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ABSTRACT

The competitive and cooperative forces of natural selection have driven the evolu-
tion of intelligence for many millions of years, eventually culminating in nature’s
vast biodiversity and the complexity of our human minds. In this paper, we present
a novel multi-agent reinforcement learning framework, inspired by the process of
evolution. We assign a genotype to each agent, and propose an inclusive reward
that optimizes for the fitness of an agent’s genes. Since an agent’s genetic material
can be present in other agents as well, our inclusive reward also takes genetically
related individuals into account. We study the effect of inclusion on the resulting
social dynamics in two network games with prisoner’s dilemmas, and find that our
results follow well-established principles from biology. Furthermore, we lay the
foundation for future work in a more open-ended 3D environment, where agents
have to ensure the survival of their genes in a natural world with limited resources.
We hypothesize the emergence of an arms race of strategies, where each new strat-
egy will be a gradual improvement in response to an earlier adaptation from other
agents, effectively creating a multi-agent autocurriculum similar to biological evo-
lution. Our evolutionary rewards provide a novel social dimension that features a
non-stationary spectrum of cooperation due to the finite environmental resources
and changing population distribution. It has the potential to create increasingly
advanced strategies, where agents learn to balance cooperative and competitive
incentives in a more complex and dynamic setup than previous works, where
agents were often confined to predefined team setups that did not entail the so-
cial intricacies that biological evolution has. We argue this could be an important
contribution towards creating advanced, general and socially intelligent agents.

1 INTRODUCTION

Creating intelligent agents with the ability to adapt to a diverse set of challenges and environments
is a prominent goal of artificial intelligence research. In the past decades, the field of single-agent
Reinforcement Learning (RL) (Sutton & Barto, 2018) has made great progress in developing agents
capable of completing tasks provided in the form of a reward signal (Mnih et al., 2015; Schulman
et al., 2017; Haarnoja et al., 2018; Mirowski et al., 2017; Akkaya et al., 2019). However, in tradi-
tional single-agent RL, once an agent has learned to master its given task, learning stops, since there
is no further incentive for improvement. This makes it difficult to create agents which can solve a
wide variety of complex tasks; an important characteristic of general intelligence. Creating extra
handcrafted tasks for an agent to train and generalize on (i.e., transfer learning (Taylor & Stone,
2009)) can mitigate this, but this approach is resource intensive and still caps the final complexity
that the agent can achieve. Recent work on procedurally generated tasks and environments (Cobbe
et al., 2020; Wang et al., 2019; Suarez et al., 2021) attempts to solve this problem, but creating
adequate reward signals in the environments still remains costly.

Another problem is that an objective can be too complex to learn from scratch. In this case, the
space of possible policies is too large to cover effectively with regular exploration strategies. This
leads to an agent that cannot close the gap between its initial random behavior and solving the task,
getting stuck in low-performing suboptima. Intermediate rewards (such as reaching checkpoints in
a maze) can be created to help the agent learn the final overarching goal, but over-engineering the
reward signal can lead to problems like specification gaming (Krakovna et al., 2020; Amodei et al.,
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2016) and potentially limits the range and originality of the learned strategies. A slightly different
approach is the use of curriculum learning (Bengio et al., 2009; Czarnecki et al., 2018; Narvekar
et al., 2020), in which an agent gradually progresses from an easy environment (e.g., a small maze)
towards more difficult ones (the full maze), similar to how human education works. Curriculum
learning can provide an efficient way of learning complex tasks, but the final complexity is limited
by the most advanced task, and creating suitable progressions in the curriculum is resource intensive.
Improved exploration strategies can help an agent to avoid getting stuck in suboptimal states. Work
in the field of intrinsic rewards proposes ways of overcoming a sparse reward signal. For example,
curiosity driven RL (Pathak et al., 2017; Burda et al., 2018; 2019) provides a self-supervised reward
signal which promotes the exploration of previously unknown environment dynamics, often leading
to the development of useful skills solely by following the intrinsic reward.

