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Abstract
The rapid increase in multimedia data has001
spurred advancements in Multimodal Summa-002
rization with Multimodal Output (MSMO),003
which aims to produce a multimodal sum-004
mary that that integrates both text and rele-005
vant images. The inherent heterogeneity of006
content within multimodal inputs and outputs007
presents a significant challenge to the execution008
of MSMO. Traditional approaches typically009
adopt a holistic perspective on coarse image-010
text data or individual visual objects, overlook-011
ing the essential connections between objects012
and the entities they represent. To integrate013
the fine-grained entity knowledge, we propose014
an Entity-Guided Multimodal Summarization015
model (EGMS). Our model, building on BART,016
utilizes dual multimodal encoders with shared017
weights to process text-image and entity-image018
information concurrently. A gating mechanism019
then combines visual data for enhanced textual020
summary generation, while image selection is021
refined through knowledge distillation from a022
pre-trained vision-language model. Extensive023
experiments on public MSMO dataset validate024
the superiority of the EGMS method, which025
also prove the necessity to incorporate entity026
information into MSMO problem.027

1 Introduction028

With the rapid development of multimedia content029

across the Internet, the task of Multimodal Sum-030

marization with Multimodal Output (MSMO) has031

emerged as a research direction of considerable sig-032

nificance (Zhu et al., 2018, 2020; Mukherjee et al.,033

2022; Zhang et al., 2022b,a), especially for news034

content summary (Zhu et al., 2018). Specifically,035

as shown in Figure 1, given the source text and cor-036

responding images, MSMO aims to produce a mul-037

timodal summary with a textual abstract alongside038

a pertinent image. Instead of providing exclusively039

text-based summaries, MSMO considers and gen-040

erates more diverse multimodal information, which041

constitutes a significant research but also puts high042

Source Images:

Source Text:

An amazing video has shown how the Chinese workers 
built the world 's longest rail-road steel arch bridge . 
The Hutong Yangtze River Bridge , crossing the 
greatest river in China … the closure of an arch on the 
Tianshenggang Channel Bridge , a section of the 
Hutong Yangtze River Bridge , on Sunday … The 
completion of the arch is a critical step in the 
construction of the massive rail-road bridge …

Multimodal Summary:

The Hutong Yangtze 
River Bridge , which cost 
a whopping # 1.7 billion , 
is a rail-road steel arch 
bridge . Amazing footage 
shows the completion of 
one steel arch on the 
massive 6.8-mile-long …

Input Output

Figure 1: An example of entity-object correlations in
multimodal data from MSMO problem. Entities rail-
road steel arch bridge and Yangtze River correspond
with elements in the associated images, suggesting in-
herent cross-modality correlations.

challenges for the interaction between text and im- 043

ages (Zhu et al., 2020). 044

Since Zhu et al. (2018) proposed the MSMO 045

task and collected the first large-scale English cor- 046

pus, there has been a surge of research in academia 047

exploring this area. However, most of the existing 048

methodologies (Zhu et al., 2018, 2020; Mukher- 049

jee et al., 2022; Zhang et al., 2022b) integrated 050

comprehensive image and text data without allocat- 051

ing explicit attention to discrete constituents within 052

these modalities. Zhang et al. (2022a) have made 053

strides in enhancing the domain by facilitating inter- 054

actions between textual components at the granular 055

word level and discrete objects in visual content. 056

Nonetheless, these visual objects tend to relate to 057

entity-level content in text rather than individual 058

words. For example, from Figure 1, we can see 059

that multi-word entities rail-road steel arch bridge 060

and Yangtze River within the textual corpus ex- 061

hibit correspondence with elements depicted in the 062

accompanying images. The explicit extraction of 063

these entities is posited to enhance comprehension 064

of the image content. However, to the best of our 065

knowledge, there are few works focusing on incor- 066
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porating entity information into MSMO problem.067

