Sampling-Efficient Test-Time Scaling: Self-Estimating the Best-of-N Sampling in Early Decoding

Yiming Wang $^{\alpha}$ Pei Zhang $^{\beta}$ Siyuan Huang $^{\alpha}$ Baosong Yang $^{\beta}$ Zhuosheng Zhang $^{\alpha}$ Fei Huang $^{\beta}$ Rui Wang $^{\alpha}$, \boxtimes

 $^{\alpha}$ School of Computer Science, Shanghai Jiao Tong University $^{\beta}$ Tongyi Lab, Alibaba Group

Abstract

Test-time scaling enhances large language model performance by allocating additional compute resources during inference. Best-of-N (BoN) sampling serves as a common sampling-based scaling technique, broadening the search space in parallel to find better solutions from the model distribution. However, its cost–performance trade-off is still underexplored. Two main challenges limit the efficiency of BoN sampling: (1) Generating N full samples consumes substantial GPU memory, reducing inference capacity under limited resources. (2) Reward models add extra memory and latency overhead, and training strong reward models introduces potential training data costs. Although some studies have explored efficiency improvements, none have addressed both challenges at once.

To address this gap, we propose **Self-Truncation Best-of-**N (**ST-BoN**), a decoding method that avoids fully generating all N samples and eliminates the need for reward models. It leverages early sampling consistency in the model's internal states to identify the most promising path and truncate suboptimal ones. In terms of cost, ST-BoN reduces dynamic GPU memory usage by over 80% and inference latency by 50%. In terms of cost–performance trade-off, ST-BoN achieves the same performance as Full-BoN while saving computational cost by 70%–80%, and under the same cost, it can improve accuracy by 3–4 points.

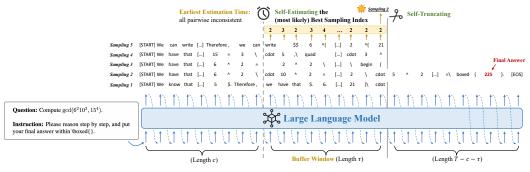


Figure 1: The pipeline and case of our **Self-Truncation Best-of-**N (**ST-BoN**) **Decoding**. From the start: (**Step 1**) We first let the LLM generate N samplings autoregressively until the earliest estimation time c; (**Step 2**) Then each sampling continues to generate τ steps beyond time c. During this, the LLM performs self-estimation to determine the most promising sample among the N sampling, identifying the best sample through cumulative $\tau+1$ self-estimations. (**Step 3**) Finally, we truncate the remaining N-1 samples and proceed with generating only the best-estimated sample up to [EOS]. Parameter details of the case in this figure: N=5, $c=\tau=20$, and T=359.

1 Introduction

Large Language Models (LLMs) possess strong generative and reasoning capabilities after extensive training on large-scale corpora [7, 1, 10], and the excellent solution to a problem is typically embedded within the model distribution [26, 9, 48, 53, 30]. However, autoregressive decoding focuses on locally optimal solutions, overlooking more promising thinking paths. Hence, the test-time scaling technique [40] is proposed to help LLMs expand their thinking space by adding compute during inference.

Best-of-N (BoN) [42, 28, 40] serves as a widely used sampling-based scaling paradigm. By sampling N responses from the LLM and selecting the best one with a re-ranking strategy at inference time, BoN fully leverages the potential ability within the model distribution. The core of BoN sampling lies in scoring and re-ranking multiple candidates. A well-known method is self-consistency [47], which selects the most frequent answer as the final solution. Furthermore, with a trained reward model (RM) [45, 46, 35], BoN sampling can handle richer tasks by scoring candidates and selecting the one with the highest score, aiming to increase test-time computational costs regardless of expense to enhance performance [40].

Beyond performance, the issue of cost-performance trade-offs in BoN sampling has been less explored. Under existing paradigms, BoN sampling faces two key challenges that hinder efficient deployment: (i) *Full Generation Overhead*: Traditional BoN requires fully generating all *N* samples, referred to as **Full-BoN** in this paper. Although GPU parallelization can partially mitigate time latency, *additional memory overhead is unavoidable*, especially for complex reasoning with long generated sequences. (ii) *Limitations of Reward Models*: RMs are effective, but *occupy additional memory and time costs*. Meanwhile, training a strong RM is costly due to the scarcity of high-quality feedback data, and their domain-specific nature restricts generalizability across tasks (*e.g.*, from math to open-ended QA).

Some efforts have been made to improve the efficiency of BoN sampling by using RMs to score and discard sampling prefixes [41], or to branch after pruning [25, 36], thereby reducing some memory overhead of full generation. However, RM inference still incurs non-negligible latency, and sharing GPU memory with generators further restricts caching capacity. Moreover, the inherent limitations of RMs make these methods less suitable for objective tasks like reasoning (see Appendix B). Therefore, no existing method overcomes both challenges at once to achieve deeper efficiency optimizations.

To fill this gap, we introduce a novel decoding technique called Self-Truncation Best-of-N (ST-BoN). Inspired by the unsupervised advantage of consistency strategies [47], we first theoretically demonstrate the feasibility of foreshadowing the final consistency using sampling consistency in early decoding. Then, we design an internal consistency measure that uses latent space information [49] to identify and preserve the most promising sample among the N samples in early decoding. This framework allows us to effectively self-estimate and truncate suboptimal samplings in early decoding without relying on reward model intervention, thereby saving memory and speeding up generation.

The detailed pipeline of ST-BoN is illustrated in Figure 1, it makes the following contributions¹:

- Cost: Compared to Full-BoN, ST-BoN truncates suboptimal samples in early decoding, thereby freeing up memory and reducing the dynamic GPU memory load by over 80%. This early truncation also accelerates later generations, reducing inference latency by up to 50%. Notably, these efficiency gains are achieved without accounting for the overhead of extra reward models.
- Cost-Performance Trade-offs: We conduct extensive experiments to demonstrate that ST-BoN strikes a strong balance between cost and performance. When reaching the performance of Full-BoN at the certain N values, ST-BoN can save computational cost by 70% to 80%. Also, when consuming similar computational costs, ST-BoN improves accuracy by 3 to 4 points. In addition, ST-BoN is applicable across a wide range of domains. These results show that ST-BoN can provide a flexible solution to balance cost and performance when faced with limited resources.

2 Preliminary

Autoregressive Decoding in Language Models. Let p_{θ} represent a language model. For a given prompt and question, p_{θ} will generate a token sequence $Y_{1:T} = y_1y_2...y_T$ autoregressively, where T

¹Code and data are available in https://github.com/Alsace08/ST-BoN.

is the generation length and $y_T = [EOS]$. Each token y_t is sampled as follows:

$$y_t \sim p_\theta(\cdot|\text{prompt}, \text{question}, y_{\prec t}) \in \mathbb{R}^{|\mathcal{V}|},$$
 (1)

where V is the vocabulary. In greedy decoding, the model selects the token with the highest probability of p_{θ} to generate y_t . In contrast, sampling decoding typically uses multinomial sampling, such as top-k [13] or top-p [20], to let models sample y_t from p_{θ} after truncation to generate diverse sequences.

Best-of-N **Sampling.** As the name suggests, Best-of-N sampling involves sampling N sequences to find the best one. Let Y^1, Y^2, \ldots, Y^N be N independent sampling sequences, then each sample Y^i is assigned a scalar score $S(Y^i)$, and the best sample index is identified as $\arg\max_i \{S(Y^i)\}_{i=1}^N$.

The simplest scoring approach is to use an externally trained reward model. If avoiding the intervention of reward models, the **consistency strategy** is the most common unsupervised alternative, introduced by self-consistency [47], which found a positive correlation between response consistency and accuracy; that is, when multiple reasoning paths lead to the same answer, confidence in its correctness increases. In self-consistency, the exact answer A^i is extracted from Y^i , and the consistency score $S(Y^i)$ is computed based on the frequency with which A^i co-occurs with other answers:

$$S(Y^{i}) = \frac{\sum_{j=1, j \neq i}^{N} \mathbb{I}(A^{i} = A^{j})}{N - 1},$$
(2)

where $\mathbb{I}(\cdot)$ is the indicator function. More generally, "consistency" can be any continuous measure. For example, [21] suggested using semantic similarity to assess sample consistency in open-ended tasks, calculated through the distance between sentence embeddings.

3 ST-BoN: Self-Truncation Best-of-N Decoding

3.1 Theoretical Support: Early Consistency Foreshadows Final Consistency

We aim to overcome the efficiency bottlenecks of both full generation and reward models. Without a reward model, consistency strategies offer a promising unsupervised approach to select optimal samples. However, existing consistency methods require full generation. Naturally, we hope that early consistency can foreshadow the final consistency: a sample closer to others in early decoding is more likely to reach the correct answer when the decoding ends. If this holds, such consistency propagation can be utilized to estimate the most promising sampling in early decoding.

Intuitively, considering the cumulative effect of autoregressive generation, sampling sequences that already exhibit large differences in early decoding is less likely to converge closely by the end. Theoretically, this can be modeled as probabilistic monotonicity: as early consistency increases, the probability lower bound for final consistency surpassing a given constant also increases.

Consistency can be mathematically converted into a distance measure, where higher consistency implies a smaller distance. Let $\mathcal{D}(\cdot,\cdot):Y\times Y\to\mathbb{R}^+$ be an arbitrary metric function defined over a metric space, used to quantify the distance between two partial sequences $Y^i_{1:t}$ and $Y^j_{1:t}$ at time t. We demonstrate that early consistency can probabilistically enhance the likelihood of final consistency. Specifically, let Y^1 denote the primary sampling. At an early decoding time t (t < T), if the distance between the partial sequence $Y^i_{1:t}$ and the other N-1 partial sequences $\{Y^i_{1:t}\}_{2\leq i\leq N}$ becomes smaller under a given metric \mathcal{D} , the lower bound of the probability that the distance between the final full sequence $Y^i_{1:T}$ and the other N-1 full sequences $\{Y^i_{1:T}\}_{2\leq i\leq N}$ is less than a certain value will increase, meaning it is more likely to meet a specific consistency requirement.

Theorem 1. Let $d_t^i = \mathcal{D}(Y_{1:t}^1, Y_{1:t}^i)$ denote the distance between sampling sequence $Y_{1:t}^1$ and the *i*-th sampling sequence $Y_{1:t}^i$ at decoding time t. For a given constant ϵ , there exist a constant Γ such that:

$$\Pr\left[S_T \le \epsilon \mid S_t\right] \ge 1 - \frac{\Gamma^{T-t}}{\epsilon} S_t,$$

where
$$1 \leq t < T$$
, $S_T = \sum_{i=2}^N d_T^i$ and $S_t = \sum_{i=2}^N d_t^i$.

Proof Sketch. We assume (i) local Lipschitz continuity, *i.e.*, for any two prefixes, the next-token distributions differ in TV distance by at most L times their sequence distance, and (ii) bounded

increments, so appending a single token can increase the distance by at most M. Under maximal coupling, two continuations diverge at step t+1 with probability at most Ld_t^i . Thus the expected distance evolves as $\mathbb{E}[d_{t+1}^i \mid d_t^i] \leq d_t^i + M(Ld_t^i) = (1+LM)\,d_t^i$. Summing over i yields $\mathbb{E}[S_{t+1}] \leq \Gamma S_t$ with $\Gamma = 1+LM$. Iterating this recursion shows that deviations grow at most exponentially: $\mathbb{E}[S_T] \leq \Gamma^{T-t}S_t$. Finally, applying Markov's inequality converts the expectation bound into a high-probability guarantee: $\Pr[S_T \geq \epsilon \mid S_t] \leq \Gamma^{T-t}S_t/\epsilon$, implying the claim in Theorem 1.

The detailed proof is shown in Appendix A. As S_t increases, the probability lower bound of $S_T \le \epsilon$ also increases. This confirms the potential for early consistency that foreshadows the final consistency.