Nature, however, is not a single-agent system, but a multi-agent world full of evolving organisms.
The competitive and cooperative forces of natural selection have driven the evolution of intelligence
for many millions of years, culminating in nature’s great biodiversity and the richness of our human
minds. In nature, when a strategy with an increased fitness emerges, it changes the environment
dynamics for others, creating a new set of challenges to adapt to (Williams, 2018). The agents that
successfully adapt to these challenges have in turn improved their strategies, thereby again providing
new challenges, and so forth. Less successful agents, which are unable to keep up, go extinct. Agents
are therefore always at a similar level, and provide just the right amount of challenge for growth.
This can be applied to reinforcement learning as well: learning agents continuously improve, thereby
pushing the others to adapt, leading to the emergence of a multi-agent autocurriculum (Leibo et al.,
2019). Multi-agent autocurricula provide a scalable way for agents to explore a large strategy space
by simply following the gradients of their experience, called “exploration by exploitation” (Baker
et al., 2020; Leibo et al., 2019).

In theory, an autocurriculum enables the possibility of unbounded growth for innovation, limited
only by the strategy space of the environment and the agents’ learning capacities. Autocurricula
have formed the backbone for some of the most advanced forms of artificial intelligence known to
date. In the form of self-play, it has led to agents with superhuman skill levels in the two-player zero-
sum games of Backgammon (Tesauro et al., 1995), Go, Chess and Shogi (Silver et al., 2018), and
the continuous real-time strategy game of StarCraft II (Vinyals et al., 2019). In team-based compet-
itive environments, it has led to agents beating the world champions in the real-time strategy game
of Dota2 (Berner et al., 2019), to human-level performance in a first-person 3D multiplayer game
of capture-the-flag (Jaderberg et al., 2019), and to an arms race in a 3D hide-and-seek game (Baker
et al., 2020), where several distinct strategic phases emerged, each requiring increasingly sophisti-
cated forms of cooperation and use of tools.

Our work fits in the tradition of the aforementioned works on multi-agent autocurriculum learning,
aiming to create high levels of complexity starting from elegant, simple rules. However, the dynam-
ics in previous work on multi-agent autocurricula are limited to either all competition, or in the case
of predefined team setups, all cooperation with competition between teams. Humans – like many
other organisms in nature – are not that binary, instead showing a range of cooperative behavior.
As the main contribution of this work, we propose the first steps towards a novel multi-agent au-
tocurriculum inspired by biological evolution, where we construct an evolutionary aligned reward
based on the survival of an agent’s genes. Since other agents potentially carry parts of the same
genetic material, the reward function includes the fitness of others as well, weighted by a measure
of genetic relatedness. Our reward structure therefore also leads to the emergence of a spectrum of
cooperation, based on the relatedness of the genotypes present. This spectrum can shift over time:
for example, when the total population size grows, resources become scarce, leading to a tension
between helping closer relatives and relatives carrying less of your genetic material. At any given
time, the actual levels of cooperation are therefore determined by the population of genotypes, but
themselves influence the population of genotypes that will be present in the future. This cycle adds a
novel social dimension to the multi-agent autocurriculum, which continuously challenges the agents
to find new strategies that balance cooperation and defection appropriately. We argue that our multi-
agent autocurriculum has the potential to show a continuous growth in agents’ strategic complexity,
only bounded by the strategy space of the environment and the agents’ learning capabilities.
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2 METHODS

Information stability We propose a general de�nition of �tness as the stability of aninformation
statewith regards to its environment. The more stable an information state is, the longer it will
keep existing. For example, galaxies or diamonds are information states with a high �tness in the
realm of physics. When considering complex organic molecules on a primeval Earth, the strategy of
producing a copy of oneself before being destroyed (i.e., replicating) turned out to be a particularly
stable one, drastically lengthening the existence of one's information state. Yet, every so often, an
error occurs in the copying process, known as a mutation. When a mutation is bene�cial, it leads
to an improvement in �tness, which is favored by natural selection. At the same time, however, a
mutation also changes the information state. Mutations, coupled with natural selection, generally
lead to a gradual shift in the population of replicators, towards increasingly stable (�t) information
states. Replicators, which exist today in the form of DNA, have built an astonishing set of ingenious
organisms around themselves to help them survive.

In biology, the parts of DNA that code for the observable traits (i.e., the behavior) of an organism are
the genes, and together they form a genotype. The genotype represents the complete information
state on which selection acts. To translate our de�nition of �tness into an evolutionary aligned
reward function for reinforcement learning, we implement an abstract version of genetics in our
agents. We assign an agenti with an abstract genotypegi , which is a sequence ofn genes where
each gene locus/indexk 2 [1; n] contains a genegk

i . Different integer values forgk
i then represent

different gene variants, where every gene locus can have an undetermined amount of gene variants.

