
Monotonicity Regularization: Improved Penalties and Novel Applications to
Disentangled Representation Learning and Robust Classification

João Monteiro * Mohamed Osama Ahmed1 Hossein Hajimirsadeghi1 Greg Mori1,2

1Borealis AI
2Simon Fraser University

Abstract

We study settings where gradient penalties are used
alongside risk minimization with the goal of ob-
taining predictors satisfying different notions of
monotonicity. Specifically, we present two sets of
contributions. In the first part of the paper, we show
that different choices of penalties define the regions
of the input space where the property is observed.
As such, previous methods result in models that
are monotonic only in a small volume of the in-
put space. We thus propose an approach that uses
mixtures of training instances and random points
to populate the space and enforce the penalty in a
much larger region. As a second set of contribu-
tions, we introduce regularization strategies that
enforce other notions of monotonicity in differ-
ent settings. In this case, we consider applications,
such as image classification and generative mod-
eling, where monotonicity is not a hard constraint
but can help improve some aspects of the model.
Namely, we show that inducing monotonicity can
be beneficial in applications such as: (1) allow-
ing for controllable data generation, (2) defining
strategies to detect anomalous data, and (3) generat-
ing explanations for predictions. Our proposed ap-
proaches do not introduce relevant computational
overhead while leading to efficient procedures that
provide extra benefits over baseline models.

1 INTRODUCTION

Highly expressive model classes such as neural networks
have achieved impressive prediction performance across a
broad range of supervised learning tasks [Krizhevsky et al.,
2012, Graves and Jaitly, 2014, Bahdanau et al., 2014]. How-

*Work done while interning at Borealis AI. Currently at Servi-
ceNow

ever, finding predictors attaining low risk on unseen data
is often not enough to enable the use of such models in
practice. In fact, practical applications usually have more re-
quirements other than prediction accuracy. Hence, devising
approaches that search risk minimizers satisfying practi-
cal needs led to several research threads seeking to enable
the use of neural networks in real-life scenarios. Exam-
ples of such requirements include: (1) Robustness, where
low risk is expected even if the model is evaluated under
distribution shifts, (2) Fairness, where the performance of
the model is expected to not significantly change across
data sub-populations, and (3) Explainability/Interpretability,
where models are expected to indicate how the features of
the data imply their predictions.

In addition to the requirements mentioned above, a prop-
erty commonly expected in trained models in certain ap-
plications is monotonicity with respect to some subset of
the input dimensions. I.e., an increase (or decrease) along
some particular dimensions strictly imply the function value
will not decrease (or will not increase), provided that all
other dimensions are kept fixed. As a result, the behavior of
monotonic models will be more aligned with the properties
that the data under consideration is believed to satisfy. For
example, in the case of models used to accept/reject job ap-
plications, we expect acceptance scores to be monotonically
non-decreasing with respect to features such as past years of
experience of a candidate. Thus, given two applicants with
exactly the same features except their years of experience,
the more experienced candidate should be assigned an equal
or higher chance of getting accepted. For applications where
monotonicity is expected, having a predictor failing to sat-
isfy this requirement would damage the user’s confidence.
As such, different strategies have been devised in order to
enable training monotonic predictors. These approaches can
be divided into two main categories:

Monotonicity by construction: In this case, focus lies on
defining a model class that guarantees monotonicity in all
of its elements Bakst et al. [2021], Wehenkel and Louppe
[2019], Nguyen and Martínez [2019], You et al. [2017], Gar-

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<joao.monteiro@servicenow.com>?Subject=Your UAI 2022 paper

cia and Gupta [2009], Archer and Wang [1993]. However,
this approach can not be used with general architectures. Ad-
ditionally, the model class can be constrained to the extent
that it might affect the prediction performance.

Monotonicity via regularization: This approach is based on
searching for monotonic candidates within a general class
of models [Liu et al., 2020, Sivaraman et al., 2020, Gupta
et al., 2019]. Such group of methods is more generally ap-
plicable and can be used, for instance, with any neural net-
work architecture. However, they are not guaranteed to yield
monotonic predictors unless extra verification/certification
steps are performed, which can be computationally costly.

In addition to being a requirement as in the examples dis-
cussed above, monotonicity has been also observed to be a
useful feature in certain cases. For example, it can define
an effective inductive bias and improve generalization in
cases where prior knowledge indicates the data generating
process satisfies such property [Dugas et al., 2001]. In such
cases, however, it is not necessary to satisfy the property
everywhere (i.e., in the bulk of the input space), since it is
enforced simply as a desirable feature of trained models
rather than a design specification.

This work comprises two complementary sets of contribu-
tions, and in both cases we tackle the problem of perform-
ing empirical risk minimization over rich classes of models
such as neural networks, while simultaneously searching
for monotonic predictors within the set of risk minimizing
solutions.

In further detail, our contributions can be summarized as
follows:

1. In Section 3, we identify a limitation in previous meth-
ods and show they only enforce monotonicity either
near the training data or near the boundaries of the in-
put space. Then, we propose an efficient algorithm that
tackles this problem. In particular, we modify Mixup
[Zhang et al., 2018] and use it to mix data with ran-
dom noise. We show that doing so helps populate the
interior of the input space. With extensive evaluation
on synthetic data and benchmarks, we show that the
proposed strategy enforces monotonicity in a larger
volume relative to previous methods in the literature.

2. In Section 4, we define different notions of monotonic-
ity along with regularization penalties aimed at enforc-
ing them. We show that doing so introduces useful
properties in models used for applications such as gen-
erative modeling or object recognition, and does not
compromise the original performance obtained with-
out the penalties. Contrary to the discussion on the
first part of the paper in Section 3, the monotonicity
property is not required to be satisfied everywhere and,
as such, constraints that focus only on the actual data
points are proposed.

2 BACKGROUND AND RELATED
WORK

We start by defining the notion of partial monotonicity used
throughout the paper. Consider the standard supervised
learning setting where data instances are observed in pairs
x, y ∼ X × Y , where X ⊂ Rd and Y ⊂ R correspond to
the input and output spaces, respectively. Further, consider
the differentiable functions f : X 7→ Y , and let M indicate
some subset of the input dimensions, i.e., M ⊂ {1, ...d},
such that x = concat(xM , xM̄), where M̄ = {1, ..., d}\M .

Definition 1 Partially monotonic functions relative
to M : We say f is monotonically non-decreasing relative
to M , denoted fM , if mini∈M

∂f(x)
∂xi

≥ 0, ∀ x ∈ X .

This definition covers functions that do not decrease
in value given increasing changes along a subset of the
input dimensions, provided that all other dimensions are
kept unchanged. Several approaches were introduced for
defining model classes that have such a property. The
simplest approach restricts the weights of the network to be
non-negative [Archer and Wang, 1993]. However, doing
so affects the prediction performance. Another approach
corresponds to using lattice models [Garcia and Gupta,
2009, You et al., 2017]. In this case, models are given by
interpolations in a grid defined by training data. Such a
class of models can be made monotonic via the choice of
the interpolation strategy and recently introduced variations
[Bakst et al., 2021] scale efficiently with the dimension of
the input space, but downstream applications might still
require different classes of models to satisfy this type of
property. For neural networks, approaches such as [Nguyen
and Martínez, 2019] reparameterize fully connected layers
such that the gradients with respect to parameters can only
be non-negative. Wehenkel and Louppe [2019], on the other
hand, consider the class of predictors H : X 7→ Y of the
form H(x) =

∫ x
0
h(t)dt + H(0), where h(t) is a strictly

positive mapping parameterized by a neural network. While
such approaches guarantee monotonicity by design, they
can be too restrictive or give overly complicated learning
procedures. For example, the approach in [Wehenkel
and Louppe, 2019] requires backpropagating through the
integral. An alternative approach is based on searching over
general classes of models while assigning higher importance
to predictors observed to be monotonic. Similar to the case
of adversarial training [Goodfellow et al., 2014], Sivaraman
et al. [2020] proposed an approach to find counterexamples,
i.e., pairs of points where the monotonicity constraint is
violated, which are included in the training data to enforce
monotonicity conditions in the next iterations of the model.
However, this approach only supports fully-connected
ReLU networks. Moreover, the procedure for finding the
counterexamples is costly. Alternatively, Liu et al. [2020],
Gupta et al. [2019] introduced point-wise regularization

penalties for enforcing monotonicity, where the penalties
are estimated via sampling. While Liu et al. [2020] use
uniform random draws, Gupta et al. [2019] apply the
regularization penalty over the training instances. Both
approaches have shortcomings that we seek to address.

