
HyperTASR: Hypernetwork-Driven Task-Aware
Scene Representations for Robust Manipulation

Li Sun∗, Jiefeng Wu∗, Feng Chen, Ruizhe Liu, Yanchao Yang

Institute of Data Science & Department of Electrical and Electronic Engineering
The University of Hong Kong

{sunlids, jiefengwu, cf24, zrllrz360}@connect.hku.hk, yanchaoy@hku.hk

Abstract: Effective policy learning for robotic manipulation requires scene rep-
resentations that selectively capture task-relevant environmental features. Cur-
rent approaches typically employ task-agnostic representation extraction, fail-
ing to emulate the dynamic perceptual adaptation observed in human cognition.
We present HyperTASR, a hypernetwork-driven framework that modulates scene
representations based on both task objectives and the execution phase. Our ar-
chitecture dynamically generates representation transformation parameters con-
ditioned on task specifications and progression state, enabling representations
to evolve contextually throughout task execution. This approach maintains ar-
chitectural compatibility with existing policy learning frameworks while funda-
mentally reconfiguring how visual features are processed. Unlike methods that
simply concatenate or fuse task embeddings with task-agnostic representations,
HyperTASR establishes computational separation between task-contextual and
state-dependent processing paths, enhancing learning efficiency and representa-
tional quality. Comprehensive evaluations in both simulation and real-world en-
vironments demonstrate substantial performance improvements across different
representation paradigms. Through ablation studies and attention visualization,
we confirm that our approach selectively prioritizes task-relevant scene informa-
tion, closely mirroring human adaptive perception during manipulation tasks. The
project website is at lisunphil.github.io/HyperTASR projectpage.

Keywords: Representation Learning, Robotic Manipulation, HyperNetworks

1 Introduction

Embodied AI has made significant advances in recent years [1, 2, 3, 4], driven by the mission of
creating intelligent agents that can interact with physical environments with both effectiveness and
robustness. These capabilities are essential for numerous real-world applications, necessitating the
development of generalizable policy learning frameworks that translate perceptual observations into
precise motor commands [5]. A typical policy learning pipeline comprises a representation ex-
traction module that transforms raw observations into structured scene representations and a policy
module that maps these representations to actions [6, 7, 8].

To enable flexible interactions across diverse scenarios, modern policy architectures incorporate
task conditioning, enabling multi-task learning capabilities that facilitate the sharing of transferable
skills – a critical step toward general-purpose embodied intelligence. When trained end-to-end
on demonstration data, these pipelines have demonstrated impressive performance across various
manipulation tasks and reasonable robustness in novel scenarios.

∗: equal contribution.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://lisunphil.github.io/HyperTASR_projectpage/


Observations Without
Task

Awareness

With
Task

Awareness Policy
Network

Policy
Network

Close the
Green Jar

Task Instructions

Real-WorldMotivation

SimulationClose the
Green Jar

Figure 1: Task-aware representations enable selective attention to task-relevant scene elements,
enhancing manipulation performance. Top-left: Our proposed HyperTASR pipeline incorporates
task-aware scene representation extraction that dynamically modulates feature processing based on
both task objectives and execution phase. Bottom-left: Conventional pipelines employ fixed, task-
agnostic representation extractors that process visual information uniformly across all tasks, limiting
representational flexibility. Right: Visualization of manipulation tasks in sim & real.

However, current policy learning approaches typically implement scene representation extraction as
a task-agnostic process, which is decoupled from action prediction (Fig. 1). This separation omits
established findings in human cognition, where extensive research demonstrates that visual pro-
cessing adaptively reconfigures based on task objectives and execution context. Studies by Hayhoe
[9, 10], Rothkopf [11], and Foulsham [12] reveal how visual representations dynamically adjust to
task demands. This adaptation aligns with Gibson’s [13] concept of affordances and the Theory of
Event Coding (TEC) [14], as well as neurological evidence on adaptive neural representations [15].

Motivated by these insights, we propose HyperTASR – a hypernetwork-driven task-aware scene
representation framework that enables policy learning pipelines to selectively focus on task-relevant
scene elements, thereby enhancing sample efficiency and generalization capabilities. Consider the
progressive nature of cup grasping: initially requiring coarse spatial awareness for localization,
then transitioning to fine-grained geometric perception as the gripper approaches the handle. This
dynamic modulation of representational focus facilitates precise and efficient scene interaction.

To implement this task-conditional scene representation, we introduce a modular transformation
framework that adaptively reconfigures representations based on both task objectives and execu-
tion phase. Specifically, we employ a hypernetwork architecture that dynamically generates the
parameters of a representation transformation network conditioned on task specifications and pro-
gression state. This approach establishes computational separation between task-contextual and
state-dependent gradients [16], significantly enhancing learning efficiency. The framework con-
tinuously modulates scene representations throughout task execution, ensuring that the extracted
features remain optimally aligned with current manipulation requirements.

We integrate HyperTASR with two representative state-of-the-art policy learning architectures:
one employing train-from-scratch representations [17] and another utilizing fixed pre-trained back-
bones [18]. In simulation experiments on RLBench [19], our framework substantially elevates per-
formance across both architectures. Notably, integration with GNFactor increases success rates by
more than 27%, while implementation with 3D Diffuser Actor achieves success rates exceeding 80%
for the first time in single-view configurations. In real-world experiments, HyperTASR enables ef-
fective multi-task manipulation even with limited demonstration data, outperforming baseline meth-
ods. Through comparative analysis with ablated models and attention visualization, we demonstrate
that our approach selectively prioritizes task-relevant scene information throughout execution.

In summary, our contributions are:
• We propose HyperTASR, a novel framework for extracting task-aware scene representations that

enables robotic agents to emulate human-like adaptive perception by focusing on the most task-
relevant environmental features throughout execution.

2



• We introduce a hypernetwork-based representation transformation that dynamically generates
adaptation parameters conditioned on both task specifications and progression state, maintaining
architectural compatibility with existing policy learning frameworks.

• We demonstrate through comprehensive experiments in both simulation and real-world settings
that HyperTASR significantly enhances performance across different representation paradigms,
establishing new state-of-the-art results for single-view manipulation.

2 Related Work

Scene Representation for Multi-task Robotic Manipulation. Recent advancements in multi-
task robotic manipulation have significantly improved task execution and generalization [20, 21, 22,
23, 24, 25, 26]. The dominant paradigm extracts scene representations from sensory input for action
mapping [27, 28, 29]. State-of-the-art approaches [20, 30, 31] leverage foundation models to inject
semantic knowledge, with methods like [18] directly utilizing pretrained visual backbones and GN-
Factor [17] incorporating feature distillation – enhancing generalizability across environments [32].
However, a fundamental limitation persists: scene representations typically remain task-agnostic
and static throughout execution. This contradicts findings in human cognition [9, 11], where visual
processing dynamically reconfigures based on task objectives and context. While Vision-Language-
Action models [33, 34, 35] incorporate task information through language embeddings, few inte-
grate task context at the representation stage. RT-1 [21] employs FiLM [36] to encode instructions
alongside observations but lacks explicit representation learning. Our approach fundamentally dif-
fers by conceptualizing representation adaptation as a dynamic transformation process that evolves
throughout task execution – a significant advance beyond methods that maintain static representa-
tions or implement simple conditioning without accounting for temporal context.

