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Abstract
Multi-objective optimization (MOO) problems re-
quire balancing competing objectives, often under
constraints. The Pareto optimal solution set defines
all possible optimal trade-offs over such objectives.
In this work, we present a novel method for Pareto-
front learning: inducing the full Pareto manifold
at train-time so users can pick any desired optimal
trade-off point at run-time. Our key insight is to
exploit Fritz-John Conditions for a novel guided
double gradient descent strategy. Evaluation on
synthetic benchmark problems allows us to vary
MOO problem difficulty in controlled fashion and
measure accuracy vs. known analytic solutions. We
further test scalability and generalization in learn-
ing optimal neural model parameterizations for
Multi-Task Learning (MTL) on image classifica-
tion. Results show consistent improvement in ac-
curacy and efficiency over prior MTL methods as
well as techniques from operations research.

1 INTRODUCTION
Multi-Objective Optimization (MOO) problems require bal-
ancing multiple objectives, often competing with one an-
other under further constraints [Van Rooyen et al., 1994,
Ehrgott and Wiecek, 2005]. A Pareto optimal solution
[Pareto, 1906] defines the set of all saddle points [Ehrgott
and Wiecek, 2005] such that no objective can be further
improved without penalizing at least one other objective.

As operational systems today increasingly seek to balance
competing objectives, research on Pareto optimal learning
has quickly grown across tasks such as fair classification
[Balashankar et al., 2019, Martinez et al., 2020], diversified
ranking [Liu et al., 2019, Sacharidis, 2019], and recommen-
dation [Xiao et al., 2017b, Azadjalal et al., 2017]. Many
practical classification and recommendation problems have
been shown to be non-convex [Hsieh et al., 2015]. A gen-
eral Pareto solver should thus support optimization for both
non-convex objectives and constraints.

Because MOO problems typically lack a single global opti-
mum, one must choose among optimal solutions by select-
ing a trade-off over competing objectives. Ideally this choice
could be deferred to run-time, so that each user could choose
whichever trade-off they prefer. Unfortunately, prior Pareto
solvers have typically required training a separate model to
find the Pareto solution point for each desired trade-off.

To address this, recent work has proposed Pareto front learn-
ing (PFL): inducing the full Pareto manifold in training so
that users can quickly select any desired optimal trade-off
point at run-time [Navon et al., 2021, Lin et al., 2020, Singh
et al., 2021]. These works learn a neural model manifold to
map any desired trade-off over objectives to a corresponding
Pareto point. See Appendix L for additional motivation for
PFL. As with other supervised learning, inducing an accu-
rate prediction model requires high quality training data, i.e.,
Pareto points used for training should be accurate.

In this work, we devise a efficient Pareto search procedure
for Singh et al. [2021]’s HNPF model, so that we may bene-
fit from its correctness guarantees in identifying true Pareto
points for PFL training. While HNPF supports non-convex
MOO with constraints and bounded error, it suffers from a
lack of scalability with increasing variable space. Our inno-
vation is a novel, guided double gradient descent strategy,
updating the candidate point set in the outer descent loop
and the manifold estimators in the inner descent loop.

Our evaluation spans both synthetic benchmarks and multi-
task learning (MTL) problems. Benchmark problems allow
us to conduct controlled experiments varying MOO problem
complexity (e.g., the presence of constraints and/or convex-
ity in variable or function domains). Analytic solutions to
benchmark problems enable us to measure the true accuracy
of model predictions, something which is often difficult or
impossible on real-world problems. Additional evaluation
on a set of MTL problems in image classification enable
us to further test scalability and generalization in learning
Pareto optimal weights for high dimensional neural models.

Results across synthetic benchmarks and MTL problems
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show clear, consistent advantages of SUHNPF in terms of
capability (handling non-convexity and constraints), denser
coverage and higher accuracy in recovering the true Pareto
front, and greater efficiency (time and space). Beyond em-
pirical findings, our conceptual framing and review of prior
work also serves to further bridge complementary lines
of prior work in MTL and operations research. For repro-
ducibility, we share our sourcecode and data1.

2 DEFINITIONS
We adopt Pareto definitions from Marler and Arora [2004].
A general MOO problem can formulated as follows:

optimize F (x) = (f1(x), . . . , fk(x)) (1)

s.t. x ∈ S = {x ∈ Rn|G(x) = (g1(x), . . . , gm(x)) ≤ 0}

with n variables (x1, . . . , xn), k objectives (f1, . . . , fk),
and m constraints (g1, . . . , gm). Here, S is the feasible set,
i.e., the set of input values x that satisfy the constraintsG(x).
For a MOO problem optimizing F (x) subject to G(x), the
solution is usually a manifold as opposed to a single global
optimum, therefore one must find the set of all points that
satisfy the chosen definition for an optimum.
Strong Pareto Optimal: A point x̃∗ ∈ S is strong Pareto
optimal if no point in the feasible set exists that improves an
objective without detriment to at least one other objective.

