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Abstract
The literature on robustness towards common cor-
ruptions shows no consensus on whether adversar-
ial training can improve the performance in this
setting. First, we show that, when used with an
appropriately selected perturbation radius, `p ad-
versarial training can serve as a strong baseline
against common corruptions improving both ac-
curacy and calibration. Then we explain why ad-
versarial training performs better than data aug-
mentation with simple Gaussian noise which has
been observed to be a meaningful baseline on com-
mon corruptions. Related to this, we identify the
σ-overfitting phenomenon when Gaussian augmen-
tation overfits to a particular standard deviation
used for training which has a significant detrimen-
tal effect on common corruption accuracy. We dis-
cuss how to alleviate this problem and then how
to further enhance `p adversarial training by intro-
ducing an efficient relaxation of adversarial train-
ing with learned perceptual image patch similarity
as the distance metric. Through experiments on
CIFAR-10 and ImageNet-100, we show that our
approach does not only improve the `p adversar-
ial training baseline but also has cumulative gains
with data augmentation methods such as AugMix,
DeepAugment, ANT, and SIN, leading to state-
of-the-art performance on common corruptions.
The code of our experiments is publicly avail-
able at https://github.com/tml-epfl/
adv-training-corruptions.

1 INTRODUCTION

Despite achieving human-level performance on many com-
puter vision tasks, deep neural networks are still not as ro-
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Figure 1: Accuracy on common corruptions from CIFAR-10-
C for ResNet-18 models adversarially trained using different
`∞ radii. We observe that the performance with ε = 1/255 is
significantly higher than with the standardly used ε = 8/255.

bust as humans towards various distribution shifts [Szegedy
et al., 2014, Taori et al., 2020] including common image
corruptions [Hendrycks and Dietterich, 2019]. Attempts to
understand the vulnerability towards such shifts include
analysis of the network architecture [Azulay and Weiss,
2019], the features contained in the data [Ilyas et al., 2019],
and frequency analysis of neural networks [Yin et al., 2019,
Ortiz-Jimenez et al., 2020]. Many approaches have been
suggested to improve their robustness to these shifts in-
cluding approaches based on data augmentations [Cubuk
et al., 2019, Hendrycks et al., 2019b], adversarial training
[Madry et al., 2018, Laidlaw et al., 2021], and pretraining
[Hendrycks et al., 2019a].

Although data augmentation methods tend to improve
the performance under common synthetic corruptions
[Hendrycks et al., 2019b], these augmentations are often ad
hoc and may have substantial overlap with the corruptions
evaluated at test time. At the same time, there is a large
amount of literature on adversarial training with `p-bounded
perturbations [Goodfellow et al., 2015, Madry et al., 2018].
Adversarial training emerged as a principled approach to
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improve the worst-case performance of the model against
small `p perturbations. However, common image corrup-
tions have a very high `p distance from clean samples, so
the utility of using `p adversarial training for them is not
obvious. This leads us to explore the following question:

How can we improve the performance on common image
corruptions using adversarial training?

We make the following contributions in our paper:

• We show that `p adversarial training with an appropri-
ately selected perturbation radius can serve as a strong
baseline against common image corruptions improving
both accuracy and calibration on corrupted images.

• We analyze the success of `p adversarial training via a
comparison to other natural baselines such as Gaussian
data augmentation. We observe that it can overfit to the
perturbation size it has been trained which, however,
does not happen for adversarial training.

• We introduce an efficient relaxation of adversarial train-
ing with learned perceptual image patch similarity
(LPIPS) [Zhang et al., 2018b] based on layerwise ad-
versarial perturbations. This new relaxation is at least
as effective as previous approaches [Laidlaw et al.,
2021] but significantly faster to train.

• We show that our relaxation approach has cumulative
gains with existing data augmentation methods such
as AugMix, DeepAugment, ANT, and SIN leading to
state-of-the-art performance on common corruptions
from CIFAR-10-C and ImageNet-100-C.

2 RELATED WORK

We provide here an overview of relevant works on common
image corruptions, different data augmentation methods pro-
posed to improve the performance on corruptions, and then
we discuss papers on adversarial robustness with respect to
both `p and non-`p perturbations.