Hypernetworks in Robotic Learning. Hypernetworks [37] provide an efficient framework for
implementing our task-aware scene representations. Developed for neural architecture search [38,
39], continual learning [40, 41], generative modeling [42, 43], and reinforcement learning [44, 45,
46, 47], hypernetworks excel at generating specialized parameters conditioned on task-specific in-
formation [48]. In robotic applications [49, 50], they enable adaptation across diverse scenarios.
We leverage hypernetworks for their advantages in enabling functional transformation of represen-
tation spaces rather than simple feature weighting – particularly well-suited for realizing our core
contribution of adaptive perceptual processing that continuously evolves throughout task execution.

3 Method

In this section, we present HyperTASR, our novel hypernetwork-based architecture that dynamically
modulates scene representation extraction based on task context and execution phase. In Sec. 3.1,
we formalize the problem definition within the context of manipulation policy learning, followed by
a detailed exposition of our task-conditional representation framework (Sec. 3.2) and the associated
training methodologies (Sec. 3.3 & Sec. 3.4). Please refer to Fig. 2 for an overview of the proposed
policy learning pipeline and the core components.

3.1 Preliminaries

Multi-task robotic manipulation requires agents to act efficiently across a heterogeneous task space,
denoted by T = {τk}Kk=1. Each task τ induces a task-conditioned Markov Decision Process (MDP),
characterized by states st ∈ S , actions at ∈ A, and the task specification τ ∈ T . The primary
objective in multi-task policy learning is to train a policy π : S × T → A that generates optimal
action sequences for completing the task. For embodied agents operating in physical environments,
the latent state st is rarely directly accessible due to inherent limitations in environmental perception.
Consequently, policies usually operate on learned representations zt = ϕ(ot) derived from partial
observations ot, where ϕ denotes the representation extraction network (representation extractor)
that feeds into the subsequent action prediction module (policy). These processes are also known

3



Representation Transformation
HyperTASR Overview

task objective 𝜏
𝜓𝑡

Rep 

Extractor 𝜙
Policy 𝜋

observation 𝑜𝑡

𝑎𝑡

𝜓

original scene

representation 𝑧𝑡

adaptive 

representation 𝑧𝑡
∗

𝑜𝑡

task objective 𝜏

Hypernetworks

𝜃

𝑓 𝑔

⨁

⨁ Concatenation

𝜓 Pretrained Encoder

task progression 

action

Figure 2: HyperTASR framework overview. Our approach enhances policy learning pipelines by
introducing a dynamic scene representation mapping to transform the representation before per-
forming action prediction. The mapping consists of a hypernetwork and task-specific autoencoder
(highlighted in blue). The hypernetwork dynamically generates encoder parameters conditioned on
both task objectives and progression state, enabling contextual modulation of scene representations
throughout task execution.

as POMDPs (Partially Observable Markov Decision Processes). Here, we adopt the term policy to
specifically reference the action prediction component of the learning pipeline. In the single-view
paradigm, agents perceive the environment through a single RGB-D image at each timestep t, where
ot = (It, Dt) comprises RGB imagery (It) and corresponding depth data (Dt).

3.2 Task-Aware Scene Representation

To formalize, contemporary frameworks for multi-task robotic learning typically implement a two-
stage architecture: first extracting a scene representation zt = ϕ(ot) from observation ot, then
computing actions via a policy module at = π(zt, τ). The task information is integrated only at the
action prediction stage, and the representation extraction process ϕ remains task-agnostic and static
throughout task execution.

Specifically, we can categorize current representation extraction methodologies into two main ap-
proaches. The first approach leverages pre-trained foundational models to extract semantically rich
scene representations [18, 30, 51]. While these methods capture general visual semantics effectively,
they operate independently of the downstream action prediction objective, potentially extracting fea-
tures suboptimal for specific manipulation tasks. The second approach entails training representation
extraction architectures from scratch, typically co-optimized with the policy network [17, 52, 53],
yielding representations calibrated for action prediction. However, these approaches typically em-
ploy a task-agnostic representation extractor, failing to recognize that different manipulation objec-
tives may require selectively emphasizing distinct aspects of the visual scene.

Cognitive Inspiration. In contrast, human visual processing adaptively modulates scene perception
based on both task objectives and the execution phase. Consider the procedural task of preparing tea:
during the initial object localization phase, coarse spatial awareness suffices; however, during the
pouring action, visual processing sharpens to capture precise spatial relationships and fine-grained
geometric details necessary for successful liquid transfer. This dynamic perceptual reconfiguration
suggests that effective scene representations should evolve contextually throughout task execution.

Proposed Approach. Consequently, we propose that scene representation extraction should be
explicitly conditioned on task context, modeled as zt = ϕ(ot, τ). This task-conditional representa-
tion framework offers several advantages: (1) enhanced effectiveness across tasks through adaptive
environmental encoding, (2) improved interpretability as representations selectively highlight task-
relevant scene elements, (3) increased computational efficiency by filtering irrelevant environmental
information, and (4) closer alignment with the progressive nature of manipulation tasks. The fol-

4



lowing sections detail our hypernetwork-based implementation that dynamically modulates scene
representation extraction according to both task identity and execution phase.

3.3 Hypernetwork-Driven Task-Conditional Scene Representation

Our approach for integrating task and progression awareness into scene representations is designed
as a versatile framework applicable across diverse policy learning architectures. Rather than modi-
fying the intrinsic representation extraction mechanisms of each pipeline – which would introduce
architectural dependencies and complicate comparative analysis – we propose a modular transfor-
mation layer that preserves the original dimensionality of scene representations while enriching
them with task-specific context. Specifically, we implement this transformation as a lightweight
autoencoding structure:

z∗t = gω ◦ f(zt; θ), (1)
where f and g denote the encoding and decoding functions, respectively, parameterized by θ and
ω. This formulation ensures that the transformed representation z∗t maintains the same dimension-
ality as the original zt, enabling seamless integration with any downstream policy network without
architectural modifications.

To incorporate contextual information about the task into the representation transformation pro-
cess, we dynamically modulate the encoding function parameters f(·; θ) rather than the features.
Crucially, we identify two fundamental dimensions that guide adaptive representation: the task
objective that defines the manipulation goal and the task progression state that captures temporal ex-
ecution context. We formalize these dimensions with task specification τ and progression encoding
ψt = ψ(ot) extracted from observation ot. The conditional transformation process is expressed as:

z∗t = gω ◦ f(zt; θ(τ, ψt)). (2)

While the decoding function gω remains task-invariant and is co-optimized during training, the scene
representation encoder parameters θ are dynamically generated to adapt to the task context. For this
dynamic parameter generation, we leverage a hypernetwork architecture H [50] that synthesizes
task-specific encoding parameters conditioned on both task objectives and execution state:

θ = H(τ, ψt). (3)

This hypernetwork-based parameterization provides three crucial technical advantages: (1) it estab-
lishes a clear computational separation between task-contextual and state-dependent gradient flows
during backpropagation [16], substantially enhancing learning efficiency; (2) it enables functional
transformation of the representation space rather than mere feature weighting or selection, allowing
for more expressive adaptation to task requirements; and (3) it facilitates rapid adaptation across
tasks without catastrophic forgetting, as task-specific parameters are generated on demand. The re-
sulting architecture dynamically reconfigures its representation extraction strategy for each task and
execution phase while maintaining nice compatibility with existing policy learning frameworks.