@xj : fp(xj) ≤ fp(x∗), for p = 1, 2, . . . , k

∃l : fl(xj) < fl(x
∗) (2)

Weak Pareto Optimal: A point x̃∗ ∈ S is weak Pareto op-
timal if no other point exists in the feasible set that improves
all of the objectives simultaneously. This is different from
strong Pareto, where points might exist that improve at least
one objective without detriment to another.

@xj : fp(xj) < fp(x̃
∗), for p = 1, 2, . . . , k (3)

3 RELATED WORK
Linear Scalarization (LS). A variety of work has adopted
LS to find Pareto points [Xiao et al., 2017b, Lin et al.,
2019, Milojkovic et al., 2019]. LS converts an MOO into a
SOO using a convex combination of objective functions and
constraints. However, because Karush-Kuhn-Tucker (KKT)
conditions are known to hold true only for convex cases
[Boyd et al., 2004], LS solutions are guaranteed to be Pareto
optimal only under fully convex setting of objectives and
constraints, as shown in Gobbi et al. [2015].

Operations Research (OR). A variety of OR methods sup-
port MOO problems with non-convex objectives and con-
straints, guaranteeing correctness within a user-specified
error tolerance. Correctness has also been further verified
by evaluation on synthetic MOO benchmark problems with
known, analytic solutions. However, a key limitation of
these methods is lack of scalability: they suffer from signifi-
cant computational and run-time limitations as the variable

1
https://github.com/smjtgupta/SUHNPF

dimension increases. Hence, they cannot be applied to opti-
mizing neural model parameters for MOO problems.

Table 1: SUHNPF vs. existing Operations Research (OR) and
Multi-Task Learning (MTL) methods. OR methods account for
both objectives and constraints, produce Pareto points only, and are
known to find true Pareto points for non-convex MOO problems.
However, these methods do not scale to high-dimensional neural
MOO problems. In contrast, MTL methods scale well but typically
do not support constraints and can struggle with non-convexity.

Type Method Finds Only Handles Scalable
Pareto points Constraints Neural MOO

Operations
Research
(OR)

NBI [1998] 3 3 7
mCHIM [2015] 3 3 7
PK [2016] 3 3 7
HNPF [2021] 3 3 7

Multi-
Task
Learning
(MTL)

MOOMTL [2018] 7 7 3
PMTL [2019] 7 7 3
EPO [2020] 7 7 3
EPSE [2020] 7 7 3
PHN [2021] 7 7 3

Ours SUHNPF 3 3 3

Examples include enhanced scalarization approaches such
as NBI [Das and Dennis, 1998], mCHIM [Ghane-Kanafi
and Khorram, 2015], and PK [Pirouz and Khorram, 2016].
NBI produces an evenly distributed set of Pareto points
given an evenly distributed set of weights, using the concept
of Convex Hull of Individual Minima (CHIM) to break
down the boundary/hull into evenly spaced segments before
tracing the weak Pareto points. mCHIM improves upon NBI
via a quasi-normal procedure to update the aforementioned
CHIM set iteratively, to obtain a strong Pareto set. PK uses
a local ε-scalarization based strategy that searches for the
Pareto front using controllable step-lengths in a restricted
search region, thereby accounting for non-convexity.

Multi-Task Learning (MTL). Recent MTL works have de-
vised Pareto solvers for estimating high-dimensional neural
models. MOOMTL [Sener and Koltun, 2018] effectively
scales via a multi-gradient descent approach, but does not
guarantee an even spread of solution points found along the
Pareto front. PMTL [Lin et al., 2019] addresses this spread
issue by dividing the functional domain into equal spaced
cones, but this increases computational complexity as the
number of cones increases. EPO [Mahapatra and Rajan,
2020] extends preference rays along specified weights to
find Pareto points evenly spread in the vicinity of the rays.
EPSE [Ma et al., 2020] uses a combination Hessian of the
functions and Krylov subspace to find Pareto solutions.

MTL methods rely upon KKT conditions to check for opti-
mality, which assumes convexity (see earlier LS discussion).
While methods seek an even distribution of Pareto points
by dividing the functional space into evenly spaced cones
or preference rays, our results on a non-convex benchmark
problem clearly show an uneven point spread (Section 6.1).
Moreover, most MTL methods are point-based solvers,
meaning they must be run P times to find P points. This is
too expensive to adjust trade-off preferences at run-time.

https://github.com/smjtgupta/SUHNPF


Pareto front learning. PFL methods [Navon et al., 2021,
Lin et al., 2020, Singh et al., 2021] induce the full Pareto
manifold at train-time so that users can quickly select any
desired optimal trade-off point at run-time. For example,
a manifold model trained on P Pareto points might then
quickly produce any number of additional Pareto points
via interpolation. Of course, quality training data quality is
necessary to learn an accurate, supervised prediction model.
The method and resulting accuracy of the Pareto points used
for model training is thus crucial to prediction accuracy.

Navon et al. [2021]’s PHN considers two way to acquire
Pareto training points: LS and EPO [2020]. Lin et al. [2020]
use their PMTL [2019] method to identify Pareto points for
training. Singh et al. [2021]’s HNPF uses the Fritz-John con-
ditions (FJC) [Maruşciac, 1982] to identify Pareto points.

