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A B S T R A C T

Despite their growing popularity, graph neural networks (GNNs) still have multi-
ple unsolved problems, including finding more expressive aggregation methods,
propagation of information to distant nodes, and training on large-scale graphs.
Understanding and solving such problems require developing analytic tools and
techniques. In this work, we propose the notion of recoverability, which is tightly
related to information aggregation in GNNs, and based on this concept, develop
the method for GNN embedding analysis. Through extensive experimental re-
sults on various datasets and different GNN architectures, we demonstrate that
estimated recoverability correlates with aggregation method expressivity and graph
sparsification quality. The code to reproduce our experiments is available at
https://github.com/Anonymous1252022/Recoverability.

1 I N T R O D U C T I O N

Over the last decade, deep learning allowed researchers to tackle multiple hard tasks, previously
considered intractable. For example, convolutional neural networks (CNNs) have been successfully
applied to computer vision problems such as image classification (He et al., 2016), object detection
(Ren et al., 2015), and semantic segmentation (Ronneberger et al., 2015). Nevertheless, while CNNs
are successful in processing pixels, multiple other modalities such as 3D meshes (Wu et al., 2019),
social networks (Ribeiro et al., 2017), brain connections (Shapson-Coe et al., 2021) and many others,
require the processing of irregular data. As a result, in recent years, researchers have been looking
into ways to exploit deep learning methods, such as CNNs, in order to work with graph structured
data. Deep learning on graphs and, in particular, graph neural networks (GNNs, Gori et al., 2005;
Scarselli et al., 2008; Kipf & Welling, 2017), based on message passing (Gilmer et al., 2017), has
become a very popular tool for machine learning with graphs.

Despite their exceptional ability to learn graph-based data representations, GNNs still suffer from
some important problems. One issue is related to aggregation method expressiveness. Kipf & Welling
(2017) proposed graph convolution networks (GCNs), which aggregate information from neighboring
nodes but cannot distinguish between them, Hu et al. (2020) integrated a self-attention mechanism
(Vaswani et al., 2017) into aggregation. Another problem is lack of ability to propagate information
between distant nodes in the graph. Li et al. (2018) conjectured that this phenomenon is a result
of over-smoothing, Alon & Yahav (2021) offered another explanation – over-squashing. Finally,
training on large-scale graphs is a significant obstacle in integrating GNNs in real-life problems. The
diameter (maximal distance between two nodes) is often small (3–5) even for large graphs. Thus,
GCNs with only 3–5 layers must aggregate information from the whole graph to calculate embedding
of a single node, which requires a large amount of memory and compute. Graph sparsification by
dropping a subset of edges (Srinivasa et al., 2020; Rathee et al., 2021) can diminish the problem.

In this work, we introduce the notion of recoverability and demonstrate its tight relationship to infor-
mation aggregation in GNNs. Recoverability provides an alternative insight into the aforementioned
problems and can serve as a good tool for understanding their roots and finding better solutions
for them. First, we provide a qualitative definition of recoverability and its empirical counterpart,
recoverability loss. We then use reproducing kernel Hilbert space (RKHS) embedding for estimating
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recoverability loss in an efficient and differentiable way. Finally, we show how to use recoverability
for measuring the quality of embedding method.

2 M E T H O D

We characterize neural graph embedding as having three parameters: an aggregation algorithm, a
certain number of layers, and a graph sparsification algorithm. Our goal is to compare different
embeddings based on those parameters and see which one performs better on the given data. To
achieve this goal, we define a method for analyzing neural graph embeddings. First, the problem of
measuring the quality of a given embedding is reduced to the problem of determining how well one
can recover one random variable from another. Second, we define a new concepts of recoverability
and recoverability loss. Third, we demonstrate how to compute recoverability loss in a differentiable
and efficient way. Finally, we present an algorithm for measuring graph embedding quality using
recoverability.

From an embedding to recoverability. In the node property prediction task, given graph G =
(V,E) equipped with node features X = {xv}v∈V and labels Y = {yv}v∈V distributed according
to some probability distribution (xv, yv) ∼ (X,Y ), one should predict the label of each node in the
graph. To solve this task we embed the graph with node features (G,X ) into a latent space, acquiring
some representation of each node, which we denote as hv ∼ H , and then apply a classifier to the
embedding hv , trying to predict label yv . The success of the above procedure is highly dependent on
the ability to learn a map between random variables H and Y . Since different embedding methods
produce different random variables, we can reduce the problem of measuring the embedding method’s
quality to measuring the ability to learn random variable Y from random variable H . This leads to
the natural question of how much information do we have in random variable H to recover Y . We
term the ability to recover Y from a given H recoverability.