3.4 Integration and Training Objectives

We integrate our hypernetwork-based task-aware scene representation extraction with two repre-
sentative state-of-the-art architectures that exemplify distinct approaches to representation learning:
GNFactor [17], which trains representations from scratch with the policy, and 3D Diffuser Ac-
tor [18], which leverages pre-trained visual backbones.

GNFactor Integration. We insert a 3D autoencoder after GNFactor’s volumetric representation ex-
traction, with encoder parameters generated by the proposed HyperTASR. It is worth noting that we
eliminate the feature distillation component consists of neural rendering. This modification stream-
lines the framework to be optimized end-to-end solely through behavior cloning, formulated as:

L = λposLpos + λrotLrot + λopenLopen + λcollideLcollide, (4)

where Lpos, Lrot, Lopen, and Lcollide represent the position loss, rotation loss, gripper openness loss,
and collision avoidance loss, respectively.

5



Avg. Avg. close open sweep to meat off turn slide put in drag push stack
Success ↑ Rank ↓ jar drawer dustpan grill tap block drawer stick buttons blocks

Peract [20] 20.4 5.4 18.7±8.2 54.7±18.6 0.0±0.0 40.0±17.0 38.7±6.8 18.7±13.6 2.7±3.3 5.3±5.0 18.7±12.4 6.7±1.9

GNFactor [17] 33.3 4.8 32.8±0.6 36.0±0.2 48.0±0.3 51.2±0.1 56.8±0.3 20.0±1.2 8.8±1.3 69.6±0.4 5.6±3.7 4.0±4.0

Act3D [30] 65.3 3.1 52.0±5.7 84.0±8.6 80.0±9.8 66.7±1.9 64.0±5.7 100.0±0.0 54.7±3.8 86.7±1.9 64.0±1.9 0.0±0.0

3D Diffuser Actor [18] 79.0 1.8 63.2±1.6 88.8±7.8 94.4±4.1 84.8±4.7 72.8±4.7 94.4±2.0 88.8±4.7 98.4±2.0 87.2±1.6 17.4±5.1

GNFactor w/ HyperTASR 42.6 4.5 32.0±0 75.2±0.5 66.4±0.4 48.8±0.2 54.4±2.0 23.2±4.6 22.4±0.9 83.2±0.3 17.6±1.2 3.2±3.5

3D DA w/ HyperTASR 81.3 1.4 68.0±2.5 87.2±1.6 98.4±2.0 82.4±3.2 85.6±3.2 98.4±2.0 89.6±6.5 100.0±0.0 92.0±0.0 11.2±1.6

Table 1: Evaluation on RLBench in the single-view setting. Success rates on 10 RLBench tasks
using only the front camera view. All models are trained with 20 demonstrations per task and
evaluated across 5 seeds with 25 episodes per task. HyperTASR significantly improves performance
when integrated with both GNFactor [17] and 3D Diffuser Actor (3D DA) [18], demonstrating the
effectiveness of task-aware scene representations.

3D Diffuser Actor Integration. For 3D Diffuser Actor, which utilizes point cloud features derived
from a pre-trained 2D visual backbone, we integrate HyperTASR by inserting a 2D autoencoder after
the pre-trained feature extraction stage. This placement allows our hypernetwork to modulate the
rich semantic features before they are projected into the 3D point cloud representation. We maintain
the original training objectives, optimizing the complete architecture through behavior cloning loss.

Our hypernetwork, autoencoder components, and policy networks are jointly optimized through
gradient backpropagation. This integration approach demonstrates the versatility of our framework,
as it seamlessly enhances both learned-from-scratch and pre-trained representation architectures
without requiring a fundamental redesign of their core components.

4 Experiments

We evaluate HyperTASR by integrating it with GNFactor [17] and 3D Diffuser Actor [18] on multi-
task manipulation benchmarks in both simulation and real-world settings.

4.1 Experiment Setting

Our experiments use RLBench [19], a large-scale benchmark with over 100 manipulation tasks in
realistic simulated environments using a Franka Panda robot. Following [17], we evaluate on 10
language-conditioned tasks comprising 166 variations. All methods predict the next keypose for the
end-effector and use BiRRT [54] for motion planning. To emphasize the impact of scene represen-
tations under practical deployment constraints, we also conduct all experiments in the challenging
single-view setting, using only the front camera view RGB-D sensory data.

Baselines. We compare against state-of-the-art policy learning frameworks: PerAct [20], which
voxelizes the 3D workspace; GNFactor [17], which constructs a 3D feature volume from a single
RGB-D view; and Act3D [30] and 3D Diffuser Actor [18], which represent the state of the art
on RLBench. Results for PerAct and Act3D are adopted from published work [17, 18], while we
retrained GNFactor and 3D Diffuser Actor under identical single-view conditions to ensure fair
comparison. All models are trained on the same keypose demonstrations, and we report results
across five random seeds to ensure statistical reliability.

4.2 Implementation Details

Our HyperTASR implementation uses a UNet-based [55] autoencoder with skip connections. Fol-
lowing [50], we employ an optimization-biased hypernetwork that predicts parameter updates itera-
tively rather than directly generating encoder weights via fully connected layers. For task objective
conditioning (τ ), we utilize the language features already present in the original policy pipelines.
Task progression information (ψt) is extracted using a frozen pretrained VAE Encoder from Stable
Diffusion [56]. For GNFactor integration, we directly apply our HyperTASR to predict parameters
of the original lightweight 3D UNet voxel encoder. The model is trained for 200k iterations on a
single NVIDIA H800 GPU. For 3D Diffuser Actor, we maintain the fixed backbone and add a 2D
UNet with nine convolutional layers, training for 600k iterations on four H800 GPUs.

6



Task: slide the block to blue target

Ac
tio
n

At
te
nt
ion

Ob
s.

ours baseline ours baseline ours baseline ours baseline

Task: stack 2 navy blocks

Ac
tio
n

At
te
nt
ion

Ob
s.

ours baseline ours baseline ours baseline ours baseline

Figure 3: Attention visualization comparing policies with and without task-aware scene represen-
tations on ‘slide block’ (top) and ‘stack blocks’ (bottom) tasks. HyperTASR consistently focuses
on task-relevant objects, while the baseline attention disperses across irrelevant scene elements, ex-
plaining the performance gain of HyperTASR across approaches.

4.3 Results in Simulation

We present quantitative results in Table 1, evaluating performance through both average success rate
and average rank across tasks. The experimental findings demonstrate HyperTASR’s substantial
impact on both integration frameworks. When integrated with GNFactor, HyperTASR achieves a
remarkable 27.9% relative improvement (9.3% absolute increase) over the baseline across the 10
evaluation tasks. Notably, this performance gain comes with reduced computational requirements
– our approach eliminates the need for feature distillation, removes multi-view supervision depen-
dencies, and results in a smaller network with faster training convergence. This combination of
enhanced performance with reduced computational overhead highlights the efficiency of task-aware
scene representations. For the 3DDA integration, HyperTASR surpasses not only the baseline but all
current state-of-the-art methods, establishing new benchmark performance for single-view manipu-
lation. The consistent improvement across both frameworks demonstrates HyperTASR’s versatility
and effectiveness with different scene representation paradigms and policy network architectures.
The average rank metric further confirms that models enhanced with HyperTASR perform better
across a wider range of tasks, indicating superior cross-task generalization capabilities – a critical
attribute for real-world robotic applications in diverse manipulation scenarios.