Like other OR methods, HNPF provides a theoretical guar-
antee of Pareto front accuracy within a user-specified er-
ror tolerance. In evaluation on canonical OR benchmark
problems, HNPF was shown to recover known Pareto
fronts across various non-convex MOO problems while
also being more efficient in finding Pareto points than NBI
[1998], mCHIM [2015], and PK [2016]). However, like
other OR methods, HNPF cannot scale to learn optimal
high-dimensional neural model weights for MOO problems.

Ha et al. [2017]’s hypernetworks proposed training one
neural model to generate effective weights for a second,
target model. Navon et al. [2021] and Lin et al. [2020]
apply this approach to learn a manifold mapping MOO
solutions to different target model weights, enabling the
target model to achieve the desired Pareto trade-off for the
MOO problem. However, HNPF cannot be similarly applied
to MTL problems due to its lack of scalability.

4 PRELIMINARIES
Fritz John Conditions (FJC). Let the objective and con-
straint function in Eq. (1) be differentiable once at a deci-
sion vector x∗ ∈ S . The Fritz-John [Levi and Gobbi, 2006]
necessary conditions for x∗ to be weak Pareto optimal is
that vectors must exists for 0 ≤ λ ∈ Rk, 0 ≤ µ ∈ Rm and
(λ, µ) 6= (0, 0) (not identically zero) s.t. the following holds:

k∑
i=1

λi∇fi(x∗) +

m∑
j=1

µj∇gj(x∗) = 0 (4)

µjgj(x
∗) = 0,∀j = 1, . . . ,m

Gobbi et al. [2015] present an L matrix form of FJC:

L =

[
∇F ∇G
0 G

]
[(n+m)× (k +m)] (5)

∇Fn×k = [∇f1, . . . ,∇fk]

∇Gn×m = [∇g1, . . . ,∇gm]

Gm×m = diag(g1, . . . , gm)

comprising the gradients of the functions and constraints.
The matrix equivalent of FJC for x∗ to be Pareto optimal

is to show the existence of δ = (λ, µ) ∈ Rk+m (i.e., δ not
identically zero) in Eq. (4) such that:

L · δ = 0 s.t. L = L(x∗), δ ≥ 0, δ 6= 0 (6)

Therefore the non-trivial solution for Eq. (6) is:

det(LTL) = 0 (7)
Remark. If fis and gjs are continuous and differentiable
once, then the set of weak Pareto optimal points are x∗ =
{x|det(L(x)TL(x)) = 0}, δ ≥ 0 for a non-square matrix L(x),
and is equivalent to x∗ = {x|det(L(x)) = 0}, δ ≥ 0, for a
square matrix L(x). See Appendix C for a proof of the above for
the unconstrained setting only.

Hybrid Neural Pareto Front (HNPF). Like other Pareto
front learning (PFL) methods, HNPF [Singh et al., 2021]
learns a neural Pareto manifold from training data. With
HNPF, Pareto points are acquired from training data via
Fritz-John conditions. In particular, once a given a data
point from the input variable domain is mapped to the output
function domain (via objective functions), FJC are tested to
determine Pareto optimality for that point.

HNPF’s neural network first identifies weak Pareto points
via feed-forward layers to smoothly approximate the weak
Pareto optimal solution manifoldM(X∗) as M̃(X̃,Φ). The
last layer of the network has two neurons with softmax
activation for binary classification of Pareto vs. non-Pareto
points, distinguishing sub-optimal points from the weak
Pareto points. The network loss is representation driven,
since the Fritz John discriminator (Eq. (7)), described by
the objective functions and constraints, explicitly classifies
each input data point Xi as being weak Pareto or not.

After identifying weak Pareto points, HNPF uses an efficient
Pareto filter to find the subset of non-dominated points.

HNPF’s scalability bottleneck lies in how it samples vari-
able domain points to test for Pareto optimality in model
training. If there are any direct constraints on variable val-
ues, this naturally restricts the feasible domain for sampling.
However, lacking any prior distribution on where to find
Pareto optima, HNPF performs uniform random sampling
in the variable domain to ensure broad coverage for locating
optima. For small benchmark problems with known variable
domains, this suffices. However, it is infeasible to apply this
to find optimal model parameters for a neural MOO model.

5 SCALABLE UNIDIRECTIONAL HNPF
To address HNPF’s scalability bottleneck, we introduce
SUHNPF, a scalable variant of HNPF for finding weak
Pareto points with an arbitrary density and distribution of
initial data points. This is achieved via a scalable unidirec-
tional FJC-guided double-gradient descent algorithm that
encompasses HNPF’s neural manifold estimator. Given con-
tinuous differentiable loss functions, SUNHPF’s guided dou-
ble gradient descent strategy efficiently searches the variable
domain to find Pareto optimal points in the function domain.
This enables SUHNPF to learn an ε-bounded approximation
M̃(Θ∗) to the weak Pareto optimal manifold.



5.1 FJC-GUIDED DOUBLE GRADIENT DESCENT
Constructing a classification manifold of Pareto vs. non-
Pareto points requires a set of feasible points to represent
both classes. Since the Pareto manifold is unknown a priori,
feasible points are drawn from a random distribution (lack-
ing an informed prior) to initialize both classes. We then
refine the points in the Pareto class P1 while holding the
non-Pareto points P0 constant.

