) =sup2 (Eu, , [r(5,0)] ~Eay, [r(5,0)+ 252 )
——— r
mix :supIEd,rE [r(s,a)]—Eq, [r(&a)}—caEd,rE [r(s,a)Q] —c(1—a)Eq, [r(s,a)Q] , (5

with the regularizer constant ¢ = 1/2 and o = 1/2. Now, if the optlmal reward is in R, the original
objective from Equatlonlcan be seen as an entropy-regularized x? divergence minimization problem

mexmin L=minx" (dvs || “=5=) ~BH(x). ©)

This divergence has two advantageous properties. Firstly, it is bounded.
Proposition 3.1 The divergence 2x*(d,, || ”E+d ) is bounded in [0,1/c].

Secondly, its resulting optimal reward function is bounded as well.
dr i
2

Proposition 3.2 Given 2> (al7r 5 H ) in its variational form shown in EquationE] the optimal

reward is given by L dy (5.0)—do (s.0)
TR ) — U )

¢ drp(s,a)+dx(s,a)
and is bounded such that r*(s,a) € [=1/c,/c] forall s € S,a € A.

r*(s,a)=

)

The proofs are shown in[A.2] These two properties are not available in any of the commonly used
divergences, such as the KLLD [Kostrikov et al.,[2020], the JSD [Ho and Ermon, |2016]], or the Pearson
x? divergence [Garg et al., 2021]. A comparison of the bounds and the optimal reward function
is given in Table |I} We argue that the boundedness of the reward function becomes of particular
importance when using an implicit reward representation as a potential unboundedness is directly
translated to the ()-function.

3.2 A Reinforcement Learning Perspective on Distribution Matching

In the following, we present a novel perspective on Equation [3] allowing us to better understand
the effect of the regularizer. Indeed, for the regularizer defined in Equation 4] we can interpret this
objective as an entropy-regularized least squares problem, as shown by the following proposition.

Proposition 3.3 Let 7“@(57 a) = (7’”@) (s, a) be the implicit reward function of a Q-function, then
Jor (rg) = cEJ[rQ(s,a)z] with d(s,a) = adg,(s,a) + (1 — &)dx(s,a), the solution of Equa-
tion 3| under state-action distributions equals the solution of an entropy-regularized least squares
minimization problem such that arg mins o £(Q, 75) = argmaxg g J (Q, mg) with
~ 2 2 /B
£(@:mg) = aBa,,, [(rg(s,0) = raw)’] + (1 = Q)Eu,  [(rg(s,@) = rumn)®] + ZH(ng), )

1

1
where Tmax = 5 — and Tyip = ~3i—a)e



The proof is provided in Appendix[A.3] The resulting objective in Equation [§]is very similar to the
one in the Least Squares Generative Adversarial Networks (LSGANs) [Mao et al.| [2017] setting,
where o (s, a) can be interpreted as the discriminator, ry, can be interpreted as the target for expert
samples, and i, can be interpreted as the target for samples under the policy 7. For a = 0.5 and
¢ = 1, resulting in 7, = 1 and r;, = —1, Equation E]differs from the discriminator’s objective in
the LSGAN:Ss setting only by the entropy term.

Now replacing the implicit reward function with the inverse soft Bellman operator and rearranging
the terms yields

£(Q,7q) =0Ea,, [(Q(s, @) = (rmax + YEst P [s,0) [V (s/)})z] ©

(@B, [(05:0) = (o + 9B V720D | + L)

=062 (d Pas) + (1 — ) 62(dy, i) + gﬂ(wé) , (10)
where §2 is the squared soft Bellman error. We can deduce the following from Equation

x?-regularized IRL under a mixture can be seen as an RL problem with fixed rewards 7may
and rp, for the expert and the policy. This insight allows us to understand the importance of the
regularizer constant c¢: it defines the target rewards and, therefore, the scale of the (Q-function. The
resulting objective shows strong relations to the SQIL algorithm, in which also fixed rewards are used.
However, SQIL uses rmax = 1 and rmin = 0, which is infeasible in our setting for o < 1. While the
entropy term appears to be another difference, we note that it does not affect the critic update, where
T is fixed. As in SQIL, the entropy is maximized by extracting the MaxEnt policy using Equation

Stabilizing the training in a fixed reward setting is straightforward. We can have a clean solution
to the reward bias problem — c.f., Section [3.4]—, and we can provide fixed Q-target for the expert
and clipped Q-function targets for the policy — c.f., Section [3.5] & [3.7]to improve learning stability
significantly. However, we must switch from soft to hard action-value functions by introducing an
entropy critic to apply these techniques. Additionally, we show how to recover the correct policy
update corresponding to the regularizer in Equation [] by introducing a regularization critic.

3.3 Entropy and Regularization Critic

In the following sections, we denote 7¢; as m for brevity. We express the Q-function implicitly using

Q(s,a) = Q(s,a) + H™ (s, a) decomposing it into a hard Q-function and an entropy critic

H"(s,a) =Epx Z —" T Blog m(ay 41|50 41)

t/'=t

st:s,at:a:|. (11)

This procedure allows us to stay in the MaxEnt formulation while retaining the ability to operate on the
hard @)-function. We replace the soft inverse Bellman operator with the hard inverse Bellman operator
(T7Q)(s,a) = Q(s,a) — YEgp(.|s,a)V ™ (s"), with the value function V7 (s) = Eqnr[Q(s, a)].

As mentioned before, the regularizer introduced in Equation[dincorporates yet another term depending
on the policy. Indeed, the inner optimization problem in Equation [I}—the term in the brackets—is not
purely the MaxEnt problem anymore, but includes the term —kE;_[r (s, a)?] with & = ¢(1 — «). To
incorporate this term into our final implicit action-value function Q' (s, a), we learn an additional
regularization critic

C(S7 a) = ]EP,-/r |:Z ’}/tlitT(St/, at’)2

t'=t

St = §,ar = a] . (12)

such that QT (s, a) = Q(s,a) + H™(s,a) + kC(s,a). Using QT, we obtain the exact solution to the
inner minimization problem in Equation[2] In practice, we learn a single critic G™ combining H”™ and
C. We train the latter independently using the following objective

Héirn 52 = rrggrn Ea, {(g”(s, a) — (krg(s, a)2 +E.p [fy(—ﬁlogﬂ(a'\s') +G7 (s, a')]))ﬂ , (13)
which is an entropy-regularized Bellman error minimization problem given the squared implicit
reward rg scaled by k.