Visualization of HyperTASR. To provide qualitative insights into how task-aware scene represen-
tations transform attentional dynamics, we visualize action attention patterns in Fig. 3. Compared
to baseline models, HyperTASR produces significantly more focused attention maps that precisely
target task-relevant objects. Furthermore, these attention patterns evolve dynamically throughout
task execution. In the sliding blocks task, for example, attention initially concentrates on the block
while the gripper approaches. Once contact is established, attention shifts to the target area where
the block should be placed. This progressive adaptation of perceptual focus closely mirrors hu-
man visual processing during manipulation tasks, providing a clear mechanism for the performance
improvements observed in our quantitative results.

4.4 Real-World Evaluation

To validate HyperTASR’s effectiveness in physical environments, we conduct experiments using a
Piper robotic arm equipped with a parallel gripper. We design six diverse manipulation tasks with
variations in object colors, counts, placements, and categories to assess generalization capabilities.

7



For each task, we collect 15 expert demonstrations using a master-puppet teleoperation system iden-
tical to ALOHA [57]. RGB-D observations are captured via an Intel RealSense camera at 640×480
resolution and subsequently downsampled to 256×256 for processing. During inference, target grip-
per poses are executed using the MoveIt package in ROS. We integrate HyperTASR with the 3D
Diffuser Actor framework and evaluate performance across 15 episodes per task.

Avg. place clean stack stack put cups place
Succ dish cups cups blocks on shelf blocks

3D Diffuser Actor 42.2 40.0 53.3 13.3 20.0 46.6 80.0
3D-DA w/ HyperTASR 51.1 53.3 66.6 20.0 26.6 53.3 86.6

Table 2: Real-World Experiment Results. Success rates across six
manipulation tasks with 15 episodes per task. HyperTASR consis-
tently outperforms the baseline 3D Diffuser Actor, demonstrating that
task-aware scene representations transfer effectively from simulation
to physical environments with limited demonstration data.

As shown in Table 2, Hy-
perTASR consistently out-
performs the baseline 3D
Diffuser Actor across all
real-world tasks, demon-
strating that the benefits of
task-aware scene represen-
tations transfer effectively
from simulation to physical
environments. This performance gain is particularly noteworthy given the limited demonstration
data (15 per task) and the inherent challenges of real-world sensing and actuation. Additional visu-
alizations and experimental details are provided in the Appendix.

4.5 Ablation Study

Ablation Success Rate (%)

3D Diffuser Actor 79.02 ± 1.65
Task-Awareness by Transformer 79.23 ± 1.10

Task-awareness by HyperTASR (ours) 81.28 ± 0.82
GNFactor 33.20 ± 1.22

HyperTASR w/ Feature Distillation 34.00 ± 2.12
HyperTASR conditioned on τ 32.24 ± 0.60

HyperTASR predicting θ and ω 36.32 ± 1.32
HyperTASR (ours) 42.60 ± 1.35

Table 3: Ablation Study Results. Upper: Com-
parison of hypernetwork vs. attention-based ap-
proaches for implementing task awareness in the
3D Diffuser Actor framework. Lower: Analysis
of feature distillation, task progression condition-
ing, and hypernetwork target selection within the
GNFactor framework.

We conduct comprehensive ablation studies to
evaluate key design choices in HyperTASR.
First, we examine whether simpler condition-
ing mechanisms could achieve similar benefits.
Within the 3D Diffuser Actor framework, we
replace our hypernetwork with a cross-attention
module that fuses task objectives and progres-
sion information with the original scene repre-
sentation. As shown in Table 3 (upper), this
alternative yields only marginal improvements,
confirming that effective task-aware representa-
tions require sophisticated functional transfor-
mation rather than simple feature fusion. We
further investigate three critical aspects using
GNFactor, with results in Table 3 (lower): (i)
Feature Distillation: Adding explicit distillation supervision constrains representational flexibility,
reducing performance by limiting adaptation capabilities – supporting our design choice to eliminate
this component. (ii) Task Progression: Conditioning only on task objectives (τ ) without progres-
sion information significantly degrades performance, confirming that effective representations must
evolve throughout task execution. (iii) Hypernetwork Target: Having the hypernetwork predict
only encoder parameters proves more efficient than generating the entire autoencoder, validating
our architectural focus on encoder transformation with a fixed decoder.

5 Conclusion

We present HyperTASR, a novel framework for task-aware scene representations in robotic ma-
nipulation that dynamically adapts perceptual processing based on both task objectives and execu-
tion progression. Our hypernetwork-driven approach enables representations to evolve contextually
throughout task execution, focusing on task-relevant environmental features. Evaluations in both
simulation and real-world settings demonstrate significant performance enhancements across differ-
ent representation paradigms. Ablation studies confirm the effectiveness of our design components
for task-aware representations extraction. HyperTASR bridges the gap between human-inspired
adaptive perception and computational approaches to robotic manipulation, establishing a founda-
tion for more efficient multi-task policy learning.

8



6 Limitations

While HyperTASR demonstrates substantial improvements in manipulation performance, several
opportunities for future enhancement remain. Our experiments primarily focus on behavior cloning,
while HyperTASR has the capability of extending to reinforcement learning field.

Our current evaluation uses single-arm grippers as the robotic platform. The principles of task-
aware scene representation could potentially extend to more advanced manipulation systems such
as bimanual setups and dexterous hands, which would broaden the applicability of our approach to
more sophisticated manipulation tasks.

These limitations highlight promising research directions that could build upon the foundation es-
tablished by HyperTASR. The consistent performance improvements observed across different rep-
resentation paradigms suggest that task-aware adaptation principles could generalize effectively to
these extended capabilities.

Acknowledgments

This work is supported by the Early Career Scheme of the Research Grants Council (RGC) grant #
27207224, the HKU-100 Award, a donation from the Musketeers Foundation, and in part by the JC
STEM Lab of Autonomous Intelligent Systems funded by The Hong Kong Jockey Club Charities
Trust.