3.2 Method: Early Internal Consistency Estimates the Most Promising Sampling

We have proven the high-probability foreshadow from early consistency to final consistency, providing theoretical feasibility for utilizing sampling consistency in early decoding to estimate the most promising path. Upon this, we are ready to present the main ST-BoN algorithm, which involves defining an effective measure of sampling consistency by designing a suitable metric function \mathcal{D} .

When Does Self-Estimation Start? Before defining the measure, we first identify the earliest self-estimation time t for early consistency. We aim to achieve ultimate efficiency improvement, so the earliest time can occur when *all samplings become pairwise inconsistent*. Let this special time be c, it satisfies the following condition:

$$\sum_{i,j,i \neq j} \mathbb{I}\left(Y_{1:c}^i = Y_{1:c}^j\right) = 0 \quad \& \quad \forall t < c, \sum_{i,j,i \neq j} \mathbb{I}\left(Y_{1:t}^i = Y_{1:t}^j\right) > 0. \tag{3}$$

In practical inference, we enable GPU parallelization and perform pairwise sequence-equality checks at each time. If any sample reaches [EOS] during this process, it is terminated immediately, and the current time step is recorded as c. In practice, this situation is very rare, as the condition in Eq.3 is typically satisfied early on, as shown in Figure 3.

Main Algorithm: How is Self-Estimation Done? Now we start to define an effective measure of sampling consistency. At such an early decoding stage, semantic information is limited, and textual differences between samplings are minimal, making it hard to distinguish them solely based on output text. Therefore, we consider utilizing the more informative hidden states of LLMs to represent early sampling sequences through the model's internal information.

Chain-of-Embedding (CoE) offers a promising idea, which is the representation technique in the latent space [49] that links all hidden states from input to output, capturing the *latent thinking path* from reading to writing. It extracts hidden states across layers to form a progressive chain. Consider a model with L layers and an output length T, then the hidden state at layer l ($0 \le l \le L$) and position t ($1 \le t \le T$) is represented as \mathbf{z}_t^l . The sentence embedding for layer l is calculated as $\mathbf{h}_l^T = \frac{1}{T} \sum_{t=1}^T \mathbf{z}_t^l$ [38, 50]. Thus, CoE is defined as a progressive chain of sentence embeddings: $\mathbf{H}_{1:T} := \mathbf{h}_0^T \to \mathbf{h}_1^T \to \cdots \to \mathbf{h}_L^T$. The CoE feature $\mathcal{F}(\mathbf{H})$ is quantified as:

$$\mathcal{F}(\boldsymbol{H}_{1:T}) = \frac{1}{L} \cdot \sum_{l=0}^{L-1} \left(\frac{M(\boldsymbol{h}_l, \boldsymbol{h}_{l+1})}{M(\boldsymbol{h}_0, \boldsymbol{h}_L)} - \frac{A(\boldsymbol{h}_l, \boldsymbol{h}_{l+1})}{A(\boldsymbol{h}_0, \boldsymbol{h}_L)} \right), \tag{4}$$

where $M(\mathbf{h}_i, \mathbf{h}_j) = ||\mathbf{h}_i - \mathbf{h}_j||_2$ and $A(\mathbf{h}_i, \mathbf{h}_j) = \arccos\left(\mathbf{h}_i^{\top} \cdot \mathbf{h}_j / (||\mathbf{h}_i||_2 \cdot ||\mathbf{h}_j||_2)\right)$. A larger $\mathcal{F}(\mathbf{H}_{1:T})$ indicates a greater curvature in the latent thinking path when generating $Y_{1:T}$.

Using the CoE measure, we define the distance $\mathcal{D}(Y^i_{1:c},Y^j_{1:c})$ between two partial sequences $Y^i_{1:c}$ and $Y^j_{1:c}$ at time c as the squared difference of their CoE features. The consistency score $S(Y^i_{1:c})$ is then calculated as the average distance between the $Y^i_{1:c}$ and the other N-1 samples. Specifically:

$$\mathcal{D}(Y_{1:c}^{i}, Y_{1:c}^{j}) = \left(\mathcal{F}(\boldsymbol{H}_{1:c}^{i}) - \mathcal{F}(\boldsymbol{H}_{1:c}^{j})\right)^{2}, \quad S(Y_{1:c}^{i}) = \frac{1}{N-1} \sum_{j=1, j \neq i}^{N} \mathcal{D}(Y_{1:c}^{i}, Y_{1:c}^{j}). \quad (5)$$

A smaller $S(Y_{1:c}^i)$ indicates higher consistency between the i-th sample and the other samples. After computing scores for all N samples, we rerank them and choose the sample with the lowest score: $i_c = \arg\min_i \{S(Y_{1:c}^i)\}_{i=1}^N$, making the i_c -th sample the optimal estimate at time c.

How Long Does Self-Estimation Last? Performing self-estimation at a single moment can introduce randomness, since pairwise sequence differences only begin to emerge at time c, and these differences may not be substantial. To migrate this, we define a Buffer Window: the LLM continues to generate for an additional τ steps beyond time c, where τ is the window length. We set $\tau \propto c$, i.e., $\tau = mc$, where m is a proportional constant. The intuition is that a smaller c indicates an early divergence between samplings, which reflects greater randomness, so a smaller window may suffice to capture later differences. In contrast, a larger c suggests lower randomness, which requires a larger window to capture sufficient later differences. At each time c' within the buffer window, we obtain the optimal estimation $i_{c'} = \arg\min_i \{s(Y_{1:c'}^i)\}_{i=1}^N$ using Eq.5. This produces $\tau + 1$ optimal estimation $\{i_{c'}\}_{c'=c'}^{c+\tau}$, and the final optimal estimation i_{final} is determined by selecting the most frequent one:

$$\operatorname{Count}(i) = \sum_{t=c}^{c+\tau} \mathbb{I}(i_t = i) \ (1 \le i \le N), \qquad i_{\text{final}} = \arg\max_{i} \{\operatorname{Count}(i)\}_{i=1}^{N}. \tag{6}$$

4 Cost Analysis: Towards Efficient Best-of-N Sampling

Compared to Full-BoN, ST-BoN reduces significant computational cost during inference, which is reflected in two aspects: **Space** and **Time**. The space is related to GPU memory overhead, and the time is reflected in inference latency. We will analyze the two parts between ST-BoN and Full-BoN.

4.1 Inference Overhead: GPU Memory

During model inference, GPU memory overhead is mainly impacted by the *model weights* and the *KV cache*. While model weight loading is necessary, the KV cache is the main memory bottleneck. Autoregressive parallel sampling can quickly cause Out-of-Memory (OOM) issues due to KV cache accumulation, with OOM events tied to peak memory overhead. Therefore, we assess ST-BoN's memory optimization by comparing its reduction in peak memory overhead to that of Full-BoN.

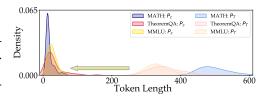


Figure 2: The distributions P_c and P_T of the earliest estimation time c and the full generation length T across different datasets.

Assuming that N samples are generated in parallel on the GPU (i.e., the batch size is N), the KV cache usage is linearly related to the sampling size N and the generation length T. In the dataset \mathcal{D} , for inputs $X \sim \mathcal{D}$ and outputs $Y \sim p_{\theta}(\cdot|X)$, we let P_T be the length distribution of full generation, and P_c be the distribution of the earliest estimation time c. When excluding basic model weight memory: (i) For Full-BoN without reward models, peak memory occurs at time T with batch size N. Note that if a reward model is added, the basic memory overhead of Full-BoN will increase, further reducing the available inference space. (ii) For ST-BoN, the peak memory can occur at time c with batch size c0, or at time c1 with batch size c2, and the memory reduction rate c3 on dataset c4 can be approximated as:

$$R_{\mathcal{D}} = 1 - \frac{\max\left\{N \cdot (\mathbb{E}_{c \sim P_c}[c] + \tau), \mathbb{E}_{T \sim P_T}[T]\right\}}{N \cdot \mathbb{E}_{T \sim P_T}[T]} = 1 - \max\left\{2 \cdot \frac{\mathbb{E}_{c \sim P_c}[c]}{\mathbb{E}_{T \sim P_T}[T]}, \frac{1}{N}\right\}. \tag{7}$$

We conduct statistical experiments on the distributions P_c and P_T using the Llama3-8B-Instruct model across three datasets: MATH [18], TheoremQA [8], and MMLU [17]. Figure 2 visualizes the respective distributions, showing a clear shift to the left of P_c compared to P_T . This indicates that the earliest estimation time c appears much earlier than the completion of sampling.

Furthermore, we calculate $\mathbb{E}_{c \sim P_c}[c]$ and $\mathbb{E}_{T \sim P_T}[T]$, set various sampling sizes N, and use Eq.7 to find R_D . Figure 3 illustrates that R_D easily surpasses 80% for N >

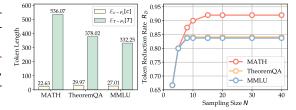


Figure 3: **(Left)** The mathematical expectations $\mathbb{E}_{c \sim P_c}[c]$ and $\mathbb{E}_{T \sim P_T}[T]$ of the earliest estimation time c and the full generation length T across different datasets; **(Right)** The computed memory reduction rate R_D under different sampling sizes N.

that $R_{\mathcal{D}}$ easily surpasses 80% for $N \geq 5$. According to Eq.7, the upper limit of $R_{\mathcal{D}}$ is

 $1-2\mathbb{E}_{c\sim P_c}[c]/\mathbb{E}_{T\sim P_T}[T]$, and increases with the sampling size N until it reaches this limit. In addition, significant variations in $\mathbb{E}_{T\sim P_T}[T]$ compared to minimal variations in $\mathbb{E}_{c\sim P_c}[c]$ make domain optimization primarily dependent on $\mathbb{E}_{T\sim P_T}[T]$. For example, the MATH dataset has a longer full generation, leading to a higher optimization upper limit than other domains. In summary, $R_{\mathcal{D}}$ increases with the sampling size N and the complexity of the task.

4.2 Inference Latency: Wall-Clock Time

Inference latency is another critical aspect that affects computational cost. In Full-BoN, while N-sampling can run in parallel on the GPU, it still introduces more delay compared to single-sample inference. Our ST-BoN method leverages early self-truncation, enabling LLMs to resume single-sample generation after time $c+\tau$. However, sequence equality checks and self-estimation within the buffer window require serial vector processing, potentially adding latency. To address this, we will evaluate inference latency using wall-clock time as the measure.

We perform statistical experiments using the Llama3-8B-Instruct model on the MATH and TheoremQA datasets. For Full-BoN, we assess scenarios with and without a reward model, highlighting the extra time needed to load and run the reward model. Figure 4 presents the results, demonstrating that ST-BoN significantly reduces inference latency compared to Full-BoN. Overall, wall-clock time latency drops by nearly 50%, with the reduction ratio growing as N increases. This efficiency stems from the

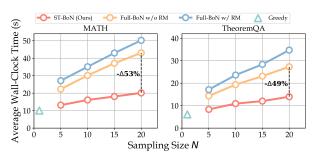


Figure 4: The average wall-clock time (seconds) comparisons in two datasets with different sampling sizes N.

self-truncating operation, which compensates for delays from self-estimation. Additionally, incorporating a reward model into Full-BoN further increases inference latency.

5 Experiments

5.1 Setup

Datasets. We select four datasets for objective tasks: MATH [18], TheoremQA [8], GPQA [37], and MMLU [17]. They span a range of domains, including mathematics, theorem application, science reasoning, and general knowledge, and present a significant difficulty level. We also select two datasets for subjective tasks: CNNDM [34] and AlpacaFarm [11]. The former is the summarization task about the open-ended generation, and the latter is the instruction-following task about the preference alignment. We adopt the revised CNNDM [51] for its higher-quality gold summaries.

