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Abstract

Channel Randomisation (CH-Rand) has appeared as a key
data augmentation technique for anomaly detection on fruit
images because neural networks can learn useful represen-
tations of colour irregularity whilst classifying the samples
from the augmented “domain”. Our previous study has re-
vealed its success with significantly more reliable perfor-
mance than other state-of-the-art methods, largely specialised
for identifying structural implausibility on non-agricultural
objects (e.g., screws). In this paper, we further enhance CH-
Rand with additional guidance to generate more informa-
tive data for representation learning of anomalies in fruits as
most of its fundamental designs are still maintained. To be
specific, we first control the “colour space” on which CH-
Rand is executed to investigate whether a particular model —
e.g., HSV , Y CbCr, or L∗a∗b∗ — can better help synthesise
realistic anomalies than the RGB, suggested in the original
design. In addition, we develop a learning “curriculum” in
which CH-Rand shifts its augmented domain to gradually in-
crease the difficulty of the examples for neural networks to
classify. To the best of our best knowledge, we are the first
to connect the concept of curriculum to self-supervised rep-
resentation learning for anomaly detection. Lastly, we per-
form evaluations with the Riseholme-2021 dataset, which
contains > 3.5K real strawberry images at various growth
levels along with anomalous examples. Our experimental re-
sults show that the trained models with the proposed strate-
gies can achieve over 16% higher scores of AUC-PR with
more than three times less variability than the naı̈ve CH-Rand
whilst using the same deep networks and data.

Introduction
Reliable perception systems are essential to fully automate
various tasks in agricultural applications. For instance, fruit
monitoring robots must be able to not only sense individ-
ual instances of fruit but also precisely assess their quality
for predicting future yield or performing targeted treatment
depending on their health conditions. Collecting visual ex-
amples of anomalous cases — e.g., fruits with disease or
damage — is, however, a challenging process in training
deep networks generally because of their rare occurrences.
Thus, One-class Classification (OC) can be a practical so-
lution for learning to classify anomalies when only normal
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Figure 1: Examples from the Riseholme-2021 dataset. On
the left three columns are image samples of normal straw-
berries at ripe and unripe stages with the possibility of oc-
clusion, while the right two display anomalous examples.

data is available during training (Choi et al. 2021b; Li et al.
2021; Choi et al. 2021a).

Self-supervised Learning (SL) has been widely used
to build high-performance anomaly detectors in OC, for
which normal data are augmented in particular ways so
that a deep network can gain informative representations for
anomaly identification whilst learning to solve some pre-
text tasks with the augmented samples — e.g., rotation pre-
diction (Hendrycks et al. 2019) and position inference with
patches (Yi and Yoon 2020). For anomaly detection in fruits,
Choi et al. (2021b) have introduced Channel Randomisa-
tion (CH-Rand) to augment images of healthy instances by
randomly permuting values across the channel dimension.
By classifying between the original and randomised fruit
images, their model could learn representations of implau-
sible “colour” patterns to outperform other state-of-the-art
methods such as CutPaste (Li et al. 2021), designed to learn
“structural” defects in non-agricultural items (e.g., screws,
wires, and carpets in MVTec AD (Bergmann et al. 2021))

In this paper, we enhance the utility of CH-Rand with
strategies to produce more useful data in augmentation for
effective SL of anomalies in fruits. First of all, we perform
colour space conversion with a hypothesis that CH-Rand
on a particular colour model, such as HSV , Y CbCr, or
L∗a∗b∗, may better simulate the data domain of real anoma-
lies than on the RGB space, explored earlier in (Choi et al.
2021b). In addition, inspired by (Bengio et al. 2009), we also
build a learning “curriculum” to incrementally increase the
difficulty of samples in the pretext task by regulating the set



of random channel sequences to consider. To the best of our
knowledge, we are the first to utilise the concept of curricu-
lum to improve SL for anomaly detection. Moreover, similar
to (Choi et al. 2021b), all our experiments are set up to solve
OC with Riseholme-2021, a large dataset of > 3.5K straw-
berry images, because it presents a realistically challenging
testbed with examples at various maturity stages along with
anomalous ones in wild conditions featuring frequent occlu-
sions and varying illumination (cf. Fig. 1).