References
[1] R. Pfeifer and C. Scheier. Representation in natural and artificial agents: an embodied cognitive

science perspective. Zeitschrift für Naturforschung C, 53(7-8):480–503, 1998. 1

[2] J. Duan, S. Yu, H. L. Tan, H. Zhu, and C. Tan. A survey of embodied ai: From simulators to
research tasks. IEEE Transactions on Emerging Topics in Computational Intelligence, 6(2):
230–244, 2022. 1

[3] Y. Liu, W. Chen, Y. Bai, X. Liang, G. Li, W. Gao, and L. Lin. Aligning cyber space with
physical world: A comprehensive survey on embodied ai. arXiv preprint arXiv:2407.06886,
2024. 1

[4] Z. Xu, K. Wu, J. Wen, J. Li, N. Liu, Z. Che, and J. Tang. A survey on robotics with foundation
models: toward embodied ai. arXiv preprint arXiv:2402.02385, 2024. 1

[5] Y. Mu, Q. Zhang, M. Hu, W. Wang, M. Ding, J. Jin, B. Wang, J. Dai, Y. Qiao, and P. Luo. Em-
bodiedgpt: Vision-language pre-training via embodied chain of thought. Advances in Neural
Information Processing Systems, 36, 2024. 1

[6] Z. Xu, Z. He, J. Wu, and S. Song. Learning 3d dynamic scene representations for robot
manipulation. arXiv preprint arXiv:2011.01968, 2020. 1

[7] A. Billard and D. Kragic. Trends and challenges in robot manipulation. Science, 364(6446):
eaat8414, 2019. 1

[8] Y. Li, S. Li, V. Sitzmann, P. Agrawal, and A. Torralba. 3d neural scene representations for
visuomotor control. In Conference on Robot Learning, pages 112–123. PMLR, 2022. 1

[9] M. M. Hayhoe, A. Shrivastava, R. Mruczek, and J. B. Pelz. Visual memory and motor planning
in a natural task. Journal of vision, 3(1):6–6, 2003. 2, 3

[10] M. M. Hayhoe. Vision and action. Annual review of vision science, 3(1):389–413, 2017. 2

[11] C. A. Rothkopf, D. H. Ballard, and M. M. Hayhoe. Task and context determine where you
look. Journal of vision, 7(14):16–16, 2007. 2, 3

9



[12] T. Foulsham, E. Walker, and A. Kingstone. The where, what and when of gaze allocation in
the lab and the natural environment. Vision research, 51(17):1920–1931, 2011. 2

[13] J. J. Gibson. The ecological approach to visual perception: classic edition. Psychology press,
2014. 2

[14] B. Hommel, J. Müsseler, G. Aschersleben, and W. Prinz. The theory of event coding (tec): A
framework for perception and action planning. Behavioral and brain sciences, 24(5):849–878,
2001. 2

[15] L. Jamone, E. Ugur, A. Cangelosi, L. Fadiga, A. Bernardino, J. Piater, and J. Santos-Victor.
Affordances in psychology, neuroscience, and robotics: A survey. IEEE Transactions on Cog-
nitive and Developmental Systems, 10(1):4–25, 2016. 2

[16] E. Sarafian, S. Keynan, and S. Kraus. Recomposing the reinforcement learning building blocks
with hypernetworks. In International Conference on Machine Learning, pages 9301–9312.
PMLR, 2021. 2, 5

[17] Y. Ze, G. Yan, Y.-H. Wu, A. Macaluso, Y. Ge, J. Ye, N. Hansen, L. E. Li, and X. Wang. Multi-
task real robot learning with generalizable neural feature fields. CoRL, 2023. 2, 3, 4, 5, 6, 13,
14, 15, 16, 20, 21

[18] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki. 3d diffuser actor: Policy diffusion with 3d scene
representations. arXiv preprint arXiv:2402.10885, 2024. 2, 3, 4, 5, 6, 13, 14, 15, 17, 21

[19] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020. 2, 6, 14

[20] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Conference on Robot Learning, pages 785–799. PMLR, 2023. 3, 6

[21] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022. 3

[22] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learn-
ing, pages 991–1002. PMLR, 2022. 3

[23] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipu-
lation. In Conference on robot learning, pages 894–906. PMLR, 2022. 3

[24] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox. Rvt: Robotic view transformer
for 3d object manipulation. In Conference on Robot Learning, pages 694–710. PMLR, 2023.
3

[25] A. Goyal, V. Blukis, J. Xu, Y. Guo, Y.-W. Chao, and D. Fox. Rvt-2: Learning precise manipu-
lation from few demonstrations. arXiv preprint arXiv:2406.08545, 2024. 3

[26] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine q-attention: Efficient learning
for visual robotic manipulation via discretisation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13739–13748, 2022. 3

[27] O. Kroemer, S. Niekum, and G. Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms. Journal of machine learning research, 22(30):
1–82, 2021. 3

[28] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-
tation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022. 3

10



[29] Y. Zhang, Z. Zhou, P. David, X. Yue, Z. Xi, B. Gong, and H. Foroosh. Polarnet: An improved
grid representation for online lidar point clouds semantic segmentation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 9601–9610, 2020. 3

[30] T. Gervet, Z. Xian, N. Gkanatsios, and K. Fragkiadaki. Act3d: 3d feature field transformers
for multi-task robotic manipulation. In 7th Annual Conference on Robot Learning, 2023. 3, 4,
6

[31] G. Lu, S. Zhang, Z. Wang, C. Liu, J. Lu, and Y. Tang. Manigaussian: Dynamic gaussian
splatting for multi-task robotic manipulation. In European Conference on Computer Vision,
pages 349–366. Springer, 2025. 3

[32] S. Karamcheti, S. Nair, A. S. Chen, T. Kollar, C. Finn, D. Sadigh, and P. Liang. Language-
driven representation learning for robotics. arXiv preprint arXiv:2302.12766, 2023. 3

[33] A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, A. Pooley, A. Gupta,
A. Mandlekar, A. Jain, et al. Open x-embodiment: Robotic learning datasets and rt-x models:
Open x-embodiment collaboration 0. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 6892–6903. IEEE, 2024. 3

[34] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster,
G. Lam, P. Sanketi, et al. Openvla: An open-source vision-language-action model. arXiv
preprint arXiv:2406.09246, 2024. 3

[35] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,
T. Kreiman, C. Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint
arXiv:2405.12213, 2024. 3

[36] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with
a general conditioning layer. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018. 3

[37] D. Ha, A. M. Dai, and Q. V. Le. Hypernetworks. In International Conference on Learning
Representations, 2017. URL https://openreview.net/forum?id=rkpACe1lx. 3

[38] A. Brock, T. Lim, J. M. Ritchie, and N. J. Weston. Smash: One-shot model architecture search
through hypernetworks. In 6th International Conference on Learning Representations 2018,
2018. 3

[39] C. Zhang, M. Ren, and R. Urtasun. Graph hypernetworks for neural architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.

net/forum?id=rkgW0oA9FX. 3

[40] J. von Oswald, C. Henning, B. F. Grewe, and J. Sacramento. Continual learning with hyper-
networks. In 8th International Conference on Learning Representations (ICLR 2020)(virtual).
International Conference on Learning Representations, 2020. 3

[41] C. Henning, M. Cervera, F. D’Angelo, J. Von Oswald, R. Traber, B. Ehret, S. Kobayashi, B. F.
Grewe, and J. Sacramento. Posterior meta-replay for continual learning. Advances in neural
information processing systems, 34:14135–14149, 2021. 3

[42] N. Ratzlaff and L. Fuxin. Hypergan: A generative model for diverse, performant neural net-
works. In International Conference on Machine Learning, pages 5361–5369. PMLR, 2019.
3

[43] I. Skorokhodov, S. Ignatyev, and M. Elhoseiny. Adversarial generation of continuous images.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
10753–10764, 2021. 3

11

https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkgW0oA9FX
https://openreview.net/forum?id=rkgW0oA9FX


[44] Y. Huang, K. Xie, H. Bharadhwaj, and F. Shkurti. Continual model-based reinforcement learn-
ing with hypernetworks. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 799–805. IEEE, 2021. 3