Common image corruptions. Dodge and Karam [2017]
first find that despite being on par with the human vision
on standard images, deep networks perform suboptimally
on common corruptions such as noise and blur. Geirhos
et al. [2018] measure the performance of deep networks
on 12 different image corruption types but find that data
augmentation on one type of corruption does not tend to
improve the performance on others. However, these findings
are reconsidered in Rusak et al. [2020] where Gaussian data
augmentation is shown to help for a wide range of image
corruptions. In a standardization effort, Hendrycks and Diet-
terich [2019] introduce a few image classification datasets—
in particular, CIFAR-10-C and ImageNet-C—with 15 differ-
ent common corruptions from four categories: noise, blur,
weather, and digital corruptions. Ovadia et al. [2019] show

that not only acccuracy but also calibration deteriorates
under these common corruptions. [Schneider et al., 2020,
Nandy et al., 2021] show that robustness to common corrup-
tions can be improved by using test-time adaptation, e.g.,
via recomputing the batch normalization statistics. Radford
et al. [2021] show that contrastive pretraining on a very
large set of image-caption pairs can substantially improve
robustness on various distribution shifts including common
corruptions.

Data augmentations. Data augmentation is a widely used
technique to improve the generalization. Besides classical
image transformations like random flipping or cropping,
many other approaches have been proposed such as lin-
early interpolating between images and their labels [Zhang
et al., 2018a], replacing a part of the image with either a
black-colored patch [DeVries and Taylor, 2017] or a part of
another image [Yun et al., 2019]. One of the best-performing
methods in terms of accuracy and calibration on common
corruptions is AugMix [Hendrycks et al., 2019b], which
combines carefully selected augmentations with a regular-
ization term based on the Jensen-Shannon divergence. Taori
et al. [2020] observe that improvements on synthetic distri-
bution shifts (such as common corruptions) do not necessar-
ily transfer to real distribution shifts. However, Hendrycks
et al. [2021] show an example when improving robustness
against synthetic blurs also helps against naturally obtained
blurred images.

`p adversarial robustness. Adversarial training in deep
learning has been first considered in Goodfellow et al.
[2015] and later framed as a robust optimization problem
by Madry et al. [2018]. The view that adversarial training
damages or at least does not improve the performance on
common corruptions has been prevalent in the literature
[Hendrycks et al., 2019b, Rusak et al., 2020, Hendrycks
et al., 2021]. However, previous works directly use publicly
available robust models without adjusting the perturbation
radius used for adversarial training. For example, Rusak
et al. [2020] show that adversarially trained ImageNet mod-
els from Xie et al. [2019], Shafahi et al. [2019], and Shafahi
et al. [2020] do not help on ImageNet-C compared to stan-
dardly trained models. However, Ford et al. [2019] report
that `∞ adversarially trained models on CIFAR-10 from
Madry et al. [2018] do lead to an improvement on CIFAR-
10-C compared to a standard model. The approach of Xie
et al. [2020], AdvProp, relies on `∞ adversarial training
to improve standard and corruption accuracy but they ad-
vocate the use of auxiliary batch normalization layers for
standard and adversarial training examples. We find that sim-
ilar performance can be achieved on common corruptions
using vanilla adversarial training without a customized use
of BatchNorm layers. Kang et al. [2019] study the robust-
ness transfer between `p-robust models and adversarially
optimized elastic and JPEG corruptions. They show that `p
adversarial training can increase robustness against these



two types of adversarial perturbations, but robustness does
not transfer in all the cases and sometimes may even hurt
robustness against other perturbation types.

Non-`p adversarial robustness. Volpi et al. [2018] propose
Lagrangian-style adversarial training in the input space and
in the last layer of the network. Stutz et al. [2019] propose
on-manifold adversarial training which is performed in the
latent space of a VAE-GAN generative model. However,
its success crucially depends on the quality of the genera-
tive model which could not be scaled beyond simple image
recognition datasets. Wei and Ma [2020] derive generaliza-
tion bounds that motivate adversarial training with respect
to all network layers which they use to improve `p robust-
ness. Recently, Laidlaw et al. [2021] provided algorithms
for approximate perceptual adversarial training based on
the LPIPS distance [Zhang et al., 2018b] which is defined
via activations of a neural network. They aim at improving
robustness against new types of adversarial perturbations
that were unseen during training.

3 `p ADVERSARIAL TRAINING IM-
PROVES THE PERFORMANCE ON
COMMON CORRUPTIONS

Here we formally introduce adversarial training and show
that it can lead to non-trivial improvements in accuracy and
calibration on common corruptions.