3.4 Treatment of Absorbing States

Another technical aspect neglected by IQ-Learn is the proper treatment
of absorbing states. treat absorbing states by adding
an indicator v—where v = 1 if s’ is a terminal state—in front of the
discounted value function in the inverse Bellman operator

(Tq Q)(s,a) = Q(s,a) = (1 = V)1Eyup(fs,) V7 (s). (14)

This inverse Bellman operator is obtained by solving the forward
Bellman operator for 7(s, a) under the assumption that the value of
absorbing states is zero. However, as pointed out by 1.0
[2019]], such an assumption may introduce termination or survival bias;
the value of absorbing states also needs to be learned. Our perspective
provides a clear understanding of the effect of the inverse Bellman 0.6
operator in Equation The objective in Equation 9] will regress the
@-function of transitions into absorbing states towards rm,x OF T'min,
respectively. However, based on Equation [8] the implicit reward of 0.2
absorbing states should be regressed toward ryax OF yin. Instead, we
derive our inverse operator from the standard Bellman operator while %% 50 100 150 200
exploiting that the value of the absorbing state s 4 is independent of —— |q_corrected 1Q
the policy 7

0.8

0.4

Figure 1: Point mass toy task
(ﬁsti)(S»G):Q(Saa)_’YEs’~P(.\s,a)((1_V)V (3,)+VV(SA))' (15)  (top) with success rate plot (bot-

We further exploit that the value of the absorbing state can be computed tom). Here, we compare the

. standard 1Q-Learn operator to
in closed formas V(s4) = 1’";3, where 4 equals rmax On expert states modiﬁgi op eramf

and 7, on policy states. Please note that the corresponding forward Bellman operator converges to
the same -function, despite using the analytic value of absorbing states instead of bootstrapping, as
we show in Appendix [A:5] When applying our inverse operator in Equation[T3]to Equation 8] we
correctly regress the (Q-function of transitions into absorbing states towards their discounted return.
We show the resulting full objective in Appendix [A4]

We show the effect of our modified operator on the toy task depicted in Figure [I] (top), where the
black point mass is spawned in either of the four dark blue squares and has to reach the green area in
the middle. Once the agent enters the red area, the episode terminates. The expert always takes the
shortest path to the green area, never visiting the red area. The operator proposed by IQ-Learn does
not sufficiently penalize the agent for reaching absorbing states, preventing the IQ-Learn agent from
reaching the goal consistently, as can be seen from the orange graph in Figure[T] (bottom). In contrast,
when using our operator 7iq, the agent solves the task successfully.

3.5 An Alternative Formulation for the Expert Residual Minimization

The first term in Equation [§]defines the squared Bellman error minimization problem
ad? (d,rE,rmax):aEdﬂE [(T’Q (s,a)—rmax)2], (16)

on the expert distribution. Due to bootstrapping, this minimization can become challenging, even
for a fixed expert policy, as it does not fix the scale of the Q-function unless the trajectory reaches
an absorbing state. This problem arises particularly on expert data for cyclic tasks, where we
generate trajectories up to a fixed horizon. The lack of a fixed scale increases the variance of
the algorithm, affecting the performance negatively. Therefore, we propose a modified objective,
analyzing Equation The minimum of this term is achieved when 7 (s, a) = rmax for all reachable
(s,a) under d . At this minimum, the @)-value for the expert is

Q™% (5,0)=D 7' Tm=1 " =Quax,  With 5,a~dr , (5,0). (17)
t=0 1=y

As the objective of our minimization on expert distribution is equivalent to pushing the value of the
expert’s states and actions towards Q)i,.x, We propose to replace the bootstrapping target with the
fixed target (Qax resulting in the following new objective

Laia(@)=aEa, , [(Q(5,0)~ Q)] +(1-0)Ea, [(Q(5,0)~ (ren +1Esrwp(1s [V ()] (18)

Note that we skip the terminal state treatment for clarity. The full objective is shown in Appendix
Also, we omit the entropy term as we incorporate the latter now in ™ (s, a). This new objective



incorporates a bias toward expert data. Therefore, it is not strictly equivalent to the original problem
formulation. However, it updates the Q-function toward the same ideal target, while providing a
simpler and more stable optimization landscape. Empirically, we experienced that this modification,
while only justified intuitively, has a very positive impact on the algorithm’s performance.

3.6 Learning from Observations

In many real-world tasks, we do not have access to expert actions, but only to observations of expert’s
behavior [Torabi et al., [2019b]. In this scenario, AIL methods, such as GAIfO [Torabi et al., 2019al,
can be easily adapted by learning a discriminator only depending on the current and the next state.
Unfortunately, it is not straightforward to apply the same method to implicit rewards algorithms that
learn a Q-function. The IQ-Learn method [Garg et al.| [2021] relies on a simplification of the original
objective to perform updates not using expert actions but rather actions sampled from the policy
on expert states. However, this reformulation is not able to achieve good performance on standard
benchmarks as shown in our experimental results.

A common practice used in the literature is to train an IDM. This approach has been previously used
in behavioral cloning [Torabi et al., [2018| |[Nair et al.l [2017]] and for reinforcement learning from
demonstrations [Guo et al.,|2019, |Pavse et al.,|2020, Radosavovic et al.,2021]]. Following the same
idea, we generate an observation-only version of our method by training an IDM online on policy
data and using it for the prediction of unobserved actions of the expert. We modify the objective in
Equation[T§]to

Lisigqo(Q)=0Ea, [(Q(&Fw(s,s'))—@maxﬂ +aEq, [(Q(Sya)—(Tmin+VEsf~P(.\s,a>[V”(S')]))ﬂ7 (19)

with the dynamics model T, (s, s'), its parameters w and @ = (1 — «). We omit the notation for
absorbing states and refer to Appendix instead. Notice that the IDM is only used to evaluate the
expert actions, and is trained by solving the following optimization problem

min Lr(w) = minEq, p [||Fw(s,s') — aﬂg] , (20)

where the expectation is performed on the state distribution generated by the learner policy 7. While
the mismatch between the training distribution and the evaluation distribution could potentially cause
problems, our empirical evaluation shows that on the benchmarks we achieve performance similar to
the action-aware algorithm. We give more details on this approach in Appendix [C]

