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Abstract

Automated material discovery relies on the ability to accurately characterize syn-
thesized materials, a task where solid-state nuclear magnetic resonance (NMR)
spectroscopy plays a crucial role due to its atom-level insights. However, interpret-
ing solid-state NMR spectra is challenging, often requiring quantum mechanical
calculations that traditionally assume static materials. This assumption neglects the
dynamic nature of materials at operational temperatures, leading to discrepancies
between computational and experimental results. To overcome this limitation, we
propose an approach that incorporates both molecular dynamics and transition
state searching to model dynamic effects across timescales in NMR spectra us-
ing machine learning force fields (MLFFs). By fine-tuning atomistic foundation
models, we achieve accurate and cost-effective MLFFs in an automated manner.
We validate our approach through 17O NMR experiments on porous materials for
carbon capture. Specifically we look at the metal-organic framework MFU-41,
demonstrating that existing methods for predicting spectra fail to match experimen-
tal observations, while our method achieves strong agreement. This workflow not
only facilitates automated characterization of materials critical for carbon capture
but also highlights the potential of ML-driven simulations in predicting material
properties.

1 Introduction

Accurately differentiating materials and determining their atomic structures is crucial for automated
characterizations in autonomous laboratories. Nuclear magnetic resonance (NMR) spectroscopy
provides high-resolution insights into a material’s atomic structure, making it essential for under-
standing processes from carbon capture to catalysis. However, solid-state NMR presents unique
challenges due to its complexity in interpretation. Expensive, quantum mechanical methods, such
as density functional theory (DFT) calculations, are often required to match the experimental result
with a materials atomic arangement. A single DFT NMR prediction represents a spectrum of a frozen
configuration, neglecting all dynamical effects.
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Machine learning force fields (MLFFs) have been applied to simulate dynamic effects in NMR
spectra [[1H3]]. In these approaches, configurations from molecular dynamics simulations with a
MLFF are evaluated with DFT NMR calculations and averaged to obtain effective spectra. Although
MLFFs provide computational speedup, they typically capture only fast dynamics (nanosecond
timescales). However, longer time-scale dynamics (e.g. microseconds) can also influence NMR
shifts, limiting the effectiveness of traditional approaches. Alternatively, packages allow modeling of
stochastic hops between a small number of configurations and associated chemical shifts at arbitrary
rates [4]]. As the number of relevant minima increases the number of required barrier calculations
grows combinatorially. Furthermore, the procedure doesn’t correspond to a true Boltzmann sampling
of relevant equilibrium configuration and hence often fail to capture complex short-term processes
accurately. Furthermore, obtaining rates for these slow processes requires expensive ab-initio
transition state searching and vibrational analysis.

Our work presents a combined approach that integrates fast- and long-timescale dynamics, enabling
agreement between computational and experimental spectra. Furthermore, we present a compre-
hensive workflow on how to fine-tune atomistic foundation models and use them to both sample
equilibrium configurations at short time scales (ns) as-well as calculate transition rates for more rare
events. We show that it is possible to obtain accurate computational NMR spectra even for materials
with complex dynamics. For a full-text version of the paper targeted at a Chemsitry audience please
see Reference [5]].

2 Background

NMR spectroscopy The atomic structure of a material can be probed by analyzing how atomic
nuclei interact with an external magnetic field. As this interaction strongly depends on the
electronic environment surrounding the nucleus, these spectra are a type of fingerprint for a given
material.

Ab-initio NMR spectra To relate NMR spectra to atomic environments it is often necessary to
perform quantum mechanical calculations. These compute the electron density, under some
approximations such as density functional theory (DFT), and its effect on the magnetic shielding
tensors of the surrounding nuclei [[6H9].

ML Forece fields Recent advances in geometric deep learning have led to the development of machine
learning force fields (MLFFs), which can predict atomic forces and energies based on 3D atomic
configurations with near-quantum mechanical accuracy [[I0H17]. These can be used as surrogate
models to sample relevant configurations using molecular dynamic simulations.

3 Results

In this section, we outline the proposed automated workflow for obtaining dynamic NMR spectra
across time scales. Furthermore, we test the approach on novel experimental !”O-NMR-spectra of a
carbon capture material, namely the MFU-41 metal organic framework.

3.1 Automated training of ML forcefield

Recently published atomistic foundation models, such as MACE-MPO [18]], can be used to obtain
qualitatively correct simulations of a wide variety of material systems. However, to accurately
determine the rates of rare events, we find it necessary to fine-tune [[19-21]]. We have automated this
workflow for quickly creating a small data set on the order of 100 configurations that is sufficient
to accurately model complex systems like metal organic frameworks. The workflow, outlined in
Figure [2] entails using the foundation model to run simulations, such as geometry optimization,
global minima searches, or transition state searches. As in Reference [22f, we use an active learning
workflow [23125]] to enhance our training data in an efficient manner. configurations are sampled
from the simulations and reevaluated using an accurate ground truth quantum mechanical calculation.
The resulting configurations are added to a training set and the foundation model is fine-tuned. This
loop continues until the model reaches the desired accuracy.
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Figure 1: Automated active learning workflow for fine-tuning foundation models. Showing how
the new configurations for the training set are sampled from atomistic simulations to interactively
extend the dataset (a). Figure b shows the correlation between ground truth forces against the founda-
tions models (left) and fine-tuned modeled (right) forces, for respectively unseen configurations.

3.2 Handsfree exploration of dynamic events

Firstly, we explore the potential energy landscape of our material using a mixture of molecular
dynamics and global optimization methods. Specifically, we perform minima hopping [26], which
consists of alternating NVE molecular dynamics with geometry optimization to find relevant minima.
This makes it possible to explore the configuration space beyond the limits of direct molecular
dynamics or other thermodynamic methods. Transition-state searches are used to compute rates
between minima, enabling us to model rare dynamic events.