Recoverability and recoverability loss. Given two random variables H and Y , with the values in
U ⊂ Rd and R, respectively, we say that Y is fully recoverable from H if there exists a continuous
function f : U → R such that f(H) = Y . In the general case, however, we do not have such a
relation between H and Y , which means that we cannot fully recover Y from H . Nevertheless, H
may still contain some information from which we can partially recover Y . To measure the amount
of such information in H , we define the set CH = {f(H) | f : U → R is continuous function}
i.e., the collection of all random variables that could be fully recovered from H , and then evaluate
the distance between random variable Y and the set CH : ρ(Y |H) = infZ∈CH

d(Y,Z), where d is
some distance function. We denote the value ρ(Y |H) as the recoverability loss. When we are given
two different random variables H1 and H2 (i.e., two different embeddings of (G,X )) such that
ρ(Y |H1) < ρ(Y |H2), Y is more recoverable from H1 than from H2 (which means that embedding
method 1 is better than method 2). This case is demonstrated in Fig. C.3.

Recoverability loss estimation. We denote the empirical estimation of ρ(Y |H) on a finite collec-
tion of samples {(hn, yn)}n∈[N ] by ρ∗(Y |H) and use the distance induced form the Lp-norm, where
p ∈ [1,∞).

Theorem 1 The empirical estimation of recoverability loss is given by ρ∗(Y |H) =
1

N1/p
∥(I−Π)y∥p, where Π is an orthogonal projection to the Im(K) and Kij = exp

(
−∥h1−h2∥2

2σ2

)
is a Gram matrix.

We provide the proof of the Theorem 1 in Appendix A.

An algorithm for embedding quality estimation. In Algorithm 2, we first, apply an embedding
method EM to (G, {xn}n∈[N ]) to produce hn ∼ H , which is equivalent in time to a single forward
pass of GNN on the full graph. We then use {hn}n∈N to estimate ρ(Y |H) using Algorithm 1. The
time complexity of Algorithm 1 is O

(
Nm2

)
, where N is the number of nodes in the graph and m is

the batch size of Algorithm 1. This allows fast approximation of the recoverability loss, as compared
to training a GNN model on a given dataset.
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Algorithm 1 ρ(Y |H) estimation.

Input: {(hn, yn)}n∈[N ]

Output: ρ∗(Y |H)

for jth batch
{
(h̃i, ỹi)

}
i∈[m]

⊆ {(hn, yn)}n∈[N ] do

Kkl ← exp

(
−∥h̃k−h̃l∥2

2σ2

)
Compute distance matrix.

U,Λ← eig(K) Compute eigendecomposition K = U−1ΛU of K.
Π←

∑
λi>0 uiu

T
i Compute projection to im(K).

ρ∗j (Y |H)← 1
m1/p
∥(I−Π)ỹ∥p

end for
ρ∗(Y |H) = m

N

∑
j ρ

∗
j (Y |H)

Algorithm 2 Embedding method quality.

Input: (G, {xn}n∈[N ]), {yn}n∈[N ] and embedding method EM
Output: embedding method EM quality
{hn}n∈[N ] ← EM((G, {xn}n∈[N ])) Generate outcomes of H .
ρ∗(Y |H)← Algorithm_1({(hn, yn)}n∈[N ]) Use Algorithm 1 to estimate ρ.

3 E X P E R I M E N T S

In this section we provide extensive experimental results on real datasets and different GNN architec-
tures, where we show various applications of the proposed method for graph embedding analysis.
The experimental settings are given in Appendix C.

The usefulness of edges. The first experiment shows an interesting property of the datasets ap-
pearing in Table C.2, which could help elucidate why GNNs with a SAGEConv layer can be used
efficiently for training on these. We took three consecutive SAGEConv layers without learnable
parameters as embedding method EM, i.e., only the aggregation parts (as shown in Appendix C),
and applied it to the node features. Let X denote the random variable of node features, H the
node embedding (after EM application) and Y the node classes. From Table 1 we can see that
ρ∗(Y |H) < ρ∗(Y |X). In other words, Y is more recoverable from H (node embedding) than
from X (node features). Additionally, we observe an interesting correlation between recoverability
loss drop and homophily. In the Reddit2 and ogbn-products datasets, which have a relatively high
homophily, the recoverability loss drops relatively sharply, whereas in the Flickr dataset, which has a
relatively low homphily, the recoverability loss changes relatively slightly.