Methodology
In this section, we briefly describe the design of CH-Rand,
proposed in (Choi et al. 2021b), and also introduce novel
settings to alter the domains that CH-Rand can create to po-
tentially benefit SL of visual anomalies in real strawberries.

Channel Randomisation
CH-Rand is an image augmentation method to encourage
neural networks to learn to discern unnatural colour com-
positions from the normal ones. To achieve this goal, the
augmentation is performed by randomly permuting values
in the channel dimension with the possibility of repetition.

More formally, CH-Rand is set to map each normal im-
age I ∈ RW×H×C to an augmented image AW×H×C ,
where W,H , and C are the dimensions of width, height,
and colour channel, respectively. This transformation basi-
cally uses an arbitrary function π : χ→ χ′ for permutation,
where χ = {1, 2, ..., C}, and χ′ ∈ P(χ) \ ∅ with P(·) as
the powerset of input. Note that we avoid obtaining A = I
by drawing π satisfying ∃c ∈ χ, c 6= π(c). Hence, if C = 3,
26 distinct images can be constructed by channel sequences
(π(1), π(2), π(3)) depending on π.

Eventually, the same function π is applied to compute ev-
ery element acw,h ∈ A from I:

acw,h = i
π(c)
w,h . (1)

Similar to (Li et al. 2021; Gidaris, Singh, and Komodakis
2018), a classifier fΘ can then be trained to classify the aug-
mented images from the ones without augmentation min-
imising the loss function below:

L = EI∈D
[
H(fΘ(I), 0) +H(fΘ(CHR(I)), 1)

]
, (2)

whereD denotes the set of normal images available for train-
ing in OC scenarios, and CHR and H are the application of
CH-Rand and the binary cross entropy, respectively.

Anomaly Score Calculation
Choi et al. (2021b) have suggested utilising the feature
space gθ, which is generated by an intermediate layer
within fΘ, to calculate the anomaly score s for test input I ′.
As in (Perera and Patel 2019), the mean distance from the
k nearest neighbors N in training set D is considered —
i.e. s(I ′) = (1/k)

∑
I∈N δ

(
gθ(I), gθ(I ′)

)
, where δ com-

putes the Euclidean distance between two inputs — to de-
termine the novel input I ′ as anomaly if s is larger than a
particular threshold γ .

In this work, we keep all these fundamental schemes to
only focus on the effect of altered data domains by the tech-
niques discussed in the following section.

(a) (b)

(c) (d)

Figure 2: Individual channels in different colour spaces
to express the image of normal strawberries in Fig. 3a:
(a) RGB, (b) HSV , (c) Y CbCr, and (d) L∗a∗b∗.

(a) (b) (c) (d) (e)

Figure 3: Examples of CH-Rand applied to a normal straw-
berry image in (a). (b)–(e) are the results of exchanging val-
ues between the first and the second channel inRGB,HSV ,
Y CbCr, and L∗a∗b∗, respectively. Each outcome has been
converted to the RGB after exchange for visualisation.

Domain Control Strategies

We here present two additional modules — 1) colour space
conversion and 2) curriculum learning — for data augmen-
tation to further improve anomaly detection on strawberry
data. With these add-ons, the resulting images are expected
to compose data domains where neural networks can better
learn useful representations of anomalous strawberries.