3.7 Practical Algorithm Algorithm 1 LS-1Q

We now instantiate a practical version of our algorithm Initialize: 9, 74, G¢ and optionally T',

in this section. An overview of our method is shown in ~ forstep tin{1...N} do

Algorithm [T} In practice, we use parametric functions Sample mlf”'bat?hes Dr and DW_E

to approximate ), 7, G and I, and optimize the latter (opt.) Predict actions for Dy, using I,
using gradient ascent on surrogate objective functions that gﬂ(li:‘t_gs ,wa(s 75{)73 }W{S 1%9 }E€Dx,}
approximate the expectations under d, and d.,, using the g P t 0 j_Q' énc[}o(% uls)ng q')]
datasets D, and D, . Further, we use target networks, e TITRQ VoL, Hr e

as already suggested by the [Garg et al.|[2021]]. However, (opt.) Update g—fun2ct10n using Eq.
while the objective in Equation 3|lacked intuition about the Cer14=Ce—rg Ve[05(C, D))

usage of target networks, the objective in Equation [T0]is Update Policy 4 using the KL
equivalent to a reinforcement learning objective, in which Pr14-¢i—rnVo[Drr(md|mg)]
target networks are a well-known tool for stabilization. (opt.) Update I', using Eq.
Further, we exploit our access to the hard Q)-function as wi 14w —kr Vo [Lr(w,Dr )]

well as our fixed reward target setting to calculate the __end for

maximum and minimum Q-values possible, Qunin = %‘; and Quax = Ii—“;, and clip the output
of target network to that range. Note that this also holds for the absorbing states. In doing so, we
ensure that the target ) always remains in the desired range, which was often not the case with
IQ-Learn. Target clipping prevents the explosion of the QQ-values that can occur due to the use of
neural approximators. This technique allows the algorithm to recover from poor value function
estimates and prevents the (-function from leaving the set of admissible functions. Finally, we found
that training the policy on a small fixed expert dataset anneals the entropy bonus of expert trajectories,
even if the policy never visits these states and actions. To address this problem, we clip the entropy
bonus on expert states to a running average of the maximum entropy on policy states.
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Figure 2: Comparison of different versions of LS-IQ. Abscissa shows the normalized discounted cumulative
reward. Ordinate shows the number of training steps (x 10%). The first row shows the results and an exemplary
trajectory — here the trained LS-IQ agent — on a locomotion task using an Atlas robot. The second row shows
4 MuJoCo Gym tasks, for which the expert’s cumulative rewards are — Hopper:3299.81, Walker2d:5841.73,
Ant:6399.04, Humanoid:6233.45

In continuous action spaces, Z; is intractable, which is why we can not directly extract the optimal
policy using Equation[2] As done in previous work [Haarnoja et al, 2018 [Garg et al| 2021]], we use
a parametric policy m, to approximate 75 by minimizing Dy (7 || WQ). In our implementation,
we found it unnecessary to use a double-critic update. This choice reduces the computational and
memory requirements of the algorithm, making it comparable to SAC.

4 Experiments

We evaluate our method on six MuJoCo environments: Ant-v3, Walker2d-v3, Hopper-v3,
HalfCheetah-v3, Humanoid-v3, and Atlas. The latter is a novel locomotion environment introduced
by us and is further described in Appendix [D.I] We select the following baselines: GAIL [Ho and
Ermon, |2016|, VAIL [Peng et al., 2019], IQ-Learn [Garg et al.,|2021]] and SQIL [Reddy et al., 2020].
For a fair comparison, all methods are implemented in the same framework, MushroomRL [D’Eramo
et al.,|2021]]. We verify that our implementations achieve comparable results to the original implemen-
tations by the authors. We use the hyperparameters proposed by the original authors for the respective
environments and perform a grid search on novel environments. The original implementation of
IQ-Learn evaluates two different algorithm variants depending on the given environment. We refer to
these variants as IQv0—which uses telescoping [Garg et al.l 2021]] to evaluate the agent’s expected
return in Equation [3}—, and IQ—which directly uses Equation 3}—and evaluate both variants on
all environments. For our method, we use the same hyperparameters as IQ-Learn, except for the
regularizer coefficient c and the entropy coefficient 5, which we tune on each environment. We only
consider equal mixing, i.e., « = 0.5.

In our first experiment, we perform ablations on the different design choices of LSIQ. We evaluate
the following variants: LSIQ-HC uses a (combined) entropy critic and regularization critic, LSIQ-H
only uses the entropy critic, and LSIQ does not use any additional critic, similar to IQ-Learn. We
use ten seeds and five expert trajectories for these experiments. For the Atlas environment, we use
100 trajectories. We also consider 1Q, IQv0, and SQIL as baselines and show the learning curves
for four environments in Figure [2] The learning curves on the HalfCheetah environment can be
found in Appendix [D.6] It is interesting to note that IQ-Learn without telescoping does not perform
well on Atlas, Walker, and Hopper, where absorbing states are more likely compared to Ant and
HalfCheetah, which almost always terminate after a fixed amount of steps. We hypothesize that
the worse performance on Walker and Hopper is caused by reward bias, as absorbing states are not
sufficiently penalized. IQv0 would suffer less from this problem as it treats all states visited by the
agent as initial states, which results in stronger reward penalties for these states. We conduct further
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Figure 3: Ablation study on the effect of the number of expert trajectories on different Mujoco environments.
Abscissa shows the normalized cumulative reward. Ordinate shows the number of expert trajectories. The first
row shows the performance when considering states and action, while the second row considers the performance
when using states only. Expert camulative rewards identical to FigureE}

ablation studies showing the influence of the proposed techniques, including an ablation study on the
effect of fixed targets, clipping on the target ()-value, entropy clipping for the expert, as well as the
treatment of absorbing states in Appendix [D} Our results show that the additional critics have little
effect, while fixing the targets significantly increases the performance.