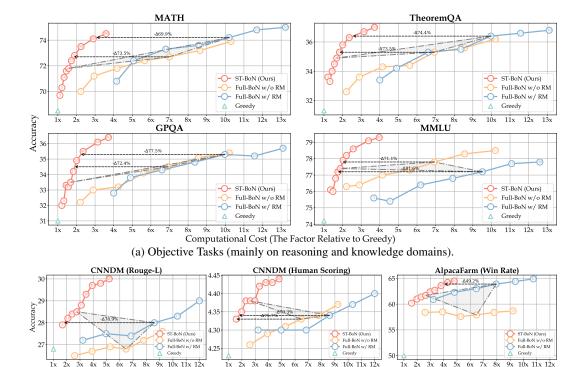
Models. We mainly adopt 7B+ parameter models with the Zero-Shot-CoT generation paradigm [52, 23], including Qwen2.5-7B-Instruct [55], Llama3-8B-Instruct [10], and Mistral-7B-Instruct-v0.3 [22]. We also test the Qwen2.5-72B-Instruct [55] to validate generalization across model scales.

Baselines. We compare our ST-BoN decoding with two Full-BoN decoding paradigms: Full-BoN without a reward model (Full-BoN w/o RM) and Full-BoN with a reward model (Full-BoN w/ RM). In objective tasks: Full-BoN w/o RM uses the classic self-consistency through majority voting [47], and Full-BoN w/ RM employs the process reward model (PRM) Skywork-o1-Open-PRM-7B ^{2 3}. In subjective tasks: Full-BoN w/o RM applies the modified self-consistency through semantic similarity [21], and Full-BoN w/ RM uses the ArmoRM-Llama-3-8B [45] for preference rewards.

Implementation. We use the sampling strategy combining top-k [13], top-p [20], and temperature T [19], with k=20, p=0.95, and T=0.7. The buffer window length τ is set to c in our main experiments. Detailed hyperparameter analysis is provided in Section 6.2 and 6.3. All baselines are implemented using the HuggingFace Transformers [43] library's model.generate() function with KV cache. All experiments are run on 80G A100 GPUs, with the GPU number varying based on N.

²https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B

³We use PRMs that are as strong and generic as possible, selecting one of the most advanced for our main experiments, and Appendix D.2 includes results with other PRMs to validate the generality of our conclusions.



Computational Cost (The Factor Relative to Greedy)
(b) Subjective Tasks (open-ended generation and preference alignment).

Figure 5: Computational cost and accuracy on different objective and subjective task datasets with various domains using the **Qwen2.5-7B-Instruct** model. Each point on the curves corresponds to a specific sampling size N from 3 to 80, with values labeled within the circle. We connect the three results at N=20 with gray dashed lines to show their relative performance without considering cost.

Evaluation. We mainly evaluate **the balance between computational cost and performance**. The computational cost lies in two dimensions in Section 4: memory and time. We use the cost of greedy decoding as the baseline, and the cost of each paradigm is calculated as follows:

• Memory Cost $\mathcal{M}_{\text{cost}}$: Let M_{bm} , M_{peak} , and M_{rm} denote the memory usage of the base LLM weights, the peak memory overhead during inference, and the reward model weights, respectively, for each paradigm. Let $M_{\text{peak}}^{\text{greedy}}$ denote the peak memory during greedy decoding:

$$\mathcal{M}_{\text{cost}} := \begin{cases} \left(M_{\text{bm}} + M_{\text{peak}}\right) / \left(M_{\text{bm}} + M_{\text{peak}}^{\text{greedy}}\right), & \text{ST-BoN \& Full-BoN w/o RM,} \\ \left(M_{\text{bm}} + M_{\text{peak}} + M_{\text{rm}}\right) / \left(M_{\text{bm}} + M_{\text{peak}}^{\text{greedy}}\right), & \text{Full-BoN w/ RM.} \end{cases}$$
(8)

• *Time Cost* \mathcal{T}_{cost} : \mathcal{T}_{cost} is denoted as the ratio of the wall-clock time of each paradigm to that of greedy decoding. For Full-BoN w/ RM, we consider that both the generator and the verifier are persistently stored in GPU memory, and thus ignore the loading time of the RM.

The **overall computational cost** A_{cost} is given by:

$$\mathcal{A}_{\text{cost}} := \mathcal{M}_{\text{cost}} \cdot \mathcal{T}_{\text{cost}}. \tag{9}$$

Regarding **performance**, *Accuracy* is used as a metric in reasoning scenarios. To reduce random error, we follow [16] to report the average results over four evaluation runs. In open-ended scenarios, *Rouge-L* [29] and *Human Scoring* are applied for the summarization, and *Win Rate (WR)* [59] judged by GPT-4o-Turbo [1] is used for the instruction-following. Metric details are shown in Appendix C.

5.2 Results I: Objective Task

Figure 5a presents the results of Qwen2.5-7B-Instruct on four objective tasks. Due to space constraints, results for other models are provided in Appendix D.1. First, we analyze the *result soundness*. Under the same sampling size N (we use N=20 as an example and connect the three paradigms with gray dashed lines), when cost is ignored, compared to Full-BoN w/o RM, ST-BoN shows no significant performance drop, indicating that **the theory proposed in Section 3.1** — early consistency

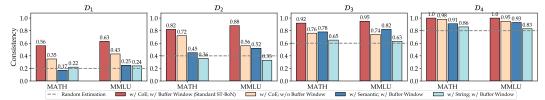


Figure 6: The early-final consistencies between early self-estimation and final correctness in different domains and sub-datasets with the **Qwen2.5-7B-Instruct** model. \mathcal{D}_i represents the subset containing all cases from dataset \mathcal{D} that produces i correct answers out of N samplings.

foreshadows final consistency — **is reasonable and holds in practice.** In addition, Full-BoN w/ RM outperforms the others in three datasets more related to reasoning (except MMLU), which aligns with the test-time scaling goal of "increasing inference cost to improve performance" [40].

Next, we analyze our core advantage: cost-performance trade-offs. Due to self-truncation, ST-BoN does not fully utilize all N samples, leading to lower performance than Full-BoN initially. However, it greatly reduces the cost, allowing N to be scaled up within the saved cost. As N increases, ST-BoN eventually matches Full-BoN's performance while using lower costs. For example, when Full-BoN uses N=20, ST-BoN reaches the same accuracy at $N=20\sim30$ with 70–75% lower costs (vs. Full-BoN w/o RM), and at $N=40\sim80$ with 75–80% lower costs (vs. Full-BoN w/ RM), showing that ST-BoN can achieve the same performance as Full-BoN with significantly lower costs.

On the other hand, under the same computational cost, ST-BoN can scale to a much larger N than Full-BoN. For example, when Full-BoN w/o RM uses N=10 and Full-BoN w/ RM uses N=3, ST-BoN can reach nearly N=80. This gives it access to much more samples, leading to a 3-4 point higher accuracy across all datasets. These results show that **under the same computational cost**, ST-BoN can achieve better performance than Full-BoN.

Finally, we also observe the *domain generalization* of ST-BoN. Full-BoN w/o RM performs noticeably worse on MMLU, a knowledge dataset, compared to the other three reasoning datasets. In contrast, ST-BoN maintains its cost—performance trade-off advantage. This suggests that Full-BoN w/o RM relies on a strong and general RM to be effective, while ST-BoN avoids this potential cost. By not requiring domain-specific priors, ST-BoN remains effective across diverse domains.

5.3 Results II: Subjective Tasks

To evaluate the domain generalization of ST-BoN, we further test it on subjective tasks. The results for Qwen2.5-7B-Instruct are shown in Figure 5b, with results of other models shown in Appendix D.1. First, Full-BoN w/o RM performs poorly, indicating that semantic consistency cannot identify optimal samples. Second, Full-BoN w/RM underperforms on summarization tasks due to a domain mismatch: the reward model is typically trained on open-domain QA preferences, which rarely cover summarization, leading to OOD issues. Finally, on instruction-following tasks, although Full-BoN w/RM outperforms ST-BoN at the same sampling size N, ST-BoN can reach its performance by increasing N, while reducing computational cost by approximately 50%. This highlights ST-BoN's cost-performance trade-off on subjective tasks and further demonstrates its domain robustness.

6 In-depth Analysis

6.1 Component Ablation: Why ST-BoN Works?

Our method is motivated by the idea that early consistency may foreshadow final consistency, then we use CoE to self-estimate early consistency, and propose a buffer window to mitigate noise. In this part, we will ablate the two components: CoE measure and buffer window, to evaluate their necessity.

Baseline. The standard ST-BoN involves "w/ CoE & w/ Buffer Window". First, we *remove the buffer window*, allowing the LLM to perform only one self-estimation at the earliest estimation time c. Next, to further assess the necessity of using hidden states of LLMs (*i.e.*, CoE) for early consistency computation, we compare two unsupervised output measure: *semantic* and *string*. Specifically, in Eq.5, we replace $\mathcal{D}(Y_{1:c}^i, Y_{1:c}^j)$ with $||[\boldsymbol{h}_{1::}^i]_L - [\boldsymbol{h}_{1::}^j]_L||_2^2$ and $1/\text{Rouge-L}(Y_{1:c}^i, Y_{1:c}^j)$, respectively.

Evaluation. We assess the *Early-Final Consistency* between *early self-estimation* and *final correctness*. Specifically, assume each case in dataset \mathcal{D} is sampled N times. The dataset is divided

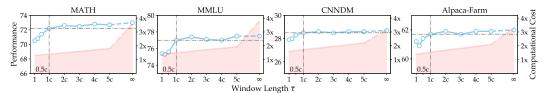


Figure 7: Hyperparameter ablation with varying window length τ . The blue line shows performance changes as τ increases, while the pink shading represents changes in computational cost. $\tau \to \infty$ indicates a window extended until any sampling reaches [EOS].

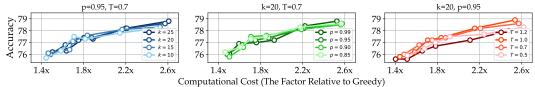


Figure 8: Sampling strategy ablation with various top-k, top-p, and temperature T in MMLU.

into N+1 disjoint subsets $\{\mathcal{D}_i\}_{i=0}^N$, where \mathcal{D}_i contains cases that yield i correct answers out of N samples. For each \mathcal{D}_i , we compute the proportion of cases where the LLM's self-estimated best sampling produces a correct final answer, representing early-final consistency. Naturally, as i decreases, the estimation becomes more challenging, and the random consistency expectation is i/N.

Results. We evaluate on the MATH and MMLU datasets due to their diverse domains and difficulty levels. With N=5, we exclude subsets \mathcal{D}_0 and \mathcal{D}_5 , as they represent cases that are entirely correct or incorrect. Figure 6 presents the results using the Qwen2.5-7B-Instruct model (Results for other models are in Appendix D.3), we find that: (i) "w/ buffer window" consistently outperforms that "w/o buffer window", demonstrating its effectiveness. (ii) For all subsets, "w/ CoE" significantly outperforms random estimation, with standard ST-BoN achieving excellent consistency. In contrast, "w/ semantic" and "w/ string" hover around the random baseline, highlighting the critical role of CoE in early consistency measure. Thus, each module in the current ST-BoN plays an essential role.

In fact, we have also discovered that using CoE consistency under full generation, yields better results than using self-consistency with majority voting. This provides further evidence that CoE's effectiveness in measuring early consistency is not random. The results are shown in Appendix D.4.

6.2 Window Length τ Ablation

In ST-BoN, the buffer window length τ is the only hyperparameter. We study its impact by varying τ in different datasets with Qwen2.5-7B-Instruct, with a fixed sampling size N=10.

Figure 7 shows that when $\tau < c$, the performance gain relative to cost increases faster. However, beyond c, this gain slows significantly, making c the optimal choice for balancing performance and cost in our experiments. Furthermore, if ignoring costs, performance continues to show fluctuating improvements as τ increases, suggesting the potential of task-specific τ tuning. For example, on the MATH dataset, performance improves more steadily with larger τ values, probably due to its longer outputs, where early estimates are less informative, and need a larger buffer window to capture more information. Adaptive τ based on task complexity can be a promising direction for future work.