Background on adversarial training. Let `(x, y; θ) de-
note the loss of a classifier parametrized by θ ∈ Rm on
the sample (x, y) ∼ D where D is the data distribution.
Previous works [Shaham et al., 2018, Madry et al., 2018]
formalized the goal of training adversarially robust models
as the following optimization problem:

min
θ

E(x,y)∼D
[

max
δ∈∆

`(x+ δ, y; θ)
]
. (1)

In this section, we focus on the `p threat model, i.e. ∆ =
{δ ∈ Rd : ‖δ‖p ≤ ε, x+ δ ∈ [0, 1]d}, where the adversary
can change each input x in an ε-ball around it while making
sure that the input x+ δ does not exceed its natural range.
A common way to solve the inner maximization problem
is the projected gradient descent method (PGD) defined by
the following recursion initialized at δ(0):

δ(t+1) def
= Π∆

[
δ(t) + α∇δ(t) `(x+ δ(t), y; θ)

]
, (2)

where Π is the projection operator on the set ∆, and α is the
step size of PGD. Instead of the gradient, one often uses the
gradient sign update for `∞ perturbations or the `2 normal-
ized update for `2 perturbations. δ(0) can be initialized as
any point inside ∆, e.g. as zero, or randomly [Madry et al.,
2018].

The one-iteration variant of PGD is known as the fast gradi-
ent method (FGM) when the normalized `2 update is used

Table 1: Accuracy and calibration of ResNet-18 models
trained on CIFAR-10 and ImageNet-100. `∞ and `2 adver-
sarial training substantially improves accuracy and calibra-
tion error (ECE) on corrupted samples.

Standard Corruption Corruption
Training accuracy accuracy calibration error

CIFAR-10

Standard 95.1% 74.6% 16.6%
`∞ adversarial 93.3% 82.7% 10.8%
`2 adversarial 93.6% 83.4% 10.5%

ImageNet-100

Standard 86.6% 47.5% 10.0%
`∞ adversarial 86.5% 47.7% 12.4%
`2 adversarial 86.3% 48.4% 9.4%

and as the fast gradient sign method (FGSM) when the `∞
sign update is used [Goodfellow et al., 2015]. Note that in
both cases the step size is α = ε which leads to perturba-
tions located on the boundary of the set ∆. These methods
are fast but sometimes prone to catastrophic overfitting
when the model overfits to FGM/FGSM but is not robust
to iterative PGD attacks [Tramèr et al., 2018, Wong et al.,
2020]. This problem can be alleviated by specific regular-
ization methods like CURE [Moosavi-Dezfooli et al., 2019,
Huang et al., 2020] or GradAlign [Andriushchenko and
Flammarion, 2020]. However, for small enough ε, adversar-
ial training with FGM/FGSM works as well as multi-step
PGD [Andriushchenko and Flammarion, 2020].

Experimental details. We do experiments on two common
image classification datasets: CIFAR-10 [Krizhevsky and
Hinton, 2009] which has 32×32 images, and ImageNet-100
[Russakovsky et al., 2015] with 224 × 224 images where
we take each tenth class following Laidlaw et al. [2021]. We
choose ImageNet-100 since we always perform a grid search
over the main hyperparameters such as the perturbation
radius for adversarial training which would be too expensive
to do on the full ImageNet. Unless mentioned otherwise,
we use PreAct ResNet-18 architecture [He et al., 2016]. We
specify the exact hyperparameters in App. A. We evaluate
the accuracy on common corruptions using CIFAR-10-C
and ImageNet-C datasets from [Hendrycks and Dietterich,
2019] which contain 15 different synthetic corruptions in
4 categories: blur, noise, digital, weather corruptions. We
report the accuracy by averaging over all 5 severity levels.

Adversarial training improves accuracy and calibra-
tion. We start by showing in Fig. 1 the common corruption
accuracy of `∞ adversarially trained models as it is the most
widely studied setting [Madry et al., 2018] and has been
reported multiple times in common corruption literature
[Hendrycks et al., 2019b, Ford et al., 2019, Rusak et al.,
2020]. Since we are interested primarily in small-ε adversar-
ial training, we rely throughout the paper on FGM/FGSM
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Figure 2: Expected calibration error on CIFAR-10-C for `∞
adversarially trained models.

for `2/`∞ norms respectively to solve the inner maximiza-
tion problem (1) which only leads to a 2× computational
overhead. Note however that we exceptionally use PGD with
10 steps for ε ∈ {8/255, 10/255} to prevent catastrophic over-
fitting and allow a direct comparison with previous works.
We observe that for the small-ε regime around ε = 1/255, we
get a significant improvement in corruption accuracy: 74.5%
accuracy is achieved with standard training, 82.7% with
adversarial training using ε = 1/255, and 73.8% using the
standardly reported threshold ε∞ = 8/255.1 The reason is
that the tradeoff between robustness and accuracy [Tsipras
et al., 2019] has to be carefully balanced—if the standard
accuracy drops for higher ε, the corruption accuracy also
deteriorates. Thus, selecting the most robust `p-model does
not lead to the optimal performance on common corruptions.
Alternatively, one can also balance this tradeoff by mixing
clean and adversarial samples, but it overall leads to similar
results (see App. C for details), so we focus on adversarial
training with 100% adversarial samples for the rest of the
paper.