Indeed, there are many technical challenges in-068

herent in designing effective solutions to incorpo-069

rate entity information into MSMO process. The070

first of these pertains to the heterogeneity of the071

data involved, which can be textual, pictorial, or072

entity-based. This diversity imposes significant073

hurdles in attaining efficient cross-modality interac-074

tion. Second, the traditional frameworks employed075

for text decoding are predominantly designed to076

process purely textual inputs, thus creating a conun-077

drum when the need arises to incorporating multi-078

modal data into the decoding procedure. Third,079

the task of image selection, which tends to operate080

independently, frequently suffers from an absence081

of adequate labeling information, as there are no082

golden labels in the training set.083

To tackle the above challenges, we propose an084

Entity-Guided Multimodal Summarization model085

(EGMS). Similar to UniMS (Zhang et al., 2022b),086

our study employs the BART framework as the087

foundational architecture for our model develop-088

ment. Specifically, we reconfigure the architec-089

ture of BART’s text-centric encoder to establish090

a Shared Multimodal Encoder. It incorporates a091

pair of multimodal encoders with shared parame-092

ter weights, designed to model textual and visual093

data alongside entity-specific visual information.094

For the decoding process, we design a Multimodal095

Guided Text Decoder. It first employs a gated im-096

age fusion module to effectively merge the image097

representations that have been enriched with dis-098

parate modal information, and further utilizes the099

multimodal information for text generation. Subse-100

quently, we introduce a Gated Knowledge Distilla-101

tion module, which serves to harness the expertise102

of a pre-trained vision-language model, functioning103

as an auxilary guide for the learning process of im-104

age selection. Finally, we conduct extensive experi-105

ments on public MSMO datasets, where the experi-106

mental results demonstrate the effectiveness of our107

proposed EGMS method. Our code is available via108

https://github.com/AnonymousEGMS/EGMS.109

2 Related Work110

2.1 Multimodal Summarization111

Multimodal summarization (UzZaman et al., 2011)112

is defined as a task that aims at distilling concise113

and precise syntheses from heterogeneous data114

sources, encompassing textual, visual, and audio115

content, etc. Research endeavors (Chen and Zhuge,116

2018; Li et al., 2018; Zhang et al., 2021) have pre- 117

dominantly concentrated on the incorporation of 118

supplementary and ancillary modal information to 119

augment the depiction of a solitary modality. For 120

example, Li et al. (2018) design image filters with 121

the intent to selectively harness visual information, 122

thereby augmenting the semantic richness of the 123

input sentence. 124

Recently, there has been a burgeoning interest 125

in the domain of multimodal summarization with 126

multimodal output (MSMO). Zhu et al. (2018) con- 127

struct the first large-scale corpus MSMO for this 128

novel summarization task, which integrates textual 129

and visual inputs to produce a comprehensive pic- 130

torial summary. They also propose a multimodal 131

attention framework to jointly synthesize textual 132

summary and select the most relevant image. Then 133

Zhu et al. (2020) introduce a novel evaluation met- 134

ric that integrates multimodal data to better com- 135

bine visual and textual content during both the train- 136

ing and assessment stages. Mukherjee et al. (2022) 137

and Zhang et al. (2022b) propose to solve the mul- 138

timodal summarization task in a multitask training 139

manner. And Zhang et al. (2022a) adopt a graph 140

network and a hierarchical fusion framework to 141

learn the intra-modal and inter-modal correlations 142

inherent in the multimodal data respectively. 143

2.2 Knowledge Graph Augmented Models 144

Knowledge Graphs (KGs) store and organize infor- 145

mation about different things and how they relate 146

to each other in a structual way. World knowl- 147

edge is commonly expressed using fact triplets, 148

which consist of three elements: the subject en- 149

tity, the relation, and the object entity denoted as 150

(h, r, t). Since the introduction of TransE (Bordes 151

et al., 2013), a multitude of knowledge graph em- 152

bedding techniques (Ji et al., 2015; Zhong et al., 153

2015; Shi and Weninger, 2017) have emerged, aim- 154

ing to translate the entities and relationships within 155

these graphs into numerical vectors so that they can 156

be easily applied to various downstream tasks. 157

Zhang et al. (2019) and Chen et al. (2019) lever- 158

age external knowledge graphs to enhance the tex- 159

tual content for improved performance in text clas- 160

sification tasks. Moreover, Hu et al. (2022) con- 161

centrate on the integration of external knowledge 162

into the verbalizer mechanism to enhance the effec- 163

tiveness and stability of prompt tuning for zero 164

and few-shot text classification tasks. Yu et al. 165

(2022) improve Fusion-in-Decoder (Izacard and 166
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Grave, 2021) by employing a knowledge graph to167