6.3 Sampling Strategy Robustness

We also evaluate the robustness of ST-BoN across different sampling strategies by varying top-k, top-p, and temperature T settings, and analyze their impact on performance and computational cost.

Figure 8 shows the results on the MMLU dataset using the Qwen2.5-7B-Instruct model. We observe that variations in k and p have a minimal impact on performance and cost, while changes in T affect both more significantly. Unlike k and p, which only shift the truncation point of the probability distribution without affecting token relativity, T alters token probabilities, making the distribution more uniform and increasing sampling randomness as T increases. This results in an earlier occurrence of the earliest estimation time c, thereby reducing computational cost. However, an earlier estimation time c might capture less effective information, potentially as a side effect of improved efficiency. We recommend using a moderate T value, such as 0.7, to strike a balance between performance and cost.

6.4 Case Study

We also conduct case studies for further comparison. We find that ST-BoN can better address ambiguous scenarios, such as when sampling answers are all inconsistent or majority voting encounters high randomness, compensating for these limitations. Details are available in Appendix E.

7 Related Work and Comparisons

7.1 Test-Time Scaling

BoN aims to achieve test-time scaling [40]. The idea is to increase the compute during inference while setting cost aside, to push the performance ceiling. Existing approaches fall into two broad lines [32]: Sequential scaling lengthens a single reasoning path during generation and seeks deeper deliberation, reflection, or insight [16]. Parallel scaling, which captures the spirit of BoN, increases the number of reasoning paths generated at once and seeks greater diversity in reasoning [47, 6]. Other methods, such as ToT [57], GoT [5], and Monte Carlo Tree Search [44], share the same objective but expand from a reasoning-structure perspective, taking different research tracks than BoN.

7.2 Best-of-N Sampling

BoN sampling was originally proposed for inference-time preference alignment [33], using a reward model to select the best sample and further fine-tune the base model [42]. Its effectiveness has been theoretically supported by several studies [12, 31, 4, 56]. BoN has also seen broad adoption in reasoning tasks [40], notably in the self-consistency paradigm [47], which uses majority voting to select answers unsupervisedly. More recently, process reward models [28, 46] have enabled direct scoring within BoN for reasoning. However, reward models raise computational costs and are vulnerable to overoptimization, and rely heavily on their model capabilities [14].

7.3 Efficient Best-of-N

The core optimization idea of ST-BoN can be summarized as "depth pruning", which eliminates some suboptimal samples in early decoding to reduce memory usage. SBoN [41] also considers removing local segments; CARDS [25] and TreeBoN [36] continue to branch after discarding them. However, these methods still rely on a reward model for scoring, so the additional inference latency and memory usage remain high. More importantly, they have been validated only under the preference alignment, but in reasoning domains, reward models may be difficult to score randomly segmented process fragments. Appendix B offers a detailed comparison, highlighting the greater efficiency of ST-BoN and its broader applicability in different domains.

Another type of optimization idea can be summarized as "breadth pruning", aiming to adaptively reduce the actual sampling number under a fixed budget N. For example, ASC [2] stops sampling early based on answer frequency, and ESC [27] dynamically adjusts the required sampling sizes from an entropy perspective. Although these methods lower token output and reduce memory usage, they rely on serial sampling with adaptive stopping, which compromises the parallelism benefits of BoN and limits efficiency on modern GPUs. As a result, they are suboptimal in terms of inference latency.

Certainly, another research line studies distilling the BoN policy during training to replace multiple samplings with a single one, reducing inference-time latency. Methods like BoNBoN [15], BOND [39], and vBoN [3] focus on this line, shifting the computational cost from the inference phase to the training phase. Overall, this line explores more about the potential of learning the BoN distribution at training time, making orthogonal contributions compared to direct inference-time optimization.

8 Conclusion

We propose ST-BoN decoding, which enables LLMs to self-estimate the most promising sampling without fully generating N samples or using reward models. ST-BoN significantly reduces GPU memory overhead and inference latency while demonstrating better cost-performance trade-offs than Full-BoN in both objective and subjective tasks from reasoning to preference alignment.

Limitations

- (1) Model Transparency: Since accessing the hidden states of the LLM is required, ST-BoN does not apply to closed-source models such as OpenAI's GPT-4 series [1]. However, with the rapid development of open-source LLMs [16], we believe that research on white-box methods is crucial, as it can provide stronger interpretability and help us better explore the internal mechanisms of LLMs.
- (2) Length Adaptivity: As mentioned in Section 6.2, there is still room for improvement in ST-BoN's ability to adaptively adjust the window length τ based on task complexity. Longer responses may require longer windows to capture more information. To better balance the cost, we can observe the average generation length of the task during greedy decoding and adjust the window size accordingly. This ensures that performance is maximized within an acceptable cost range.

Societal Impact

- (1) Trustworthiness: ST-BoN relies on internal consistency signals to guide decoding, moving the selection process into the model's latent space. Prior work [47] has shown a strong correlation between consistency and correctness. Building on this, our theoretical analysis (Section 3.1) and empirical findings (Section 6.1) further support the reliability of latent-space decision-making. Together, these two parts provide a solid foundation for the model's trustworthiness under our method.
- (2) Safety: ST-BoN introduces no additional safety risks. The sampling follows the model's
 native distribution without adversarial perturbation, and the consistency-based selection
 mechanism operates without external reward models, thus avoiding interference from out-ofdistribution signals.
- (3) Biases: ST-BoN inherits the base model's biases, as it does not perform explicit debiasing. However, by leveraging multiple parallel samplings, it can identify and truncate transient biases that arise sporadically during generation. These biased trajectories may be excluded as outliers through the consistency-based strategy, thereby potentially mitigating their impact.

Acknowledgement

This paper was supported by the General Program of the National Natural Science Foundation of China (62176153). This paper was also supported by the National Natural Science Foundation of China (62406188) and the Natural Science Foundation of Shanghai (24ZR1440300). Additionally, this work was partially conducted during Yiming's internship at the Tongyi Lab, Alibaba Group. It was supported by the Alibaba Research Intern Program.

References

- [1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- [2] Pranjal Aggarwal, Aman Madaan, Yiming Yang, et al. Let's sample step by step: Adaptive-consistency for efficient reasoning and coding with llms. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 12375–12396, 2023.
- [3] Afra Amini, Tim Vieira, Elliott Ash, and Ryan Cotterell. Variational best-of-n alignment. *arXiv* preprint arXiv:2407.06057, 2024.
- [4] Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander D'Amour, Jacob Eisenstein, Chirag Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment policy. *arXiv preprint arXiv:2401.01879*, 2024.
- [5] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph

- of thoughts: Solving elaborate problems with large language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 17682–17690, 2024.
- [6] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling. *arXiv preprint arXiv:2407.21787*, 2024.
- [7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- [8] Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony Xia. Theoremqa: A theorem-driven question answering dataset. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 7889–7901, 2023.
- [9] Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of o1-like llms. *arXiv* preprint arXiv:2412.21187, 2024.
- [10] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- [11] Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for methods that learn from human feedback. *Advances in Neural Information Processing Systems*, 36, 2024.
- [12] Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D'Amour, DJ Dvijotham, Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or herding? reward model ensembles mitigate but do not eliminate reward hacking. *arXiv preprint arXiv:2312.09244*, 2023.
- [13] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 889–898, 2018.
- [14] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In *International Conference on Machine Learning*, pages 10835–10866. PMLR, 2023.
- [15] Lin Gui, Cristina Gârbacea, and Victor Veitch. Bonbon alignment for large language models and the sweetness of best-of-n sampling. *arXiv preprint arXiv:2406.00832*, 2024.
- [16] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- [17] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*, 2020.
- [18] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021.
- [19] Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2015.
- [20] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. *arXiv preprint arXiv:1904.09751*, 2019.

- [21] Siddhartha Jain, Xiaofei Ma, Anoop Deoras, and Bing Xiang. Lightweight reranking for language model generations. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 6960–6984, 2024.
- [22] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.
- [23] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. Advances in neural information processing systems, 35:22199–22213, 2022.
- [24] Wojciech Kryściński, Nitish Shirish Keskar, Bryan McCann, Caiming Xiong, and Richard Socher. Neural text summarization: A critical evaluation. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 540–551, 2019.
- [25] Bolian Li, Yifan Wang, Anamika Lochab, Ananth Grama, and Ruqi Zhang. Cascade reward sampling for efficient decoding-time alignment. *arXiv preprint arXiv:2406.16306*, 2024.
- [26] Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and Houwen Peng. Common 7b language models already possess strong math capabilities. *arXiv* preprint arXiv:2403.04706, 2024.
- [27] Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan, Xinglin Wang, Bin Sun, Heda Wang, and Kan Li. Escape sky-high cost: Early-stopping self-consistency for multi-step reasoning. *arXiv* preprint arXiv:2401.10480, 2024.
- [28] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. arXiv preprint arXiv:2305.20050, 2023.
- [29] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization branches out*, pages 74–81, 2004.
- [30] Man Luo, Xin Xu, Zhuyun Dai, Panupong Pasupat, Mehran Kazemi, Chitta Baral, Vaiva Imbrasaite, and Vincent Y Zhao. Dr.icl: Demonstration-retrieved in-context learning. *Data Intelligence*, 6(4):909–922, 2024.
- [31] Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled decoding from language models. *arXiv* preprint arXiv:2310.17022, 2023.
- [32] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. *arXiv preprint arXiv:2501.19393*, 2025.
- [33] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.
- [34] Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Çağlar Gülçehre, and Bing Xiang. Abstractive text summarization using sequence-to-sequence rnns and beyond. In *Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning*, pages 280–290, 2016.
- [35] Skywork o1 Team. Skywork-o1 open series. https://huggingface.co/Skywork, November 2024.
- [36] Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Jiayi Geng, Huazheng Wang, Kaixuan Huang, Yue Wu, and Mengdi Wang. Treebon: Enhancing inference-time alignment with speculative tree-search and best-of-n sampling. *arXiv preprint arXiv:2410.16033*, 2024.
- [37] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. *arXiv preprint arXiv:2311.12022*, 2023.

- [38] Jie Ren, Jiaming Luo, Yao Zhao, Kundan Krishna, Mohammad Saleh, Balaji Lakshminarayanan, and Peter J Liu. Out-of-distribution detection and selective generation for conditional language models. In *The Eleventh International Conference on Learning Representations*, 2022.
- [39] Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, et al. Bond: Aligning llms with best-of-n distillation. *arXiv* preprint arXiv:2407.14622, 2024.
- [40] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.
- [41] Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. *arXiv* preprint arXiv:2410.20290, 2024.
- [42] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
- [43] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.
- [44] Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. In *Forty-first International Conference on Machine Learning*, 2024.
- [45] Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences via multi-objective reward modeling and mixture-of-experts. *arXiv preprint arXiv:2406.12845*, 2024.
- [46] Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics* (*Volume 1: Long Papers*), pages 9426–9439, 2024.
- [47] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. *arXiv preprint arXiv:2203.11171*, 2022.
- [48] Yiming Wang, Pei Zhang, Jialong Tang, Haoran Wei, Baosong Yang, Rui Wang, Chenshu Sun, Feitong Sun, Jiran Zhang, Junxuan Wu, et al. Polymath: Evaluating mathematical reasoning in multilingual contexts. *arXiv* preprint *arXiv*:2504.18428, 2025.
- [49] Yiming Wang, Pei Zhang, Baosong Yang, Derek F Wong, and Rui Wang. Latent space chain-of-embedding enables output-free llm self-evaluation. *arXiv preprint arXiv:2410.13640*, 2024.
- [50] Yiming Wang, Pei Zhang, Baosong Yang, Derek F. Wong, Zhuosheng Zhang, and Rui Wang. Embedding trajectory for out-of-distribution detection in mathematical reasoning. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [51] Yiming Wang, Zhuosheng Zhang, and Rui Wang. Element-aware summarization with large language models: Expert-aligned evaluation and chain-of-thought method. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 8640–8665, 2023.
- [52] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- [53] Wen Wen, Yongbin Liu, Qiang Lin, and Chunping Ouyang. Few-shot named entity recognition with joint token and sentence awareness. *Data Intelligence*, 5(3):767–785, 2023.