3.3 Computing dynamic NMR spectra

Because NMR spectra are sensitive to chagnes in chemical environments of nuclei, they are strongly
affected my molecular motion, often referred to as chemical exchange. Indeed, the effect of dynamic
processes on the observed NMR spectra depends significantly on the relationship of the process’
exchange rate, k, and the absolute resonant frequency difference, Av, between the initial and final
states. This separates, the effect of chemical exchange into three regimes: slow exchange (k < Av),
where each environment is well resolved in the NMR spectrum; fast exchange (k > Awv), where rapid
dynamics lead to a complete averaging of individual NMR environments; or intermediate exchange (k
~ Av) when NMR environment coalescence is observed but averaging is only partial. See Figure
for examples of such coalescence (right).

Using the molecular dynamics samples and transition states, obtained as described in the previous
section, we can compute NMR spectra across chemical excahnge regimes, as visually outlined in [2]
to the left.

Fast regime We use direct MLFF molecular dynamics to capture fast processes. The final spectrum,
Figure [2IC, is obtained by point-wise averaging of the individual DFT shielding tensors across
samples of nanosecond-long trajectories.

Intermediate regime To capture longer timescale events we do an extensive local minima energy
structure search using minima hopping [26]]. We find the exchange rates connecting the minima
using a transition-state search with the MLFF. We use the stochastic hopping package EX-
PRESS,[4] to compute the effective NMR shielding tensors from the initial and final minimum’s
DFT shielding tensor and MLFF computed exchange rate.

Fast + Intermediate regime To combine the effects of fast and intermediate exchange processes,
we first sample configurations in two minima and compute the two MD-averaged tensors as in
Figure [JJC. We then use EXPRESS to model a stochastic hopping between MD averaged tensors
as illustrated in Figure 2D. that can be transferred to other similar metal-binding systems.[27]

MFU-41 MOF for carbon capture We now apply this approach to understand CO adsorption in a
promising metal organic framework (MOF) as illustrated in Figure|l| Here, the material is dosed
with special CO,, where the oxygen’s are enriched 17O to be detectable by NMR. As the natural
abundance of the 17O isotope is low (less than 0.04%), the peaks correspond almost exclusively to
oxygen atoms originating from enriched COs [28]]. This gives us a unique way to track what happens
to CO; as it is adsorbed by the MOF. When the MFU-41 MOF is dosed with carbon dioxide, it
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Figure 2: Capturing dynamic effects of NMR spectra across timescales The ground truth experi-
mental 7O NMR spectrum (right, black) of MFU-41 MOF dosed with carbon dioxide. Computational
NMR spectra associated with the individual oxygen atoms are shown in color. Schematics of the
exchange regimes and workflows utilising ML force-fields are displayed (left). Panel D demonstrates
the most accurate model combining both fast and intermediate exchange modelling.

reacts with the MOF forming bicarbonate. This is immediately visible in the experimental spectrum,
to the right of Figure 2]in black. The experimental spectrum has three peaks; the far right peak
corresponds to carbon dioxide, which has not reacted with the MOF and is physisorbed. We focus
only on modeling the two interesting peaks, which correspond to COs strongly chemically adsorbed
by the MOF. As visible from the static picture (A), there are 3 distinct chemisorbed peaks in the
computed NMR spectrum (in color), corresponding to the three oxygen atoms of the bicarbonate.
The intermediate regime (B) reveals why the experimental spectrum only has two chemisorbed
peaks. We find that the bicarbonate proton can rotate around its bonded oxygen atom, effectively
causing the two oxygen environments to be identical, as illustrated in Figure[3] A transition-state
search finds the barrier to be 0.49 eV. Combined with a vibrational analysis of the start and transition
state configuration, the predicted reaction rate corresponds to 2.4 x 10° Hz under the harmonic
approximation at room temperature. The EXPRESS[4]] calculation shows that this rate causes a
coalescence of the two peaks. However, the computational peaks are too wide, especially the peak at
90 ppm. Secondly, a nanosecond-long MD simulation reveals a rotational tumbling of the bounded
bicarobnate. Including the effects of these fast regime (C) dynamics leads to a reduction in the
average anisotropic chemical shielding resulting in narrower line widths, particularly visible at
90 ppm. Only by combining the fast and intermediate approach (D), we obtain strong agreement
with the two chemi-sorbed experimental peaks.
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Figure 3: Dynamics of adsorbed C'O; in MFU-41 MOF accross chemical exchange regimes.
A cartoon representation of the adsorption process from carbon-dioxide to bicarbonate, rotational
tumbling in the fast regime and the rotation of a hydroxyl group in the intermediate regime.

4 Discussions

The automated characterization of complex materials requires experimental techniques that capture
atomic-level detail. For many systems, the use of nuclear magnetic resonance (NMR) spectroscopy
may be limited due to the difficulty in interpreting experimental spectra, primarily due to the dynamic
nature of materials. Our approach automates the incorporation of dynamic effects into computational
NMR spectra, utilizing cost-effective fine-tuning of expressive atomistic foundation models to
accurately capture dynamics across multiple timescales. By combining tensor averaging with
stochastic hopping methods, we achieve strong agreement between computational and experimental
results. Although demonstrated on a metal-organic framework for carbon capture, this method offers
a generalizable solution for dynamic materials. The workflow opens new opportunities for automated
characterization, enabling large-scale material screening and advancing automated material design.
To reduce the computational cost of this approach, steps could be taken to learn the magnetic tensorial
properties [29], potentially as a future foundation model.
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