establish the structural interconnections among the168

retrieved passages in Open-Domain Question An-169

swering (ODQA) problem, achieving comparable170

or better performance with a much lower computa-171

tion cost. And Kale et al. (2023) construct a Chest172

X-Ray knowledge graph then use it for radiology173

report generation.174

3 Preliminary175

3.1 Problem Formulation176

Given a multimodal input D = {T, P}, where T =177

{t1, t2, ..., tL} is a sequence of L tokens of the arti-178

cle text and P = {p1, p2, ..., pM} is the collection179

of the M in-article images, our proposed model180

first extracts all the entities K = {k1, k2, ..., kN}181

in the article text and then summarizes {D,E}182

into a multimodal summary S = {St, Si}. St =183

{s1, s2, ..., sl} denotes the textual summary limited184

by a max length of l. The pictorial summary Si is185

an extracted subset of the image input P .186

3.2 BART Architecture187

BART (Bidirectional and Auto-Regressive Trans-188

formers) (Lewis et al., 2020) functions as a denois-189

ing autoencoder, designed to reconstruct an original190

document from its corrupted counterpart.

Figure 2: BART architecture from Lewis et al. (2020).
191

As shown in Figure 2, it uses a standard192

Transformer-based neural machine translation ar-193

chitecture, incorporating a bidirectional encoder,194

coupled with a left-to-right autoregressive decoder.195

In the process of optimizing BART for text genera-196

tion applications, the source text is initially fed into197

the encoder module. Following this, the desired198

output text, which is prepended with the decoder’s199

designated initial token, is introduced to the de-200

coder module.201

4 Model202

4.1 Model Overview203

We propose a novel multimodal summarization204

framework enhanced by an external knowledge205

graph, as shown in Figure 3. Building upon the 206

BART architecture, our model has been adapted to 207

accommodate multimodal inputs, specifically tex- 208

tual and visual data. Recognizing that images often 209

depict objects which correspond to real-world enti- 210

ties, our approach seeks to leverage this multimodal 211

data more effectively. To this end, we utilize an 212

external knowledge graph to extract entities from 213

the textual content, which in turn facilitates a better 214

interpretation of the visual information. This inte- 215

gration aims to improve the coherence and richness 216

of the generated summaries by bridging the seman- 217

tic gap between the textual and visual modalities. 218

4.2 Shared Multimodal Encoder 219

Text-Image Encoder Given the inherent restric- 220

tion of BART’s context length, capped at 1024 to- 221

kens, it is imperative to deliberate on the regulation 222

of image input dimensions to ensure compatibility 223

with the model’s processing capabilities. Following 224

Li et al. (2023), we use a frozen Q-Former to trans- 225

form image features r|IE|×dIE
i , which are derived 226

from a frozen image encoder, into a fixed number 227

of output features v|Q|×dQ
i , each corresponding to 228

a predefined learned query q: 229

ri = [ri,1, ri,2, ..., ri,|IE|] = fimg−enc(pi),

vi = [vi,1, vi,2, ..., vi,|Q|]

= fQ−Former(q1, q2, ..., q|Q|; ri),

(1) 230

Then, we enhance the textual encoding capa- 231

bilities of BART by transitioning to a multimodal 232

encoding framework. For text-image encoder, this 233

involves the integration of textual embeddings, de- 234

noted as et, with corresponding visual embeddings 235

ev. The concatenated embeddings serve as input to 236

the encoder fti−enc, which then yields contextual- 237

ized representations: 238

et = Wt · [tCLS , t1, t2, ..., tL, tSEP ],

evi = [vCLS ,Wv · vi] + eintra−pos,

eti = [et, ev] + emulti−pos

= [et, ev1 , ..., evM ] + emulti−pos,

hti = [hTti , hVti ] = fti−enc(eti),

(2) 239

where special tokens tCLS and tSEP serve as de- 240

limiters to denote the start and end of each sen- 241

tence respectively. The embeddings eintra−pos and 242

emulti−pos represent the intra-image positional in- 243

formation and the multimodal positional context 244

within the framework. The matrices Wt and Wv 245
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(a) Shared Multimodal Encoder

Figure 3: The architecture of our proposed EGMS model. It consists of three parts: (a) Shared Multimodal Encoder;
(b) Multimodal Guided Decoder; (c) Gated Knowledge Distillation for Image Selection.