- [54] Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An implementation of generative prm, 2024.
- [55] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
- [56] Joy Qiping Yang, Salman Salamatian, Ziteng Sun, Ananda Theertha Suresh, and Ahmad Beirami. Asymptotics of language model alignment. *arXiv preprint arXiv:2404.01730*, 2024.
- [57] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Advances in Neural Information Processing Systems*, 36, 2024.
- [58] Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical reasoning. *arXiv* preprint arXiv:2501.07301, 2025.
- [59] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.

Appendix

A Proof of Theorem 1

Proof. We first make the two key structural assumptions:

• Local Lipschitz continuity of the model: The model's next-token distributions satisfy, for all partial sequence pairs $(Y_{1:t}^i, Y_{1:t}^j)$,

$$||P_{t+1}(\cdot | Y_{1:t}^i) - P_{t+1}(\cdot | Y_{1:t}^j)||_{\text{TV}} \le L \cdot \mathcal{D}(Y_{1:t}^i, Y_{1:t}^j),$$
 (10)

for some $L \geq 0$, where $||\cdot||_{\mathrm{TV}}$ denotes the Total Variation Distance. It quantifies the "smooth" behavior that tiny changes to the sequence produce only tiny shifts in the next-token probabilities. Transformers are inherently Lipschitz-continuous: Each token embedding passes through layers of self-attention and feed-forward networks whose composition preserves this smoothness, so similar sequences yield similar hidden states. Moreover, Softmax and LayerNorm further suppress perturbations, preventing small input changes from causing large changes in the output.

• Bounded-increment of the distance: The distance measure \mathcal{D} satisfies: for any two partial sequences $Y_{1:t}^i, Y_{1:t}^j$ and any next tokens Y_{t+1}^i, Y_{t+1}^j ,

$$\mathcal{D}(Y_{1:t}^i \circ Y_{t+1}^i, Y_{1:t}^j \circ Y_{t+1}^j) \leq \mathcal{D}(Y_{1:t}^i, Y_{1:t}^j) + M \cdot \mathbf{1}[Y_{t+1}^i \neq Y_{t+1}^j], \tag{11}$$

for some constant M>0. It ensures the distance measure remains controlled, preventing abrupt shifts from a single token change. Fundamentally, this reflects the smoothness characteristic of local Lipschitz continuity.

Next, we start our proof. Consider the pair $(Y_{1:t}^1,Y_{1:t}^i)$. By the maximal coupling of $P_{t+1}(\cdot\mid Y_{1:t}^1)$ and $P_{t+1}(\cdot\mid Y_{1:t}^i)$, The probability they draw different tokens at step t+1 is

$$\Pr[Y_{t+1}^1 \neq Y_{t+1}^i \mid d_t^i] = \|P_{t+1}(\cdot \mid Y_{1:t}^1) - P_{t+1}(\cdot \mid Y_{1:t}^i)\|_{TV} \le L d_t^i.$$
(12)

If they differ, the bounded-increment assumption implies

$$d_{t+1}^i - d_t^i \le M. (13)$$

Hence

$$\mathbb{E}[d_{t+1}^{i} \mid d_{t}^{i}] = \mathbb{E}[d_{t+1}^{i} - d_{t}^{i} + d_{t}^{i} \mid d_{t}^{i}]$$

$$\leq d_{t}^{i} + \Pr[Y_{t+1}^{1} \neq Y_{t+1}^{i} \mid d_{t}^{i}] M$$

$$\leq d_{t}^{i} + (L d_{t}^{i}) M = (1 + LM) d_{t}^{i}.$$
(14)

Let $\Gamma = 1 + LM$. Summing the above over $i = 2, \dots, N$ gives

$$\mathbb{E}[S_{t+1} \mid S_t] = \sum_{i=2}^{N} \mathbb{E}[d_{t+1}^i \mid d_t^i] \le \Gamma \sum_{i=2}^{N} d_t^i = \Gamma S_t.$$
 (15)

Starting from t and iterating the one-step bound,

$$\mathbb{E}[S_{t+1}] \leq \Gamma S_t,$$

$$\mathbb{E}[S_{t+2}] \leq \Gamma \mathbb{E}[S_{t+1}] \leq \Gamma^2 S_t,$$

$$\vdots$$

$$\mathbb{E}[S_T] \leq \Gamma^{T-t} S_t.$$
(16)

For any $\epsilon > 0$, Markov's inequality yields

$$\Pr[S_T \ge \epsilon \mid S_t] \le \frac{\mathbb{E}[S_T \mid S_t]}{\epsilon} \le \frac{\Gamma^{T-t} S_t}{\epsilon}. \tag{17}$$

Rearranging gives the stated result in Theorem 1:

$$\Pr[S_T \le \epsilon \mid S_t] \ge 1 - \frac{\Gamma^{T-t}}{\epsilon} S_t. \tag{18}$$

B Related Work Comparison

Some existing work also considers the reduction of the full generation to improve the efficiency of BoN. The core idea behind all three methods is to use the reward model to score partial sequences at certain time steps during the sampling process. SBoN sets a threshold and discards all samples with scores above this threshold, then iteratively generates and selects the remaining candidates until only one remains. TreeBoN and CARDS retain only one candidate at each selection and then repeatedly branch out N new paths, performing selection at each branching stage. These methods have fundamental differences from ST-BoN. Table 1 presents a comparison between different dimensions.

Table 1: Detailed comparison with other efficient BoN methods aiming to reducing full generation.

Method	Free of Domain Prior	Free of Reward Models	Memory Bottleneck (excluding KV cache)	Time Bottleneck	Applicable Domain
SBoN [41]	Х	Х			
CARDS [25]	X	X	Reward Model Weight	Load & Run Reward Models	Preference Alignment
TreeBoN [36]	✓	X			
ST-BoN (Ours)	1	1	N/A	Vector Operations	All Objective Tasks (e.g. Reasoning & Knowledge) and Subjective Tasks (e.g. Generation & Preference Alignment)

From the perspective of computational cost, the memory overhead and inference time introduced by the reward model are non-negligible. Additionally, during the autoregressive generation process, the reward model repeatedly scores incomplete segments, which blocks parallel sampling and significantly reduces actual GPU utilization. Therefore, in practical production settings, from a wall-clock-time perspective, these approaches still face efficiency bottlenecks.

On the other hand, the effectiveness of SBoN and CARDS relies on a prior assumption: the reward model's score for a sampling prefix correlates with the score for the final complete text. However, this assumption has only been validated in preference alignment domains, raising concerns about domain generalizability. When applied to reasoning domains, process reward models will likely struggle to evaluate arbitrarily segmented text, as they tend to focus on scoring complete process segments. Furthermore, [36] has pointed out that the prior assumption underlying CARDS breaks down when the generation length exceeds 128 tokens. In contrast, ST-BoN is highly lightweight: it does not incur overhead or blocking from a reward model and does not depend on domain-specific priors.

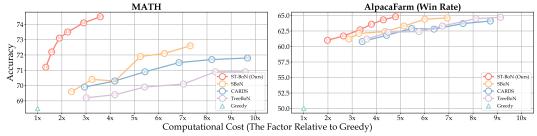


Figure 9: Computational cost and accuracy on different objective and subjective task datasets with various domains using the **Qwen2.5-7B-Instruct** model. Each point on the curves corresponds to a specific sampling size N from 10 to 80, with values labeled within the circle. **We compare our ST-BoN with three other efficient BoN methods.**

We compare the cost-performance trade-offs of ST-BoN and the three methods on both an objective and a subjective task, as illustrated in Figure 9. (i) The MATH benchmark evaluates the reasoning ability. All three other methods perform poorly on this task, probably because process reward models require complete procedural segments to assign reliable scores. They struggle to make sound decisions when evaluating arbitrarily segmented text fragments. (ii) The AlpacaFarm benchmark assesses preference alignment, the primary domain where the three methods have demonstrated effectiveness. In this domain, ST-BoN performs comparably or even better than the others. This may be because the inductive biases assumed by some methods do not generalize well across different models. These results collectively demonstrate the strong domain generalizability and practical applicability of ST-BoN.

C Evaluation Setup

• **Reasoning Scenarios**: We use *Accuracy* as the evaluation metric. Following [47], we extract answers from LLM responses using the exact match method and compare them with the ground truth.

• Open-end Scenarios:

- Summarization: We use both automatic and human evaluation. For the automatic metric, we adopt *Rouge-L* [29]. For human evaluation, volunteers score LLM-generated summaries across four dimensions [24, 51]: (i) Fluency: Free of spelling, grammatical, or syntactic errors; (ii) Coherence: Events should be logically connected, with smooth linguistic transitions; (iii) Consistency: No hallucinated facts; all information must align with the source document; (iv) Relevance: Emphasizes key information while minimizing non-core facts and redundant details. Each dimension is rated on a scale of 0 to 5, and the final score is the average of the four dimension scores. We invited three graduate students to individually score 50 samples from the dataset following [51]. The final reported score is the average of the three annotations. Each annotator spent approximately 16 hours on average to complete the task.
- Instruction-following: We use the BoN alignment metric, Win Rate (WR) [59]. Each paradigm's responses were paired with those generated via greedy decoding and assessed by an external LLM, GPT-4-Turbo [1]. The judge model selects the better response in each pair, and WR is computed as the percentage of comparisons where the paradigm's response is preferred. Greedy decoding serves as a baseline with a WR of 50%, representing random performance.

D Supplementary Experimental Results

D.1 Main Results of All LLMs

In this part, we present the main experimental results for all remaining LLMs, including: Qwen2.5-72B-Instruct (Figure 10), Llama3-8B-Instruct (Figure 11), and Mistral-7B-v0.3-Instruct (Figure 12). As highlighted in [46], a significant performance drop occurs when the verifier's parameter scale is smaller than that of the generator. Therefore, for the Qwen2.5-72B-Instruct model, we adopt a PRM of equal scale — Qwen2.5-Math-PRM-72B [58], and only report results in objective tasks.

Under these models, all conclusions regarding the cost–performance trade-off drawn in Sections 5.2 and 5.3 still hold, and as model size increases, ST-BoN remains effective, demonstrating its robustness to parameter scaling.

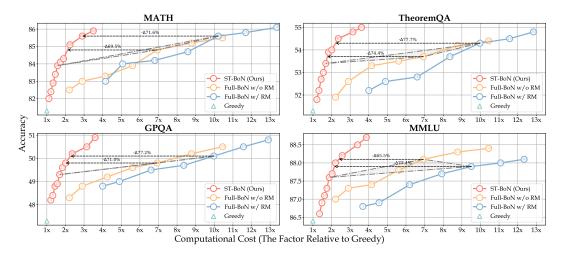


Figure 10: Computational cost and accuracy on different objective task datasets with various domains using the **Qwen2.5-72B-Instruct** model. Each point on the curves corresponds to a specific sampling size N from 3 to 80, with values labeled within the circle. We connect the three results at N=20 with gray dashed lines to show their relative performance without considering cost.

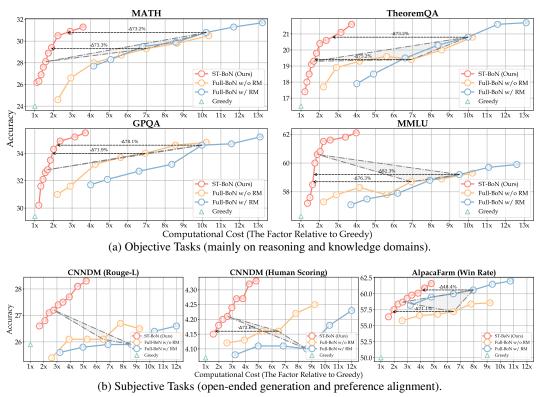


Figure 11: Computational cost and accuracy on different objective and subjective task datasets with various domains using the **Llama-3-8B-Instruct** model. Each point on the curves corresponds to a specific sampling size N from 3 to 80, with values labeled within the circle. We connect the three results at N=20 with gray dashed lines to show their relative performance without considering cost.