Additionally, we show that predicted probabilities of adver-
sarially trained models are significantly better calibrated on
common corruptions. We believe that calibration is another
important aspect of the model’s trustworthiness, which is
particularly important in the presence of out-of-distribution
data such as corrupted images. In Fig. 2, we plot the ex-
pected calibration error (ECE) [Guo et al., 2017] on CIFAR-
10-C for models trained with different `∞-radii. We observe
that the ECE—both with and without temperature rescaling
(see App. B for details)—follows a decreasing trend over
`∞-radii which is expected since a classifier that predicts
uniform probabilities over classes is perfectly calibrated. In
particular, the most accurate model trained with ε∞ = 1/255

has a much lower ECE than the standard model: 10.8% in-
stead of 16.6%, and with temperature rescaling 6.7% instead
of 11.3%.

1The exact numbers differ from [Ford et al., 2019] since we use
ResNet-18 instead of WRN-28-10 and different hyperparameters.
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Figure 3: Accuracy for different corruption types on CIFAR-
10-C. Unlike other methods, adversarial training improves
the performance on each corruption.

We further compare the performance in the `2 perturbation
model. In Table 1, we report results of standard, `∞, and `2
adversarial training on CIFAR-10 and ImageNet-100 where
we perform a detailed grid search for each model over the
perturbation radius ε. To the best of our knowledge, we
show for the first time that adversarial training improves cal-
ibration (see also App. B) while increasing the accuracy and
that it helps on ImageNet-C, and not only on CIFAR-10-C.
We generally observe that `2 adversarial training performs
better than `∞, thus we focus on it in the next section.

4 UNDERSTANDING THE EFFECT OF
ADVERSARIAL TRAINING ON IMAGE
CORRUPTIONS

Here we compare `2 adversarial training to other natural
baselines and discuss the main conceptual differences.

Comparing natural baselines across corruption types.
We compare `2 adversarial training with a few simple base-
lines: standard training, gradient regularization [Drucker and
LeCun, 1992], and standard Gaussian data augmentation.
To ensure a fair comparison, we perform a grid search for
each method over the perturbation radius ε, regularization
parameter λ, and noise standard deviation σ respectively.
We choose to compare to gradient regularization since it is
an established regularization method that may have a sim-
ilar effect to adversarial training with small perturbations
[Simon-Gabriel et al., 2019]. We aggregate the corruptions
over each type (blurs, digital, noise, weather) and plot the
results in Fig. 3 and report results over each corruption in
Fig. 12 in the Appendix.

First, we observe that adversarial training is the best perform-
ing method and that unlike other methods, `2 adversarial
training helps for each corruption type. At the same time,
Gaussian augmentation degrades the performance on digital



and weather corruptions while very significantly improving
the performance for noise corruptions which is expected
as the Gaussian noise used for training is also contained in
the noise corruptions. Interestingly, for the fog and contrast
corruptions, the performance degrades for all methods (see
Table 10 in App. H), consistently with the observation made
in Ford et al. [2019]. Our results also suggest that the impact
of gradient regularization is limited and it cannot explain
the accuracy gains of both adversarial training and Gaussian
augmentation as one could expect from the fact that these
methods are equivalent to gradient regularization when used
with sufficiently small parameters σ and ε [Bishop, 1995].

Worst-case vs average-case behavior. Ford et al. [2019]
show that the robustness to Gaussian noise and adversarial
perturbations are closely related. More precisely, they show
using concentration of measure arguments that a non-zero
error rate under Gaussian perturbation implies the existence
of small adversarial perturbations and consequently that
improving adversarial robustness leads to an improvement
in robustness against Gaussian perturbations. This finding
is consistent with what we observe here. What remains to
be understood is why adversarial training performs better
than Gaussian augmentation on common corruptions. The
main difference between both methods appears when an-
alyzing the objectives that both methods minimize. For a
single sample x, the loss function considered in Gaussian
augmentation is:

Ed∼N(0,Iσ2) [`(θ, x+ d)] ∼ Eρ:||ρ||2=σ
√
d [`(θ, x+ ρ)] ,

since Gaussian vectors with variance σ2I are highly con-
centrated on the sphere of radius σ

√
d in high dimensions.

Therefore Gaussian augmentation amounts to minimize an
averaged objective where perturbations are averaged over
the sphere. However, the objective behind adversarial train-
ing defined in Eq. (1) amounts to minimize a worst-case
loss based on the worst-case perturbation in the ball. The
key difference is that minimization of the expected value of
the loss does not guarantee any behavior inside the sphere.