3 AN EFFICIENT FIX FOR
MONOTONICITY PENALTIES

Given the standard supervised learning setting where ` :
Y2 7→ R+ is a loss function indicating the goodness of
the predictions relative to ground truth targets, the goal
is to find a predictor h ∈ H such that its expected loss –
or the so-called risk – over the input space is minimized.
Such an approach yields the empirical risk minimization
framework once a finite sample is used to estimate the risk.
However, given the extra monotonicity requirement, we
consider an augmented framework where such property is
further enforced. We seek the optimal monotonic predictors
relative to M , h∗M :

h∗M ∈ arg min
h∈H

Ex,y∼X×Y [`(h(x), y)] + γΩ(h,M), (1)

where γ is a hyperparameter weighing the importance of the
penalty Ω(h,M) which, in turn, is a measure of how mono-
tonic the predictor h is relative to the dimensions indicated
by M . Ω(h,M) can be defined by the following gradient
penalty [Gupta et al., 2019, Liu et al., 2020]:

Ω(h,M) = Ex∼D

[∑
i∈M

max

(
0,−∂h(x)

∂xi

)2
]
, (2)

where ∂h(x)
∂xi

indicates the gradients of h relative to the in-
put dimensions i ∈ M , which are constrained to be non-
negative, rendering hmonotonically non-decreasing relative
to M . At this point, the only missing ingredient to define al-
gorithms to estimate h∗M is how to define the distribution D
over which the expectation in Eq. 2 is computed, discussed
in the following sections.

3.1 CHOOSING DISTRIBUTIONS OVER WHICH
TO COMPUTE THE PENALTY

In the following, we present and discuss two past choices
for D:

1) Define D as the empirical distribution of the training
sample: In [Gupta et al., 2019], given a training dataset of
size N , in addition to using the observed data to estimate
the risk, the same data is used to compute the monotonicity

penalty so that:

Ωtrain(h,M) =
1

N

N∑
k=1

∑
i∈M

max

(
0,−∂h(xk)

∂xki

)2

,

where xk indicates the k-th instance within the training
sample. While this choice seems natural and can be easily
implemented, it only enforces monotonicity in the region
where the training samples lie, which can be problematic.
For example, in case of covariate-shift, the test data might
lie in parts of the space different from that of the training
data so monotonicity cannot be guaranteed. We thus argue
that one needs to enforce the monotonicity property in a
region larger than what is defined by the training data. In
Appendix B, we conduct an evaluation under domain shift
and show the issue to become more and more relevant with
the increase in the dimension d of the input space X .

2) Define D = Uniform(X): In [Liu et al., 2020], a simple
strategy is defined so that Ω is computed over the random
points drawn uniformly across the entire input space X ; i.e.:

Ωrandom(h,M) = Ex∼U(X)

[∑
i∈M

max

(
0,−∂h(x)

∂xi

)2
]
.

Despite its simplicity and ease of use, this approach has
some flaws. In high-dimensional spaces, random draws from
any distribution of bounded variance will likely lie in the
boundaries of the space, hence far from the regions where
data actually lie. Moreover, it is commonly observed that
naturally occurring high-dimensional data is structured in
lower-dimensional manifolds (c.f. [Fefferman et al., 2016]
for an in-depth discussion on the manifold hypothesis). It is
thus likely that random draws from the uniform distribution
will lie nowhere near regions of space where training/testing
data will be observed. We further illustrate the issue with
examples in Appendix A, which can be summarized as
follows: consider the cases of uniform distributions over the
unit n-sphere. In such a case, the probability of a random
draw lying closer to the sphere’s surface than to its center
is P (||x||2 > 1

2) = 2n−1
2n , as given by the volume ratio of

the two regions of interest. Note that P (||x||2 > 1
2)→ 1 as

n→∞, which suggests the approach in [Liu et al., 2020]
will only enforce monotonicity at the boundaries.

In summary, the previous approaches are either too focused
on enforcing monotonicity where the training data lie, or
too loose such that the monotonicity property is uniformly
enforced across a large space, and the actual data manifold
may be neglected. We thus propose an alternative approach
where we can have some control over the volume of the
input space where the monotonicity property will be en-
forced. Our approach uses the idea of data mixup [Zhang
et al., 2018, Verma et al., 2019, Chuang and Mroueh, 2021],
where auxiliary data is created via interpolations of pairs
of data points, to populate areas of the space that are oth-
erwise disregarded. Mixup was introduced by Zhang et al.

[2018] with the goal of training classifiers with smooth out-
puts across trajectories in the input space from instances
of different classes. Given a pair of data points (x′, y′),
(x′′, y′′), the method augments the training data using in-
terpolations given by (λx′ + (1− λ)x′′, λy′ + (1− λ)y′′),
where λ ∼ Uniform([0, 1]). We propose a variation of this
approach where data-data and noise-data pairs are mixed
to define points where Ω can be estimated. Algorithm 1
describes a procedure used to compute the proposed regu-
larization Ωmixup.

We highlight the following motivations for doing so: (1)
Interpolation of data points more densely populates the con-
vex hull of the training data. (2) Extrapolation cases where
mixup is performed between data points and instances ob-
tained at random results in points that lie anywhere between
the data manifold and the boundaries of the space. We thus
claim that performing mixup enables the computation of Ω
on parts of the space that are disregarded if one focus only
on either observed data or random draws from uninformed
choices of distributions such as the uniform.

Algorithm 1 Procedure to compute Ωmixup.

Input mini-batch X[N×d], model h, monotonic dimen-
sions M
XΩ = {} # Initialize set of points
used to compute regularizer.
X̃[N×d] ∼ Uniform(XN) # Sample random
mini-batch with size N.
X̂ = concat(X, X̃) # Concatenate data and
random batches.
repeat
i, j ∼ Uniform({1, 2, ..., 2N}2) # Sample
random pair of points.
λ ∼ Uniform([0, 1])
x = λX̂i + (1− λ)X̂j # Mix random pair.
XΩ.add(x) # Add x to set of
regularization points.

until Maximum number of pairs reached

Ωmixup(h,M) = 1
|XΩ|

∑
x∈XΩ

∑
i∈M max

(
0,−∂h(x)

∂xi

)2

return Ωmixup

3.2 EVALUATION

In order to evaluate the effect of different choices of Ω, we
report results on three commonly used datasets covering
classification and regression settings with input spaces of
different dimensions. Namely, we report results for the fol-
lowing datasets: Compas1, Loan Lending Club2, and Blog

1https://www.kaggle.com/danofer/compass
2https://www.openintro.org/data/index.

php?data=loans_full_schema

Feedback3. In Table 1, we list details on the three datasets
used to evaluate our proposals as reported in Section 3.2.

Models follow the architecture in [Liu et al., 2020] using
dense layers whose weights are kept separate in early layers
for the input dimensions with respect to which monotonicity
is to be enforced. We set the depth of all networks to 3,
and use a bottleneck of size 10 for two datasets (Compas
and Loan Lending Club), and 100 for the case of the Blog
Feedback dataset and the experiments on generated data re-
proted in appendix B. Training is carried out with the Adam
optimizer [Kingma and Ba, 2014] with a global learning
rate of 5e−3, and γ is set to 1e4. The training batch size is
set to 256 throughout experiments.

For all evaluation cases, we consider the baseline where
training is carried out without any monotonicity enforcing
penalty. For the regularized cases, the different approaches
used for computing Ω are as follows:

1. Ωrandom [Liu et al., 2020] which uses random points
drawn from Uniform(X). In this case, the sample ob-
served at each training iteration is set to a size of 1024
throughout all experiments.