are employed for embedding linguistic tokens and246

projecting image features into a shared multimodal247

space respectively. Following Dosovitskiy et al.248

(2021) and Zhang et al. (2022b), we add a learn-249

able special token, represented by the embedding250

vector vCLS , to signify the initiation of an image251

sequence. The corresponding encoded state at the252

output of the encoder is then utilized as a holistic253

representation of the image.254

Entity-Image Encoder For the reasons already255

explained in the introduction, we propose to in-256

corporate entity-level information to enhance the257

exploitation of multimodal data.258

First, we extract entities from the text utilizing259

an external knowledge graph. For the clarity and260

simplicity, we adopt the classical TransE model261

(Bordes et al., 2013) to obtain a representation of262

the entities in the knowledge graph, which contains263

intricate structural relationships among the entities.264

Similar to the text-image encoder, the entity embed-265

dings ee concatenated with visual embeddings ev266

are subsequently processed by the entity-image en-267

coder fei−enc, yielding an enriched image represen-268

tation that encapsulates augmented entity-specific269

information:270

ee = We2 ·We1 · [kCLS , k1, k2, ..., kM ],

eei = [ee, ev] + emulti−pos,

hei = [hEei , hVei ] = fei−enc(eei),

(3)271

where kCLS is used to demarcate sequences of en-272

tities contained in discrete sentences. The matrix 273

We1 represents the embedding matrix for entities, 274

which is initialized utilizing embeddings derived 275

from the pre-trained TransE model. Concurrently, 276

the matrix We2 is employed to project entity fea- 277

tures into a unified multimodal space for further 278

integration of modalities. Notably, this encoder 279

shares its parameter weights with the aforemen- 280

tioned text-image encoder. 281

4.3 Multimodal Guided Decoder 282

Gated Image Fusion To integrate the visual rep- 283

resentations derived from dual encoders, each amal- 284

gamated with textual and entity-based information 285

respectively, we introduce a gated image fusion 286

module. Visual information integrated with tex- 287

tual and entity representations from the respective 288

encoders will be merged together: 289

hte = Mean(hTti)⊕Mean(hEei), (4) 290

where ⊕ is the concatenation operation. 291

Then hte will serve as the input for a weight 292

computation module, which is designed to quanti- 293

tatively assess the salience of the visual represen- 294

tations in conjunction with corresponding multi- 295

modal inputs: 296

wte = σ2
w(W

2
w · σ1

w(W
1
w · hte + b1w) + b2w), (5) 297

where σ2
w is Sigmoid activation function, making 298

the value of this weight between 0 and 1. 299
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Subsequently, the derived weight wte serves as300