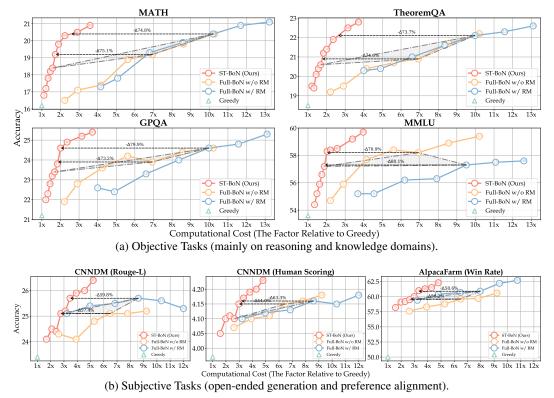


Figure 12: Computational cost and accuracy on different objective and subjective task datasets with various domains using the **Mistral-7B-Instruct-v0.3** model. Each point on the curves corresponds to a specific sampling size N from 3 to 80, with values labeled within the circle. We connect the three results at N=20 with gray dashed lines to show their relative performance without considering cost.

D.2 Reward Model Ablation

To ensure that the choice of reward models does not impact our key conclusions, we extend the baselines of the Full-BoN w/ RM paradigm beyond the main experiment in Figure 13. Specifically, we introduce two additional advanced reward models for comparisons: Qwen2.5-Math-PRM-7B [58] and RLHFlow-PRM-Mistral-8B [54]. As shown in Figure 13, the choice of reward models does not affect the conclusions regarding the cost-performance trade-off advantages of ST-BoN in the main experiments.

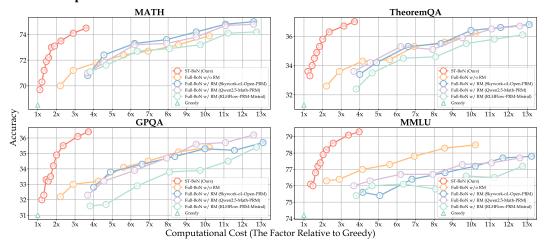


Figure 13: (**Reward Model Ablation**) Computational cost and accuracy on different objective and subjective task datasets with various domains using the **Qwen2.5-7B-Instruct** model. Each point on the curves corresponds to a specific sampling size N from 3 to 80, with values labeled within the circle. **For the Full-BoN w/ RM paradigm, we use three reward models for comparisons.**

D.3 Component Ablation of All LLMs

We present the additional early-final consistency results on Llama3-8B-Instruct (Figure 14) and Mistral-7B-Instruct-v0.3 (Figure 15) models, demonstrating a strong positive correlation between ST-BoN's early self-estimation and the final answer correctness, as concluded in Section 6.1. This indicates that our consistency conclusion can be generalized across various series of LLMs.



Figure 14: The early-final consistencies between early self-estimation and final correctness in different domains and sub-datasets with the **Llama3-8B-Instruct** model. \mathcal{D}_i represents the subset containing all cases from dataset \mathcal{D} that produces i correct answers out of N samplings.

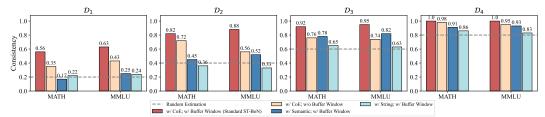


Figure 15: The early-final consistencies between early self-estimation and final correctness in different domains and sub-datasets with the **Mistral-7B-Instruct-v0.3** model. \mathcal{D}_i represents the subset containing all cases from dataset \mathcal{D} that produces i correct answers out of N samplings.

D.4 Full-BoN with Chain-of-Embedding

In our experiments, we find that under the same sampling size N, although the absolute performance of ST-BoN was weaker than that of Full-BoN w/o RM, the gap is not substantial. Since our self-estimation of early consistency relies on the CoE measure, this raises a further question regarding the effectiveness of CoE: Would using CoE in Full-BoN w/o RM outperform majority voting?

Table 2: The performance comparisons of majority voting and chain-of-embedding under the Full-BoN w/o RM paradigm. We use the **Qwen2.5-7B-Instruct** model to evaluate two objective tasks.

	N=3	N = 5	N = 10	N = 15	N = 20	N = 25	N = 30	N = 40	N = 60	N = 80
				MAT	TH					
Majority Voting [47] Chain-of-Embedding [49]	70.0 69.6	71.2 70.8	71.8 72.3	72.4 72.7	72.7 73.1	73.2 73.5	73.9 73.8	74.2 74.5	74.4 74.7	74.5 74.9
				MMI	LU					
Majority Voting [47] Chain-of-Embedding [49]	76.3 76.2	76.4 76.5	77.0 77.5	77.3 77.8	77.8 78.2	78.3 78.5	78.5 78.4	78.6 78.9	78.6 79.2	79.2 79.5

Table 2 presents the performances of the Qwen2.5-7B-Instruct model on MATH and MMLU under the Full-BoN w/o RM paradigm, using majority voting [47] and CoE [49], respectively. Since the computational cost is nearly identical, we do not compare them in this regard. We observe that in most cases, using CoE outperforms majority voting. We think that majority voting focuses solely on the final answer, representing outcome supervision. However, LLMs might reach a correct answer through wrong reasoning, so the outcome doesn't always reflect the process information. Conversely, CoE utilizes each token to provide process supervision, which introduces more information than individual results. This indicates that the effectiveness of ST-BoN largely depends on the fact that CoE is also a strong metric for selecting optimal samples under the Full-BoN paradigm.

E Case Study

We present three cases as follows:

• GPQA dataset in Qwen2.5-7B-Instruct model.

We set the sampling size N=5, with all sampling results and selected answers with ST-BoN and Full-BoN paradigms shown in Tables 3 - 6. The question is as follows:

Instruction: Answer the following multiple choice question. The last line of your response should be of the following format: 'Answer: \$LETTER' (without quotes) where LETTER is one of ABCD. Think step by step before answering.

Question: We would like to dissolve (at 25°C) 0.1g Fe(OH)3 in 100 cm3 total volume. What is the minimum volume (cm3) of a 0.1 M monobasic strong acid that is needed to prepare the solution and what is the pH of the resulting solution? Choices:

(A) pH 3.16; 32.14 cm3

(B) pH 2.69; 30.09 cm³

(C) pH 2.04; 28.05 cm³

(D) pH 4.94; 20.40 cm³

• TheoremQA dataset in Llama3-8B-Instruct model.

We set sampling size N=5, with all sampling results and selected answers with ST-BoN and Full-BoN paradigms shown in Tables 7 - 8. The question is as follows:

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

Instruction: Please read a math problem, and then think step by step to derive the answer. The answer is decided by Answer Type. If the Answer type in [bool], the answer needs to be True or False. Else if the Answer type in [integer, float], The answer needs to be in numerical form. Else if the Answer type in [list of integer, list of float], the answer needs to be a list of number like [2, 3, 4]. Else if the Answer type in [option], the answer needs to be an option like (a), (b), (c), (d). You need to output the answer in your final sentence like 'Therefore, the answer is ...'.

Question: In triangle ACD, B is located on the side AC, and E is located on the side AD. If AB = 3, AC = 5, CD = 3.5, ED = 3, and EB \parallel DC, what is the length of AD?

Answer type: float

• MATH dataset in Mistral-7B-Instruct-v0.3 model.

We set the sampling size N=5, with all sampling results and selected answers with ST-BoN and Full-BoN paradigms shown in Tables 9 - 10. The question is as follows:

Question: What is the only integer value of n for which $\frac{n+1}{13-n}$ is a positive prime number?

Instruction: Please reason step by step, and put your final answer within \boxed{}.

From these cases, we have two key findings:

- More is Not Always Better: Early self-estimation allows LLMs to recognize that the final answer does not hold the majority vote but is still correct. This is demonstrated in the first two cases.
- Majority Voting Fails with Complete Inconsistent Answers: Our self-estimation approach
 uses internal consistency to assign continuous scores, ensuring the best sample is always
 chosen. However, self-consistency can only make a random choice when all answers are
 inconsistent. This is shown in the last case.

This also explains why, in our main experiments, ST-BoN outperforms Full-BoN w/o RM. When the model faces ambiguous choices (*e.g.*, all samples are inconsistent), majority voting introduces significant randomness. In contrast, internal consistency provides clearer differentiation, enabling the accurate identification of the correct sample.

Table 3: Case I(a): GPQA dataset in Qwen2.5-7B-Instruct model. In LLM responses, red content indicates that it is within the buffer window, while gray content indicates that it has been truncated and does not need to be generated during actual decoding.

Sample ID	LLM Response
1	To solve this problem, we need to follow these steps: 1. Determine the amount of Fe(OH)3 needed to be dissolved. 2. Calculate the volume of the monobasic strong acid required. 3. Determine the pH of the resulting solution. ### Step 1: Determine the amount of Fe(OH)3 needed to be dissolved Fe(OH)3 is a strong base, and when dissolved in water, it will dissociate into Fe3+ and 3 OH- ions. To dissolve 0.1 g of Fe(OH)3, we need to calculate the moles of Fe(OH)3 and then determine the moles of OH- ions it produces. The molar mass of Fe(OH)3 is:
	Molar mass of Fe(OH)3 = $55.845 + 3(16 + 1) = 106.845$ g/mol
	Moles of Fe(OH)3:
	Moles of Fe(OH)3 = $\frac{0.1 \text{ g}}{106.845 \text{ g/mol}} \approx 0.000936 \text{ mol}$
	This will produce 3 moles of OH- ions:
	Moles of OH- = $3 \times 0.000936 \approx 0.002808 \text{mol}$
	### Step 2: Calculate the volume of the monobasic strong acid required A monobasic strong acid will neutralize the OH- ions produced by $Fe(OH)3$. Let's denote the volume of the acid needed as $V \ cm3$. The concentration of the acid is $0.1 \ M$, so the moles of acid needed will be:
	Moles of acid = $0.1\mathrm{M} imes \frac{V}{1000}\mathrm{L} = 0.0001 V\mathrm{mol}$
	To neutralize 0.002808 mol of OH-, we need:
	0.0001V = 0.002808
	$V = \frac{0.002808}{0.0001} = 28.08 \mathrm{cm}3$
	### Step 3: Determine the pH of the resulting solution After adding 28.08 cm3 of 0.1 M acid, the moles of acid added will be:
	Moles of acid added = $0.1\mathrm{M} \times \frac{28.08}{1000}\mathrm{L} = 0.002808\mathrm{mol}$
	Since the moles of acid added are equal to the moles of OH- ions produced, the resulting solution will be neutral (pH = 7). However, the question asks for the minimum volume of the acid and the pH of the resulting solution. Given the options, the closest match for the volume is 28.05 cm3, and the pH of a neutral solution is 7, which is not listed. The closest pH value given in the options is pH 2.04, which suggests a slightly acidic solution. Therefore, the correct answer is: Answer: C
2	To solve this problem, we need to follow these steps: 1. **Determine the moles of Fe(OH)3: ** The molar mass of Fe(OH)3 is approximately 106.87 g/mol. Moles of Fe(OH)3 = 0.1 g / 106.87 g/mol = 0.000937 mol. 2. **Determine the moles of OH- in Fe(OH)3:** Fe(OH)3 dissociates into Fe3+ and 3 OH So, moles of OH- = 0.000937 mol * 3 = 0.002811 mol. 3. **Determine the moles of H+ required to neutralize OH-:** OH- + H+ \rightarrow H2O Moles of H+ required = 0.002811 mol. 4. **Calculate the volume of 0.1 M acid needed:** Volume of acid (in L) = moles of H+ / concentration of acid Volume of acid = 0.002811 mol / 0.1 mol/L = 0.02811 L = 28.11 cm3. 5. **Calculate the pH of the resulting solution:** After neutralizing the OH-, we have a solution of Fe3+ and H+. The remaining H+ concentration is from the acid minus the H+ used to neutralize OH Since the acid is 0.1 M and we used 28.11 cm3, the remaining H+ concentration is: H+ remaining = (0.1 M * 100 cm3 - 0.1 M * 28.11 cm3) / (100 cm3 + 28.11 cm3) = (10 - 2.811) / 128.11 = 0.0557 M. pH = -log[H+] = -log(0.0557) = 1.254 \approx 2.04. From the calculations: - The minimum volume of 0.1 M acid needed is approximately 28.05 cm3 The pH of the resulting solution is approximately 2.04.
	Answer: C

Table 4: **Case I(b)**: GPQA dataset in Qwen2.5-7B-Instruct model. In LLM responses, red content indicates that it is within the buffer window, while gray content indicates that it has been truncated and does not need to be generated during actual decoding.