We assume an equal-sized sample set of P points for each
class, which helps to address class imbalance for harsh cases.
For benchmark problems where the feasible set over the vari-
able domain is known, we randomly sample points over this
feasible domain to initialize P1 and P0. Given these input
points x, held constant for P0 and used as initial seed val-
ues for P1, Alg. 1 specifies our FJC-guided double-gradient
descent algorithm. The algorithm iteratively updates P1
towards the Pareto manifold via FJC-guided descent. The
training dataset D is the union of P0 ∪ P1. The algorithm
iterates over Steps 5-9 until the error (err) converges to the
user-specified error tolerance (εouter).

err =
∑
p∈P1

(
det(LTL)

)2
(8)

Algorithm 1 FJC-guided descent of variable domain
1: Input: Data D = P0 ∪ P1 . Training Data
2: Input: Functions F and Constraints G
3: Input: Error tolerance εouter , εinner

4: while err > εouter do . Run until convergence
5: Train network using D as data for e epochs
6: Compute current error err
7: Compute∇pdet =

∂det(LTL)
∂p

, ∀p ∈ P1
8: P1← P1− η∇det . Update points in P1
9: D = P0 ∪ P1 . Update Training Data

10: Output: Weak Pareto manifold M̃

Eq. 8 in Alg. 1 ensures that all of the points in the Pareto
set (p ∈ P1) are optimal once we converge to the desired
error tolerance ε. Hence, Step 7 computes gradients of the
det(LTL) matrix w.r.t. the variables at points p ∈ P1 and
creates an approximation of the ∇det matrix. The training
data D is then updated with the new values of P1. The
output is an approximation of the true weak Pareto manifold
M as M̃ on the discrete dataset D ⊂ X . Note that in Step
8, we do not allow the point set P1 to leave the feasible set
S i.e., if the step crosses the boundary of the feasible set,
then we update the point to be the point on the boundary.

Alg. 1 includes two separate gradient descent steps. The
outer descent loop (Step 4-9) updates the candidate point set
P1 using the error measurement of err through a squared
loss in Eq. 8. The inner descent (Step 5) updates the pa-
rameters (Φ) of the neural net to closely approximate the
Pareto manifold M(X) as M̃(X,Φ). This is done using the
Binary Cross Entropy Loss on (det(L(X)TL(X)), M̃(X)),
and reaches convergence only when BCE ≤ εinner. The

unidirectional property of this double-gradient update lets
the outer loop influence the inner loop but not vice-versa.

Complexity Analysis. The time complexity of the proposed
Alg. 1 is O(P(k +m)2n+ P(k +m)3). Under a practical
deep MTL, n � k,m (i.e., variable dimension is strictly
greater than the number of functions and constraints in any
neural setting), the complexity is dominated by the term
O(P(k + m)2n), where the scaling is linear in terms of
the variable dimension n, and quadratic in the number of
functions and constraints k,m. The space complexity is
O(n(k +m+ P ) + (k +m)2). SUHNPF achieves better
memory and run-time efficiency since it does not rely upon
solving primal and dual problems used in MTL methods,
with detailed analysis in Appendix I and Appendix J.

6 BENCHMARKING
Motivation. Lack of analytical solutions to real MOO prob-
lems makes it difficult to measure the true accuracy of any
Pareto solver. Consequently, we follow the OR literature
in advocating that the correctness of any proposed Pareto
solver should first be tested on constructed benchmark prob-
lems with known analytic solutions. This is also consistent
with broader ML community practice of first evaluating
proposed methods across a range of simulated, controlled
conditions to verify correctness, often yielding valuable
insights into model behavior prior to evaluation on real data.

We consider three such benchmark problems (Cases I-III).
These problems are non-convex in either the functional
or variable domain, or due to constraints (Table 2). Note
that whether or not the Pareto front itself is non-convex
is not always the best indicator of benchmark difficulty.
For example, even though both objectives are non-convex
in Case II, the Pareto front is still convex. As we shall see,
PHN [Navon et al., 2021] fails on Case II despite performing
well on two benchmark problems in their own study having
a non-convex front. In general, non-convexity can greatly
challenge MTL approaches relying on KKT conditions in
testing solutions for optimality (see Appendix E).

Table 2: Characterization of benchmark cases, including convexity
(C) vs. non-convexity (NC) in variable and function domains.

Case Dim Variable
Domain

Function
Domain

Includes
Constraints

OR
Methods

MTL
Methods SUHNPF

I 2 Linear NC No Sparse, Slow Sparse, Fast Dense, Fast
II 30 NC C No Sparse, Slow Fail Dense, Fast

III 2 NC NC Yes Sparse, Slow Fail Dense, Fast

Experimental Setup. For each Case I-III, each method is
tasked with finding P = 50 Pareto points. OR methods
search until any P Pareto points are found. MTL methods di-
vide the functional search quadrant into cones/rays, seeking
one Pareto point per split. Manifold-based methods (PHN,
HNPF, and SUHNPF) search for P Pareto points in order
to learn the manifold. Ideally, each method should identify
an even spread (i.e., broad coverage) of points across the
true Pareto front (shown in grey in each figure) in order to



faithfully approximate it. We report the runtime taken by
each solver to find the points.