the signal to control the fusion of dual image rep-301

resentations that encapsulate different modal infor-302

mation, yielding an augmented image representa-303

tion that is enriched with both textual and entity304

information:305

hVcomb
= wte · hVti + (1− wte) · hVei . (6)306

Multimodal Guided Text Decoder Similar to307

BART, the architecture of our model incorporates308

a conventional autoregressive transformer decoder309

within its decoding module. In contrast to rely-310

ing exclusively on textual representations during311

the encoding phase, our proposed model also uti-312

lizes the aforementioned augmented image repre-313

sentations. These representations serve as encoder314

hidden states that are subsequently fed into the de-315

coder:316

henc−hid = [hTti , hVcomb
]. (7)317

The decoder attends to the sequence of previ-318

ously generated tokens, denoted as s<j , as well319

as the encoder output hidden states henc−hid, and320

predicts the conditional probability distribution of321

subsequent text tokens. So for the abstractive sum-322

marization task, our model is trained by minimizing323

the negative log-likelihood:324

LSum = −
|S|∑
j=1

log p(sj |s<j , henc−hid, ϕ), (8)325

where ϕ denotes all the parameters of the model.326

4.4 Gated Knowledge Distillation for Image327

Selection328

In the current multimodal summarization dataset,329

only the test set has visual references, which could330

be instrumental in guiding the selection of salient331

images during the training phase.332

Zhang et al. (2022b) propose to adopt Knowl-333

edge Distillation (KD) technique (Hinton et al.,334

2015) to distill the inherent relevance between tex-335

tual and visual information, which can get image336

references without any image captions or visual ref-337

erences. Rather than using only the text-integrated338

image representations as Zhang et al. (2022b), we339

incorporate entity information as well. Specifically,340

we use the output hidden states of vCLS derived341

from both encoders as comprehensive image repre-342

sentations and feed them to two distinct multi-layer343

perceptrons to obtain scores:344

gti(p) = W 2
t · σ1

t (W
1
t · hvti−cls

+ b1t ) + b2t ,

gei(p) = W 2
e · σ1

e(W
1
e · hvei−cls

+ b1e) + b2e.
(9)345

And we combine them with the weight calcu- 346

lated in Eq.(5) to futher utilize multimodal infor- 347

mation: 348

g(p) = wte · gti(p) + (1− wte) · gei(p). (10) 349

We employ CLIP (Radford et al., 2021) as the 350

teacher model to calculate the similarity scores 351

between each image p and the textual summary St: 352

l(St, p) = sim(T (St),V(p)), (11) 353

where T and V are its textual and visual encoder 354

respectively, and sim is the cosine similarity func- 355

tion. 356

Through knowledge distillation, our model is 357

intended to emulate the score distribution of the 358

teacher model. By using Kullback-Leibler (KL) 359

divergence (Kullback and Leibler, 1951), this ap- 360

proach can be modeled as minimizing the following 361

objective function with temperature τ : 362

Pp(p, τ) =
exp(g(p)τ )∑
p∈P exp(g(p)τ )

, (12) 363

Qp(St, p, τ) =
exp( l(St,p)

τ )∑
p∈P exp( l(St,p)

τ )
, (13) 364

LIS = KL(P||Q) = −
∑
p∈P

Pp · ln
Qp

Pp
. (14) 365

4.5 Training 366

Inspired by Li et al. (2023), we divide the train- 367

ing process of our proposed model into two main 368

stages: an initial phase dedicated to aligning the 369

modalities of images and text, followed by a subse- 370

quent phase focusing on fine-tuning. 371

Modal Matching In the modal matching phase, 372

parameter optimization is confined to the weights 373

of the image feature projection matrix Wv, and 374

the embedding vCLS of the visual initiation token. 375

This targeted approach leverages the text-image en- 376

coder and the decoder exclusively, thereby enhanc- 377

ing the model’s focus on the pertinent multimodal 378

information while alleviating the impact of other 379

information. The training process is governed by 380

minimizing the negative log-likelihood: 381

L = −
|S|∑
j=1

log p(sj |s<j , hti, ϕ),

= −
|S|∑
j=1

log p(sj |s<j , [hTti , hVti ], ϕ).

(15) 382
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Statistics Train Valid Test

#Samples 293,965 10,355 10,261
#AvgTokens(A) 720.87 766.08 730.80
#AvgTokens(S) 70.12 70.02 72.16
#AvgImgs 6.56 6.62 6.97

Table 1: The data statistics of MSMO dataset. #AvgTo-
kens(A) and #AvgTokens(S) denote the average number
of tokens in articles and reference summaries respec-
tively.