Correlation between recoverability and aggregation method quality. This experiment shows
the correlation between recoverability loss and aggregation method quality on a given dataset, i.e.,
the test accuracy after the training on a GNN model defined in Appendix C. The results are shown in
Figs. 1 and C.4 to C.7, where the y axis is the test accuracy of the trained GNN model on a given
dataset, and the x axis is the inverse of the estimated recoverability loss. For GraphConv, GCNConv,
SAGEConv and GINConv, the estimation of recoverability loss was done only on the aggregation
part, according to Appendix C. For GATv2Conv, the recoverability loss was computed for the node
embedding of the trained model. From all plots it can be seen that as the recoverability loss drops,
the test accuracy becomes higher.

Correlation between recoverability and the graph sparsification method quality. In this ex-
periment we show that the quality of the given sparsification method correlates with recoverability.
We use two simple sparsification methods. In Random sparsification we randomly drop 90% of
the edges from the graph. In Max d sparsification we find the maximal value of d that satisfies∑

v∈V min{d, din(v)} ⩽ 0.1|E|, where din(v) is an input degree of v, and for each node v in the
graph we randomly leave min{d, din(v)} of input edges. To evaluate quality of sparsification, we
first apply it to the given dataset and then train a three-layer SAGEConv GNN mode (defined in

3
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Dataset ρ∗(Y |X) ρ∗(Y |H)

Reddit2 0.088 0.066
ogbn-arxiv 0.085 0.079
Flickr 0.188 0.183
PPI 0.374 0.287
ogbn-products 0.041 0.017

Table 1: The recoverability loss ρ before and after application of embedding method EM. One can
see how recoverability loss ρ decreases when embedding method EM is applied to the node features.

Figure 1: The correlation between the test accuracy and the recoverability loss for PPI dataset.

Dataset Sparsification
Random Max d

Reddit2 0.083 / 0.906 0.069 / 0.938
ogbn-arxiv 0.109 / 0.568 0.084 / 0.586
Flickr 0.214 / 0.466 0.191 / 0.470
PPI 0.313 / 0.598 0.266 / 0.617
ogbn-products 0.020 / 0.705 0.017 / 0.767

Table 2: Comparison of two sparsification methods, where 90% of the edges were dropped from
the graphs. Each element in the table is “ρ / test accuracy”. One can see the correlation between
recoverability loss and the test accuracy.

Appendix C) on sparsified data. We also compute the recoverability loss of the aggregation part, as
described in Appendix C. The results are shown in Table 2. We see that the Max d sparsification
is better than Random, and correspondingly, the recoverability loss of Max d is lower than that of
Random.

4 C O N C L U S I O N S

In this work, we defined recoverability, provided an efficient and differentiable method for estimation
of recoverability loss and showed how it can be used for measuring the quality of GNN embedding.
We demonstrated empirically that recoverability is tightly related to information aggregation in GNNs
across various datasets and multiple architectures. Computing the recoverability loss is efficient and
does not require training, and thus can be done quickly on large datasets. To conclude, the notion
of recoverability could provide an essential tool for understanding the roots of and providing better
solutions for the problems with GNNs.
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with graph convolutional networks. IEEE computer graphics and applications, 39(2):77–88, 2019.
(cited on p. 1)

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km. (cited on p. 11)

6

https://arxiv.org/abs/2106.12920
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://www.biorxiv.org/content/early/2021/05/30/2021.05.29.446289
https://www.biorxiv.org/content/early/2021/05/30/2021.05.29.446289
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km


Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

A T H E P R O O F O F T H E O R E M 1

Let U ⊂ Rd be compact1,

C(U) = {f : U → R | f is continuous function}, (A.1)

and

∀h1, h2 ∈ U k(h1, h2) = exp

(
−∥h1 − h2∥2

2σ2

)
. (A.2)

For each h ∈ U , define continuous function k(h, ·) = ϕh(·), and construct the following functional
space:

H0 = span({ϕh(·) | ∀h ∈ U}) (A.3)

Define an inner product onH0 by:〈
n∑

i=1

aiϕhi
(·),

m∑
j=1

bjϕhj
(·)

〉
=

n∑
i=1

m∑
j=1

aibjk(hi, hj) (A.4)

Let H be the completion of H0 with respect to this inner product. Now H is an RKHS built from
kernel k(·, ·).
Since k(·, ·) is universal kernel (Micchelli et al., 2006), the setH is dense in C(U) with respect to
the supremum norm, i.e., for any f ∈ C(U):

∀ϵ > 0 ∃g ∈ H s.t. sup
h∈U
|f(h)− g(h)| < ϵ (A.5)

In addition,H has reproducing property:

∀f ∈ H ∀h ∈ U f(h) = ⟨f, ϕh(·)⟩ (A.6)

and thus we have:

ρ(Y |H) = inf
Z∈CH

d(Y,Z) = inf
f∈C(U)

d(Y, f(H)) = inf
f∈H

d(Y, f(H)) = inf
f∈H

d(Y, ⟨f, ϕH(·)⟩)

(A.7)

We denote the estimation of ρ on a finite collection of samples (h, y) = {(hn, yn)}n∈[N ] by ρ∗ and
use the distance induced from Lp-norm, where p ∈ [1,∞). Thus we have:

ρ∗(Y |H) = inf
f∈H

 1

N

∑
i∈[N ]

|yi − ⟨f, ϕhi
(·)⟩|p

1/p

(A.8)

From the representer theorem (Kimeldorf & Wahba, 1970) there exists f∗ ∈ H of the following
form:

f∗ =
∑
i∈[N ]

αiϕhi(·) (A.9)

which minimizes ρ∗(Y |H). Thus:

ρ∗(Y |H) =

 1

N

∑
i∈[N ]

|yi − ⟨f∗, ϕhi
(·)⟩|p

1/p

= (A.10)

= min
αj∈R

 1

N

∑
i∈[N ]

|yi −
∑
j∈[N ]

αjk(hi, hj)|p
1/p

= min
α∈RN

1

N1/p
∥y −Kα∥p (A.11)

1It is not a restrictive assumption that U is compact since all tensor values in neural networks are bounded.
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where Kij = k(hi, hj) is a Gram matrix.

Decompose y into two parts:

y = y∥ + y⊥ (A.12)

where y∥ ∈ im(K) and ∀v ∈ im(K) yT⊥v = 0. Then we have:

ρ∗(Y |H) =
1

N1/p
∥y⊥∥p (A.13)

Since K is positive semi-definite, we have the following eigendecomposition:

K = UΛUT (A.14)

where columns of unitary matrix U are eigenvectors of K and Λ is a diagonal matrix of eigenvalues.
Let:

λ1, λ2, ..., λk, 0, 0, ..., 0 (A.15)

be the descending order of eigenvalues, where λk > 0. Then:

Π =
∑
i∈[k]

uiu
T
i (A.16)

is an orthogonal projection into im(K) subspace. Consequently:

ρ∗(Y |H) =
1

N1/p
∥(I−Π)y∥p (A.17)

where I is an identity matrix.
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B S Y N T H E T I C D ATA E X P E R I M E N T S

If we extend the collection of continuous functions in CH (Section 2) to the measurable functions,
and take as distance d the one induced from the L2 norm on random variables, then the Z ∈
CH that minimizes ρ(Y |H) is almost everywhere equivalent to conditional expectation E[Y |H].
Consequently, conditional expectation E[Y |H] can be used for testing ρ(Y |H) values on synthetic
data.

1-D: To demonstrate the ability of recoverability to capture the existence of a continuous map from
one random variable to another, we use a simple 1D experiment. Let X be a normally distributed
random variable, and let Z and W be defined as follows:

Z = f1(X) = sign(X) ·X2 (B.18)

W = f2(X) = X2. (B.19)

Since f1 is invertible and f2 is not, we can fully recover X from Z but not from W . Of course, we
can fully recover Z and W from X , since we explicitly defined continuous maps f1 and f2.

For this test we generated 1000 samples of X and estimated ρ∗ with Algorithm 1. The results are
shown in Table B.1.