[45] Z. Xian, S. Lal, H.-Y. Tung, E. A. Platanios, and K. Fragkiadaki. Hyperdynamics: Meta-
learning object and agent dynamics with hypernetworks. arXiv preprint arXiv:2103.09439,
2021. 3

[46] S. Rezaei-Shoshtari, C. Morissette, F. R. Hogan, G. Dudek, and D. Meger. Hypernetworks
for zero-shot transfer in reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pages 9579–9587, 2023. 3

[47] M. Beukman, D. Jarvis, R. Klein, S. James, and B. Rosman. Dynamics generalisation in
reinforcement learning via adaptive context-aware policies. Advances in Neural Information
Processing Systems, 36, 2024. 3

[48] V. K. Chauhan, J. Zhou, P. Lu, S. Molaei, and D. A. Clifton. A brief review of hypernetworks
in deep learning. Artificial Intelligence Review, 57(9):250, 2024. 3

[49] J. Beck, M. T. Jackson, R. Vuorio, and S. Whiteson. Hypernetworks in meta-reinforcement
learning. In K. Liu, D. Kulic, and J. Ichnowski, editors, Proceedings of The 6th Conference
on Robot Learning, volume 205 of Proceedings of Machine Learning Research, pages 1478–
1487. PMLR, 14–18 Dec 2023. 3

[50] H. Ren, L. Sun, X. Wang, P. Zhou, Z. Wu, S. Dong, D. Zou, Y. Zheng, and Y. Yang. Hypogen:
Optimization-biased hypernetworks for generalizable policy generation. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.

net/forum?id=CJWMXqAnAy. 3, 5, 6, 13

[51] Y. Wang, Z. Li, M. Zhang, K. Driggs-Campbell, J. Wu, L. Fei-Fei, and Y. Li. D3 fields:
Dynamic 3d descriptor fields for zero-shot generalizable robotic manipulation. arXiv preprint
arXiv:2309.16118, 2023. 4

[52] T. Ma, J. Zhou, Z. Wang, R. Qiu, and J. Liang. Contrastive imitation learning for language-
guided multi-task robotic manipulation. arXiv preprint arXiv:2406.09738, 2024. 4

[53] D. Driess, I. Schubert, P. Florence, Y. Li, and M. Toussaint. Reinforcement learning with
neural radiance fields. Advances in Neural Information Processing Systems, 35:16931–16945,
2022. 4

[54] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query path
planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 2, pages
995–1001. IEEE, 2000. 6

[55] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical im-
age segmentation. In Medical image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part
III 18, pages 234–241. Springer, 2015. 6

[56] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image syn-
thesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684–10695, 2022. 6

[57] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024. 8

12

https://openreview.net/forum?id=CJWMXqAnAy
https://openreview.net/forum?id=CJWMXqAnAy


A Additional Implementation Details

A.1 Model Structure

Conv Block

Conv
stride=2

Norm Norm

Conv
kernel=1 Norm

TransConv Block

TransConv
stride=2

Norm

Conv Block

Conv
kernel=1

Parameter Predicted
by Hypernetworks

Conv Block

Conv Block

TransConv Block

TransConv Block

TransConv Block

Conv
kernel=1

Norm
Original 

Representation 𝑧!
Adaptive 

Representation 𝑧!∗

Hypernetworks

𝑜!

𝜓

𝜏

𝜓!

⨁

Add

Add

Close the blue jar

Lang Encoder

Figure 4: The detailed model structure of our HyperTASR. The main diagram shows that the
pipeline consists of 2 Convolutional layer and a UNet with skip-connection. Bottom-right: The
detailed structure of Conv Block and TransConv Block in the pipeline. These blocks serve as the
key components for the encoding and decoding process.

HyperTASR we design mainly consists of three convolutional blocks and three transposed convo-
lutional blocks, as detailed in Fig. 4. Each convolutional block contains two convolutional layers,
followed by an InstanceNorm layer and a Leaky ReLU activation function. The first convolutional
layer in each block has a kernel size of 3 and a stride of 2, which reduces the resolution of the feature
map while increasing the feature channel dimension, effectively encoding the features. The second
convolutional layer has a kernel size of 1 and does not change the resolution or channel dimension
of the feature map, serving to refine the encoded features.

The transposed convolutional blocks are relatively simpler, consisting of a single transposed convo-
lutional layer followed by InstanceNorm and Leaky ReLU activation. The transposed convolutional
layer increases the resolution of the feature map while reducing the channel dimension, effectively
decoding the features. This layer has a kernel size of 3 and a stride of 2, ensuring that the spatial
dimensions of the feature map are expanded appropriately.

HyperTASR used in GNFactor [17] and 3D Diffuser Actor [18] follow the aforementioned structure.
GNFactor directly utilizes a 3D deep volume as its representation, requiring 3D convolutions and
3D transposed convolutions. For the 3D Diffuser Actor, the representation is a point cloud feature,
which in a single-view setup combines a 2D feature map and a depth map, leading us to employ 2D
convolutions and 2D transposed convolutions as the core elements of the UNet architecture.

In Fig. 5, we detail the implementation of our hypernetworks. Following [50], we adopt an
optimization-based hypernetwork, which iteratively predicts the parameter updates rather than di-
rectly predicting the final parameter. In our implementation, K = 8 represents the parameter update
iteration. To control the parameter size of the UNet and effectively manage the parameter size of
the Hypernetworks, we introduce optional encoders and decoders. The encoder reduces the di-
mensionality of the input features before they are fed into the UNet, while the decoder restores the
dimensionality after processing. This mechanism is particularly useful for maintaining a balance be-
tween model complexity and performance. Specifically, for the 3D Diffuser Actor, we incorporate
these optional encoders and decoders to better adapt to the varying input feature requirements.

13



𝑜𝑡

𝜓

task objective 𝜏

⨁

𝜓𝑡

𝜃0 HyperNet

Block
∆𝜃0

𝑓𝑡𝑎𝑠𝑘

HyperNet

Block
𝜃1 ∆𝜃1 𝜃2 𝜃𝐾

𝑓 𝑔

AutoEncoder

Figure 5: The detailed structure of hypernetworks we used in HyperTASR. We employ an
optimization-biased hypernetwork that predicts parameter updates iteratively rather than directly
generating encoder weights via fully connected layers.

A.2 Dataset Composition

Task Variation Type # of Variations Avg. Keyframes Language Description Example

close jar color 20 6.0 “close the — jar”
meat off grill category 2 5.0 “take the — off the grill”
open drawer placement 3 3.0 “open the — drawer
sweep to dustpan size 2 4.6 “sweep dirt to the — dustpan”
turn tap placement 2 2.0 “turn — tap”
slide block color 4 4.7 “slide the block to — target”
put in drawer placement 3 12.0 “put the item in the — drawer”
drag stick color 20 6.0 “use the stick to drag the cube onto the — — target”
push buttons color 50 3.8 “push the — button, [then the — button]”
stack blocks color, count 60 14.6 “stack — — blocks”

Table 4: Dataset composition of 10 manipulation tasks in RLBench [19].