SUHNPF starts with P random candidates that are pro-
gressively refined via its guided, double gradient descent
strategy. Following HNPF [Singh et al., 2021], we adopt
the same error tolerance 10−4 for both εouter and εinner.
Any point x that satisfies |det(L(x)TL(x))| ≤ εinner is
thus classified as being Pareto (exact zero is often impos-
sible given finite machine precision). Sourcecode for LS,
MOOMTL, PMTL and EPO solvers are taken from EPO’s
repository, while EPSE and PHN’s sourcecode are used
for them, respectively (see Appendix D). Based on Navon
et al. [2021]’s findings, we evaluate the more accurate PHN
variant, PHN-EPO, which we refer to simply as PHN.

Due to key differences between OR vs. MTL methods, re-
sults for each group are presented separately. First, OR meth-
ods not only support the full range of non-convex conditions
across Cases I-III, but provide error tolerance parameters to
guarantee correctness (and our experiments confirm this).
Consequently, we report only the efficiency of OR methods
in Table 3. In contrast, MTL methods produced variable
accuracy on Case I and failed entirely on Cases II and III (as
shall be discussed). Consequently, Table 4 reports accuracy
and efficiency of MTL methods for Case I only.

Appendix D discusses experimental setup, Appendix G has
two other benchmarks, and Appendix H has loss profiles.

6.1 CASE I: Ghane-Kanafi and Khorram [2015]

f1(x1, x2) = x1, f2(x1, x2) = 1 + x2
2 − x1 − 0.1sin3πx1

s.t. g1 : 0 ≤ x1 ≤ 1, g2 : −2 ≤ x2 ≤ 2

The analytical Pareto solution to this joint minimization
problem is M : 0 ≤ x1 ≤ 1, x2 = 0. In Fig. 1 we observe
SUHNPF’s randomly generated point set P1 (red dots) con-
verges towards the true manifold M as a discrete approx-
imation M̃ . Point set P0 (blue dots) is held constant and
serves as representatives for the (background) non-Pareto
class. Iteration 5 is the last because the error falls below the
user-specified ε. The final cardinality of the weak Pareto set
|P1| = P and any P0 point that happens to fall within the
εouter threshold. Hence Alg. 1 ensures 100% Pareto point
density in P1, a vast improvement from HNPF [Singh et al.,
2021], where only≈ 2% density was achieved. Fig. 2 shows
functional domain convergence. SUHNPF achieves an even
spread of points in the non-convex portion of the front.

Fig. 3 presents results for Linear Scalarization (LS) and
several MTL methods: MOOMTL, PMTL, EPO, EPSE,
and PHN. Refer to Appendix F for iterative convergence
plots for Case I, and Appendix K for evaluation measures
on uniformity and coverage for the compared methods. LS
successfully produces a number of points in the non-convex
portions of the front, despite prior studies often asserting that
LS cannot handle any non-convexity. Refer to Appendix M
for analysis and justification.

(a) Iteration 0 (Start) (b) Iteration 5 (Converged)
Figure 1: Case I: Variable domain. The gray line show the true
analytic solution (0 ≤ x1 ≤ 1). SUHNPF Pareto candidates P1
(red dots) converge in 5 iterations. Non-Pareto candidates P0 (blue
dots) are held constant throughout the iterative sequence.

(a) Iteration 0 (Start) (b) Iteration 5 (Converged)
Figure 2: Case I: Functional domain corresponding to Figure 1.
SUHNPF Pareto candidates P1 (red dots) converge in 5 iterations.

To check for optimality, MTL methods rely upon KKT con-
ditions that implicitly assume convexity (see Section 3).
The non-convex nature of f2 is thus challenging for these
KKT-based methods. For example, some methods seek an
even distribution of Pareto points by breaking up the func-
tional space into evenly spaced cones or preference rays for
trade-off values α. However, the uneven point spread seen
on this non-convex benchmark illustrates limitations of the
cone-based approach in handling non-convexity. We also
clearly see non-Pareto points produced by some methods.

6.2 CASE II: Zhang et al. [2008]
f1(x) = x1 +

2

|J1|
∑
j∈J1

y2
j , f2(x) = 1−

√
x1 +

2

|J2|
∑
j∈J2

y2
j

s.t. g1, . . . , g30 : 0 ≤ x1 ≤ 1,−1 ≤ xj ≤ 1, j = 2, . . . ,m

J1 = {j|j is odd, 2 ≤ j ≤ m}, J2 = {j|j is even, 2 ≤ j ≤ m}

yj =

{
xj − [0.3x2

1 cos(24πx1 + 4jπ
m ) + 0.6x1]cos(6πx1 + jπ

m ) j ∈ J1

xj − [0.3x2
1 cos(24πx1 + 4jπ

m ) + 0.6x1]cos(6πx1 + jπ
m ) j ∈ J2

This joint minimization case operates in a n = 30 dimen-
sional variable space. Fig. 4 shows the true Pareto front
and SUHNPF convergence in the variable domain. Note
the non-convexity in the variable domain, where x1 varies
uniformly between [0, 1], while x2, . . . , x30 are sinusoidal
in nature guided by x1. Thus, the Pareto manifold has a
spiral trajectory along x2, . . . , x30 with evolution along x1.