Theoretical recoverability loss for Table B.1:

E[Z|X] = Z ⇒ ρ(Z|X) =
√

E[(Z − Z)2] = 0 (B.20)

E[X|Z] = X ⇒ ρ(X|Z) =
√

E[(X −X)2] = 0 (B.21)

E[W |X] = W ⇒ ρ(W |X) =
√

E[(W −W )2] = 0 (B.22)

E[X|W = w] = (B.23)

= E[1X≥0X|W = w] + E[1X<0X|W = w] = (B.24)

= E[1√
w≥0

√
w] + E[1−

√
w<0(−

√
w)] = 0 (B.25)

ρ(X|W ) =
√
E[(X − 0)2] = 1 (B.26)

100-D: Now, let X and N be 100-dimensional random vectors, with independent normally dis-
tributed entries, and Y be defined as

Y =
∑

i∈[100]

(Xi + α ·Ni), (B.27)

where α is some parameter. When α tends to zero, Y can be fully recovered from X , and when |α| is
large, the noise N dominates the value of X , and consequently Y cannot be recovered from X . This
behavior is visualized in Fig. B.1, where ρ∗(Y |X), estimated on 1000 samples, is compared to its
theoretical value.

Theoretical recoverability loss for Fig. B.1:

E[Y |X = x] =
∑

i∈[100]

(xi + α ·Ni) =
∑

i∈[100]

xi (B.28)

E[Y |X] =
∑

i∈[100]

Xi (B.29)

ρ(Y |X) =

√
E[(Y −

∑
i∈[100]

Xi)2] = |α|
√
100 (B.30)

9
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ρ∗ (mean± std) ρ

ρ∗(X|Z) 0.119± 0.004 0
ρ∗(X|W ) 0.974± 0.026 1
ρ∗(Z|X) 0.099± 0.013 0
ρ∗(W |X) 0.110± 0.019 0

Table B.1: The estimated distance from X to CW is larger than the distance from X to CZ , since we
cannot fully recover X from W .

Figure B.1: Comparison between estimated ρ∗(Y |X) and its theoretical value for different α.

Name Nodes Edges Feature dim. Classes Multilabel Train Val Test Directed Homophily
Reddit2 232,965 11,606,919 602 41 – 153,932 23,699 55,334 – 0.782
ogbn-arxiv 169,343 1,166,243 128 40 – 90,941 29,799 48,603 ✓ 0.654
Flickr 89,250 449,878 500 7 – 44,625 22,312 22,313 – 0.319
PPI 56,944 793,632 50 121 ✓ 44,906 6,514 5,524 – 0.620†

ogbn-products 2,449,029 61,859,140 100 47 – 196,615 39,323 2,213,091 – 0.808

Table C.2: Dataset statistics. † The homophily of PPI is the average over all classes.

C R E A L D ATA E X P E R I M E N T S

Experimental setting: Dataset statistics, used in the following experiments, are summarized in
Table C.2.

Throughout the experiments we use five different embedding layers2:

• GraphConv (Morris et al., 2019):

x′
i = Θ1xi +Θ2

∑
j∈N(i)

ejixj (C.31)

where Θ1 and Θ2 are trainable parameters.
• GCNConv (Kipf & Welling, 2017):

x′
i = Θ

∑
j∈N(i)∪{i}

eji√
d̂j d̂i

xj (C.32)

where d̂i = 1 +
∑

j∈N(i) eji, and Θ are trainable parameters.

• SAGEConv (Hamilton et al., 2017):

x′
i = W1xi +W2mean

j∈N(i)
{xj} (C.33)

where W1 and W2 are trainable parameters.
2The notation is taken from PyTorch Geometric (Fey & Lenssen, 2019).
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• GINConv (Xu et al., 2019):

x′
i = hΘ

(1 + ϵ)xi +
∑

j∈N(i)

xj

 (C.34)

where hΘ is an MLP and ϵ could be trainable.
• GATv2Conv (Brody et al., 2022):

x′
i = αiiΘxi +

∑
j∈N(i)

αijΘxj (C.35)

where:

αij =
exp
(
aTLeakyReLU(Θ[xi||xj ])

)∑
k∈N(i)∪{i} exp(a

TLeakyReLU(Θ[xi||xk]))
(C.36)

and Θ are trainable parameters.