2. Ωtrain [Gupta et al., 2019] which uses the actual data
observed at each training iteration; i.e., the observed
mini-batch itself is used to compute Ω.

3. Ωmixup (ours), in which case the penalty is computed
on points generated by mixing-up points from the train-
ing data and random points. In details, for each mini-
batch of size N > 1, we augment it with comple-
mentary random data and obtain a final mini-batch
of size 2N . Out of the 2N(2N−1)

2 possible pairs of
points, we take a random subsample of 1024 pairs to
compute mixtures of instances. In this case, we use
λ ∼ Uniform([0,1]) and λ is independently drawn for
each pair of points.

Results are reported in terms of both prediction performance
and level of monotonicity. The latter is assessed via the
probability ρ of a model to not satisfy definition 1, which
we estimate via the fraction ρ̂ of points within a sample
where the monotonicity constraint is violated; i.e., given a
set of N data points, we compute:

ρ̂ =

∑N
k=1 1[mini∈M

∂h(x)

∂xki
< 0]

N
, (3)

such that ρ̂ = 0 corresponds to monotonic models over
the considered points. Moreover, in order to quantify the
degree of monotonicity in different parts of the space, we
estimate ρ for 3 different sets of points: (1) ρ̂random, com-
puted on a sample drawn according to Uniform(X). We
used a sample of 10,000 points throughout the experiments.

3https://archive.ics.uci.edu/ml/datasets/
BlogFeedback

https://www.kaggle.com/danofer/compass
https://www.openintro.org/data/index.php?data=loans_full_schema
https://www.openintro.org/data/index.php?data=loans_full_schema
https://archive.ics.uci.edu/ml/datasets/BlogFeedback
https://archive.ics.uci.edu/ml/datasets/BlogFeedback

Dataset Dim[X] |M | # Train # Test Task
Compas 13 4 4937 1235 Classification

Loan Lending Club 33 11 8500 1500 Regression
Blog Feedback 280 8 47287 6904 Regression

Table 1: Description of datasets used for empirical evaluation.

(2) ρ̂train, computed on the training data. And (3) ρ̂test:
computed on the test data. Results are summarized in Ta-
ble 2 in terms of both prediction performance along with the
metric ρ̂ indicating the degree of monotonicity of the predic-
tor for each regularization strategy. Prediction performance
is measured in terms of accuracy for classification tasks, and
RMSE for the case of regression. Results reported in the
tables represent 95% confidence intervals corresponding to
20 independent training runs. Across evaluations, different
penalties do not result in significant variations in terms of
prediction, but affect how monotonic trained models are.

This indicates that the class of predictors corresponding to
the subset of H that is monotonic relative to M , denoted
HM , has enough capacity so as to be able to match the per-
formance of the best canditates withinH. In terms of mono-
tonicity, we observe a clear pattern leading to the following
intuition: monotonicity is achieved in the regions where it is
enforced. This is evidenced by the observation that ρ̂random
is consistently lower for Ωrandom relative to Ωtrain and
Ωmixup while, on the other hand, ρ̂train and ρ̂test are consis-
tently lower for Ωtrain and Ωmixup compared to Ωrandom.
A comparison between Ωtrain and Ωmixup shows what we
anticipated: enforcing monotonicity in points resulting from
mixup yields predictors that are as monotonic as those given
by the use of Ωtrain in actual data, but significantly better
at the boundaries of X . Finally, the results demonstrate that
our proposed approach Ωmixup achieves the best results in
terms of monotonicity for all the sets of points that we con-
sidered. Moreover, our approach introduces no significant
computation overhead.

4 APPLICATIONS OF MONOTONICITY
PENALTIES

In Section 3, we presented an efficient approach to enforce
monotonicity when it is a requirement. We now consider
a different perspective and show that adding monotonic-
ity constraints during training can yield extra benefits to
trained models. In these cases, monotonicity is not a re-
quirement, and hence it is not necessary for it to be satisfied
everywhere. As such, the penalties we discuss from now on
are computed considering only data points, and no random
draws are utilized. In the following sections, we introduce
notions of monotonicity that will be enforced in our models,
and discuss advantages of using monotonicity for different
applications such as controllable generative modelling and
for the detection of anomalous data. In Appendix E, we

consider a further application for cases where one’s interest
is to obtain explanations from observed predictions.

4.1 DISENTANGLED REPRESENTATION
LEARNING UNDER MONOTONICITY

We first consider the case of disentangled representation
learning. In this case, generative approaches often assume
that the latent variables are independent, and hence control
over generative factors can be achieved. E.g., one can mod-
ify a specific aspect of the data by modifying the value of a
specific latent variable. However, we argue that disentangle-
ment is necessary but not sufficient to enable controllable
data generation. That is, one needs latent variables that sat-
isfy some notion of monotonicity to be able to decide their
values resulting in desired properties.

For example, assume we are interested in generating images
of simple geometric forms, and desire to control factors such
as shape and size. In this example, even if a disentangled
set of latent variables is available, we cannot decide how
to change the value of the latent variable to get a bigger
or a smaller object if there is no monotonic relationship
between the size and the value of the corresponding latent
variable. We address this issue and build upon the weakly
supervised framework introduced by Locatello et al. [2020].
This work extends the popular β-VAE setting [Higgins et al.,
2016] by introducing weak supervision such that the training
instances are presented to the model in pairs (x1, x2) where
only one or a few generative factors are changing between
each pair.

Here, we propose to apply a notion of monotonocity over
the activations of the corresponding latent variables to have
more controlable factors. In the VAE setting, data is as-
sumed to be generated according to p(x|z)p(z) given the
latent variables z. Approximation is then performed by intro-
ducing pθ(x|z) and qφ(z|x), both parameterized by neural
networks. Our goal is to have z fully factorizable in its
dimensions, i.e.:

p(z) =

Dim[z]∏
i=1

p(zi), (4)

which needs to be captured by the approximate posterior
distribution qφ(z|x). Training is performed by maximization

Non-mon. Ωrandom Ωtrain Ωmixup
COMPAS

Validation accuracy 69.1%±0.2% 68.5%±0.1% 68.5%±0.1% 68.4%±0.1%
Test accuracy 68.5%±0.2% 68.1%±0.2% 68.0%±0.2% 68.3%±0.2%
ρ̂random 55.45%±12.26% 0.01%±0.01% 6.41%±4.54% 0.00%±0.00%
ρ̂train 92.98%±2.70% 2.08%±2.21% 0.00%±0.00% 0.00%±0.00%
ρ̂test 92.84%±2.75% 2.16%±2.35% 0.00%±0.00% 0.00%±0.00%

Loan Lending Club
Validation RMSE 0.213±0.000 0.223±0.002 0.222±0.002 0.235±0.001

Test RMSE 0.221±0.001 0.230±0.001 0.229±0.002 0.228±0.001
ρ̂random 99.11%±1.70% 0.00%±0.00% 14.47%±7.55% 0.00%±0.00%
ρ̂train 100.00%±0.00% 7.23%±7.76% 0.01%±0.01% 0.00%±0.00%
ρ̂test 100.00%±0.00% 6.94%±7.43% 0.04%±0.03% 0.00%±0.00%

Blog feedback
Validation RMSE 0.174±0.000 0.175±0.001 0.177±0.000 0.168±0.000

Test RMSE 0.139±0.001 0.139±0.001 0.142±0.001 0.143±0.001
ρ̂random 76.17%±12.37% 0.05%±0.08% 3.86%±4.19% 0.00%±0.01%
ρ̂train 78.67%±5.28% 78.59%±6.37% 0.01%±0.01% 0.01%±0.01%
ρ̂test 76.29%±6.47% 78.99%±7.20% 0.02%±0.02% 0.02%±0.02%

Table 2: Evaluation results in terms of 95% confidence intervals resulting from 20 independent training runs. Results
correspond to the checkpoint that obtained the best prediction performance on validation data throughout training. The lower
the values of ρ̂ the better.

of the following lower-bound on the data likelihood:

LELBO = Ex1,x2

∑
i∈{1,2}

Eq̃φ(ẑ|xi) log(pθ(x
i|ẑ))

− βDKL(q̃φ(ẑ|xi), p(ẑ)),
(5)

where q̃φ(ẑj |xi) = qφ(zj |xi) for the latent dimensions
zi that change across x1 and x2, and q̃φ(ẑj |xi) =
1
2 (qφ(ẑj |x1) + qφ(ẑj |x2)) for those that are common (i.e.,
the approximate posterior of the shared latent variables are
forced to be the same for x1 and x2).