Task Variation Type Language Description Example

place dish color “place the — dish on the — tablecloth”
clean cups color, placement “Put the — cup into the — basket”
stack cups color, placement “stack the — cup on the — cup
stack blocks color, count “stack the — cubes”
put cups on shelf placement “put the — cup on the shelf next to — cup”
place blocks color “Place the — block on the — plate”

Table 5: Dataset composition of 6 manipulation tasks in real robot experiments.
We conduct experiments on 10 language-conditioned manipulation tasks from RLBench [19], which
align with the experimental setup of GNFactor [17]. The task variations include randomly sampled
attributes such as colors, sizes, counts, placements, and object categories. Detailed descriptions of
the variation types, variation numbers, average keyframes, and sample language descriptions for
these tasks are provided in Tab. 4.

For real robot experiments, we design 6 tasks that cover diverse tasks for ”pick and place”. We give
our sample task description in Tab. 5.

A.3 Hyperparamters

We provide detailed hyperparameters for our experiments in Tab. 6 and Tab. 7, with some parallel
settings and input data differences compared to GNFactor [17] and 3D Diffuser Actor [18]. To
ensure a fair comparison, we reproduce the experiments using the same hyperparameters as the
original codebase and report the corresponding results in Tab. 1. These results serve as a benchmark
for understanding the impact of our modifications.

Impact of Hyperparameter Changes on Experimental Results. For the GNFactor framework,
we opt not to use distributed data parallel (DDP) training. Instead, we utilize a single GPU, halve

14



Variable Name Value

training iteration 200k
image size 128× 128× 3
batch size 1
optimizer LAMB

learning rate 0.0005
input voxel size 100× 100× 100

number of transformer blocks 6
number of latents in PerceiverI/O 2048

dimension of CLIP language features 512

Table 6: Hyperparameters in GNFactor [17] Framework.

Variable Name Value

training iteration 800k
image size 256× 256× 3
batch size 240
optimizer Adam

learning rate 0.0001
embedding dim 120

diffusion timestep 100
loss weight of position and rotaion 30 : 20

maximal # of keyposes 25

Table 7: Hyperparameters in 3D Diffuser Actor [18] Framework.

the batch size, and double the number of training steps. Despite this adjustment, the final reproduced
results fall within the range of multiple experimental outcomes reported in [17]. For the 3D Diffuser
Actor, we train both our modified pipeline and the original codebase with the training data provided
in the author’s released repository, using an RGB image resolution of 256 × 256. Due to the lower
resolution compared to the original paper (256 × 256) [18], our reproduced results (77.0%) are
slightly below the original results (78.4%). Additionally, slight adjustments to the loss weights are
made to account for the resolution difference, and the best configuration is chosen as the unified
hyperparameter setting for all our experiments.

A.4 Computation Cost

Model Params Training Time for 1k steps (s)

GNFactor 64.66M 976.5
Adapter (ours) 99.12M 844.8

Table 8: Computation Cost.

We calculate the computation cost of
our experiments on GNFactor [17]
by measuring both the total number
of parameters in the network and the
training time, as shown in Tab. 8.
For training time, we use an unloaded
GPU to train for 1k steps and record
the time taken. From the results, we observe that while our network has more parameters, it achieves
higher training efficiency. The increased parameter count results from the inclusion of Hypernet-
works, but this does not negatively impact training efficiency. On the contrary, by removing the
neural renderer used for feature distillation, the overall training time is reduced. This demonstrates
that HyperTASR does not impose a significant computational burden on the network and, in some
cases, even improves efficiency by eliminating certain supervisory components.

15



B Additional Results and Analysis

B.1 Additional Ablations Results

In Tab. 3, we only present the success rate data for the ablation studies on the GNFactor [17] frame-
work. Here, we further provide detailed results of these ablation studies across all 10 tasks in Tab. 9.
Additionally, we conduct ablation experiments on the 3D Diffuser Actor, and the corresponding re-
sults are shown in Tab. 10. These results can validate the effectiveness of our design of HyperTASR.

Avg. close open sweep to meat off turn slide put in drag push stack
Success jar drawer dustpan grill tap block drawer stick buttons blocks

GNFactor 33.3 32.8 36.0 48.0 51.2 56.8 20.0 8.8 69.6 5.6 4.0
HyperTASR w/ Feature Distillation 34.0 29.6 69.6 35.2 50.4 44.0 8.0 1.6 48.6 43.2 8.8

HyperTASR conditioned on τ 32.2 10.4 47.2 29.6 34.4 51.2 16.8 10.4 92.0 22.4 8.0
HyperTASR predicting θ and ω 36.3 28.0 67.2 20.0 60.8 49.6 20.0 18.4 78.4 7.2 13.6

GNFactor w/ HyperTASR 42.6 32.0 75.2 66.4 48.8 54.4 23.2 22.4 83.2 17.6 3.2

Table 9: Detailed Ablation Study Results in GNFactor framework. We report the average success
rate across 5 evaluation seeds.

Avg. close open sweep to meat off turn slide put in drag push stack
Success jar drawer dustpan grill tap block drawer stick buttons blocks

3DDA 79.0 63.2 88.8 94.4 84.8 72.8 94.4 88.8 98.4 87.2 17.4
HyperTASR conditioned on τ 75.4 60.8 75.4 88.8 82.4 59.2 83.2 80.8 89.6 83.2 4.6

HyperTASR predicting θ and ω 79.2 66.4 86.4 96.8 81.4 79.8 84.0 87.2 99.2 89.6 10.4
3DDA w/ HyperTASR 81.3 68.0 87.2 98.4 82.4 85.6 98.4 89.6 100.0 92.0 11.2

Table 10: Detailed Ablation Study Results in 3D Diffuser Actor (3DDA) framework. We report
the average success rate across 5 evaluation seeds.

ours GNFactor ours GNFactor ours GNFactor ours GNFactor

Task: sweep dirt to the tall dustpan.

ours GNFactor ours GNFactor ours GNFactor ours GNFactor

Task: open the middle drawer.

Feature 
Attention

Image

Feature 
Attention

Image

Figure 6: Visulization Comparison of GNFactor [17] and Ours.

B.2 Further Experiment Analysis

Experiments on Episode Length. While analyzing the success rate, we also collected statistics
on the episode length of the evaluation episodes. The episode length refers to the average number of
predicted keyposes or steps in each episode. A shorter episode length indicates fewer steps needed

16



Avg. close open sweep to meat off turn slide put in drag push stack
Length jar drawer dustpan grill tap block drawer stick buttons blocks

GNFactor 17.0 19.4 9.9 16.0 15.1 11.0 21.1 16.8 12.8 23.8 23.8
GNFactor w/ Adapter 15.9 19.3 6.7 12.1 14.4 11.7 19.4 20.7 9.1 21.6 23.6

Table 11: Episode Length. We report the average episode length across 5 evaluation seeds. As
observed, by focusing on the more relevant portion of the scene with the task-aware representations,
action efficiency is also improved.

to complete a task, suggesting a more efficient prediction method. As shown in Tab. 11, our method
achieves a shorter episode length than GNFactor in most tasks, on average, 6.4% fewer steps across
10 tasks, which implies that the policy network makes more precise predictions and thus performs
more efficiently.