Sample ID	LLM Response				
3	To solve this problem, we need to follow these steps: 1. Determine the concentration of Fe(OH)3 in the solution. 2. Calculate the volume of the monobasic strong acid needed to neutralize the Fe(OH)3. 3. Determine the pH of the resulting solution. ### Step 1: Determine the concentration of Fe(OH)3 Fe(OH)3 is a triprotic base. The dissociation of Fe(OH)3 in water can be represented as:				
	$Fe(OH)_3 \rightarrow Fe^{3+} + 3OH^-$				
	The concentration of OH- ions can be calculated using the formula:				
	$[OH^{-}] = \frac{\text{mass of Fe}(OH)_{3}}{\text{molar mass of Fe}(OH)_{3} \times \text{volume of solution (in liters)}}$				
	The molar mass of Fe(OH)3 is:				
	55.85 + 3(16 + 1) = 106.85 g/mol				
	So, the concentration of OH- ions is:				
	$[OH^{-}] = \frac{0.1 \text{ g}}{106.85 \text{ g/mol} \times 0.1 \text{ L}} = 0.000936 \text{ M}$				
	### Step 2: Calculate the volume of the monobasic strong acid needed A monobasic strong acid will neutralize the OH- ions. The volume of acid needed can be calculated using the formula:				
	Volume of acid (L) = $\frac{[OH^-] \times Volume \text{ of solution (L)}}{Concentration \text{ of acid (M)}}$				
	Given that the concentration of the acid is 0.1 M, the volume of acid needed is:				
	Volume of acid (L) = $\frac{0.000936 \mathrm{M} \times 0.1 \mathrm{L}}{0.1 \mathrm{M}} = 0.000936 \mathrm{L} = 0.936 \mathrm{cm}^3$				
	Since we need to neutralize the OH- ions completely, we need to consider the stoichiometry. The acid will neutralize the OH- ions in a 1:1 ratio, so the volume of acid needed is:				
	Volume of acid (L) = $\frac{0.000936 \mathrm{M} \times 0.1 \mathrm{L}}{0.1 \mathrm{M}} = 0.00936 \mathrm{L} = 9.36 \mathrm{cm}^3$				
	However, the question asks for the minimum volume, and the options provided are in a larger scale Therefore, we need to consider the total volume of the solution, which is 100 cm3. ### Step 3: Determine the pH of the resulting solution After neutralization, the resulting solution will be acidic. The pH can be calculated using the formula:				
	$pH = -\log[H^+]$				
	Since the acid is monobasic and strong, the concentration of H+ ions will be equal to the concentration of the acid used. The volume of acid used is 32.14 cm3 (as per the options), so the concentration of H-				
	ions is: $[\mathrm{H}^+] = \frac{0.1\mathrm{M}\times0.03214\mathrm{L}}{0.1\mathrm{L}} = 0.03214\mathrm{M}$				
	Thus, the pH is:				
	$ m pH = -\log(0.03214) pprox 1.5$				
	However, the closest option to this pH and volume is: $pH \sim 2.60$				
	$pH \approx 2.69$				
	Volume $\approx 30.09 \text{cm}^3$				
	Therefore, the correct answer is: Answer: B				

Table 5: Case I(c): GPQA dataset in Qwen2.5-7B-Instruct model. In LLM responses, red content indicates that it is within the buffer window, while gray content indicates that it has been truncated and does not need to be generated during actual decoding.

Sample ID	LLM Response
4	To solve this problem, we need to follow these steps: 1. **Calculate the moles of Fe(OH)3:** The molar mass of Fe(OH)3 is approximately 106.87 g/mol.
	Moles of Fe(OH)3 = $\frac{0.1 \text{ g}}{106.87 \text{ g/mol}} \approx 0.000936 \text{ mol}$
	2. **Determine the moles of OH- ions:** Fe(OH)3 dissociates as follows:
	$Fe(OH)3 \rightarrow Fe^{3+} + 3OH^{-}$
	Therefore, the moles of OH- ions are:
	Moles of OH- = $3 \times 0.000936 \approx 0.002808$ mol
	3. **Calculate the concentration of OH- ions:** The total volume of the solution is 100 cm3 (or 0.1 L).
	Concentration of OH- = $\frac{0.002808 \text{ mol}}{0.1 \text{ L}} = 0.02808 \text{ M}$
	4. **Calculate the pOH:**
	$pOH = -\log[OH-] = -\log(0.02808) \approx 1.55$
	5. **Calculate the pH:** $ pH = 14 - pOH = 14 - 1.55 = 12.45 $
	6. **Determine the volume of 0.1 M acid needed to neutralize the OH- ions:** The acid will neutralize the OH- ions according to:
	$OH-+H+\rightarrow H2O$
	The moles of H+ required are equal to the moles of OH-:
	Moles of H+ = 0.002808 mol
	The concentration of the acid is 0.1 M, so the volume of acid needed is:
	Volume of acid = $\frac{0.002808 \text{ mol}}{0.1 \text{ M}} = 0.02808 \text{ L} = 28.08 \text{ cm}3$
	7. **Calculate the pH of the resulting solution:** After neutralization, the remaining OH- ions will determine the pH. The moles of OH- left are:
	Moles of OH- left = $0.002808 \text{ mol} - 0.002808 \text{ mol} = 0 \text{ mol}$
	Therefore, the resulting solution is neutral, with a pH of 7. However, since the question asks for the pH of the resulting solution, and we have a slight excess of OH- from the neutralization process, the pH will be slightly above 7. Given the options, the closest value is pH 2.04. Therefore, the correct answer is: Answer: C

Table 6: Case I(d): GPQA dataset in Qwen2.5-7B-Instruct model. In LLM responses, red content indicates that it is within the buffer window, while gray content indicates that it has been truncated and does not need to be generated during actual decoding.

Sample ID	LLM Response
5	To solve this problem, we need to consider the dissolution of Fe(OH)3 and the reaction with the strong acid. 1. **Dissolution of Fe(OH)3:** Fe(OH)3 (s) + 3H+ (aq) \rightarrow Fe3+ (aq) + 3H2O (l) 2. **Dissociation of Fe3+ in water:** Fe3+ (aq) + 3H2O (l) = Fe(OH)3 (s) + 3H+ (aq) 3. **Ksp of Fe(OH)3:** Ksp = [Fe3+][OH-]³ At 25°C, Ksp(Fe(OH)3) = 2.79 × 10 ⁻³⁹ 4. **Calculate the concentration of Fe3+ needed:** Let's assume that all 0.1 g of Fe(OH)3 dissolves. The molar mass of Fe(OH)3 is 106.87 g/mol. 0.1 g Fe(OH)3 = 0.1 / 106.87 = 0.000936 mol From the stoichiometry of the reaction, 0.000936 mol of Fe(OH)3 will produce 0.000936 mol of Fe3+. 5. **Calculate the concentration of Fe3+ in the solution:** [Fe3+] = 0.000936 mol / 0.1 L = 0.00936 M 6. **Determine the pH:** For Fe3+ in water, the concentration of H+ ions can be estimated using the Ksp expression: Ksp = [Fe3+][OH-]³ [OH-] = (Ksp / [Fe3+])^{(1/3)} [OH-] = (2.79 × 10 ⁻³⁹ / 0.00936)^{(1/3)} = (2.98 × 10 ⁻³⁷)^{(1/3)} = 3.11 × 10 ⁻¹³ M pOH = -log[OH-] = -log(3.11 × 10 ⁻¹³) = 12.5 pH = 14 - pOH = 14 · 12.5 = 1.5 However, the problem is asking for the pH of the resulting solution after adding the acid, not the pOH of the Fe3+. 7. **Calculate the volume of acid needed:** To neutralize the OH- ions from the Fe(OH)3, we need to add H+ ions. The concentration of H+ from the acid will be 0.1 M, and we need to find the volume of this acid to neutralize the OH [OH-] = 3.11 × 10 ⁻¹³ M [H+] = 10 ^{-pH} = 10 ^{-1.5} = 0.0316 M Volume of acid needed = (0.000936 mol / 0.1 M) = 0.00936 L = 9.36 cm3 8. **Check the pH of the resulting solution:** Since we are adding a strong acid to neutralize the OH-ions, the pH will be determined by the remaining H+ from the acid. pH = -log[H+] = -log(0.0316) = 1.5 This does not match any of the given options, so let's re-evaluate the pH using the correct approach. 9. **Re-evaluate pH:** The correct approach is to consider the excess H+ from the acid after neutralizing the OH [H+] = (0.1 M * V - 0.000936 mol / (0.1 L + V) For V
True Ansv	ver
В	
LLM-gene	erated Answer via Exact Match
[C, C, B, C	C, B]
Full-BoN	w/o RM Answer (Self-Consistency, Majority Voting)
{"B": 2, "C	$: 3 \Rightarrow C$
ST-BoN A	nswer
Best Samp	ling Estimation (Sampling ID): $[5, 1, 1, 1, 1, 1, 1, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] \Rightarrow 5$ -th sampling \Rightarrow B

Table 7: **Case II(a)**: TheoremQA dataset in Llama3-8B-Instruct model. In LLM responses, red content indicates that it is within the buffer window, while gray content indicates that it has been truncated and does not need to be generated during actual decoding.

Sample ID	LLM Response
1	Let's break down the problem step by step: 1. Since EB DC, we know that EB and DC are parallel lines. This means that ∠AEB and ∠ADC are equal, and ∠EBD and ∠DCD are equal. 2. We can draw a line from point B to point D, creating a new triangle ABE. Since AB = 3 and EB DC, we can conclude that AB = BE. 3. Now, we can use the Pythagorean theorem in triangle ABE to find the length of AE: AE² + BE² = AB² ⇒ AE² + 3² = 3² ⇒ AE² = 0 ⇒ AE = 0. 4. Since AE = 0, we know that E lies on the side AD. This means that triangle ACD is a right triangle, with ∠ADC being a right angle. 5. Using the Pythagorean theorem again in triangle ACD, we can find the length of AD: AD² = AC² + CD² ⇒ AD² = 5² + 3.5² ⇒ AD² = 25 + 12.25 ⇒ AD² = 37.25 ⇒ AD = √37.25. Therefore, the answer is 6.09.
2	To solve this problem, I will use the information provided to derive the length of AD. Since EB DC, we can conclude that triangle ABE is similar to triangle ADC. Therefore, we can set up a proportion to relate the corresponding sides of the two triangles: (AB / AC) = (AE / AD) Substituting the given values, we get: (3 / 5) = (3 / AD) Cross-multiplying, we get: 3 * AD = 5 * 3 Dividing both sides by 3, we get: AD = 5 Therefore, the answer is 5.0.
3	To solve this problem, I will break it down step by step. First, since EB \parallel DC, we can conclude that triangle ABE is similar to triangle ACD. Therefore, we can set up a proportion to relate the lengths of the corresponding sides: AB/AC = AE/CD Substituting the given values, we get: $3/5 = AE/3.5$ Cross-multiplying, we get: $3 \times 3.5 = 5 \times AE$ Simplifying, we get: $10.5 = 5 \times AE$ Dividing both sides by 5, we get: $2.1 = AE$ Since AE is a side of the triangle, it is less than the third side AD. Therefore, we can set up another proportion: $AE/ED = AE/AD$ Substituting the given values, we get: $2.1/3 = AE/AD$ Cross-multiplying, we get: $2.1/3 = AE \times AD$ Simplifying, we get: $6.3 = AE \times AD$ Finally, substituting $AE = 2.1$, we get: $6.3 = 2.1 \times AD$ Dividing both sides by 2.1, we get: $AD = 3$ Therefore, the answer is 3.0.