For experimental purposes, we separate the embedding part from the classifier part in a GNN model,
as described in Section 2. Therefore, for training, we use a GNN model consisting of two consecutive
blocks, where the first block is an embedding built from k ∈ {1 . . . 9} layers of one of the considered
types, and the second block is a classifier consisting of three fully connected layers. Each layer except
for the last one is followed by ReLU activation and dropout.

Aggregation method quality. To evaluate the quality of the aggregation part of some embedding
method, we fix learnable parameters as identities and apply the resulting layer to the graph multiple
times, defining an embedding method EM, which can be evaluated using Algorithm 2. For example,
for SAGEConv (Hamilton et al., 2017), defined as follows:

x′
i = W1 · xi +W2 · mean

j∈N(i)
{xj}, (C.37)

we fix matrices W1 and W2 to identity.

Sparsification method quality. Similarly, to evaluate sparsification, we apply sparsification SM to
the graph G, producing a sparser graph G̃ = (V, Ẽ). Then we use Algorithm 2 with (G̃, {xn}n∈[N ]),
{yn}n∈[N ] and embedding method EM as input, as shown in Fig. C.2.

Propagation of information to distant nodes. This experiment demonstrates the depth problem
in GNNs and its correlation with the recoverability. We took two GNN models with three and nine
embedding layers of type SAGEConv each (the model is defined in Appendix C), and trained them
on datasets from Table C.2. The results are given in Table C.3. For the Reddit2, ogbn-arxiv and
ogbn-products datasets, we did not see a significant change in test accuracy after the training, whereas
for the Flickr and PPI datasets, there was a degradation in accuracy for nine-layer architecture. We
collected the recoverability loss of each embedding layer in the trained nine-layer architecture. The
results are shown in Fig. C.8. For Reddit2, ogbn-arxiv and ogbn-products, we have a similar pattern
of ρ behavior: it smoothly decreases, meaning that each consecutive layer aggregates more and
more information to recover Y . For Flickr and PPI, we see different behavior. In Flickr, ρ increases,
indicating that it does not aggregate any useful information from neighboring nodes to recover Y . In
PPI, ρ first decreases and starts to increase after three layers, which indicates that the over-smoothing
or over-squashing problem is occurring.
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Figure C.2: The relation between graph sparsification and recoverability loss. G2 and G3 are
sparsified versions of graph G1, and Y is the node class random variable. The fewer edges the graph
Gi has, the smaller the correspondent space CHi is, and, consequently, recoverability loss ρ is higher.

Figure C.3: For random variables Hi,CHi
is the collection of all random variables that are fully

recoverable from Hi. The distance from random variable Y ρ(Y |H1) is smaller than ρ(Y |H2), and
thus Y is better recoverable from H1 than from H2.

D T E C H N I C A L N O T E S

• There is a numerical instability in gradient computation of eigendecomposition K = UΛUT .
The problem comes from equal eigenvalues in:

∂L

∂K
= U

{(
K̃T ◦

(
UT ∂L

∂U

))
+

(
∂L

∂Λ

)
diag

}
UT (D.38)
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Figure C.4: The correlation between the test accuracy and the recoverability loss for Reddit2 dataset.

Figure C.5: The correlation between the test accuracy and the recoverability loss for ogbn-arxiv
dataset.

Dataset Accuracy
3 layers 9 layers

Reddit2 0.946 0.943
ogbn-arxiv 0.692 0.691
ogbn-products 0.789 0.792

Flickr 0.532 0.522
PPI 0.831 0.761

Table C.3: Test accuracy of trained models with three and nine SAGEConv embedding layers.

where:

K̃ij =

{
1

λi−λj
, i ̸= j

0, i = j
(D.39)
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Figure C.6: The correlation between the test accuracy and the recoverability loss for Flickr dataset.

Figure C.7: The correlation between the test accuracy and the recoverability loss for ogbn-products
dataset.

and (·)diag means all off-diagonal elements set to 0. To overcome this issue, we changed K̃
to be:

K̃ij =


1

λi−λj
, λi ̸= λj

1
ϵ , λi = λj

0, i = j

(D.40)

• When we perform eigendecomposition, we do not have explicit zero eigenvalues. Thus
instead of taking the first k non-zero eigenvalues, we simply clamp them between 0 and 1.
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Figure C.8: The recoverability loss of each embedding layer in trained GNN model. The recoverability
of the Flickr and PPI datasets behaves differently than the recoverability of the Reddit2, ogbn-arxiv
and ogbn-products datasets.
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