Hamming similarity We propose a metric of information similarity between genotypes to quan-
tify their relatedness. In information theory, the Hamming distanceH (s1 ; s2 ) (Hamming, 1950)
between two sequencess1 ands2 is the number of positions at which corresponding entries are dif-
ferent, measuring the amount of substitutions (`bit �ips') needed to change one sequence back into
the other. Starting from the normalized Hamming distance, we derive a similarity metric, expressing
the genetic relatedness between two agents as a real number between 0 and 1, which we name the
Hamming similarity. Considering two agentsi andj , the Hamming similarity is de�ned as:

h(gi ; gj ) � 1 �
1
n

H (gi ; gj ) =
1
n

nX

k=1

� (gk
i ; gk

j ) ; (1)

where� (� ; �) is the Kronecker delta. Note that this metric is de�ned when both genotypes have
the same length. In the case of different genotype lengths, we could use the Damerau-Levenshtein
distance (Brill & Moore, 2000), an extension of the Hamming distance which takes into account
information deletions and insertions as well.

Inclusive reward function Since an agent's genetic material can be present in others as well,
helping agents which are genetically related should also be promoted by our reward function. We
therefore modify the reward of each agenti by adding the rewards of the other agents as well,
multiplied by their Hamming similarityh (Eq. 1). We call this modi�ed reward theinclusive reward,
after the concept of inclusive �tness (Rogers, 2021; Hamilton, 1964), which posits that under the
right circumstances, natural selection favors organisms that help their genetic relatives. We de�ne
the inclusive rewardr � as:

r �
i �

X

j

h(gi ; gj )r j = r i +
X

j 6= i

h(gi ; gj )r j (2)

An illustrative example of an inclusive reward is given in Figure 1, where we consider two agents
playing a prisoner's dilemma (Kuhn, 2008). Both agents can either cooperate (C), or defect (D). A
rational agent will always choose to defect, since that action always gives more payoff, regardless of
the action of its opponent. However, when both agents defect, they are worse off than had they both
cooperated, leading to the dilemma. The dynamics change drastically when we introduce genes with
our inclusive reward function. If we consider that the genotypes of the row player and the column
player are given by [1, 1, 1, 1] and [1, 1, 1, 0], respectively, and they therefore have a Hamming
similarity of 3

4 . The direct payoff of an agent, which we will call theindividual payoffP, indicates
an agent's individual �tness, regardless of others. But the agent's action also in�uences the payoff of
the opponent, which carries three of its own genes. The total inclusive reward of the row player then
becomesProw + 3

4 Pcolumn, with a symmetric inclusive reward for the column player. Therefore, from
the perspective of the genotypes, the prisoner's dilemma of Fig. 1 effectively becomes a harmony
game (Zizzo, 2002), where the only Nash Equilibrium is cooperation.
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General prisoner's dilemma In a general prisoner's dilemma,b is the bene�t provided to the
other by cooperating, andc is the cost for cooperation. The payoff matrix is given by:

C D
C b� c, b� c � c, b
D b, � c 0, 0

From this general payoff matrix, we can derive two inequalities that need to be satis�ed for cooper-
ation under the inclusive reward:c < hb andhc < b, whereh is the Hamming similarity between
the two players. We do not consider the second inequality, which is simply a consequence of the
�rst, since h 2 [0; 1]. This �rst inequality turns out to be equivalent to Hamilton's rule (Hamilton,
1964) from biology, which posits that an cooperative trait can persist if the bene�tb, multiplied by
the relatednessr , exceeds the costc.

Figure 1: A prisoner's dilemma played by two players with genotypes [1, 1, 1, 1] and [1, 1, 1, 0]
becomes a harmony game under the inclusive reward.

3 COOPERATION ON NETWORKS

Our evolutionary aligned reward function should incentivize an agent to maximize the �tness of its
genetic material, which can be present in other agents as well. Therefore, we de�ned an inclusive
reward (Eq. 2) which adds the individual rewards by weighing them with the Hamming similarity
de�ned in Eq. 1. In this section, we study the properties of this inclusive reward by focusing on
two settings where independent Q-learners (Watkins & Dayan, 1992) play two-player prisoner's
dilemmas on networks. Self-interested agents often fail to cooperate in prisoner's dilemmas due to
the dominance of the defective strategy over cooperation. In nature, however, many organisms have
evolved stable cooperative strategies (Hamilton, 1964). The goal of these experiments is to show the
emergence and stability of cooperation in environments where agents try to maximize the �tness of
their genetic material.