Colour Space Conversion We hypothesise that CH-Rand
on a particular colour space — e.g., HSV , Y CbCr, or
L∗a∗b∗— may better synthesise realistic visuals of anoma-
lous strawberries than on the RGB, originally designed
in (Choi et al. 2021b). In fact, Fig. 3 shows that even the
same random permutation of channels can result in highly
different augmented images between colour spaces. This is
because colour spaces encode a unique property of colour in
each channel (cf. Fig. 2); for instance, while RGB keeps
the chromaticity values of red, green, and blue, HSV ,
Y CbCr, andL∗a∗b∗ each use some quantification of bright-
ness in the channel of V , Y , and L, respectively, determin-
ing other unique properties of colour in the other two chan-
nels (Szeliski 2010) — e.g., hue inH , blue colour difference
in Cb, and green-to-red colour in a∗.

In our experiments, we thus evaluate each colour space to
discover the best visual domain for representation learning
to identify anomalous strawberries from image data.



Metric DCAE ROT CP CH-R
RGB

CH-R
HSV

CH-R
YCbCr

CH-R
L*a*b*

ROC .715
±.002

.736
±.005

.736
±.007

.804
±.014

.778
±.007

.757
±.001

.810
±.007

PR .340
±.003

.335
±.016

.337
±.006

.496
±.022

.457
±.030

.409
±.015

.547
±.030

Table 1: Mean AUC-ROC and AUC-PR scores with standard
deviations achieved by three separate runs of each method.

Curriculum Learning Inspired by (Bengio et al. 2009;
Hacohen and Weinshall 2019), we build training procedures
in which CH-Rand is regulated to generate gradually more
difficult images in augmentation. In other words, although
we initially consider all possible images for augmentation,
CH-Rand is set to discard the channel sequences that would
create relatively easy examples, as the training proceeds.

More formally, CH-Rand draws an arbitrary function πc :
c 7→ c′ ∈ χ′c for reassignment of each channel c, where
χ′c ∈ P(χ)\Bc\∅ as Bc can be specified to define a possible
c′ from χ′c at certain times for curriculum; for example, if
χ′L∗ = {L∗}, χ′a∗ = {a∗}, and χ′b∗ = {L∗, a∗, b∗}, the
producible domain can be limited by the randomness only
in the b* channel. Therefore, Equation (1) is replaced by
acw,h = i

πc(c)
w,h , and also note that we repeat drawing πc until

satisfying ∃c ∈ χ, c 6= πc(c) to avoid A = I.
A more specific use case is introduced in the next section

with the empirical results of performance improvement.

Experimental Results
In this section, we first present a description of Riseholme-
2021 dataset, followed by the information of experimental
setups, such as the architecture of deployed deep network
and the protocols in training and evaluation. Evaluation re-
sults on each domain-control technique are then reported
along with qualitative examination on challenging samples.

Dataset & Technical Details & Evaluation Criteria
Most settings presented in this study replicate the exper-
imental design in (Choi et al. 2021b). Riseholme-2021
dataset1 is used to train a neural network only with the im-
ages of normal strawberries — i.e., instances from the ripe
(13.1%), unripe (68.4%), and occluded (14.2%) cate-
gories — to classify anomalous ones (4.3%) during test. For
this OC scenario, we utilise the predefined exclusive set of
Train, Val, and Test containing 70%, 10%, and 20% of
normal samples, respectively, and all Anomalous exam-
ples are used only for test. Also, each image is resized to
64 × 64 pixels, to which traditional augmentations such as
horizontal/vertical flips and colour jitter2 are randomly ap-
plied in the RGB space. We then use OpenCV-Python3 to
change the colour space to execute CH-Rand on it, and fi-
nally, all pixel values are processed to be within [−1, 1].

1https://github.com/ctyeong/Riseholme-2021
2https://pytorch.org/vision/stable/transforms.html
3https://docs.opencv.org/4.5.4/de/d25/imgproc color

conversions.html

(a) (b)

Figure 4: Trends of (a) AUC-ROC and (b) AUC-PR scores
in different colour models with various amounts of training.
.95 and .99 are the early-stopped training when the valida-
tion accuracy reaches the corresponding number, whereas
Cont. is persistent training for 1.5K epochs.