The outer expectation is estimated by sampling pairs of data
instances (x1, x2) where only a number of generative factors
vary. In our experiments, we consider the case where exactly
one generative factor changes across inputs. Moreover, we
follow Locatello et al. [2020] and assign the changing factor,
denoted by y, to the dimension j of z such that:

y = arg max
j∈Dim[z]

DKL(z1
j , z

2
j). (6)

While the above objective enforces disentanglement, con-
trollable generation requires some regularity in z so that
users can decide values of z resulting in desired properties
in the generated samples.

To account for that, we then introduce ΩV AE to enforce
such a regularity. In this case, a monotonic relationship is
enforced for the distance between data pairs where only
a particular generative factor vary and a corresponding
latent variable. In other words, an increasing trend in the

value of each dimension of z should yield a greater change
in the output along a generative factor. Formally, ΩV AE is
defined as the following symmetric cross-entropy estimate:

ΩV AE =− 1

2m

m∑
i=1

log
e
L(xi,1,xi,2,yi)

µ∑K
k=1 e

L(xi,1,xi,2,k)
µ

+ log
e
L(xi,2,xi,1,yi)

µ∑K
k=1 e

L(xi,2,xi,1,k)
µ

,

(7)

where L is given by the gradient of the mean squared error
(MSE) between images that are 1-factor away along the
dimension y of z, assigned to the changing factor, i.e., for
the pair xi and xj varying only across factor y, we have:

L(xi, xj , y) =
∂MSE(x̂i, xj)

∂z̃y
. (8)

In this case, x̂i indicates the reconstruction of xi. We eval-
uate such an approach by training the same 4-layered con-
volutional VAEs described in [Higgins et al., 2016] using
the 3d-shapes dataset4. The dataset is composed of images
containing shapes generated from 6 independent generative
factors: floor color, wall color, object color, scale, shape and
orientation. All combinations of these factors are present ex-
actly once, resulting in m = 480000. We compared VAEs
trained with and without the inclusion of the monotonic-
ity penalty given by ΩV AE . We highlight that the goal of

4https://github.com/deepmind/3d-shapes

https://github.com/deepmind/3d-shapes

Floor color

Ba
se

lin
e:

 d
is

en
ta

ng
le

d
bu

t
no

n-
m

on
ot

on
ic

M
on

ot
on

ic
 m

od
el

: s
m

oo
th

 tr
an

si
tio

ns

al
on

g
ge

ne
ra

tiv
e

fa
ct

or
Baseline

M
onotonic m

odel

object color scale shape orientation

Wall color

Object color

Shape

Orientation

Size

Floor color

Wall color

Object color

Shape

Orientation

Size

Figure 1: Comparisons between data generated by standard and monotonic models. On the two panels on the left, we
compare generations from a linear combination of the latent code of 2 images which only differs in the object color. On the
two panels vertically stacked on the right, we start from the same image but change one latent dimension at a time.

the proposed framework is not to improve over current ap-
proaches in terms of how disentangled the learned repre-
sentations are. Rather, we seek to achieve similar results in
that sense, but impose extra regularity and structure in the
relationship between the generated images and the values of
z so that the generative process is more easily controllable.

Qualitative analysis is performed and shown in Figure 1.
The two panels on the left represent the data generated by a
linear combination of the latent code corresponding to two
images that only vary in the factor object color. The panels
stacked on the right present a per-dimension traversal of the
latent space starting from a common image. It can be ob-
served that disentanglement is indeed achieved in both cases.
The monotonic model presents much smoother transitions
between colors while the base model gives long sequences
of very close images followed by very sharp transitions
where the colors sometimes repeat (e.g., green-yellow-green
transitions in the fourth row).

As for the results per factor, the monotonic model provides
more structure in the latent space compared to the base
model. This can be observed in the shape factor. The mono-
tonic model provides a certain order: sphere, cylinder, and
then cube. Visually inspecting many samples, the mono-
tonic model is following this order for the generated shapes.
This pattern is even more pronounced in the color factors.
We have found that the colors generated by the monotonic
model follows the order of the colours in the HUE cycle.
So our model has ordered the latent space and we know
how to navigate it to generate a desired image. On the other
hand, the baseline has no clear order of the latent space. For
example, the baseline generates cubes at different ranges of
z. Similarly, the colors generated by the baseline model do
not have a clear order.

Model HUE structured rate
Base model 0.00%
Mon. model 89.44%

Table 3: rate of examples where colors are sorted accord-
ing to hue. A large amount of the sequences generated by
monotonic VAEs result in interpretable ordering.

To further support the claim that ΩV AE induces regularity
in the latent space, we introduce the analysis shown in Table
3. We started by increasing z3 (associated to floor color for
both models), and recorded the sequence of the generated
colors. We observed that for a large fraction of the data,
the monotonic models yield sequences of images where the
color of the floor is ordered according to its corresponding
HUE angle. Further details are available in Appendix G
along with detailed plots of color transitions and a compari-
son with the HUE cycle.

4.2 GROUP MONOTONIC CLASSIFIERS

We now consider the case of K-way classifiers realized
through convolutional neural networks. In this case, data
examples correspond to pairs x, y ∼ X × Y , and Y =
{1, 2, 3, ...,K}, K ∈ N. Models parameterize a data-
conditional categorical distribution over Y , i.e., for a given
model h, h(x)Y will yield likelihoods for each class indexed
in Y . Under this setting, we introduce the notion of Group
Monotonicity: we aim to find the models h such that the
outputs corresponding to each class satisfy a monotonic
relationship with a specific subset of high-level representa-
tions, given by some inner convolutional layer. Intuitively,
our goal is to “reserve" groups of high-level features to ac-

tivate more intensely than the remainder depending on the
underlying class. Imposing such a structure can benefit the
learned models via, for instance, more accurate anomaly
detection.

Let the outputs of a specific layer within a convolutional
model be represented by aw, w ∈ [1, 2, 3, ...,W], where W
indicates the width of the chosen layer given by its number
of output feature maps. For simplicity of exposition, we con-
sider the rather common case of convolutional layers where
each feature map aw is 2-dimensional. We then partition
such a set of representations into disjoint subsets, or slices,
of uniform sizes. Each subset is then paired with a partic-
ular output or class, and hence denoted by Sk, k ∈ Y . An
illustration is provided in Figure 2, where a generic convo-
lutional model has the outputs of a specific layer partitioned
into slices Sk, which are then used to define output units
over Y .

Definition 2 Group monotonic classifiers: We say h is
group monotonic for input x and class label y if h(x)y is
partially monotonic relative to all elements in Sy .

For training, we perform monotonic risk minimization as
described in Eq. 1, and the risk is given by the negative
log-likelihood over training points. Moreover, we design a
penalty Ω that focuses only on observed data points during
training and penalizes the slices of the Jacobian correspond-
ing to a given class, i.e., a cross-entropy criterion enforces
larger gradients on the specific class slice. We highlight that
in this case, unlike the discussion in Section 3, monotonicity
is not an application requirement, and it does not need to be
satisfied everywhere.