For our main experiments, we only evaluate LSIQ and LSIQ-H, which achieve the best performance
in most environments. We compare our method to all baselines for four different numbers of expert
demonstrations, 1, 5, 10, and 25, and always use five seeds. We perform each experiment with and
without expert action. When actions are not available, we use a state transition discriminator [Torabi
et al.,|2019a]] for GAIL and VAIL, and IDMs for LSIQ (c.f., Section . In contrast, IQ-Learn uses
actions predicted on expert states by the current policy when no expert actions are available. In the
learning-from-observation setting, we do not evaluate SQIL, and we omit the plots for IQ, which
does not converge in any environment and focus only on IQv0. Figure 3] shows the final expected
return over different numbers of demonstrations for four of the environments. All learning curves,
including the HalfCheetah environment, can be found in Appendix [D.6|for state-action setting and in
Appendix [D.5]for the learning-from-observation setting. Our experiments show that LSIQ achieves
on-par or better performance compared to all baselines. In particular, in the learning-from-observation
setting, LSIQ performs very well by achieving a similar return compared to the setting where states
and actions are observed.

5 Conclusion

Inspired by the practical implementation of 1Q-Learn, we derive a distribution matching algorithm
using an implicit reward function and a squared Ly reward penalty on the mixture distribution. We
show that this regularizer minimizes a bounded x2-divergence to the mixture distribution and results
in modified updates for the (Q-function and policy. Our analysis reveals an interesting connection
to SQIL —which is not derived from an adversarial distribution matching objective— and shows
that IQ-Learn suffers from reward bias. We build on our insights to propose a novel method, LS-IQ,
which uses a modified inverse Bellman operator to address reward bias, target clipping, fixed reward
targets for policy samples, and fixed Q-function targets for expert samples. We also show that the
policy optimization of IQ-Learn is not consistent with regularization on the mixture distribution and
show how this can be addressed by learning an additional regularization critic. In our experiments,
LS-IQ outperforms strong baseline methods, particularly when learning from observations, where we
train an IDM for predicting expert actions. In future work, we will quantify the bias introduced by
the fixed @-function target and investigate why this heuristic is fundamental for stabilizing learning.
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A Proofs and Derivations

In this section, we present proofs of the propositions in the main paper. Furthermore, we provide two
additional propositions on the optimal reward function and the bounds for the y2-divergence when
considering the mixture distribution.

A.1 From Occupancy Measures to Distributions

Based on Proposition the solution arg max ;g J,,(Q, WQ) under occupancy measures equals

the solution arg maxseq J (Q, 7TQ) under state-action distributions. This result allows us to use the
following distribution matching problem from now on:

glggj(@ﬂ@) = max Ea,, [rg(s,a)] —Ea,, [rg(s,a)] = ¢(rg) — BH(mg), 21

where we introduce the implicit reward ’I“Q(S, a) = Q(s, a) = VEgp(s,a) [V”(s’)] for comprehen-
sion, ( is a constant controlling the entropy regularization, d, is the state-action distribution of the
expert, and d; is the state-action distribution under the policy.

Proposition A.1 Let max,cr minger L, (7, 7) be the dual problem of a regularized occupancy
matching optimization problem and L(w, ) be the Lagrangian of the regularized distribution match-

ing problem. Then it holds that L,(w,r) oc L(m,r) and J,(Q, T5) X JQ, T5)-

Proof of Proposition

Starting from the definition of the occupancy measure of an arbitrary policy 7w, we compute the
normalizing constant as an integral:

/ p=(s,a)dsda
SxA

T-1
/ lim Z ¥ uf (s)m(als) dsda
s =0

X A T— o0 —

T-1
= lim Z'yt/ wr (s)m(als) dsda
— SxA
T—

T—o0
t
1
— i t
=, > o
t=0
1
_ 22
11—~ (22)
Now we compute the (discounted) state-action distribution as:
px(s,a) px(s,a)
dr(s,a) = = =1 —-7)p=(s,a (23)
(s,a) Temup(s,a)dsda . ( )p=(s,a)
Thus, we have:
pr(s,a) = mdw(s, a) 24
Using equation[24]in the definition of the objective we obtain:
1
J(r) = —— dr(s,a)r(s,a)dsda = Eq, [r(s,a (25)
(M =1=7 [, dr(ssa)r(s,a)dsda= -~ Eu, [r(s,0)

A derivation similar to equation [25| can be done for the entropy and the regularizer using equa-
tion Substituting the derived formulas into equationand collecting the constant ﬁ proves the

proposition. |
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A.2  The Bounds of the x? Divergence on Mixture Distributions

Proof of Proposition[3.2] This proof follows the proof of Proposition 1 in|Goodfellow et al|[2014].
We recall that the y2-divergence on a mixture in Equation is

2y2 (dwE H 7dwE2+d"):g1€%(2 (EdﬂE [r(s,a)]—Eq,,;, [ (s,a)+l€r(s,a)2])

Amix

_rrnea%Ed” [7(s,a)]=Eq, [r(s;a)] —kEa, [r(s,a)Z] —kEq, [r(s,a)ﬂ

:mea%/ / dry(s,a) (r(s,a)fkr(s,a)Q) —dx(s,a) (r(s,a)+kr(s,a)2)dads, (26)
T sta

where k = 1/4 for the conventional x2-divergence. We generalize the y?-divergence by setting
k = ¢/2. For any a,b € R™ \ {0}, the function y — a(y — § y*) — b(y + § y*) achieves its maximum

at 14 +Z, which belongs to the interval [—1/c, 1/c].

To conclude the proof, we notice that the reward function can be arbitrarily defined outside of
Supp(d;) U Supp(d,,), as it has no effect on the divergence. [ |

Proof of Proposition[5.]] To increase the readability, we drop the explicit dependencies on state and
action in the notation, and we write d, and d,. for d (s, a) and d, (s, a), respectively. The lower
bound is trivially true for any divergence and is reached when d; = dpix = dr. To prove the upper
bound, we use the optimal reward function from Equationl [7|and plug it into Equation 26| with k = </2

2x*( 7rE” d”E+d” // dry (7" (s,0) = £77(5,0)%) —dr (r*(s,a) + £77(s,a)) dads

// ) —dr\ 4 (drp—ds)’
i dwE+d 2 \dap+dr
dry—d drp—de\°
_ 12 77 cl (27 7T
d”(C(dwE+dw)+202 <dwE+d ) )d“ds
://d 2d2%, —2d2 —d>, +2dx,dr—d>
sla ? 2¢(drg +dr)?