Moreover, we implement a deep network for OC based
on the official code available online4. In particular, its struc-
ture is of 5 ConvLayers followed by 2 DenseLayers as the
number of 3 × 3 convolutional filters increases by double
at each layer — i.e., 64, 128, 256, 512, and 512. Further-
more, a BatchNorm layer and a 2 × 2 MaxPool layer are
applied after each ConvLayer, and the DenseLayers adopt
256 and 1 output nodes, respectively. Also, every node uses
the LeakyReLU function for activation except in the last
DenseLayer with a sigmoid function instead. Lastly, the out-
puts of the first DenseLayer are used as the learnt represen-
tations gθ to gain anomaly scores for tested images based on
the distance to the k = 1 nearest neighbor in training dataD.

For evaluation, we compute the Area Under the
Curve (AUC) of both the Receiver Operating Characteris-
tic (ROC) and Precision-Recall (PR). The former indicates
the average rate of correct classification within each class
(e.g., normal and anomalous), whereas the latter measures it
only for minority class (anomalous) but additionally consid-
ers the proportion of majority-class (normal) samples in pre-
diction of anomaly to better quantify performance in highly
skewed distributions (Davis and Goadrich 2006). In partic-
ular, every reported score here is the mean from three indi-
vidual models that each have reached the highest validation
accuracy for 1.5K epochs unless mentioned otherwise.

Colour Space Effect
We here compare the performances obtained by differ-
ent colour spaces against the state-of-the-art models run
in (Choi et al. 2021b): Deep Convolutional Autoencoders
and other SL approaches — e.g., RotNet (Gidaris, Singh,
and Komodakis 2018) and CutPaste (Li et al. 2021). Specifi-
cally, Table 1 shows all baselines perform worse than any of
CH-Rand-based methods. Still, the reliability of CH-Rand
appears to depend highly on the selection of colour space
because 33% improvement in AUC-PR is observed only
with the change of applied colour scheme (e.g., Y CbCr →
L∗a∗b∗). In particular, the model with L∗a∗b∗ reached the
best performance among others especially leading to a sig-

4https://github.com/ctyeong/CH-Rand

https://github.com/ctyeong/Riseholme-2021
https://docs.opencv.org/4.5.4/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/4.5.4/de/d25/imgproc_color_conversions.html
https://github.com/ctyeong/CH-Rand
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Figure 5: (a) AUC-ROC and (b) AUC-PR scores in L∗a∗b∗
models with and without curriculums over 1.5K training
epochs. Magenta vertical lines indicate the timings where
curriculums adjust the difficulty of task as designed. 8-way
model only uses eight sequences in group L∗ for CH-Rand.

nificantly higher AUC-PR than the originally suggested de-
sign with RGB. This performance margin actually implies
that the L∗a∗b∗ space can effectively simulate the visual
anomalies expected in strawberries to learn representations
of a better quality.

This high relevance is explained also by Fig. 4, which re-
veals that withL∗a∗b∗, AUC-ROC and AUC-PR scores both
keep increasing as training continues even after validation
accuracy has reached .99. In contrast, other models such as
RGB show consistent performance drops whilst the accu-
racy converges for the validation set. In fact, the pretext task
with RGB images indicated relatively high relevance com-
pared to other state-of-the-art approaches such as ROT and
CP in (Choi et al. 2021b), but here we show that the utility
of CH-Rand can be enhanced by using L∗a∗b∗ instead.

Curriculum Learning
We evaluate a learning curriculum with the colour space
of L∗a∗b∗. To be specific, we first categorise 26 possi-
ble augmented sequences using the three channels into
three groups, so-called group L∗, a∗, and b∗, based on
the source information assigned to the first channel, L∗,
in the resulting image — i.e., the output of πL∗(L∗). For
instance, group a∗ contains the nine sequences, such as
{a∗L∗L∗, a∗L∗a∗, a∗L∗b∗, ..., a∗b∗b∗}.