In order to formally introduce such a penalty, denoted by
Ωgroup, we first define the total gradient Ok, k ∈ Y , of a
slice Sk as follows: Oy(x) =

∑
aw∈Sy

∑
i,j

∂h(x)y
∂aw,i,j

, where
the inner sum accounts for spatial dimensions of aw. Given
the set of total gradients, a batch of size m, and inverse
temperature µ, Ωgroup will be:

Ωgroup = − 1

m

m∑
i=1

log
e
Oi
yi

(xi)

µ∑K
k=1 e

Oi
k

(xi)

µ

. (9)

4.2.1 Assessing performance of group monotonic
classifiers

We start our evaluation by verifying whether the group
monotonicity property can be effectively enforced into clas-
sifiers trained on standard object recognition benchmarks.
In order to do so, we verify the performance of the to-
tal activation classifier, as defined by: arg maxk∈Y Tk(x),
where Tk indicates the total activation on slice Sk: Tk(x) =∑

aw∈Sk
∑
i,j aw,i,j(x). A good prediction performance of

Model arg maxk∈Y h(x)k arg maxk∈Y Tk(x)
CIFAR-10

WideResNet 95.46% 16.35%
MonoWideResNet 95.64% 94.95%

ImageNet
ResNet-50 75.85% 0.10%

MonoResNet-50 76.50% 72.52%

Table 4: Top-1 accuracy of standard and group monotonic
models.

such a classifier serves as evidence that the group mono-
tonicity property is satisfied by the model over the test data
under consideration since it indicates the slice relative to the
underlying class of test instances has the highest total acti-
vation. We thus run evaluations for both CIFAR-10 and Im-
ageNet, and classifiers in each case correspond to WideRes-
Nets [Zagoruyko and Komodakis, 2016] and ResNet-50 [He
et al., 2016], respectively. Training details are presented in
Appendix C.

Results are reported in Table 4 in terms of the top-1 predic-
tion accuracy measured on the test data. We use standard
classifiers as the baselines where no monotonicity penalty is
applied in order to isolate the effect of the penalty. In both
datasets, the total activation classifiers for group monotonic
models (indicated by the prefix mono) are able to approxi-
mate the performance of the classifier defined at the output
layer, arg maxk∈Y h(x)k. This suggests that the higher total
activation generally matches the predicted class for group
monotonic models, which indicates the property is success-
fully enforced.

Considering performances obtained at the output layer, there
were small variations in accuracy when we included mono-
tonicity penalties, which should be considered in practical
uses of group monotonicity. Nonetheless, results suggest
that one can perform closely to unconstrained models while
focusing on the set of group monotonic candidates.

Additional experiments are reported on Table 3 on Appendix
D for cases with small sample sizes, where we show that
the performance of the classifier defined at the output layer
upper bounds that of the total activation classifier, i.e., the
better the underlying classifier the more group monotonic it
can be made.

4.2.2 Using group monotonicity to detect anomalies

After showing that group monotonicity can be enforced
successfully without significantly affecting the prediction
performance, we discuss approaches to leverage it and in-
troduce applications of the models satisfying such a prop-
erty. In particular, we consider the application of detecting
anomalous data instances, i.e., those where the model may
have made a mistake. For example, consider the case where
a classifier is deployed to production and, due to some prob-

lem external to the model, it is queried to do prediction
for an input consisting of white noise. Standard classifiers
would provide a prediction even for such a clearly anoma-
lous input. However, a more desirable behavior is to some-
how indicate that the instance is problematic. We claim that
imposing structure in the features, e.g., by enforcing group
monotonicity, can help in deciding when not to predict.

To evaluate the proposed method, we implement anoma-
lous test instances using adversarial perturbations. Namely,
we create L∞ PGD attackers [Madry et al., 2017] and de-
tect anomalies based on simple statistics of the features. In
details, for a given input x, we compute the normalized
entropy H∗(x) of the categorical distribution defined by
the application of the softmax operator over the set of total
activations TY(x):

H∗(x) =

∑
k∈Y pk(x) log pk

logK
, (10)

where K = |Y| and the set pY(x) corresponds to the param-
eters of a categorical distribution defined by:

pY(x) = softmax(TY(x)). (11)

Decisions can then be made by comparing H∗(x) with a
threshold τ ∈ [0, 1], defining the detector 1{H∗>τ}.

We evaluate the detection performance of this approach on
both MNIST and CIFAR-10. Training for the case of CIFAR-
10 follows the same setup discussed on Section 4.2.1. For
MNIST on the other hand, we modify the standard LeNet
architecture by increasing the width of the second convolu-
tional layer from 64 to 150. This layer is then used to enforce
the group monotonicity property. The resulting model is re-
ferred to as WideLeNet. Moreover, γ and µ are set to 1e10
and 1, respectively. Adversarial attacks are created under
the white-box setting, i.e., by exposing the full model to the
attacker. The perturbation budget in terms of L∞ distance
is set to 0.3 and 8

255 for the cases of MNIST and CIFAR-
10, respectively. Detection performance is reported in Table
5 for the considered cases in terms of the area under the
operating curve (AUC-ROC).

The baselines are the models for which the monotonicity
penalty is not enforced. They are trained under the same
conditions and the same computation budget as the models
where the penalty is enforced. The results are as expected,
i.e., for monotonic models, test examples for which the
total activations are not structured very often correspond to
anomalous inputs.

Finally, due to space constraints, we discuss the appli-
cation of group monotonicity to explainability in ap-
pendix E. The implementation of our empirical evaluation is
available at: https://github.com/BorealisAI/
monotonicity-mixup.

Model AUC-ROC
MNIST

WideLeNet 54.47%
MonoWideLeNet 100.00%

CIFAR-10
WideResNet 67.35%

MonoWideResNet 79.33%

Table 5: AUC-ROC (the higher the better) for the detection
of adversarially perturbed data instances.

. . .

. . .

...

Input
Image Conv. 1 Conv. n

Output
Layer

Class 1

Class 2

Class 3

Class K

S1

S2

S3

SK

1

Figure 2: Group monotonic convolutional model splits rep-
resentations into disjoint subsets.

5 CONCLUSION

We proposed approaches that enable learning algorithms
based on risk minimization to find solutions that satisfy
some notion of monotonicity. First, we discussed the case
where monotonicity is a design requirement that needs to be
satisfied everywhere. In this case, we identified limitations
in prior work that resulted in models satisfying the property
only in very specific parts of the space.

We then introduced an efficient procedure that was observed
to significantly improve the solutions in terms of the vol-
ume of the space where the monotonicity requirement is
achieved. In addition, we further argued that, even when
not required, models satisfying monotonicity present use-
ful properties. We studied the case of image classifiers and
generative models and showed that imposing structure in
learned representations via group monotonicity is beneficial
and can be done efficiently. In particular, monotonic varia-
tional autoencoders were shown to yield latent spaces that
are easier to navigate since those present more regular tran-
sitions when compared to the standard generative models
under the same setting.

Acknowledgements

We would like to thank Amir Abdi and Gavin W. Ding for
their help and insightful discussions. We also thank Masoud
Hashemi for his support in preparing our code for open-
source release.

https://github.com/BorealisAI/ monotonicity-mixup
https://github.com/BorealisAI/ monotonicity-mixup

References

Norman P Archer and Shouhong Wang. Application of the
back propagation neural network algorithm with mono-
tonicity constraints for two-group classification problems.
Decision Sciences, 24(1):60–75, 1993.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473, 2014.

William Taylor Bakst, Nobuyuki Morioka, and Erez
Louidor. Monotonic kronecker-factored lattice. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=0pxiMpCyBtr.

Ching-Yao Chuang and Youssef Mroueh. Fair mixup:
Fairness via interpolation. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=DNl5s5BXeBn.

Charles Dugas, Yoshua Bengio, François Bélisle, Claude
Nadeau, and René Garcia. Incorporating second-order
functional knowledge for better option pricing. Advances
in neural information processing systems, pages 472–478,
2001.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan.
Testing the manifold hypothesis. Journal of the American
Mathematical Society, 29(4):983–1049, 2016.