To investigate this behavior, we perform the following ex-
periment in Fig. 4. For random 1000 test set images from
CIFAR-10, we evaluate the loss with additive Gaussian
noise of σ ∈ [0, 0.1] and average the loss function over both
images and perturbations for (1) a standard model, (2) a
model trained with Gaussian augmentation with σ = 0.05
where all 100% training samples are augmented, (3) a model
trained with Gaussian augmentation for σ = 0.1 where only
50% training samples are augmented, and (4) `2 adversar-
ially trained model with ε = 0.1. We notice that the loss
function for 100% Gaussian augmentation is minimal at
σ which is only slightly less than σ = 0.05 used for its
training. Hence, the model has overfitted not only to the
type of noise but also to its magnitude. The loss function
outside and inside of the sphere is bigger than on its sur-
face. However, there is a simple fix if we train with 50%
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Figure 4: Average cross-entropy loss under Gaussian noise
for different training methods.
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Figure 5: Average `2 and LPIPS distance for different com-
mon corruptions from CIFAR-10-C.

Gaussian noise in each batch, as suggested, e.g., in Rusak
et al. [2020] in contrast to Ford et al. [2019]. This scheme al-
lows to alleviate the σ-overfitting behavior and also achieve
better accuracy on clean samples (93.2% instead of 92.5%)
and, most importantly, significantly improve on common
corruptions (85.0% instead of 80.5%). At the same time,
`2 adversarial training does not suffer from this problem
and both 100% and 50% schemes work nearly equally well
(details can be found in App. C). We provide a further dis-
cussion on σ-overfitting in App. D together with additional
experiments on ImageNet-100 where σ-overfitting has even
more noticeable behavior.

Local vs global `p behavior. Interestingly, adversarial train-
ing with worst-case perturbations bounded within a tiny `2
ball leads to robustness significantly beyond this radius.
Fig. 5 illustrates that common corruptions have an `2 norm
an order of magnitude larger than ε = 0.1 used for `2
adversarial training. This is in contrast with adversarial ro-
bustness that does not significantly extend beyond the radius
used for training [Madry et al., 2018]. Related to this, Ford
et al. [2019] argue that for Gaussian noise improving the
minimum distance to the decision boundary (e.g. via adver-
sarial training) also leads to an improvement of the average
distance. We have a similar mechanism at play for adver-
sarial `2 perturbations and common corruptions which may



explain the generalization of adversarial training to large
average-case perturbations. However, our setting is more
complex compared to Ford et al. [2019] since at the training
and test time we deal with different and diverse types of
noise.

5 IMPROVING ADVERSARIAL TRAIN-
ING BY RELAXING A PERCEPTUAL
DISTANCE

As shown above, `p adversarial training already leads to en-
couraging results on common corruptions. Moreover, the `2
distance appears to be more suitable for adversarial training
than `∞ on both datasets as implied by Table 1. This obser-
vation suggests that using more advanced distances such as
perceptual ones can further improve corruption robustness.

From `p distances to LPIPS. One of the main disadvan-
tages of `p-norms is that they are very sensitive under sim-
ple transformations such as rotations or translations [Sharif
et al., 2018]. One possible solution is to consider perceptual
distances2 which capture these invariances better such as the
learned perceptual image patch similarity (LPIPS) distance
introduced in Zhang et al. [2018b] and which is based on the
activations of a convolutional network. The LPIPS distance
is formally defined as

dLPIPS(x, x′)2 =

L∑
l=1

αl‖φl(x)− φl(x′)‖22, (3)

where L is the depth of the network, φl is its feature map up
to the l-th layer, and {αl}Ll=1 are some constants that weigh
the contributions of the `2 distances between activations.
There are two crucial elements in LPIPS: the learned net-
work and learned coefficients {αl}Ll=1. Zhang et al. [2018b]
propose to take a network pre-trained on ImageNet and learn
coefficients on their collected dataset of human judgemenets
about which images are closer to each other. Both Zhang
et al. [2018b] and Laidlaw et al. [2021] argue about better
suitability of LPIPS to measure image similarity. In App. E
we analyse the suitability of LPIPS over `2 specifically on
the images from CIFAR-10-C with a detailed breakdown
over corruption types. In particular, we show that the LPIPS
distance is better correlated with the error rate of the net-
work, and the increase over severity levels is more mono-
tonic compared to `2 as can be also seen in Fig. 5.