Fine-tuning In the fine-tuning phase, the model383

parameters are initially set using the weights ob-384

tained from the modal matching stage. Subse-385

quently, the entire proposed framework is em-386

ployed, with adjustments made to all learnable pa-387

rameter weights. The training loss of our model388

is a sum of the objectives of image selection and389

abstractive text summarization:390

L = α · LIS + LSum, (16)391

where α is a hyper-parameter that modulates the392

salience of the image selection loss within the total393

training loss.394

5 Experiment395

5.1 Experiment Setup396

Datasets For multimodal summarization with397

multimodal output, we use the MSMO dataset,398

which is introduced by Zhu et al. (2018). This is399

the first and only large-scale English corpus specifi-400

cally curated for this task. It comprises a collection401

of online news articles sourced from DailyMail402

website1, each accompanied by several images403

and corresponding manually-written highlights that404

serve as the reference summary. More statistics405

about the dataset are illustrated in Table 1. Within406

the test set, a maximum of three images are anno-407

tated to provide a pictorial reference.408

Evaluation Metrics In text summarization tasks,409

the evaluation of summary quality usually employs410

the ROUGE metric (Lin, 2004), which quantifies411

the degree of lexical correspondence between the412

produced sentences and the reference summaries.413

All the ROUGE scores in this paper refer to the414

F-1 ROUGE scores calculated by official script.415

In addition, Zhu et al. (2018) introduce the metric416

of image precision (IP) to assess the quality of417

1http://www.dailymail.co.uk

the output image, delineating the methodology as 418

follows: 419

IP =
| {refimg} ∩ {recimg} |

|{recimg}|
, (17) 420

where refimg and recimg denote the reference im- 421

ages and the recommended ones. 422

Implementation Details Our model utilizes the 423

released checkpoint2 of a BART-like model, BRIO 424

(Liu et al., 2022), to initialize corresponding pa- 425

rameters. And we take released CLIP model (Rad- 426

ford et al., 2021)3 as the teacher model for image 427

selection knowledge distillation. For the image pro- 428

cessing, we employ the vision feature extractor of 429

BLIP-2 (Li et al., 2023)4 to get visual features. The 430

number of the learned queries is set to 32, resulting 431

in an allocation of 33 token positions within the 432

encoder for each image. And we set the upper limit 433

of image number to 8. Noting that we concate- 434

nate multimodal tokens together as the input for 435

two dual-modal encoders, the maximum number 436

of textual and entity tokens is constrained by the 437

encoder’s maximum context length as well as the 438

length of the image sequence. 439

The train set of MSMO dataset is partitioned 440

into 20 discrete subsets. Therefore, we employ a 441

cumulative training strategy, wherein the model 442

undergoes iterative training on each subset in suc- 443

cession. After training on each subset, the model’s 444

parameters are saved as checkpoints and evaluated 445

on validation set. We identify the top-3 checkpoints 446

as determined by the minimal validation loss. Sub- 447

sequently, we compute and present the mean results 448

derived from these checkpoints on test set. 449

In the process of image selection, we choose the 450

image with greatest score as computed in Eq.(10). 451

And for text summarization, we use beam search 452

with a beam size of 5 in decoding. 453

Baseline Models To demonstrate the efficacy of 454

the proposed model, we conduct comparative anal- 455

yses with extant methodologies in both text-based 456

and multimodal summarization domains: 457

• BertSum (Liu and Lapata, 2019) uses a 458

general framework for both extractive and 459

2https://huggingface.co/Yale-LILY/
brio-cnndm-uncased

3https://huggingface.co/openai/
clip-vit-base-patch32

4https://github.com/salesforce/LAVIS/tree/
main/projects/blip2
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abstractive text summarization, with its en-460

coder based on BERT (Kenton and Toutanova,461

2019). It has several raviants, out of which462

BertAbs and BertExtAbs can be used for ab-463

stractive text summarization.464

• BART (Lewis et al., 2020), constructed as a465

denoising autoencoder, employs a sequence-466

to-sequence framework with significant appli-467

cability in the domain of text summarization.468

• ATG/ATL/HAN utilizes a pointer-generator469

network (See et al., 2017) and a multimodal470

attention mechanism, with variants reflecting471

different image representation approaches for472

attention operations.473

• MOFRR (Zhu et al., 2020) ranks images474

via ROUGE score comparison of captions475

to textual reference, forming a visual refer-476

ence. Variants of incorporating different hid-477

den states into image discriminator are de-478

noted as MOFRR
enc and MOFRR

dec .479

• UniMS (Zhang et al., 2022b) proposes to480

merge textual and visual data to BART (Lewis481

et al., 2020) encoder to construct a multimodal482

representation. Subsequently, it employs a vi-483

sually guided decoder to integrate textual and484

visual modalities in guiding abstractive text485

generation.486

5.2 Experimental Result487

As shown in Table 2, our proposed EGMS method488

outperforms all baselines in all metrics, which489

proves the effectiveness of our method and the ne-490

cessity to incorporate knowledge graphs.491

The outcomes of this study reveal a number of in-492

triguing phenomena: (1) By fine-tuning BART for493

summarization task, it can achieve competitive re-494

sults with models that introduce visual information.495

This proves that BART exhibits robust language496

modeling proficiencies, thereby indicating its sub-497

stantial potential for applications in multimodal in-498

formation modeling. The findings herein reinforce499

the rationale for its deployment in our modeling en-500

deavors. (2) The UniMS framework, also based on501

BART model, has shown great improvements, es-502

pecially in ROUGE-2 and ROUGE-L scores. This503

advancement suggests that the integration of visual504

data facilitates the model’s capacity to process and505

interpret extended text sequences, surpassing the506

Model R-1 R-2 R-L IP

Text Abstractive

BertAbs* 39.02 18.17 33.20 -
BertExtAbs* 39.88 18.77 38.36 -
BART 42.93 19.95 39.97 -