2d2  —2d2 +d?_—2dy, d-+d>
—dx B m g pdrtdn dads
2¢(drg+dr )2

//d3+d3dd2 dd_ // dd
(drp +dr)? 2 d,rE—i—d y
dz drpdr
T 9 %" 44
2c// P i L

dn, dn —2d, 1
= T <z,
2¢ (Ed"E le +dx ] s {dﬁﬁdw] g [dwﬁd } ) @0

<1 <1 <0

Note that the bound is tight, as the individual bounds of each expectation are only achieved in
conjunction. ]

Proposition A.2 Let x> (dwE H ady, + (1 - a)dﬁ) be the Pearson x*-divergence between the
distribution d ., and the mixture distribution ady,, + (1 — «)d,. Then it holds that:

X (e || ey + (1= @)dr) < (1= @)X (dry || dr)

Proof of Proposition The proof follows straightforwardly from the joint convexity of f-
divergences:

Dy (kP + (1= K)P2 || KQ1 + (1 — )Q2) < KDr(Py || Q1) + (1 — W)Ds (P || Qa),

where k € [0,1] is the a mixing coefficient. The x2-divergence is an f-divergence with f(t) =
(t — 1)%. Now using the y2-divergence, and let P = P; = P, = 2, D = Qq,and a = (1 — k):

P aP+ (1~ a)D) <(1 —a)x*(P || D) + ax’(P || P)
__’_/

X2(P H aP + (1 fa)D) <(1- a)XQ(P H D).
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Setting P = dr, and D = d, concludes the proof. ]

A.3 From y?-regularized MaxEnt-IRL to Least-Squares Reward Regression
We recall that the entropy-regularized IRL under occupancy measures is given by
Ly(r,m) = (=BHy(7) = Ep [r(s,a)]) + By, [r(s,a)] — ¥, (r). (28)
We also recall that using soft inverse Bellman operator to do the change of variable yields:
To(@73) = By [@(5:0) = YBarp1a [V ()] = BHy(ng) 29)
Q

~E,. [Q5,@) = Enr( o[V ()] — 4(r).

We can now use Proposition [A-T]to switch the objective from occupancy measures to distributions.

Proof of Proposition[3.3] ~ Staring from the objective function in Equation 21} by expanding the
expectation and rearranging the terms, we obtain:

J(Q,ﬂ'@) =Eq,, [ré(s,a)} —Eq, [ré(s,a)} —cE; [ré(s,a)Q] — ﬂH(ﬂQ)

:Ed'rrE [rQ(s,a)} —Eq, [T@(s,a)}
—calq,, [ré(s, a)Q] —c¢(1 — a)Eq, [TQ(S, a)Q] — BH(ﬂ'Q)

=—Eq,, [cox ro(s, a)? — ro(s, a)] —Eq, [c(1—a) 7"@(5,@)2 +7r5(s a)] - BH(mg)
=—c (a Ea,, [ré(s, a)? — iré(s,a)}
+(1— ) Ba, [rg(5,0)” + igera(s, )] + £ H(ng))

Defining 7y, = L and i, =

oo and completing the squares we obtain:

1
2(1—a)c

T(Q.mg) = — ¢ (aBa,,, [ro(s,0)° = Erg(s,a)] + (1= )Ea, [rg(5,0)° + para(s,a)]
+€H(ﬂ'@)) + ac (T — Toax) + (1 — @)e (ram — 7o)
=—c (a Ea,, [ro(s, a)® — ~ra(s,a) + Toas) + (1 — @) Ea, [ro(s, a)’
+ﬁré(s, a) + r,%,in] + gH(ﬂ'Q)) +acria+ (1 —a)erpn
5 2
=—c (aEdwE [(ré(s,a) — ﬁ) ] + (1 —a)Eq, {(TQ(S,G) + ﬁ) }
+§H(7TQ”)) + acrfm +(1- a)cr,zmn.

Finally, we obtain the following result:

j(@, WQ) = —c (aEdwE [(TQ(S, a) — rmax)Q] +(1-a)Eq, [(TQ(S, a) — rmin)z] + gH(’TFQ)) + K,

(30)
where K = acr, + (1 — a)crd, = ﬁw + m is a fixed constant.
Comparing Equation 8 with Equation 30| results in
T(Q,7g) + K < L(Q,7g). 31)

Given that an affine transformation (with positive multiplicative constants) preserves the optimum,
argmaxgeq J (Q, mg) is the solution of the entropy-regularized least squares objective £(Q, 7).
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A4 Full LS-IQ Objective with Terminal States Handling

Inserting our inverse Bellman operator derived in Section 3.4]into the least-squares objective defined
in Equation 8] and rearranging the terms yields the following objective for hard Q-functions:

C(Q77TQ) =aE s,anvdr |:(]. — l/) (Q(57 a) — (Tmax + ,YVW(S/))Q] (32)
s'~P(.]s,a)
2
+ oF S’awdﬂ'E |:l/ (Q(87 a) - (Tmax + Y %) :|
s'~P(|s,a)

+(1= Q) vamarg [(1=2) (Q(5,0) = (rmin +7 V7 (5))°]

s'~P(.|s,a)
o\ 2| L B
HU= 0B o v (Q0) = G 7 2)) 7] + L H(m0)
s'~P(.]s,a) ¢

£(Q,7q) =E sama, [(1 — ) (Q(s,a) — (rmas +7vw(8/))2] (33)

s'~P(.]s,a)

+ oF amdy, {u (Q(s,a) — %)2}

s'~P(.]s,a)
L 2
+ (1= )E samtrg [(1=2) (Q(5,0) = (rmin +7 V7 (5))]
s'~P(.|s,a)
o \ 2| L B
HU- iy [v (@) - g22)7] + Sine).
s'~P(.|s,a)

Now including the fixed target for the expert distribution introduced in Section [3.3]yields:

2
£1s(@.70) =0E ans, [(1-0) (Qss) = 22 )] G4
s'~P(.]s,a)
2
B i, v (@) - )]
s'~P(.]s,a) ( ! ’Y)
+(1= Q) vamarg [(1=2) (Q(5,0) = (rmin +7 V7 (5))°]
s'~P(.]s,a)
rmn \2| L B
HL= QB o [v (@0) = 722)°| + Zhr(ro)
s’ ~P(.]s,a)
. 2
Liiq(@,7Q) =aE s and, {(Q(sva) - Iiﬁ) ] (35)
s'~P(.]s,a)
+(1—a)E s,anvdrg [(1 —v) (Q(s, a) — (Tmin + ’yV”(s’)))Q]
s'~P(.]s,a)
ruin \2| 4 B
HU= 0B iy, | Qo) = f20)°| + (o).
s'~P(.]s,a)

where Equation [33]is the full LS-IQ objective for our hard Q-function. For the observations-only
setting we predict the expert’s actions using the IDM.

A.5 Convergence of our Forward Backup Operator

As described in Section[3.4] our inverse operator,
(T5aQ)(5,0) = Q(s,0) = VEwnp(jaa (1 =)V (s)) + 2V (54)), (36)

is based on the standard Bellman backup operator, except that, instead of bootstrapping, we use the
known values for transitions into absorbing state. We will now show that repeatedly applying the
corresponding forward Operator

(BiigQ)(s,a) =7(s,a) + YEgwp(|s,a) ((1 — )V (s") + Z/V(SA)) , (37)

converges to the Q function. Our proof is based on the same technique that is commonly used
to prove convergence of the standard Bellmen operator, namely by showing that the Q function
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Q7 (s,a) == 1(s,a) + YEgp(s'|s,0)Earmn(a|s) @7 (', a’) is a fixed point of our operator, that is,
(Biq@™)(s,a) = Q" (s, a), and by further showing that our operator is a contraction,

1(BiiaQa)(s, @) — (BiigQB) (s, a)loo < 7|Qa(s,a) — QB (s, a)|loo, (38)
were ||.]|oo is the maximum norm; here, we assume finite states and actions for the sake of simplicity.

Proposition A.3 The Q function of policy  is a fixed point of B,

(BqQ7 (s,0)) = Q" (s,a). (39)

Proof of Proposition The proof follows straightforwardly from the fact that our forward operator
performs the same update as the standard Bellman operator, if applied to the actual Q function of the

policy, Q™ (s, a), since then V(s 4) := £84) — Eq or( 1)@ (s',a")). Thus,

-
(Blztiﬂ(& CL)) = 7”(8, a) + 'YES’NP(JS,a) ((1 - V)V ( + VV(SA ) (40)
=7(s,a) + 1By np(s,a) (1 = V)Eamn(s) Q" (8, ") + VEwar( ) Q" (s, ) (41)
= 7”(8, CL) + ’YES’NPC\s,a)Ea’Nﬁ(.|s’)Q ( ) QW( ) (42)
|

Proposition A.4 The forward operator B[, is a contraction,

Isiq

1(Biiq@4)(s,a) = (Biiq@B)(5,a)|loc <7[|Qa(s,a) — @B(s,a)||oo- 43)

Proof of Proposition|A.4]

| (BEa@a)(s,0) = (Bfi@s)(s:0)||_ (44)
= max [ By p( o0 Bt [(1= 1)@l @) = Qa(s,a)] | (45)
<ymax By p(js,0)Barr(ar|s) [(Qa(s',a") — Qr(s,d"))] ‘ (46)
<ymax |Qa(s'.a') ~ Qu (s, 7
=||@a(s,0) = Q(s,a)| (48)

]

B Comparison of different Divergences

Table[I] compares commonly used divergences, their optimal reward functions, and their respective
bounds. As can be seen, most divergences are unbounded, with the JSD being a notable exception.
However the JSD also has an unbounded optlmal reward function. In contrast, the mixture Pearson
x2-divergence induced by the regularizer in Equation I is bounded, and also its optimal reward
function is bounded given the regularizer constant ¢, as shown in the Propositions[3.1]and 3.2}

Table 1: Comparison of commonly used divergences with their bounds and optimal reward functions.

Divergence | Bounds | Optimal » | Optimal  Bounds
Forward Kullback-Leibler | [0, c0] d;f [0, 0]
Reverse Kullback-Leibler | [0,00] | —(1+ log dd" ) [—00, 00]
Jensen-Shannon [0,1] log(1 + 2 72) [0, 0]
Vanilla Pearson x> [0, o] 2(1— di;) [—00,2]
(Our) Mixture Pearson x? | [0,1/c] %Z: _T_Z: [~ 1/, 1/
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Figure 4: Training procedure of the IDM in LS-1Q.

C Learning from Observations

This section describes the IDM in greater detail. Figure []illustrates the training procedure of the
IDM in LS-IQ. As can be seen, the IDM uses the replay buffer data generated by an agent to infer
the actions from state transitions. Therefore, the simple regression loss from Equation [20]is used.
At the beginning of training, the IDM learns on transitions generated by a (random) agent. Once
the agent gets closer to the expert distribution, the IDM is trained on transitions closer to the expert.
The intuition behind the usage of an IDM arises from the idea that, while two agents might produce
different trajectories and, consequently, state-action distributions, the underlying dynamics are shared.
This allows the IDM to infer more information about an action corresponding to a state transition
than a random action predicted by the policy includes, as done by |Garg et al.|[2021]]. The experiments
in Section ] show that using an IDM yields superior or on-par performance w.r.t. the baselines in the
state-only scenario.

While we only present a deterministic IDM, we also experimented with stochastic ones. For instance,
we modeled the IDM as a Gaussian distribution and trained it using a maximum likelihood loss.
We also tried a fully Bayesian approach to impose a prior, where we learned the parameters of a
Normal-Inverse Gamma distribution and used a Student’s t distribution for predicting actions of state
transitions, as done by /Amini et al.| [2020]. However, stochastic approaches did not show any notable
benefit, therefore we stick to the simple deterministic approach.

D Experiments

This section contains environment descriptions and additional results that have been omitted in the
main paper due to space constraints.