LPIPS adversarial training. In view of the positive fea-
tures of LPIPS, adversarial training using LPIPS appears
to be a promising approach to improve the performance
on common corruptions. The worst-case loss problem con-
sidered in (1) using the LPIPS distance can be formulated

2Not necessarily distances in a strict mathematical sense that
assumes a certain set of axioms to hold.

as:

max
δ
`(x+ δ, y; θ) s.t. dLPIPS(x, x+ δ) ≤ ε. (4)

However, this optimization problem is challenging since
dLPIPS is itself defined by a neural network, and the projec-
tion onto the LPIPS-ball—as required when using PGD to
solve (4)—does not admit a closed-form expression. This
problem was considered in Laidlaw et al. [2021] who pro-
pose two approximate attacks: the Perceptual Projected Gra-
dient Descent (PPGD) and the Lagrangian Perceptual Attack
(LPA). We discuss their approach in more detail in App. F
but emphasize that they either need to perform an approxi-
mate projection which is computationally expensive or come
up with some scheme for tuning the Lagrange multiplier λ
in the Lagrangian formulation. Furthermore, they suggest in
both cases to use 10-step iterative attacks for approximate
LPIPS adversarial training which limits the scalability of
the method to large datasets such as ImageNet.

Relaxed LPIPS adversarial training. We propose here a
relaxation of the LPIPS adversarial objective (4). For the
simplicity of presentation, let us start by assuming that the
LPIPS distance is defined using a single intermediate layer
of the network, i.e. dLPIPS(x, x′) = ‖φ(x)− φ(x′)‖2. Then
we can write a neural network f as the composition of
the feature map φ and the remaining part of the network
f(x) = h(φ(x)). The LPIPS adversarial objective (4) in
this notation becomes

max
δ
`(h(φ(x+ δ))) s.t. ‖φ(x+ δ)− φ(x)‖2 ≤ ε.

We first introduce the slack variable δ̃ = φ(x+ δ)− φ(x)
which allows us to rewrite the objective as

max
δ,δ̃

`(h(φ(x) + δ̃)) s.t. ‖δ̃‖2 ≤ ε, δ̃ = φ(x+ δ)− φ(x).

Then we perform the key step: we omit the constraint on the
slack variable and obtain the following relaxation

max
δ̃
`(h(φ(x) + δ̃)) s.t. ‖δ̃‖2 ≤ ε, (5)

i.e. we lift the requirement that there should exist a δ in the
input space that corresponds to the layerwise perturbation δ̃.

A similar relaxation can be derived when the LPIPS distance
is defined using multiple layers (see App. F):

max
δ̃(1),...,δ̃(L)

`(gL(. . . g1(x+ δ̃(1)) · · ·+ δ̃(L))) (6)

s.t. ‖δ̃(l)‖2 ≤ εl ∀l ∈ LLPIPS , δ̃(l) = 0 ∀l 6∈ LLPIPS ,

where the network is written under its compositional form
f = gL ◦ · · · ◦ g1, LLPIPS is the set of layer indices used
in LPIPS and εl denotes the `2 bound imposed at the l-th
layer. We denote this relaxation as relaxed LPIPS adversar-
ial training (RLAT) and solve it efficiently using a single-
iteration adversarial attack similar to FGM. We emphasize



that the projection of each δ̃(l) onto the corresponding `2
balls is computationally cheap to perform, unlike the LPIPS
projection.

Since we perform relaxation and train the network which
is also used to compute LPIPS, the exact layerwise coeffi-
cients αl from the original LPIPS Zhang et al. [2018b] are
no longer applicable and cannot be used to set the layerwise
bounds εl. Therefore, we set our own values of εl which
we specify in App. F together with detailed derivations of
RLAT, its precise algorithm and other implementation de-
tails. Finally, we remark that related layerwise adversarial
training methods have been proposed before [Stutz et al.,
2019, Volpi et al., 2018, Wei and Ma, 2020]. However, view-
ing layerwise adversarial training as an efficient relaxation
of LPIPS adversarial training is novel, as well as apply-
ing these methods for general robustness such as common
corruptions.

6 EMPIRICAL EVALUATION OF RLAT

Here we first show that RLAT indeed substantially improves
the LPIPS robustness. Second, we compare RLAT to other
established methods and show that it consistently leads to
improved accuracy and calibration on common corruptions.

LPIPS robustness of RLAT. We use the Lagrangian Per-
ceptual Attack attack developed in Laidlaw et al. [2021]
to estimate the LPIPS adversarial accuracy under different
LPIPS radii and plot results in Fig. 6 on CIFAR-10. We use
standard, `2 adversarial training (AT), Fast PAT, and RLAT
models with their main hyperparameters selected to perform
best on common corruptions.3 We observe that RLAT in-
deed substantially improves LPIPS robustness, even more
than other approaches such as `2 AT and Fast PAT. This
gives further evidence that both `2 and RLAT training do
not suffer from catastrophic overfitting, even though trained
with one-step perturbations similar to FGSM. We provide a
similar evaluation for `2 robustness in App. F (Fig. 10).