Eric Garcia and Maya Gupta. Lattice regression. In
Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and
A. Culotta, editors, Advances in Neural Information Pro-
cessing Systems, volume 22. Curran Associates,
Inc., 2009. URL https://proceedings.
neurips.cc/paper/2009/file/
4b0250793549726d5c1ea3906726ebfe-Paper.
pdf.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

Alex Graves and Navdeep Jaitly. Towards end-to-end speech
recognition with recurrent neural networks. In Interna-
tional conference on machine learning, pages 1764–1772.
PMLR, 2014.

Akhil Gupta, Naman Shukla, Lavanya Marla, Arinbjörn
Kolbeinsson, and Kartik Yellepeddi. How to incorporate
monotonicity in deep networks while preserving flexibil-
ity? arXiv preprint arXiv:1909.10662, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner. beta-vae: Learning basic visual con-
cepts with a constrained variational framework. 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25:1097–1105, 2012.

Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu.
Certified monotonic neural networks. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing
Systems, volume 33, pages 15427–15438. Curran As-
sociates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
b139aeda1c2914e3b579aafd3ceeb1bd-Paper.
pdf.

Francesco Locatello, Ben Poole, Gunnar Raetsch, Bern-
hard Schölkopf, Olivier Bachem, and Michael Tschan-
nen. Weakly-supervised disentanglement without com-
promises. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 6348–6359. PMLR, 13–18 Jul
2020. URL http://proceedings.mlr.press/
v119/locatello20a.html.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

An-phi Nguyen and María Rodríguez Martínez. Mononet:
towards interpretable models by learning monotonic fea-
tures. arXiv preprint arXiv:1909.13611, 2019.

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein,
and Guy Van den Broeck. Counterexample-guided
learning of monotonic neural networks. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing
Systems, volume 33, pages 11936–11948. Curran As-
sociates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
8ab70731b1553f17c11a3bbc87e0b605-Paper.
pdf.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-
jafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua
Bengio. Manifold mixup: Better representations by inter-
polating hidden states. In International Conference on
Machine Learning, pages 6438–6447. PMLR, 2019.

https://openreview.net/forum?id=0pxiMpCyBtr
https://openreview.net/forum?id=0pxiMpCyBtr
https://openreview.net/forum?id=DNl5s5BXeBn
https://openreview.net/forum?id=DNl5s5BXeBn
https://proceedings.neurips.cc/paper/2009/file/4b0250793549726d5c1ea3906726ebfe-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/4b0250793549726d5c1ea3906726ebfe-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/4b0250793549726d5c1ea3906726ebfe-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/4b0250793549726d5c1ea3906726ebfe-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b139aeda1c2914e3b579aafd3ceeb1bd-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b139aeda1c2914e3b579aafd3ceeb1bd-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b139aeda1c2914e3b579aafd3ceeb1bd-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b139aeda1c2914e3b579aafd3ceeb1bd-Paper.pdf
http://proceedings.mlr.press/v119/locatello20a.html
http://proceedings.mlr.press/v119/locatello20a.html
https://proceedings.neurips.cc/paper/2020/file/8ab70731b1553f17c11a3bbc87e0b605-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8ab70731b1553f17c11a3bbc87e0b605-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8ab70731b1553f17c11a3bbc87e0b605-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8ab70731b1553f17c11a3bbc87e0b605-Paper.pdf

Antoine Wehenkel and Gilles Louppe. Unconstrained
monotonic neural networks. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
2a084e55c87b1ebcdaad1f62fdbbac8e-Paper.
pdf.

Seungil You, David Ding, Kevin Canini, Jan Pfeifer, and
Maya Gupta. Deep lattice networks and partial monotonic
functions. arXiv preprint arXiv:1709.06680, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. arXiv preprint arXiv:1605.07146, 2016.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk min-
imization. In ICLR (Poster), 2018. URL https:
//openreview.net/forum?id=r1Ddp1-Rb.

https://proceedings.neurips.cc/paper/2019/file/2a084e55c87b1ebcdaad1f62fdbbac8e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2a084e55c87b1ebcdaad1f62fdbbac8e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2a084e55c87b1ebcdaad1f62fdbbac8e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2a084e55c87b1ebcdaad1f62fdbbac8e-Paper.pdf
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

Monotonicity Regularization: Improved Penalties and Novel Applications to
Disentangled Representation Learning and Robust Classification -

Supplementary material

João Monteiro * Mohamed Osama Ahmed1 Hossein Hajimirsadeghi1 Greg Mori1,2

1Borealis AI
2Simon Fraser University

Abstract

We study settings where gradient penalties are used alongside risk minimization with the goal of obtaining
predictors satisfying different notions of monotonicity. Specifically, we present two sets of contributions. In the
first part of the paper, we show that different choices of penalties define the regions of the input space where
the property is observed. As such, previous methods result in models that are monotonic only in a small volume
of the input space. We thus propose an approach that uses mixtures of training instances and random points to
populate the space and enforce the penalty in a much larger region. As a second set of contributions, we introduce
regularization strategies that enforce other notions of monotonicity in different settings. In this case, we consider
applications, such as image classification and generative modeling, where monotonicity is not a hard constraint but
can help improve some aspects of the model. Namely, we show that inducing monotonicity can be beneficial in
applications such as: (1) allowing for controllable data generation, (2) defining strategies to detect anomalous data,
and (3) generating explanations for predictions. Our proposed approaches do not introduce relevant computational
overhead while leading to efficient procedures that provide extra benefits over baseline models.

A ILLUSTRATIVE EXAMPLES ON THE SPHERE: MIXUP HELPS TO POPULATE THE
SMALL VOLUME INTERIOR REGION

To further illustrate the issue discussed in the item 2 of Section 3.1 as well the effect of our proposal, we discuss a simple
example considering random draws from the unit n-sphere, shown in Figure 1, i.e., the set of points B = {x ∈ Rn : ||x||2 <
1}. We further consider a concentric sphere of radius 0 < r < 1 given by Br = {x ∈ Rn : ||x||2 < r}. We are interested in
the probability of a random draw from B to lie outside of Br, i.e.: P (||x||2 > r), x ∼ D(B), for some distribution D. We
start by defining D as the Uniform(B), which results in P (||x||2 > r) = 1− rn. In Figure 2a, we can see that for growing
n, P (||x||2 > r) is very large even if r ≈ 1, which suggests most random draws will lie close to B’s boundary.

We now evaluate the case where mixup is applied and random draws are taken in two steps: we first observe y ∼ Uniform(B),
and then we perform mixup between y and the origin1, i.e., x = λy, λ ∼ Uniform([0, 1]). In this case, P (||x||2 > r) =
(1− rn)(1− r), which is shown in Figure 2b as a function of r for increasing n. We can then observe that even for large n,
P (||x||2 > r) decays linearly with r, i.e., we populate the interior of B and x in this case follows a non-uniform distribution
such that its norms histogram is uniform.

*Work done while interning at Borealis AI. Currently at ServiceNow
1Similar conclusions hold for any fixed point within B. The origin is chosen for convenience.

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<joao.monteiro@servicenow.com>?Subject=Your UAI 2022 paper

1

r

B

Br

Figure 1: Illustration unit spheres B and Br on the plane.

0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.2

0.4

0.6

0.8

1.0

p(
 |x

|>
r)

n=2
n=10
n=18
n=26
n=34
n=42
n=50
n=58
n=66
n=74
n=82

(a) P (||x||2 > r) as a function of r for various n and x ∼
Uniform(B).

0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.2

0.4

0.6

0.8

1.0

p_
la

m
bd

a(
 |x

|>
r)

n=2
n=10
n=18
n=26
n=34
n=42
n=50
n=58
n=66
n=74
n=82

(b) P (||x||2 > r) as a function of r for various n. In this case,
x = λy, λ ∼ Uniform([0, 1]), y ∼ Uniform(B).

Figure 2: Illustrative example showing that uniformly distributed draws on a unit sphere in Rn concentrate on its boundary
for large n. Applying mixup populates the interior of the space.