D.1 The Atlas Locomotion Environment

The Atlas locomotion environment is a novel locomotion environment introduced by us. This
environment aims to train agents on more realistic tasks, in contrast to the Mujoco Gym tasks, which
generally have fine-tuned dynamics explicitly targeted towards reinforcement learning agents. The
Atlas environment fixes the arms by default, resulting in 10 active joints. Each joint is torque-
controlled by one motor. The state space includes all joint positions and velocities as well as 3D
forces on the front and back foot, yielding a state-dimensionality of Dy, =20+ 2 -2 -3 = 32. The
action space includes the desired torques for each joint motor, yielding an action dimensionality of
D,, = 10. Optionally, the upper body with the arms can be activated, extending the number of joints
and actuators to 27. The Atlas environment is implemented using [Mushroom}RL’s [[D"Eramo et al.,
2021]] Mujoco interface.

For the sake of completeness, we added the cumulative reward plots — in contrast to the discounted
cumulative reward plots as in Figure [2]— with an additional VAIL agent in Figure[5] The reward used
as a metric for the performance is defined as 7 = exp(—(vx — v, )?), where v, is the agent’s upper
body velocity and v, is the expert’s upper body velocity. The expert’s walking velocity is 1.257.

D.2 Ablation Study: Absorbing State Treatment and Target () Clipping

Figure [6] presents ablations on the effects of the proposed treatment of absorbing states and the
clipping of the ()-function target on an LSIQ agent with bootstrapping. To see the pure effect of
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Figure 5: Training results and an exemplary trajectory — here the trained LSIQ agent — of a locomotion task
using as simulated Atlas robot. Abscissa shows the normalized cumulative reward. Ordinate shows the number
of training steps (x 10%).

the absorbing state treatment and the clipping, we did not include fixed targets. Note that the fixed
target implicitly treats absorbing states of the expert, as it provides the same target for states and
actions transitioning towards absorbing states. We have chosen a LSIQ agent without an entropy
and regularization critic. The experiments are conducted on the Humanoid-v3 task, as the tasks
HalfCheetah-v3, Ant-v3, either do not have or have very rare absorbing states, and Walker-v3 and
Hopper-v3 are too easy to see the effects. We use a regularizer constant of ¢ = 0.5 and a mixing
parameter of o = 0.5 yielding a maximum reward of r,x = m = 2 and a minimum reward

of rpin = 72(1T1-5)0-5 = —2. This yields a maximum @-value of Qun.,x = fi—“ﬁy = 200 and a
minimum Q-value of Quin = T T"v = —200. The rows show the different agent configurations: First,

LSIQ with clipping and absorbing state treatment; second, LSIQ with clipping but no absorbing
state treatment; and lastly, LSIQ without clipping and no treatment of absorbing states — which is
equivalent to SQIL with symmetric reward targets. For a better understanding of the effect, the plots
show the individual seeds of a configuration. As can be seen, the first LSIQ agent can successfully
learn the task and regresses the ()-value of the transitions towards absorbing states to the minimum
Q-value of -200. The second configuration does not treat absorbing states and is not able to learn the
task with all seeds. As can be seen, the average (J-value of absorbing states is between -2 and -6.
Taking a closer look at the first two plots in the second row, one can see that those seeds did not learn,
whose average (J-value on non-absorbing transitions is close or even below the average Q-values of
states and actions yielding to absorbing states. This strengthens the importance of our terminal state
treatment, which pulls ()-values of states and action towards absorbing states to the lowest possible
Q-value and, therefore, avoids a termination bias. Finally, one can see the problem of exploding
-value in the last LSIQ configuration. This is evident by the scale of the abscissa, highlighted in
the plots. Interestingly, while some seeds still perform reasonably well despite the enormously high
Q@-value, it clearly correlates to the high variance in the cumulative reward plot.

D.3 Ablation Study: Influence of fixed Targets and Entropy Clipping

To show the effect of the fixed target (c.d., Section [3.5)) and the entropy clipping (c.f., 3.7), we
conducted a range of ablation studies for different versions of LSIQ on all Mujoco task. The results
are shown in Figure [7)for the LSIQ version only with an entropy critic and in Figure §]for the LSIQ
version with an entropy and a regularization critic. As can be seen from the Figures, the version
with the fixed target and the entropy clipping performs at best. It is especially noteworthy that the
entropy clipping becomes of particular importance on tasks that require a high temperature parameter
(3, which is the case for the Humanoid-v3 environment.
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Figure 6: Ablation study on the effect of the proposed treatment of absorbing states and the clipping of the
Q-value target on a LSIQ agent with bootstrapping (no fixed targets). The experiments are conducted on the
Humanoid-v3 task, with an expert reaching a cuamulative reward of 6233.45. Multiple lines in each plot show the
individual seeds. The first column presents the average ()-value of states and actions yielding to an absorbing
state visited by the policy. The second column presents the average ()-value of all states and actions that do
not yield in absorbing states visited by the policy. The third column presents the cumulative reward. The rows
present the ablations done to the LSIQ agent. Ordinate shows the number of training steps (x 10%).
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Figure 7: Comparison of different versions of LSIQ-H (Regularization Critic): First, the bootstrapping version
— LSIQ-H; second, the bootstrapping version with entropy clipping — LSIQ-H+EC; thirdly, the fixed target
version with entropy clipping — LSIQ-H+EC+FT. IQ and SQIL are added for reference. Abscissa shows
the normalized discounted cumulative reward. Ordinate shows the number of training steps (x 10%). Experi-
ments are conducted with § expert trajectories and five seeds. Expert cumulative rewards — Hopper:3299.81,
Walker2d:5841.73, Ant:6399.04, HalfCheetah:12328.78, Humanoid:6233.45
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Figure 8: Comparison of different versions of LSIQ-HC (Entropy+Regularization Critic): First, the boot-
strapping version — LSIQ-HC; second, the bootstrapping version with entropy clipping — LSIQ-HC+EC;
thirdly, the fixed target version with entropy clipping — LSIQ-HC+EC+FT. IQ and SQIL are added for reference.
Abscissa shows the normalized discounted cumulative reward. Ordinate shows the number of training steps
(x10%). Experiments are conducted with 5 expert trajectories and five seeds. Expert cumulative rewards —
Hopper:3299.81, Walker2d:5841.73, Ant:6399.04, HalfCheetah:12328.78, Humanoid:6233.45