Main experimental setup. We compare the results for
RLAT with additional baselines: `2 and `∞ adversarial train-
ing (with 100% adversarial samples per batch), Gaussian
augmentation (with both 50% and 100% augmentations per
batch), AdvProp [Xie et al., 2020], Fast PAT [Laidlaw et al.,
2021], and also four data augmentation approaches: Deep-
Augment [Hendrycks et al., 2021], AugMix [Hendrycks
et al., 2019b], adversarial noise training (ANT) [Rusak
et al., 2020], and Stylized ImageNet (SIN) [Geirhos et al.,
2019]. We use AugMix method additionally with the Jensen-

3We note that Laidlaw et al. [2021] focus on robustness to
unseen adversarial examples that involve a worst-case optimiza-
tion process, while we focus on unseen average-case common
corruptions. This is the reason why the optimal perturbation radii
that we consider are noticeably smaller than in their paper.
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Figure 6: LPIPS adversarial robustness of different training
schemes on CIFAR-10.

Shannon regularization term as proposed in Hendrycks et al.
[2019b]. We train all methods from random initialization
except ANT where we follow the scheme of Rusak et al.
[2020]. All comparisons between methods are performed
with a grid search over their main hyperparameters (reported
in App. A) such as σ in Gaussian augmentation or ε in adver-
sarial training which we perform on the main 15 corruptions
from CIFAR-10-C / ImageNet-C. In App. H we further
verify that selecting the main hyperparameters on valida-
tion corruptions leads to the same results. For Fast PAT on
CIFAR-10, we do a grid search over their parameter ε, but
on ImageNet-100 we report the results based on the mod-
els provided by the authors due to limited computational
resources. To assess calibration, we report the expected cali-
bration error (ECE) (see App. H for ECE with temperature
rescaling Guo et al. [2017]). More details can be found
in our repository https://github.com/tml-epfl/
adv-training-corruptions.

Since the main goal of the common corruption benchmark
[Hendrycks and Dietterich, 2019] is to show the model’s
behavior on unseen corruptions, we do not use overlapping
augmentations in training (see App. A). The only excep-
tion is Gaussian augmentation which we mark in gray in
Table 2 following [Rusak et al., 2020] since it belongs to
common corruptions. We note that removing only Gaus-
sian noise from evaluation is not sufficient, because other
noises can be affected as well by training with Gaussian
augmentation. Thus, the results of 100% and 50% Gaussian
augmentation are shown only for illustrative purposes sug-
gesting that adversarial training with no prior knowledge
about the corruptions can obtain almost the same results as
direct augmentation.

Main experimental results. We show the main experimen-
tal results on CIFAR-10-C and ImageNet-100-C in Table 2.
First of all, we observe that `p adversarial training is a strong
baseline on common corruptions on both datasets with a
larger gain on CIFAR-10-C. Using our proposed relaxed
LPIPS adversarial training further improves the corruption
accuracy on both datasets: from 74.6% to 84.1% on CIFAR-

https://github.com/tml-epfl/adv-training-corruptions
https://github.com/tml-epfl/adv-training-corruptions


Table 2: Accuracy and calibration of ResNet-18 models
trained on CIFAR-10 and ImageNet-100. Gray-colored num-
bers correspond to methods partially trained with the cor-
ruptions from CIFAR-10-C and ImageNet-100-C.

Standard Corruption Corruption
Training accuracy accuracy calibr. error

CIFAR-10

Standard 95.1% 74.6% 16.6%
100% Gaussian 92.5% 80.5% 13.2%
50% Gaussian 93.2% 85.0% 9.1%
Fast PAT 93.4% 80.6% 12.0%
AdvProp 94.7% 82.9% 10.1%
`∞ adversarial 93.3% 82.7% 10.8%
`2 adversarial 93.6% 83.4% 10.5%
RLAT 93.1% 84.1% 9.9%

DeepAugment 94.1% 85.3% 8.7%
DeepAugment + RLAT 93.6% 87.8% 6.1%

AugMix 95.0% 86.6% 6.9%
AugMix + RLAT 94.8% 88.5% 4.5%

AugMix + JSD 95.0% 88.6% 6.5%
AugMix + JSD + RLAT 94.8% 89.6% 5.4%

ImageNet-100

Standard 86.6% 47.5% 10.0%
100% Gaussian 86.4% 46.7% 11.7%
50% Gaussian 83.8% 55.2% 6.1%
Fast PAT 71.5% 45.2% 8.0%
`∞ adversarial 86.5% 47.7% 12.4%
`2 adversarial 86.3% 48.4% 9.4%
RLAT 86.5% 48.8% 9.1%