B PROOF-OF-CONCEPT EVALUATION

We start by describing the approach we employ to generate data containing the properties required by our evaluation. Denote
a design matrix by XN×D such that each of its N rows corresponds to a feature vector within RD. In order to ensure the
data lies in some manifold, we first obtain a low-dimensional synthetic design matrix given by X ′N×d, where each entry is
sampled randomly from Uniform([−10, 10]). We then expand it to RD by applying the following transformation:

X = X ′A, (1)

where the expansion matrix given by Ad×D is such that each of its entries are independently drawn from Uniform([0, 1]).
Throughout our experiments, d = b0.3Dc was employed.

Target values for the function f to be approximated are defined as sums of functions of scalar arguments applied independently
over each dimension. We thus select a set of dimensions M ∈ [D] with respect to which f is to be monotonic, i.e.:

f(x) =
∑
i∈M

gi(xi) +
∑
j∈M̄

hj(xj), (2)

and every gi : R 7→ R is increasing monotonic, while every hi : R 7→ R is not monotonic.

We then create two evaluation datasets. One of them, referred to as the validation set, is identically distributed with respect
to X since it is obtained following the same procedure discussed above. In order to simulate covariate-shift, we create a test

set by changing the expansion matrix A to a different one.

Xval = X ′valA, Xtest = X ′testAtest, (3)

where Atest will be given by entry-wise linear interpolations between A, used to generate the training data, and a newly
sampled expansion matrix A′: Atest = αA′ + (1 − α)A. The parameter α ∈ [0, 1], set to 0.8 in the reported evaluation,
controls the shift between Atest and Atest in terms of the Frobenius norm, which in turn enables the control of how much
the test set shifts relative to the training data.

We thus trained models to approximate f for spaces of increasing dimensions as well as for an increasing number of
dimensions with respect to which f is monotonic. Results are reported in Table 1 in terms of RMSE on the two evaluation
datasets, and in terms of monotonicity in Table 2 where ρ̂ is computed both on random points and on the shifted test set.
Entries in the tables correspond to the centers of 95% confidence intervals resulting from 20 independent training runs.

We highlight the two following observations regarding the prediction performances shown in table 1: different models present
consistent performances across evaluations, which suggests different monotonicity-enforcing penalties do not significantly
affect prediction accuracy. Moreover, the proposed approach used to generate test data under covariate-shift is effective given
the gap in performance consistently observed between the validation and the test partitions. In terms of monotonicity, results
in Table 2 suggest that Ωrandom and Ωtrain are only effective on either random or data points, which seems to aggravate
when the dimension D grows. Ωmixup, on the other hand, is effective on both sets of points, and continues to work well for
growing D. Furthermore, covariate-shift significantly affects Ωtrain for higher-dimensional cases, while Ωmixup performs
well in such a case.

|M |/D 20/100 40/200 80/400 100/500
Valid. RMSE Test RMSE Valid. RMSE Test RMSE Valid. RMSE Test RMSE Valid. RMSE Test RMSE

Non-mon. 0.007 0.107 0.006 0.082 0.007 0.087 0.011 0.146
Ωrandom 0.008 0.117 0.006 0.081 0.007 0.093 0.012 0.125
Ωtrain 0.008 0.115 0.006 0.086 0.007 0.089 0.012 0.134
Ωmixup 0.008 0.114 0.007 0.084 0.008 0.088 0.012 0.134

Table 1: Prediction performance of models trained on generated data in spaces of growing dimension (D) and number of
monotonic dimensions (|M |). Different regularization strategies do not affect prediction performance. The performance gap
consistently observed across the evaluation sets highlights the shift between the two sets of points. The lower the values of
RMSE the better.

|M |/D 20/100 40/200 80/400 100/500
ρ̂random ρ̂test ρ̂random ρ̂test ρ̂random ρ̂test ρ̂random ρ̂test

Non-mon. 99.90% 99.99% 97.92% 94.96% 98.47% 96.56% 93.98% 90.01%
Ωrandom 0.00% 3.49% 0.00% 4.62% 0.01% 11.36% 0.02% 19.90%
Ωtrain 1.30% 0.36% 4.00% 0.58% 9.67% 0.25% 9.25% 5.57%
Ωmixup 0.00% 0.35% 0.00% 0.44% 0.00% 0.26% 0.00% 0.42%

Table 2: Fraction of monotonic points ρ̂ for models trained on generated data in spaces of growing dimension (D) and
number of monotonic dimensions (|M |). Different regularization strategies is effective on only one of ρ̂random or ρ̂test,
while Ωmixup seems effective throughout conditions. The lower the values of ρ̂ the better.

C MODELS AND TRAINING DETAILS FOR EXPERIMENTS REPORTED IN SECTION
4

For the case of CIFAR-10, WideResNets [Zagoruyko and Komodakis, 2016] are used. The models are initialized randomly
and trained both with and without the monotonicity penalty. Standard stochastic gradient descent (SGD) implements the
parameters update rule with a learning rate starting at 0.1, being decreased by a factor of 10 on epochs 10, 150, 250, and 350.
Training is carried out for a total of 600 epochs with a batch size of 64. For ImageNet, on the other, training consists of
fine tuning a pre-trained ResNet-50, where the fine-tuning phase included the monotonicity penalty. We do so by training
the model for 30 epochs on the full ImageNet training partition. In this case, given that the label set Y is relatively large,
using the standard ResNet-50 would result in small slices Sk. To avoid that, we add an extra final convolution layer with

Model arg maxk∈Y h(x)k arg maxk∈Y Tk(x)
10%

WideResNet 85.68% 16.35%
MonoWideResNet 85.77% 82.21%

30%
WideResNet 92.12% 14.51%

MonoWideResNet 92.42% 88.88%
60%

WideResNet 94.51% 10.08%
MonoWideResNet 94.86% 93.81%

Table 3: Top-1 accuracy obtained by both standard and group monotonic models on sub-samples of CIFAR-10. Predicition
performance obtained by classifiers defined by the total activations is upper bounded by the performance obtained at the
output layer for monotonic models.

W = 15K. Training is once more carried out with SGD using a learning rate set to 0.001 in this case, and reduced by a
factor of 5 at epoch 20. In both cases, the group monotonicity property is enforced at the last convolutional layer. Other
hyperparameters such as the strength γ of the monotonicity penalty as well as the inverse temperature µ used to compute
Ωgroup are set to 1 and 50 for the case of CIFAR-10, and to 5 and 10 for the case of ImageNet. Both momentum and weight
decay are further employed and their corresponding parameters are set to 0.9 and 0.0001. For MNIST classifiers, training is
performed for 20 epochs using a batch size of 64 and the Adadelta optimizer [Zeiler, 2012] with a learning rate of 1.

D ENFORCING GROUP MONOTONICITY UNDER SMALL SAMPLES

Using CIFAR-10, we further evaluate how the proposed group monotonicity penalty behaves in data-constrained settings,
i.e., we check whether or not the property can be enforced under small sample regimes. We do so by sub-sampling the
original training data by randomly selecting a fraction of the training images uniformly across classes. We then train the
same WideResNet for the same computation budget in terms of number of iterations as the models trained in the complete set
of images. The learning rate schedule also matches that of the training on the full dataset in that the learning rate is reduced
at exactly the same iterations across all training cases. Results are reported in Table 3 for sub-samples corresponding to 10%,
30%, and 60% of CIFAR-10. Results are consistent across the three sets of results in showing that predictions obtained from
the total activation of feature slices approximate the prediction performance of the underlying model for the case of group
monotonic predictors, i.e., the extent to which the underlying model is able to accurately predict correct classes upper bound
the resulting “level of monotonicity”. In simple terms, the better the classifier, the more group monotonic it can be made.

E SELECTING FEATURE MAPS TO COMPUTE VISUAL EXPLANATIONS

Approaches based on Class Activation Maps (CAM) such as Grad-CAM and its variations [Selvaraju et al., 2017, Chattopad-
hay et al., 2018] seek to extract explanations from convolutional models. By explanation we mean to refer to indications
of properties of the data implying the predictions of a given model. Under such a framework, one can obtain so-called
explanation heat-maps through the following steps: (1) Compute a weighted sum of activations of feature maps in a chosen
layer; (2) Upscale the results in order to match the dimensions of the input data; (3) Superimpose results onto the input
data. Specifically for the case of applications to image data, following those steps results in highlighting the patches of the
input that were deemed relevant to yield the observed predictions. Different approaches were then introduced in order to
define the weights used in the first step. A very common choice is to use the total gradient of the output corresponding to the
prediction with respect to activations of each feature map.