Our curriculum is designed to involve all groups in aug-
mentation initially but start to ignore group b∗ and a∗ from
500th and 1, 000th epoch, respectively, to set the highest dif-
ficulty of classification at last epochs solely with group L∗.
This approach is based on the intuition that when an image
loses the original values of its first channel, the overall ap-
pearance can dramatically change, and thus, the group a∗
and b∗ would be of relatively easy examples to distinguish.

We also test two more relevant models:

• 8-way w/ L∗: Only use eight sequences in group L∗.
• Anti-Curriculum: Start with group b∗, and also consider

group a∗ and L∗ after 500 and 1K epochs, respectively.

Table 2 shows a notable improvement with the curricu-
lum method in AUC-PR — i.e., > 16% and > 5% over

Metric No Curr.
26-way w/ All

No Curr.
8-way w/ L∗

Anti-
Curr. Curr.

ROC .810
±.007

.796
±.009

.802
±.002

.811
±.004

PR .547
±.030

.550
±.009

.556
±.005

.576
±.006

Table 2: Performance of L∗a∗b∗ models with and without
curriculums. 8-way with L∗ is the case only using eight se-
quences in group L∗ for CH-Rand.

the RGB model and the L∗a∗b∗ without curriculum, re-
specitvely — even though the same networks and datasets
are utilised. Also, the lower performance in the 8-way model
implies the importance of easy start with a large set of possi-
ble permutations as in our curriculum to finally convergence
to a useful representation space. The suboptimal result from
the anti-curriculum approach also supports this observation.

Furthermore, Fig. 5 explains that the curriculum generally
accelerates learning of useful representations with a consid-
erably lower variation in both metrics than naı̈ve training. In
contrast, learning with hard samples first in 8-way and anti-
curriculum methods tends to degrade the quality of represen-
tations albeit their initial performance can seem promising.

Challenging Cases
Figure S2 depicts samples most challenging for the L∗a∗b∗
model with curriculum. Specifically, normal instances are
found to be difficult to classify when fruits are occluded,
or brightness is too high or low. Also, red diseased berries
are shown to be confusing along with anomalies in early de-
velopmental stages before strawberries are fully formed on
flower buds probably due to some extent of visual similarity
to healthy ripe and unripe strawberries, respectively.

Conclusion & Future Work
We have investigated Channel Randomisation (CH-Rand)
augmentation with novel domain-control strategies to learn
useful representations of visual anomalies in strawberries
whilst a neural network classifies the augmented images.
In particular, we have discovered that the constructed do-
mains of visual data in the L∗a∗b∗ colour space can best
guide neural networks to learn informative representations
among other colour expression models. Moreover, curricu-
lum learning could further improve obtained representations
by regulating available channel sequences for augmentation
to gradually increase the difficulty of pretext task. With the
optimal setup, the trained model has led to a > 16% higher
AUC-PR than the previous best on Riseholme-2021 dataset.

For future work, we plan to address the discussed issues
with extreme conditions to perform more robust predictions.
Furthermore, we could attempt to integrate with object de-
tectors to build a more realistic pipeline in which the in-
puts are not necessarily images cropped around fruits. Also,
more sophisticated curriculums could be invented to esti-
mate and make use of image-level difficulties to further max-
imise learning effect.
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A CH-Rand Examples on L*a*b*

Figure S1: All possible channel-randomised outputs for
three individual instances. In each case, the top-left displays
the original input, followed by 26 augmentations of group
L∗, a∗, and b∗ in order. The label above each image shows
the source channels mapped to the new L∗, a∗, and b∗

B Challenging Examples

(a)

(b)

(c)

(d)

(e)

(f)

Figure S2: Strawberry images most challenging for three
independent L∗a∗b∗ models trained with curriculum. For
each model, 10 images of normal strawberries with highest
anomaly scores are displayed in (a)–(c), and 10 images of
anomalous ones with lowest anomaly scores in (d)–(f).
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