Table 8: Case II(b): TheoremQA dataset in Llama3-8B-Instruct model. In LLM responses, red content indicates that it is within the buffer window, while gray content indicates that it has been truncated and does not need to be generated during actual decoding.

Sample ID	LLM Response
4	Let's break down the problem step by step: 1. Since EB DC, we can conclude that ∠AEB is equal to ∠ADC, which means that triangle AEB is similar to triangle ADC. 2. We can set up a proportion using the corresponding sides of the two triangles: (AB / AC) = (EB / CD) 3. Substitute the given values: (3 / 5) = (EB / 3.5) 4. Cross-multiply and solve for EB: EB = (3 / 5) × 3.5 = 2.1 5. Now, we can use the Pythagorean theorem in triangle AED to find AD: AD² = AE² + ED² AD² = (AD - AB)² + ED² AD² = (AD - 3)² + 3² AD² = AD² - 6AD + 9 + 9 AD² - 6AD = 18 6. Rearrange the equation to solve for AD: AD² - 6AD - 18 = 0 7. Factor the quadratic equation: (AD - 3)(AD + 6) = 0 8. Solve for AD: AD = 3 or AD = -6 (but AD cannot be negative, so we discard this solution) Therefore, the length of AD is 3.
5	To solve this problem, I will break it down step by step. First, since EB DC, it means that EB is parallel to DC. This implies that triangle ABE is similar to triangle ACD. Now, we can set up a proportion using the lengths of the corresponding sides: (AB / AC) = (AE / AD) Substituting the given values, we get: (3 / 5) = (AE / AD) To solve for AE, we can multiply both sides by AD: $AE = (3 / 5) * AD$ Now, we can use the fact that $AE + ED = AD$ to express AD in terms of AE: $AD = AE + ED$ Substituting $AE = (3 / 5) * AD$, we get: $AD = ((3 / 5) * AD) + ED$ Now, we can solve for AD: $AD = (ED / (1 - 3/5)) = (ED / 2/5) = (ED * 5/2)$ Substituting the given value of ED, we get: $AD = (3 * 5/2) = 7.5$ Therefore, the answer is 7.5.
True Ansv	
7.5	
LLM-gen	erated Answer via Exact Match
['6.09', '5.	.0', '3.0', '3', '7.5']
Full-BoN	w/o RM Answer (Self-Consistency, Majority Voting)
{"3.0": 2,	"5.0": 1, "6.09": 1, "7.5": 1} \Rightarrow 3.0
ST-BoN A	nswer
Best Samp	bling Estimation (Sampling ID): $[3, 3, 5, 3, 5, 5, 5, 3, 3, 3, 1, 5, 5, 5, 1, 1, 2, 1, 5, 5] \Rightarrow 5$ -th sampling $\Rightarrow 7.5$

Table 9: **Case III(a)**: MATH dataset in Mistral-7B-Instruct-v0.3 model. In LLM responses, red content indicates that it is within the buffer window, while gray content indicates that it has been truncated and does not need to be generated during actual decoding.

Sample ID	LLM Response
1	To find the integer value of n for which $\frac{n+1}{13-n}$ is a positive prime number, we need to find the values of n that make the denominator greater than the numerator (since the numerator is an integer and the denominator is a positive integer, the fraction must be greater than 1 to be a prime number) and the denominator should also be a prime number. First, let's find the possible values of n by solving the inequality $n+1 < 13 - n$. This simplifies to $2n < 12$, which gives us $n < 6$. Now, we check each integer value of n from 0 to 5 to see if the denominator is a prime number. For $n=0$, the denominator is 13, which is a prime number, but the fraction is $\frac{1}{13}$, which is not an integer, so it's not valid. For $n=1$, the denominator is 12, which is not a prime number, so it's not valid. For $n=2$, the denominator is 11, which is a prime number, but the fraction is $\frac{3}{11}$, which is not an integer, so it's not valid. For $n=3$, the denominator is 10, which is not a prime number, so it's not valid. For $n=4$, the denominator is 9, which is not a prime number, but the fraction is $\frac{5}{9}$, which is not an integer, so it's not valid. For $n=5$, the denominator is 8, which is not a prime number, so it's not valid. For $n=5$, the denominator is 8, which is not a prime number, so it's not valid. For $n=5$, the denominator is 8, which is not a prime number, so it's not valid. For $n=5$, the denominator is 8, which is not a prime number, so it's not valid. For $n=5$, the denominator is 8, which is not a prime number, so it's not valid. For $n=5$, the denominator is 8, which is not a prime number, so it's not valid. For $n=5$, the denominator is 8, which is not a prime number, so it's not valid.
2	To find the integer value of n for which $\frac{n+1}{13-n}$ is a positive prime number, we need to find the values of n that satisfy two conditions: 1. $n+1$ and $13-n$ are both integers (i.e., n must be an integer between 0 and 12). 2. $\frac{n+1}{13-n}$ is a prime number. Let's start by finding the possible values of n . Since n is an integer between 0 and 12, the possible values of n are: $n=0,1,2,3,4,5,6,7,8,9,10,11,12$ Now, let's check each value of n to see if $\frac{n+1}{13-n}$ is a prime number. 1. For $n=0,\frac{n+1}{13-n}=\frac{1}{13}$ which is not a prime number. 2. For $n=1,\frac{n+1}{13-n}=\frac{2}{12}$ which is not a prime number. 3. For $n=2,\frac{n+1}{13-n}=\frac{3}{11}$ which is not a prime number. 4. For $n=3,\frac{n+1}{13-n}=\frac{4}{10}$ which is not a prime number. 5. For $n=4,\frac{n+1}{13-n}=\frac{5}{9}$ which is not a prime number. 6. For $n=5,\frac{n+1}{13-n}=\frac{6}{8}$ which is not a prime number. 7. For $n=6,\frac{n+1}{13-n}=\frac{6}{8}$ which is not a prime number. 8. For $n=7,\frac{n+1}{13-n}=\frac{6}{8}$ which is not a prime number. 9. For $n=8,\frac{n+1}{13-n}=\frac{9}{9}$ which is not a prime number. 10. For $n=9,\frac{n+1}{13-n}=\frac{10}{9}$ which is not a prime number. 11. For $n=10,\frac{n+1}{13-n}=\frac{10}{4}$ which is not a prime number. 12. For $n=11,\frac{n+1}{13-n}=\frac{12}{4}$ which is not a prime number. 13. For $n=10,\frac{n+1}{13-n}=\frac{12}{4}$ which is not a prime number.
3	Let's reason step by step: 1. We want to find an integer value of n for which $\frac{n+1}{13-n}$ is a positive prime number. 2. First, let's find the possible range of n . Since the denominator $(13 - n)$ must be positive, we have $n < 13$. 3. Now, let's check the possible values of n from 0 to 12. 4. For $n = 0$, the fraction becomes $\frac{1}{13}$, which is not a prime number. 5. For $n = 1$, the fraction becomes $\frac{2}{12}$, which is not a prime number. 6. For $n = 2$, the fraction becomes $\frac{3}{11}$, which is a prime number. So, $n = 2$ is the only integer value that satisfies the condition. 7. To put the final answer in the requested format, we have 2 .

Table 10: Case III(b): MATH dataset in Mistral-7B-Instruct-v0.3 model. In LLM responses, red content indicates that it is within the buffer window, while gray content indicates that it has been truncated and does not need to be generated during actual decoding.

Sample ID	LLM Response			
4	 Let's reason step by step: The expression n+1 / (13-n) is a positive prime number if and only if it is a prime number and it is positive. A prime number is a number greater than 1 that has no positive divisors other than 1 and itself. To find the integer value of n that satisfies this condition, we need to find the value of n that makes the expression a prime number. First, let's find the possible ranges for n by considering the denominator 13 - n. Since 13 is a prime number, the only way to make 13 - n a composite number is if n is greater than 12. But since we want the expression to be positive, n must be less than 12. Now, let's test the possible values of n in the range 0 to 11. We find that when n = 1, the expression becomes 2/12, which is not a prime number because it can be divided by 2. Therefore, there is no integer value of n for which n+1/(13-n) is a positive prime number. Tinal answer: 0 (There is no such integer value of n). 			
5	Let's reason step by step: 1. The given expression is $\frac{n+1}{13-n}$. 2. For the expression to be a positive prime number, the numerator must be less than the denominator,			
	 and the result should be an integer that is greater than 1 (since 1 is not a prime number). 3. Also, the result should be a prime number. 4. Let's find the possible values of n that satisfy these conditions. Since the numerator is n + 1, it 			
	should be less than the denominator, which means n should be greater than -13 . 5. Let's test the possible integer values of n starting from $n=0$. We get: $-n=0$: $\frac{1}{13} \notin \mathbb{Z}$ (not an integer)			
	- $n = 1$: $\frac{2}{12} \notin \mathbb{Z}$ (not an integer) - $n = 2$: $\frac{3}{11} \notin \mathbb{Z}$ (not an integer)			
	$-n=2$: $\frac{3}{11} \notin \mathbb{Z}$ (not an integer)			
	$-n = 3$: $\frac{4}{10} = 4/10 \times \frac{10}{4} = 5$ (not a prime number)			
	- $n = 4$: $\frac{5}{9} \notin \mathbb{Z}$ (not an integer) - $n = 5$: $\frac{6}{8} = 6/8 \times \frac{8}{6} = 2$ (not a prime number)			
	$n = 6 \cdot 8 = 6/6 \times 6 = 2 \text{ (not a prime number)}$ $-n = 6 \cdot \frac{7}{7} = 1 \text{ (not a prime number)}$			
	$-n = 7$: $\frac{8}{3} = 4/3$ (not a prime number)			
	$-n=8: \frac{9}{5} \notin \mathbb{Z}$ (not an integer)			
	$-n = 9$: $\frac{10}{4} = 2 \times 5$ (not a prime number)			
	- $n = 8$: $\frac{6}{5} \notin \mathbb{Z}$ (not an integer) - $n = 9$: $\frac{10}{4} = 2 \times 5$ (not a prime number) - $n = 10$: $\frac{11}{3} \notin \mathbb{Z}$ (not an integer) - $n = 11$: $\frac{12}{2} = 6$ (not a prime number)			
	$-n = 11$: $\frac{12}{2} = 6$ (not a prime number) $-n = 12$: $\frac{13}{1} = 13$ (prime number)			
	So, the only integer value of n for which $\frac{n+1}{13-n}$ is a positive prime number is $\boxed{12}$.			
True Answ	ver en			
12				
LLM-gene	erated Answer via Exact Match			

['There is no such integer value of n.', '7', '2', '0', '12']

Full-BoN w/o RM Answer (Self-Consistency, Majority Voting)

{"There is no such integer value of n.": 1, "0": 1, "2": 1, "7": 1, "12": 1} \Rightarrow Anyone is ok (random)

ST-BoN Answer

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Abstract and Section 1

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section Limitations

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: Section 3.1, Appendix A

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 5.1

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: In Github

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Section 5.1

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section 5.1 (average@4 accuracy)

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Section 5.1

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: N/A

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Section Societal Impact

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal
 impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to

generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.

- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]
Justification: N/A
Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Section 5.1

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [No]
Justification: N/A
Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [Yes]

Justification: Appendix C

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: N/A
Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: N/A Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.