Despite the Pareto front being convex, the objectives are non-
convex. For MTL methods, the min_norm_solver [Sener
and Koltun, 2018], which is integral to all MTL solvers,
simply fails. Consequently, no MTL results are reported.

For SUHNPF, following random initialization (iteration 0)
in Fig. 4 (a), we observe that the candidate set P1 propa-
gates more towards increasing values of x1 in Fig. 4, and
approximates the expected Pareto manifold at iteration 5.



(a) Linear Scalarization (LS) (b) MOOMTL

(c) PMTL (d) EPO

(e) EPSE (f) PHN

Figure 3: Case I: function domain for LS and MTL methods. No
method produces all 50 of the requested Pareto points. PMTL, EPO
and PHN also find non-Pareto points (circled in blue). Methods
vary greatly in their coverage of points spanning the true front.

(a) Iteration 0 (Start) (b) Iteration 5 (Converged)
Figure 4: Case II: variable domain (SUHNPF). We restrict the
four plots to three dimensions (x1, x2, and x3) for visualization.

6.3 CASE III: Tanaka et al. [1995]
f1(x1, x2) = x1, f2(x1, x2) = x2

s.t. g1(x1, x2) = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

g2(x1, x2) = x2
1 + x2

2 − 1− 0.1 cos(16 arctan(x1/x2)) ≥ 0

g3, g4 : 0 ≤ x1, x2 ≤ π

For this joint minimization problem, the Pareto front is
dominated by the two constraints g1 and g2, while linear
functions f1 and f2 do not contribute to the Pareto optimal
solution. Fig. 6 shows the convergence of SUHNPF Pareto
candidates toward the known solution manifold.

Because MTL approaches do not support constraints, they
are not capable of solving this benchmark problem. How-
ever, note that if we were to remove constraints g1 and g2, f1

and f2 would then become independent of each other (and
so not compete). The front then collapses to the point (0, 0),

(a) Iteration 0 (Start) (b) Iteration 5 (Converged)
Figure 5: Case II: functional domain (SUHNPF).

corresponding to the minimum of both functions. For this
unconstrained problem, MTL methods would be expected
to find this correct Pareto optimal solution point.

(a) Iteration 0 (Start) (b) Iteration 5 (Converged)
Figure 6: Case III: variable domain. The analytical solution for
this problem is driven by constraints g1, g2. SUHNPF Pareto can-
didates P0 (red dots) converge to the true front.

Case III highlights the need for any manifold based ex-
tractor to support both explicit and implicit forms of the
Pareto front. Cases I and II have explicit form of front in
the functional and variable domain. However, Case III has
an implicit Pareto front (Fig. 6) owing to constraints g1, g2,
where they render an implicit relation between x1, x2 and
therefore f1, f2. SUHNPF’s ability to construct a full rank
diffusive indicator function of Pareto vs. non-Pareto points
enables it to approximate the true manifold.

6.4 SUHNPF VS. OR AND MTL METHODS
Table 3 reports the runtime of OR methods vs. SUHNPF
to find P = 50 Pareto points for Cases I-III. Because OR
methods and SUHNPF all return P true Pareto points, we
compare methods on efficiency only.

Cases I and III have a 2D (n = 2) variable domain, where
SUHNPF takes 1s per epoch, with 2 epochs for training in
Step 7 of Alg. 1. Both the cases took 5 epochs to converge,
resulting in a total run-time of 10s. Case II has a 30D (n =
30) variable domain where SUHNPF takes 2s per epoch
resulting in a total run-time of 20s.

Note that HNPF [Singh et al., 2021] was shown to scale
better with variable dimension n in comparison to prior
OR methods (e.g., see HNPF’s Figure 9). Table 3 appears
consistent with this: HNPF takes longer than OR baselines
for variable dimension n = 2 (Cases I and III) but is much
faster with variable dimension n = 30 (Case II).

Table 3: Runtime (secs) for SUHNPF vs. OR methods.
Method n NBI mCHIM PK HNPF SUHNPF

Case I 2 14 13 13 45 10
Case II 30 243,344 67,610 46,808 3,960 20
Case III 2 36 41 37 75 10



Table 4 reports the accuracy, efficiency and run-time of
SUHNPF vs. MTL methods for Case I. For Case II, the
min_norm_solver [Sener and Koltun, 2018] used by MTL
methods fails, and Case III’s constraints are not supported
by MTL methods. Note that for fair evaluation, we only
consider candidates that are produced within the feasible
functional bounds for the problem. Additional run-time eval-
uation and discussion can be found in Appendix I.
Table 4: SUHNPF vs. MTL methods on Case I in finding P = 50
Pareto points. We report the % of feasible points each method
finds and their avg/max error vs. the true front. Our error measure
considers feasible points only; infeasible points are not penalized.