D.4 All Experiment Results of the different Version of LSIQ
Figure[9|presents all the plots presented in Figure[2]with the additional Humanoid-v3 results. Figure[I0]

and Figure [TT] correspond to Figure 3] but show all five environments. The corresponding learning
curves are shown in Appendix [D.6]and[D.3]
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Figure 9: Comparison of different versions of LS-IQ. Now also with the Humanoid-v3 environment. Abscissa
shows the normalized discounted cumulative reward. Ordinate shows the number of training steps (x 10%).
Expert cumulative rewards — Hopper:3299.81, Walker2d:5841.73, Ant:6399.04, HalfCheetah:12328.78, Hu-
manoid:6233.45
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Figure 10: Comparison of the effect of the number of expert trajectories on different Mujoco environments. States
and actions from the expert are provided to the agent. All plots are added here for the sake of completeness.
Abscissa shows the normalized cumulative reward. Ordinate shows the number of expert trajectories. The first
row shows the performance when considering states and action, while the second row considers the performance
when using states only. Training results are averaged over five seeds per agent. The shaded area constitutes
the 95% confidence interval. Expert cumulative rewards — Hopper:3299.81, Walker2d:5841.73, Ant:6399.04,
HalfCheetah:12328.78, Humanoid:6233.45
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Figure 11: Comparison of the effect of the number of expert trajectories on different Mujoco environments.
Only expert states are provided to the expert. All plots are added here for the sake of completeness. Abscissa
shows the normalized cumulative reward. Ordinate shows the number of expert trajectories. The first row
shows the performance when considering states and action, while the second row considers the performance
when using states only. Training results are averaged over five seeds per agent. The shaded area constitutes
the 95% confidence interval. Expert cumulative rewards — Hopper:3299.81, Walker2d:5841.73, Ant:6399.04,
HalfCheetah:12328.78, Humanoid:6233.45
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D.5 Imitation Learning from States Only — Full Training Curves

The learning curves for the learning from observation experiments can be found in Figure[12] [13] [T4]
and[I3]for 1, 5, 10 and 25 expert demonstrations, respectively.
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Figure 12: Training performance of different agents on Mujoco Tasks when using 1 expert trajectory consisting
of only states. Abscissa shows the normalized discounted cumulative reward. Ordinate shows the number of
training steps (x10%). Training results are averaged over five seeds per agent. The shaded area constitutes
the 95% confidence interval. Expert cumulative rewards — Hopper:3299.81, Walker2d:5841.73, Ant:6399.04,
HalfCheetah:12328.78, Humanoid:6233.45
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Figure 13: Training performance of different agents on Mujoco Tasks when using 5 expert trajectory consisting
of only states. Abscissa shows the normalized discounted cumulative reward. Ordinate shows the number
of training steps (x 10%). Training results are averaged over ten seeds per agent. The shaded area constitutes
the 95% confidence interval. Expert cumulative rewards — Hopper:3299.81, Walker2d:5841.73, Ant:6399.04,
HalfCheetah:12328.78, Humanoid:6233.45
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Figure 14: Training performance of different agents on Mujoco Tasks when using 10 expert trajectory consisting
of only states. Abscissa shows the normalized discounted cumulative reward. Ordinate shows the number of
training steps (x10%). Training results are averaged over five seeds per agent. The shaded area constitutes
the 95% confidence interval. Expert cumulative rewards — Hopper:3299.81, Walker2d:5841.73, Ant:6399.04,
HalfCheetah:12328.78, Humanoid:6233.45
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Figure 15: Training performance of different agents on Mujoco Tasks when using 25 expert trajectory consisting
of only states. Abscissa shows the normalized discounted cumulative reward. Ordinate shows the number of
training steps (x10%). Training results are averaged over five seeds per agent. The shaded area constitutes
the 95% confidence interval. Expert cumulative rewards — Hopper:3299.81, Walker2d:5841.73, Ant:6399.04,
HalfCheetah:12328.78, Humanoid:6233.45
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D.6 Imitation Learning from States and Actions — Full Training Curves

The learning curves for the experiments where states and actions are observed can be found in
Figure[I6] [17] [I8]and[I9]for 1, 5, 10 and 25 expert demonstrations, respectively.
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Figure 16: Training performance of different agents on Mujoco Tasks when using 1 expert trajectory. Abscissa
shows the normalized discounted cumulative reward. Ordinate shows the number of training steps (x 10%).
Training results are averaged over five seeds per agent. The shaded area constitutes the 95% confidence inter-
val. Expert cumulative rewards — Hopper:3299.81, Walker2d:5841.73, Ant:6399.04, HalfCheetah:12328.78,
Humanoid:6233.45
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Figure 17: Training performance of different agents on Mujoco Tasks when using 5 expert trajectories. Abscissa
shows the normalized discounted cumulative reward. Ordinate shows the number of training steps (x 10%).
Training results are averaged over ten seeds per agent. The shaded area constitutes the 95% confidence inter-
val. Expert cumulative rewards — Hopper:3299.81, Walker2d:5841.73, Ant:6399.04, HalfCheetah:12328.78,
Humanoid:6233.45
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Figure 18: Training performance of different agents on Mujoco Tasks when using 10 expert trajectories. Abscissa
shows the normalized discounted cumulative reward. Ordinate shows the number of training steps (x 10%).
Training results are averaged over five seeds per agent. The shaded area constitutes the 95% confidence inter-
val. Expert cumulative rewards — Hopper:3299.81, Walker2d:5841.73, Ant:6399.04, HalfCheetah:12328.78,
Humanoid:6233.45
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Figure 19: Training performance of different agents on Mujoco Tasks when using 25 expert trajectories. Abscissa
shows the normalized discounted cumulative reward. Ordinate shows the number of training steps (x 10%).
Training results are averaged over five seeds per agent. The shaded area constitutes the 95% confidence inter-
val. Expert cumulative rewards — Hopper:3299.81, Walker2d:5841.73, Ant:6399.04, HalfCheetah:12328.78,
Humanoid:6233.45
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