For the case of group monotonic classifiers, we are interested in verifying whether one can define useful explanation
heat-maps by considering only the feature slices corresponding to the predicted class, i.e., for a given input pair (x, y),
we compute explanation heat-maps considering only its corresponding feature activation slice Sy(x). We thus design an
experiment to evaluate the effectiveness of such an approach by using external auxiliary classifiers to perform predictions
from test data that was occluded using explanation heat-maps obtained using different models and sets of representations. In
other words, we use the explanation maps to remove from the data the parts that were not indicated as relevant. We then
assume that good explanation maps will be such that classifiers are able to correctly classify occluded data since relevant

Figure 3: Example of explanation heat-map and corresponding occlusion obtained with Grad-CAM and a ResNet-50 trained
on ImageNet. The example belongs to the validation set and corresponds to the class snowmobile.

Model (h) Aux. classifier
ResNext-50 MobileNet-v3 VGG-16 SqueezeNet

Reference perf. 77.62% 74.04% 71.59% 58.09%
ResNet-50 72.94% 68.31% 67.34% 49.95%

MonoResNet-50 72.88% 68.75% 66.99% 48.92%
MonoResNet-50 (Constrained) 72.44% 66.55% 66.92% 45.83%

Table 4: Top-1 accuracy of auxiliary classifiers evaluated on data created by occluding patches deemed irrelevant by
explanation heat-maps given by different models. The performance of monotonic classifiers when constrained to consider
only the feature maps within the slice corresponding to their prediction is further reported and shown to closely math the
performance of cases where the full set of features is considered.

patches are conserved. In further details, occlusions are computed by first applying a CAM operator given a model h and
data x, which results in a heat-map with entries in [0, 1]. We then use such a heat-map as a multiplicative mask to get an
occluded version of x, denoted x′, i.e.:

x′ = CAM(x, h) ◦ x, (4)

where the operator ◦ indicates element-wise multiplication. An example of such a procedure is shown in Figure 3. We
apply the above procedure to all of the validation data, and use resulting points to then assess the prediction performance of
auxiliary classifiers.

Explanation maps are computed using the same models discussed in Section 4.2.1 for ImageNet. The CAM operator
corresponds to a variation of Grad-CAM++ [Chattopadhay et al., 2018] where the model activations are directly employed
for weighing feature maps rather than the gradients. We consider 4 auxiliary pre-trained classifiers corresponding to ResNext-
50 [Xie et al., 2017], MobileNet-v3 [Howard et al., 2019], VGG-16 [Simonyan and Zisserman, 2014], and SqueezeNet
[Iandola et al., 2016]. Results are reported in Table 4 which also include the reference performance of the auxiliary classifiers
on the standard validation set in order to provide an idea of the gap in performance resulting from removing parts of test
images via occlusion. We highlight the performance reported in the last row of the Table. In that case, explanation maps for
the group monotonic model are computed from only the features of the class slice, which is enough to match the performance
of a standard ResNet-50 with full access to the features. This suggests that representations learned by group monotonic
models are such that all the information required to explain a given class is contained in the slice reserved for that class.

F EXAMPLES OF EXPLANATION HEAT-MAPS AND OCCLUDED DATA

In Figure 4, we show examples of explanation heat-maps obtained using different approaches. Corresponding occlusions
resulting from the different approaches are shown in 5.

G ANALYSIS OF COLOR SEQUENCES FOR GENERATED DATA

We performed a set of experiments in order to evaluate whether some kind of ordering could be observed once we generate
data for increasing values of z, specifically on dimensions that correspond to colors. To do that, we created an increasing
sequence of values by defining a uniform grid in [0, 1] with 50 steps. We then encoded a particular image, but decoded latent
vectors after substituting the z value in the dimension corresponding to floor color by the values in the sequence.

Generated sequences of images are shown in Figures 7 and 8 for the base and monotonic models, respectively. In each such
a case, we plot the images on the left, and bottom-left patches of size 10x10 so as to highlight the color sequences that we
observe with such an approach. Surprisingly, we observed that monotonic models tend to generate colors in a sequence that
matches the HUE circle for RGB images, represented in Figure 6 for reference. Besides visually verifying that to be the case
across a number of generated examples, in Table 3 in Section 4.1 we check the fraction of the dataset where such sequences
of patches are sorted in terms of their HUE angles.

H EXAMPLES OF DATA GENERATED WITH STANDARD AND MONOTONIC MODELS

We illustrate data generated for linear trajectories in the latent space of standard and monotonic models. To do that, we start
from a fixed image, and modify one generative factor at a time. We then generate images by feeding the decoder with points
in the linear trajectory between the outputs of the encoder for the pair of images. Generated data for each modified factor are
shown in Figures 9, 10, 11, 12, 13, and 14.

Figure 4: Examples of explanation heat-maps superimposed onto images. From left to right we have the original image,
results obtained from a ResNet-50, a monoResNet-50, and a monoResNet-50 where the CAM operator only access the slice
corresponding to the underlying class. All are obtained with Grad-CAM.

Figure 5: Examples of occluded data using explanation heat-maps. From left to right we have the original image, results
obtained from a ResNet-50, a monoResNet-50, and a monoResNet-50 where the CAM operator only access the slice
corresponding to the underlying class. All are obtained with Grad-CAM.

Figure 6: HUE circle of RGB images. Original image from: https://en.wikipedia.org/wiki/Hue.

(a) Data for increasing values for the latent dimension
associated to floor color. (b) Bottom-left 10x10 patches of generated images.

Figure 7: Data generated by standard model for traversals of z on the dimension corresponding to floor color

(a) Data for increasing values for the latent dimension
associated to floor color. (b) Bottom-left 10x10 patches of generated images.

Figure 8: Data generated by monotonic model for traversals of z on the dimension corresponding to floor color

https://en.wikipedia.org/wiki/Hue

(a) Input pair.

(b) Data generated by standard model. (c) Data generated by monotonic model.

Figure 9: Generating data by moving along the line passing over latent representation for inputs for which a single factor is
different. Generative factor changing: floor color.

(a) Input pair.

(b) Data generated by standard model. (c) Data generated by monotonic model.

Figure 10: Generating data by moving along the line passing over latent representation for inputs for which a single factor is
different. Generative factor changing: wall color.

(a) Input pair.

(b) Data generated by standard model. (c) Data generated by monotonic model.

Figure 11: Generating data by moving along the line passing over latent representation for inputs for which a single factor is
different. Generative factor changing: object color.

(a) Input pair.

(b) Data generated by standard model. (c) Data generated by monotonic model.

Figure 12: Generating data by moving along the line passing over latent representation for inputs for which a single factor is
different. Generative factor changing: scale.

(a) Input pair.

(b) Data generated by standard model. (c) Data generated by monotonic model.

Figure 13: Generating data by moving along the line passing over latent representation for inputs for which a single factor is
different. Generative factor changing: shape.

(a) Input pair.

(b) Data generated by standard model. (c) Data generated by monotonic model.

Figure 14: Generating data by moving along the line passing over latent representation for inputs for which a single factor is
different. Generative factor changing: orientation.

References

Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-cam++: Generalized
gradient-based visual explanations for deep convolutional networks. In 2018 IEEE winter conference on applications of
computer vision (WACV), pages 839–847. IEEE, 2018.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1314–1324, 2019.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-
cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1492–1500,
2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

	Introduction
	Background and related work
	An efficient fix for Monotonicity penalties
	Choosing distributions over which to compute the penalty
	Evaluation

	Applications of monotonicity penalties
	Disentangled representation learning under monotonicity
	Group Monotonic Classifiers
	Assessing performance of group monotonic classifiers
	Using group monotonicity to detect anomalies

	Conclusion