Multimodal Abstractive

ATG* 40.63 18.12 37.53 59.28
ATL* 40.86 18.27 37.75 62.44
HAN* 40.82 18.30 37.70 61.83
MOFRR

enc* 41.05 18.29 37.74 62.63
MOFRR

dec* 41.20 18.33 37.80 65.45
UniMS* 42.94 20.50 40.96 69.38

EGMS 44.47 21.20 41.43 75.81

Table 2: Experimental results for multimodal summa-
rization on MSMO dataset. Results marked by * are
taken from respective papers and Zhang et al. (2022b).

Model R-1 R-2 R-L IP

EGMS 44.47 21.20 41.43 75.81
-w/o IS 44.25 21.05 41.21 -
-w/o EI 44.29 21.10 41.22 75.65
-w/o TI 44.35 21.07 41.35 62.88

Table 3: Ablation experiments on MSMO dataset. ’IS’
stands for Image Selection module. ’EI’ and ’TI’ refer to
the encoded visual representations derived from Entity-
Image Encoder and Text-Image Encoder respectively.

merely word-level analyses. Such findings are con- 507

sistent with our initial hypothesis, which postulates 508

that the incorporation of entity-level information 509

rather than word-level would yield a more robust 510

understanding of the multimodal data. 511

5.3 Ablation Study 512

In this subsection, we conduct ablation experiments 513

to prove the effectiveness of different components 514

of EGMS model. We remove Image Selection (IS) 515

module, image representations derived from Entity- 516

Image Encoder (EI) and Text-Image Encoder (TI) 517

respectively. More specifically, by removing Image 518

Selection module, we reduce MSMO problem to a 519

multimodal summarization task with only textual 520

output. Removing ’EI’ means that we only use the 521

encoded visual representations from Text-Image 522

Encoder for summary generation and iamge selec- 523

tion. To elaborate, the weight wte from Eq.(5) is 524

fixed to 1. Likewise, when removing ’TI’, reliance 525
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Figure 4: Hyperparameter study on MSMO dataset. The
results in the graph are normalized by the result of the
corresponding metric with α = 1.0.

is exclusively placed on the visual representations526

from Entity-Image Encoder, with the correspond-527

ing weight being constrained to 0.528

The results are listed in Table 3. Analysis of the529

data reveals a consistent decline across all ablation530

variants, thereby demonstrating the validity and531

non-redundancy of our proposed EGMS method.532

Besides, we can find that the entity information533

predominantly enhances the capacity of the model534

to generate concise summaries, while the improve-535

ment of the model’s image selection accuracy is536

smaller. This differential impact suggests that com-537

prehensive textual data may suffice for the selection538

of pertinent images. However, the integration of ad-539

ditional entity information can have an advantage540

in the precise identification of salient components,541

aligning well with the core requirements of the542

summarization task.543

5.4 Parameter Sensitivity544

To study the impact of the loss hyperparameter α545

in EGMS, a series of parameter sensitivity analyses546

were performed on the MSMO dataset. The results547

are reported in Figure 4. α = 1.0 is the best hyper-548

parameter of our model. From the results, we can549

see that larger or smaller α will lead to decrease550

on the summarization performance. This is reason-551

able as the hyperparameter controls the weight of552

the Image Selection loss in the total loss. A large553

weight will affect the Abstractive Summarization554

loss, while a small weight reduces the usefulness of555

the text-image multimodal knowledge aids learned556

from the teacher model in modeling multimodal557

information.558

Model
Text Image

Coherence Relevance Relevance

BART 3.47 3.22 -
EGMS 4.20 4.02 3.66
-w/o IS 3.75 3.64 -
-w/o EI 3.84 3.64 3.53
-w/o TI 3.84 3.67 3.45

Table 4: Human evaluation of different model outputs.