Analysis of Reproducing Results of 3D Diffuser Actor. Due to differences in input image res-
olution, our reproduced results are slightly inferior to those proposed by 3D Diffuser Actor [18].
From the experimental results, it can be observed that for tasks where fine geometric details are cru-
cial, such as ”close jar,” ”meat off grill,” and ”stack blocks,” our reproduced results perform poorly.
This is consistent with the lack of detailed information in our data. On the other hand, we find that
for tasks that only require determining the general position of an object, such as ”put in drawer”
and ”push buttons”, our reproduced results significantly outperform those reported in the original
paper. This highlights the significant influence that different representations (determined by input
data) have on the current process of robot learning.

Ablation Results Analysis. From the comparison of ablation results, we observe that using only
the task objective as the sole condition for the hypernetwork often leads to worse performance than
the original codebase. We believe this is because, in RLBench, the ten selected tasks have limited
variation in task objectives, with each variation corresponding to a unique task objective. As a result,
training tends to lead to the hypernetwork memorizing the task objective rather than generalizing,
turning the hypernetwork into a container for memorizing a few sets of parameters instead of a tool
for dynamically adjusting the information extraction process. Consequently, the entire network is
prone to significant overfitting, leading to poor evaluation results.

Analysis on Limited Improvement Compared to 3D Diffuser Actor Codebase. The experi-
ments show that compared to our significant improvement on GNFactor framework, our method
has limited improvement over the 3D Diffuser Actor. Through visualization of the representation
compared to the input image, we observe that, compared to the representation of the 3D Diffuser
Actor, our representation is primarily focused on task-relevant areas, while the 3D Diffuser Ac-
tor’s representation is more dispersed. From this perspective, our representation should significantly
outperform that of the 3D Diffuser Actor during task execution. However, the final experimental
results show limited improvement. We believe this is because the diffusion policy network has a
strong capability for information extraction. During training, the diffusion policy not only extracts
task-relevant information from the pre-trained backbone features but also further predicts action out-
comes based on this information. Therefore, although our representation is better suited for learning
manipulation tasks, the powerful policy network largely bridges the gap. In contrast, when using a
relatively less powerful policy network, such as the Perceiver Actor, the performance improvement
brought by the HyperTASR becomes much more significant.

Failure Case Analysis. In simulation experiments, the failure usually appears when accurate op-
eration on tiny objects is needed. We conduct experiments on 128×128 resolution and 256×256
resolution, from which we observe that with higher resolution, the average success rate increased
from 78.5% to 81.3%. Therefore, we believe that the capability of manipulating tiny objects are
highly related to the input sensory data resolution. For real robot experiments, we define task suc-
cess by finishing the task without significantly changing the position of other unrelated objects in

17



the scene. In actual evaluation, many failures are caused by changing the position of other unrelated
objects due to we do incorporate collision loss in real robot experiments.

B.3 Additional Visualization

We provide additional visualization results to further demonstrate the effectiveness of our approach.
First, we compare the gradient visualizations of our method and GNFactor across more tasks in
Fig. 6. From these results, it can be observed that, compared to GNFactor, our representation’s
attention map is more focused on task-relevant objects, whereas GNFactor’s representation tends to
allocate some attention to the background and objects unrelated to the task.

Next, we present a comparison of task execution between our method and GNFactor in Fig. 8. We
provide RGB image sequences of the action execution. It can be seen that, compared to GNFactor,
our approach more accurately identifies the locations of task-relevant objects, enabling more precise
action execution and ultimately leading to successful task completion. In contrast, GNFactor often
fails to complete the task due to getting stuck after an incorrect action execution. Meanwhile, we
present a comparison of the real-world task execution of 3D Diffuser Actor and our HyperTASR in
Fig. 7. More comparison are shown in Supplementary Video.

We also present the change in our representation during the action execution process in GNFactor
tasks in Fig. 9. Specifically, for the ”stack blocks” task, our method shows high attention on a target
block before placing it, and once the block is successfully placed, the attention on it significantly
decreases. This indicates that the information regarding the block becomes less important after its
placement in the context of completing the task.

Meanwhile, we provide visualizations of the gradients of our representation versus the input image
for the 3D Diffuser Actor in Fig. 10. It is evident that, compared to the 3D Diffuser Actor, our
method’s attention is much more concentrated.

In addition, we provide attention visualization of real world experiments in Fig. 11. We compute
the gradient of the representation with respect to the input image. We can observe that, compared
with the 3D Diffuser Actor with the attention spread through the entire image, HyperTASR is much
more focused on task-related objects. Meanwhile, during the task execution, we can observe that
initially, attention is focused on the yellow cup and the gripper. As the yellow cup has been picked,
the attention switches to the grey cup and the robotic arm. Finally, in the stacking process, the rep-
resentation focuses on two cups again. This proves our HyperTASR generates representations that
dynamically adapt as the task progresses. In Fig. 11, we visualize attention in real robot experi-
ments by computing the gradient of the learned representation with respect to the input image of the
training set. Unlike the 3D Diffuser Actor, whose attention is diffusely distributed across the scene,
HyperTASR concentrates its attention on task-relevant objects. During the early grasping phase, at-
tention is tightly focused on the yellow cup and the gripper. Once the yellow cup is lifted, attention
shifts to the grey cup and the robotic arm. Finally, as the stacking motion commences, the model’s
attention returns to both cups. These observations demonstrate that HyperTASR produces dynamic,
task-aware representations that track the evolving focus requirements throughout task execution.

18



baseline

Ours

Put the gray cup into the green basket

baseline

Ours

Pick the green block on the gray plate

baseline

Ours

put the purple cup on the shelf next to blue cup

baseline

Ours

stack the light blue blocks

Figure 7: Real World Task Execution Comparison of 3D Diffuser Actor and Ours.

19



GNFactor

Ours

GNFactor

Ours

GNFactor

Ours

GNFactor

Ours

open the middle drawer

stack 2 orange blocks

slide block to blue target

sweep dirt to the tall dustpan

Figure 8: Task Execution Comparison of GNFactor [17] and Ours.

20



Task: stack 2 orange blocks. Task: slide block to blue.

Figure 9: Visualization Comparison regarding Task Progress for GNFactor [17] with our Hy-
perTASR.

ours 3d diffuser ours 3d diffuser ours 3d diffuser ours 3d diffuser

Task: Close the blue jar.

ours 3d diffuser ours 3d diffuser ours 3d diffuser ours 3d diffuser

Task: push the red button, then push the blue button.

Feature 
Attention

Image

Feature 
Attention

Image

Figure 10: Visualization Comparison of 3D Diffuser Actor [18] and Ours.

ours 3d diffuser ours 3d diffuser ours 3d diffuser

stack the yellow cup on the grey cup

Figure 11: Real Robot Visualization Comparison of 3D Diffuser Actor [18] and Ours.

21


	Introduction
	Related Work
	Method
	Preliminaries
	Task-Aware Scene Representation
	Hypernetwork-Driven Task-Conditional Scene Representation
	Integration and Training Objectives

	Experiments
	Experiment Setting
	Implementation Details
	Results in Simulation
	Real-World Evaluation
	Ablation Study

	Conclusion
	Limitations
	Additional Implementation Details
	Model Structure
	Dataset Composition
	Hyperparamters
	Computation Cost

	Additional Results and Analysis
	Additional Ablations Results
	Further Experiment Analysis
	Additional Visualization