AugMix 86.7% 52.3% 7.5%
AugMix + RLAT 86.8% 54.8% 4.7%

AugMix + JSD 88.4% 59.3% 1.9%
AugMix + JSD + RLAT 87.1% 61.1% 1.8%

SIN 86.6% 53.7% 6.7%
SIN + RLAT 86.5% 54.3% 6.0%

ANT3x3 85.9% 57.7% 5.1%
ANT3x3 + RLAT 85.3% 58.3% 4.4%

10-C and from 47.5% to 48.8% compared to standard mod-
els. Moreover, RLAT also improves calibration compared
to the standard model: from 16.6% to 9.9% ECE on CIFAR-
10-C and from 10.0% to 9.1% ECE on ImageNet-100-C.
We also observe that 100% Gaussian augmentation even de-
teriorates the performance on ImageNet-100-C while 50%
Gaussian augmentation significantly improves the average
accuracy which is consistent with Rusak et al. [2020].

We observe that RLAT can be successfully combined with
existing data augmentations, leading to better accuracy and
calibration. E.g., adding RLAT on top of DeepAugment
helps to improve the CIFAR-10-C accuracy from 85.3%

Table 3: Wall-clock time in hours for ResNet-18 trained
with different methods on CIFAR-10 and ImageNet-100
using one Nvidia V100 GPU. * denotes the time reported by
Laidlaw et al. [2021] for a larger model (ResNet-50) using
different hardware (4 Nvidia RTX 2080 Ti GPUs).

Dataset

Training CIFAR-10 ImageNet-100

Standard 0.8h 3.9h
`2/`∞ adversarial 1.3h 5.8h
RLAT 1.8h 6.2h
Fast PAT 9.4h *120h

to 87.8%. Combining RLAT with the AugMix augmenta-
tion improves the corruption accuracy from 86.6% to 88.5%
on CIFAR-10-C and on ImageNet-100-C from 52.3% to
54.8%. Combining SIN and ANT3x3 improves the accu-
racy on ImageNet-100-C from 53.7% to 54.3% and from
57.7% to 58.3%, respectively. Moreover, we see that RLAT
consistently improves ECE in all settings, and we refer to
App. H for ECE with temperature rescaling which qualita-
tively shows the same behavior.

Additionally, we added our models to the RobustBench
leaderboard4 where our method has the best performance
among the architectures of comparable sizes (i.e., ResNet-
18). The models which perform better have larger architec-
tures and some of them additionally rely on ensembles.

Runtime of RLAT. We report a full runtime comparison be-
tween standard training, `2 / `∞ adversarial training, RLAT,
and Fast PAT in Table 3. The main observation is that RLAT
is significantly faster than Fast PAT (e.g., 1.8 hours vs. 9.4
hours on CIFAR-10) and leads only to a slight overhead
compared to `2 / `∞ adversarial training (1.8 hours vs 1.3
hours on CIFAR-10). These runtimes show further the ad-
vantage of the single-step adversarial training procedure of
RLAT compared to the multi-step approach of Fast PAT. It
would be interesting in future work to develop a single-step
version of Fast-LPA which is, however, not straightforward
because of their Lagrangian formulation and the need to
tune the parameter λ over the iterations of Fast-LPA.

Additional experiments. We refer to the Appendix for
further experimental results. In App. G, we evaluate the
performance of the models from Table 2 on ImageNet-A,
ImageNet-R, and Stylized ImageNet to better understand
how well the improvements on common corruptions trans-
fer to other distribution shifts. In App. H, we provide more
detailed results such as those presented in Table 2 but with
breakdowns over different corruptions and severities. We
also present results for larger network architectures and for
AugMix combined with `p adversarial training in App. H,
as well as results of RLAT over multiple random seeds.

4https://robustbench.github.io/

https://robustbench.github.io/


7 CONCLUSIONS AND FUTURE WORK

Our findings suggest that adversarial training can be suc-
cessfully used to improve accuracy and calibration on com-
mon image corruptions. Even simple `p adversarial training
can serve as a strong baseline if the optimal perturbation
radius is chosen for the given problem. More advanced
adversarial training schemes involve perceptual distances,
such as LPIPS, and we provide a relaxation of LPIPS adver-
sarial training with an efficient single-step procedure. We
observe that the developed relaxation (RLAT) substantially
improves the LPIPS robustness and can be successfully
combined with existing data augmentations. We hope that
RLAT would be of interest also for other domains such as
natural language processing where robustness to commonly
occurring corruptions (e.g., typos) is an important task.
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