5.5 Human Evaluation 559

To further evaluate our models performance, we 560

randomly select 120 data samples from test set for 561

human evaluation. Subsequently, three graduate 562

students are enlisted to evaluate them on a scale 563

ranging from one to five, addressing various qualita- 564

tive aspects. For abstractive text summarization, co- 565

herence measures whether the summary is smooth 566

and fluent. And relevance assesses the extent to 567

which the summary content corresponds with the 568

information presented in the original document. 569

For image selection, relevance indicates the text- 570

image relevance of the multimodal summary. Table 571

4 indicates that our method can generate more co- 572

herent and relevant summaries compared to other 573

variants and baselines. 574

6 Conclusions 575

In this paper, we propose an Entity-Guided Mul- 576

timodal Summarization model (EGMS), that in- 577

corporates entity-specific information into solving 578

MSMO problem. Based on BART, our model in- 579

troduces a pair of multimodal encoders with shared 580

weights to concurrently process text-image and 581

entity-image information. Subsequently, a gating 582

mechanism is used to fuse the visual representa- 583

tions, which will further be utilized in the gen- 584

eration of textual summaries. As for image se- 585

lection, we also use a gating mechanism and dis- 586

till knowledge from a pre-trained vision-language 587

model. Extensive experiments on public MSMO 588

dataset demonstrat the effectiveness of our pro- 589

posed method. We hope our work could lead to 590

more future studies in this field. 591

7 Limitations 592

In our proposed EGMS method, incorporating the 593

knowledge graph requires the entity recognition 594

process, which will consume additional time com- 595

pared with other MSMO methods. And if we need 596

8



to use other domains’ knowledge graphs, it will597

be requisite to undertake retraining of the entity598

representations and the model. However, by utiliz-599

ing a general-purpose knowledge graph, our model600

can be applied in most scenarios. Another limita-601

tion is that since the MSMO dataset is labeled with602

pictorial references only on the test set, we adopt603

a method that utilizes knowledge distillation for604

image selection learning. And the results of such605

an approach can be affected by the performance of606

the teacher vision-language model.607
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A Multimodal Summary Sample 786

Source Images: Source Text:

New report estimates as many as 80 per cent of NFL 
players huff smelling salts . Powerful ammonia fumes 
trigger inhalation reflex by irritating nose and lungs . 
Tom Brady , Brett Favre and Peyton Manning all 
known to be fans of huffing salts . Smelling salts not 
thought to be dangerous , but could mask signs of 
concussion .

Reference Image: Reference Summary:

As many as 80 per cent of NFL players partake in the 
craze , swearing by the ` slap in the face ' pick-me-up 
from ammonia-based inhalants . Tom Brady , Brett 
Favre and Peyton Manning are all known smelling salt 
enthusiasts , with Brady admitting in a previous radio 
interview : ` We all do it ' . Some are concerned that 
the rampant off-label use as an ` energy boost ' on the 
NFL sidelines could mask concussion symptoms .

Selected Image: Abstractive Summary:

Linebacker 's little helper : ` Abuse ' concerns mount as 
craze for huffing smelling salts sweeps NFL sidelines . 
The craze among National Football League players for 
huffing smelling salts between plays is drawing 
increasing scrutiny , with some fearing it could mask 
concussion symptoms . A new report in ESPN : The 
Magazine estimates that as many as 80 per cent of NFL 
players partake in the craze , swearing by the ` slap in 
the face ' pick-me-up from ammonia-based inhalants . 
Current and former star quarterbacks Tom Brady , 
Brett Favre and Peyton Manning are all known 
smelling salt enthusiasts , with Brady admitting in a 
previous radio interview : ` We all do it . ' . Though 
ammonia smelling salts have been safely used for 
centuries to revive consciousness , most famously on 
fainting women in Victorian Britain , some are 
concerned by the rampant off-label use as an ` energy 
boost ' on the NFL sidelines . ` …

Figure 5: An example of multimodal summary.

To better show the effectiveness of our proposed 787

EGMS method, we illustrate a case study in Fig- 788

ure 5. From this figure, we can find that our model 789

accurately recognizes the entity smelling salts. And 790
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each image in the source input contains informa-791

tion about it. When considering a word-level ap-792

proach, the isolated word salts is not able to get the793

corresponding meaning accurately. However, the794

incorporation of entity-level information allows for795

an enhanced understanding of the correlations be-796

tween textual data and visual elements, thereby797

improving the model’s capacity for multimodal798

learning.799
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