Method LS MOOMTL PMTL EPO EPSE PHN SUHNPF

Run-time (secs) 18.1 19.2 527 752 641 853 10.0
Points Found 54% 32% 70% 68% 30% 80% 100%

Avg Err (10−4) 0.53 0.45 4.15 8.73 0.61 3.04 0.52
Max Err (10−4) 1.12 0.98 126 106 0.94 73.8 0.82

Regarding Case I coverage and accuracy, SUHNPF returns
all 50 Pareto points; no MTL method does. For all points that
are found, we measure their error vs. the true Pareto front.
SUHNPF is seen to achieve the lowest error, with maximum
error bounded by the 10−4 error tolerance parameter set in
our experiments. Specifically, the outer loop of Alg. 1 would
not achieve convergence until all the points points are within
the prescribed error tolerance. In contrast, PMTL, EPO, and
PHN yield maximum error two orders of magnitude larger.
Note also that our error metric generously scores only the
points found by each method, with no penalty for missing
points. Visually, SUHNPF (Fig. 2) clearly provides better
coverage of the Pareto front via a denser, more even spread
of points vs. those found by MTL methods (Fig. 3).

Because MTL approaches assume convexity of objective
functions to generate points with uniformity on the Pareto
front, and Case I includes non-convex objectives, the MTL
solvers fail to find points in certain regions (see Fig. 3).
While EPO’s solver has convergence criteria, it still pro-
duces points that did not converge (circled in blue). This
stems from EPO’s assumption on KKT conditions to achieve
optimality, which fails on Case I’s non-convex form of f2.
Correspondingly PHN(-EPO), which uses EPO as its base
solver, also fails to converge on certain points. In contrast,
SUHNPF relies on the FJC to test optimality, which fully
supports non-convexity in functions and constraints.

Regarding Case I efficiency, SUHNPF is also fastest: nearly
twice as fast as LS and MOOMTL, more than 50x faster
than PMTL and EPSE, 75x faster than EPO, and 85x faster
than PHN. (Because PHN-EPO calls EPO, it is necessarily
slower than EPO). As Navon et al. [2021] note, LS is much
faster than EPO, so one could expect PHN-LS to be faster
than PHN-EPO and slower than LS.

7 SUHNPF AS A HYPERNETWORK
Hypernetworks [Ha et al., 2017] train one neural model
to generate effective weights for a second, target model.
Navon et al. [2021] and Lin et al. [2020] learn a neural

manifold mapping MOO solutions to different target model
weights, enabling the target model to achieve the desired
Pareto trade-off for the MOO problem.

Assume the target task maps from input Y to output Z.
We seek to minimize objective functions f1 and f2 having
loss functions L1 and L2. Given correct output Z∗, we
score Z for each loss function Li(Z,Z∗). A target model
for this task CΘ : Y → Z with parameters Θ will yield
loss ∀iLi(CΘ(Y ), Z∗). The MOO problem is to find Pareto
optimal Θ∗ for the f1 = L1 vs. f2 = L2 trade-off.

The objectives L1(Θ),L2(Θ) for SUHNPF are continu-
ous differentiable functions of Θ. This enables SUNHPF’s
guided double gradient descent strategy to efficiently search
the space of model target parameters Θ, mapping each to
resulting loss values (L1,L2). Training data resulting from
this search allows SUHNPF to learn an ε-bounded approxi-
mation M̃(Θ∗) to the weak Pareto optimal manifold.

As in prior Pareto Front Learning (PFL) work [Navon et al.,
2021, Lin et al., 2020], this enables rapid model personal-
ization at run-time based on user preferences. The neural
MOO Lossclassifier is a weighted linear combination of
the user-prescribed objectives (L1,L2). The classifier loss
hyper-parameter α (trade-off value) is computed as a post-
processing step corresponding to Pareto optimal classifier
weights Θ∗ for rapid traversal of arbitrary (α,Θ∗) solu-
tions. See Appendix A for additional details of the setup of
SUHNPF as a hypernetwork to optimize a target model.

7.1 EVALUATION ON MULTI-TASK LEARNING
We evaluate on the same MTL image classification problems
as in Navon et al. [2021]. Given two underlying source
datasets, MNIST [LeCun et al., 1998] and Fashion-MNIST
[Xiao et al., 2017a], Navon et al. [2021] report on three MTL
tasks: MultiMNIST [Sabour et al., 2017], Multi-Fashion,
and Multi-Fashion + MNIST. In each case, two images
are sampled from source datasets and overlaid, one at the
top-left corner and one at the bottom-right, with each also
shifted up to 4 pixels in each direction. The two competing
tasks are to correctly classify each of the original images:
Top-Left (Task 1 or f1) and Bottom-Right (Task 2 or f2).
We use 120K training and 20k testing examples and directly
apply existing single-task models, allocating 10% of each
training set for constructing validation sets, as used in Lin
et al. [2019]. Navon et al. [2021] found that PHN-EPO
(henceforth PHN) was more accurate than other methods
they compared, so we use PHN as our baseline.