3.1 EXPERIMENTS

Opponent discrimination A �rst experiment considers fully connected networks where agents
can recognize each other (opponent discrimination). This means that an agent knows which op-
ponent it is playing, but it does not know what genotype the opponent has, nor does it remember
anything of what the agent did in the past; it only bases its action on a learned behavior for that op-
ponent (Q-table). The setup is based on the evolution of sensing organs, which provide an organism
the ability to observe thephenotypeof other organisms in the environment, but not directly its geno-
type. Senses such as vision are crucial for animals, and over many generations led to the intuitive
recognition of offspring, or the avoidance of predators (Williams, 2018), examples which we intend
to capture with our setup. Opponent discrimination is implemented in our agents as a Q-table where
every state corresponds to a different opponent on the network, and the agents receive each time step
as an observation which opponent they are playing.

Limited dispersal Our second experiment gives agents no opponent discrimination, which means
agents have only one strategy for all interactions. Instead, we look at the effect of limited dispersal
(also called population viscosity (Hamilton, 1964; 1972)) on the emergence of cooperation between
independent Q-learners under our inclusive reward. Under the limited dispersal hypothesis, it is
assumed that organisms do not disperse far from their birth place, making them more likely to
interact with genetic relatives.
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(a) (b)

Figure 2: (a) Frequency of cooperation in function of the Hamming similarity with opponents on
a fully connected network (genotype length 6, 2 variants per gene) with 64 agents, one per unique
genotype. The cost-bene�t payoff ratioc=bin�uences the Hamming similarity threshold at which
agents start cooperating, matching Hamilton's rule (Hamilton, 1964). (b) Proportion of cooperators
in the (converged) population in function of the bene�t to cost ratiob=cin a random partition network
(genotype length 3, 2 variants per gene). Each community represents one of8 unique genotypes,
with 8 agents per genotype/community.� is the network dispersal coef�cient, andhki =9 . Blue, red
and green show results under the inclusive reward, gray values show results without inclusiveness.

To model limited dispersal, we move from fully connected networks to random partition net-
works (Fortunato, 2010) which have community structure (Girvan & Newman, 2002). Random
partition networks are constructed starting from prede�ned groups of nodes that form (still uncon-
nected) communities. Nodes that belong to the same community are connected with probabilitypin ,
and nodes between communities withpout . We de�ne adispersal coef�cient� � pout =pin 2 [0; 1],
denoting the strength of the network dispersal. Every node in a community has the same genotype.
This means that agents with similar genotypes are more likely to be connected than others. The in-
�uence of network structure on the emergence of cooperation has been well-studied in evolutionary
game theory (Ohtsuki et al., 2006; Santos & Pacheco, 2005; Nowak & May, 1992; Szabó & Fath,
2007). Here, we provide an alternative approach of modelling the strategies with reinforcement
learning, where we study the resulting dynamics under an evolutionary aligned (inclusive) reward.

Reward The payoff matrix of the prisoner's dilemma provides the individual �tnesses that each
agent receives under their combined actions. We again use these individual �tnesses to construct our
inclusive reward, according to Eq. 2. After every interaction, a playeri uses its individual payoffPi
and the opponent's payoffPj to determine its inclusive rewardr �

i :

r �
i = Pi + h(gi ; gj )Pj : (3)

In both the opponent recognition and the limited dispersal experiment, our Q-learners try to optimize
their myopic inclusive reward (meaning a bandit-like discount factor of0), similar to how genera-
tional �tness is often de�ned in evolutionary game theory (Szabó & Fath, 2007; Ohtsuki, 2010;
Ohtsuki et al., 2006; Fudenberg et al., 2006). Players pick and update their Q-values according to
an� -greedy scheme with exponentially decaying exploration.

3.2 RESULTS

Opponent discrimination We use a fully connected network for opponent discrimination, where
each node represents an agent. We consider genotypes of length 6, with 2 gene variants per gene
locus. We create one agent for every possible genotype, thereby making the network symmetric for
all agents, for a total of26 = 64 combinations. All Q-tables are initialized to zero. Initial populations
of all defectors, all cooperators, and mixtures were tried as well, but did not in�uence the results.
Each time step, agents play one prisoner's dilemma against all of their opponents simultaneously,
including itself, where the individual payoffs are de�ned by the bene�tband the costc (c is �xed at
1, while we varyb). Figure 2a shows the resulting frequencies (averaged over the agents) that agents
cooperate against opponents with respect to the Hamming similarity, for three values ofc=b. The
results match with Hamilton's rule (Hamilton, 1964), which as noted in section 2 predicts the spread
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