We adopt the LeNet architecture [LeCun et al., 1998] as the
target model to learn. Following prior MTL work [Sener and
Koltun, 2018], we treat all layers other than the last as the
shared representation function and put two fully-connected
layers as task-specific functions. We use cross-entropy loss
with softmax activation for both task-specific loss functions.
Because cross-entropy loss functions are differentiable, we
can use them directly as training objectives.
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Figure 7: Cross-entropy loss on the test split for all three MTL datasets for SUHNPF vs. PHN. The 11 points shown for each method
correspond (from left-to-right) to varying trade-offs preferences in minimizing the combined linear loss over objectives: αf1 + (1− α)f2
for α ∈ {1, 0.9, . . . , 0}. The gray dashed-line show the best loss achieved by LeNet to classify a single image for each given task.

Results. We see SUHNPF vs. PHN results on dataset test
splits in Fig. 7. Because SUHNPF defines a strict ε-bound on
error, we can assert its correctness on this basis alone. Visual
inspection also shows that PHN returns dominated points
(e.g., top of MultiMNIST plot), whereas a Pareto front by
definition includes only non-dominated points. Nonetheless,
we cannot directly measure error vs. a known Pareto front
because real MOO problems lack a simple analytical solu-
tion like synthetic benchmark problems. Of course, we can
still compare relative performance of methods. We see that
SUHNPF achieves strictly lower loss than PHN across all
user trade-off settings of α on all three datasets.

Since the minimum loss min(f1)=min(f2)=0, for both ob-
jectives, the ideal point [Marler and Arora, 2004] for joint
minimization is (0, 0). A simple error measure for each
point found is thus its L2 distance from (0, 0):

√
f2

1 + f2
2 .

Table 5 reports this distance for each Pareto point found at
each α (across methods and datasets). We also report the
average over the 11 settings of α. Overall, Table 5 quanti-
fies what Fig. 7 depicts visually: SUHNPF performs strictly
better for every Pareto point and thus also on average.

Table 5: SUHNPF vs. PHN on MTL tasks, measured by distance
of each Pareto point found vs. the ideal loss point (f1, f2) = (0, 0).

Trade-off values α
Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Avg

MultiMNIST
PHN .621 .585 .539 .504 .486 .478 .483 .494 .508 .521 .527 .522

SUHNPF .500 .478 .464 .448 .441 .434 .441 .443 .452 .457 .465 .456

MultiFashion
PHN .877 .872 .853 .813 .784 .773 .779 .797 .816 .826 .829 .819

SUHNPF .862 .819 .792 .773 .757 .746 .754 .758 .767 .793 .810 .784

MultiFashion+MNIST
PHN .690 .613 .581 .569 .571 .579 .598 .631 .682 .752 .797 .642

SUHNPF .667 .617 .586 .552 .547 .543 .549 .553 .583 .629 .695 .593

8 UNDERSTANDING SUHNPF VS. PHN
While both SUHNPF and PHN are manifold-based, they dif-
fer in the type of manifold being learned. SUHNPF explicity
maintains point sets P0 and P1 to learn the classification
boundary between Pareto vs. non-Pareto points as per the
FJC. PHN fits a regression surface over the set of points
returned by LS or EPO. Since neither LS nor EPO are guar-
anteed to operate under non-convex settings (Section 3),
those drawbacks are in turn inherited by PHN in using them.
Table 6 highlights the key differences. The distinction be-
tween a diffusive full-rank indicator vs. a low-rank regressor
is further discussed in Appendix B.

Table 6: SUHNPF vs. PHN for Pareto front learning.
Criteria SUHNPF PHN

Handle non-convexity 3 7
Supports constraints 3 7
Manifold Extractor 3 3
Nature of manifold Diffusive full-rank indicator Low-rank regressor
Optimality Criteria Fritz-John Conditions EPO solver

9 CONCLUSION
Multi-objective optimization problems require balancing
competing objectives, often under constraints. In this work,
we described a novel method for Pareto-front learning (in-
ducing the full Pareto manifold at train-time so users can
pick any desired optimal trade-off point at run-time). Our
SUHNPF Pareto solver is robust against non-convexity, with
error bounded by a user-specified tolerance. Our key inno-
vation over prior work’s HNPF [Singh et al., 2021] is to
exploit Fritz-John Conditions for a novel guided double
gradient descent strategy. The scaling property imparts sig-
nificant improvement in memory and run-time vs. prior OR
and Multi-Task Learning (MTL) approaches. Results across
synthetic benchmarks and MTL problems in image classi-
fication show clear, consistent advantages of SUHNPF in
capability (handling non-convexity and constraints), denser
coverage and higher accuracy in recovering the true Pareto
front, and efficiency (time and space). Beyond empirical re-
sults, our conceptual framing and review of prior work also
further bridges disparate lines of OR and MTL research.

Both SUHNPF and MTL methods assume differentiable
evaluation metrics as training loss so optima can be found
through gradient descent. However, loss can be a non-
differentiable, probabilistic measure, such as in fairness-
related tasks [Sacharidis, 2019, Valdivia et al., 2021]. This
creates a risk of metric divergence between training loss vs.
the evaluation measure of interest [Abou-Moustafa and Fer-
rie, 2012]. Continuing development of differentiable mea-
sures can help to address this [Swezey et al., 2021].
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