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Figure 1: Overview of Imagine360. Imagine360 lifts standard perspective video into 360◦ video, enabling
dynamic scene experience from full 360 degrees. Our approach achieves high-quality texture and plausible
spherical motion patterns for both generated video (left) and in-the-wild video (right). Best viewed with Acrobat
Reader for the animated 360 videos. More examples please visit our webpage.

Abstract

360◦ videos offer a hyper-immersive experience that allows the viewers to explore a
dynamic scene from full 360 degrees. To achieve more accessible and personalized
content creation in 360◦ video format, we seek to lift standard perspective videos
into 360◦ equirectangular videos. To this end, we introduce Imagine360, the first
perspective-to-360◦ video generation framework that creates high-quality 360◦

videos with rich and diverse motion patterns from video anchors. Imagine360 learns
fine-grained spherical visual and motion patterns from limited 360◦ video data
with several key designs. 1) Firstly we adopt the dual-branch design, including a
perspective and a panorama video denoising branch to provide local and global
constraints for 360◦ video generation, with motion module and spatial LoRA layers
fine-tuned on 360◦ videos. 2) Additionally, an antipodal mask is devised to capture
long-range motion dependencies, enhancing the reversed camera motion between
antipodal pixels across hemispheres. 3) To handle diverse perspective video inputs,
we propose rotation-aware designs that adapt to varying video masking due to
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changing camera poses across frames. 4) Lastly, we introduce a new 360 video
dataset featuring 10K high-quality, trimmed 360 video clips with structured motion
to facilitate training. Extensive experiments show Imagine360 achieves superior
graphics quality and motion coherence with our curated dataset among state-of-
the-art 360◦ video generation methods with both real and generated videos. We
believe Imagine360 holds promise for advancing personalized, immersive 360◦

video creation.

1 Introduction

Imagine embarking on a journey through the heart of a bustling city, a serene beach, or a cherished
place of your own. It would be wonderful to record this 360-degree dynamic experience for future
viewing. 360◦ video offers an interactive, immersive format that captures a living, breathing world as
if the viewer were part of the experience. With the rapid development of VR devices, the demand for
360◦ videos is increasing, leading to growing focus on 360◦ video generation research.

Recent advancements in 360◦ video generation focused on text-guided [34] and image-guided [18]
models. While these methods produce plausible 360◦ videos, they require panoramic optical flow [34]
or high-quality panoramic images [18] as guidance, which are hard to obtain for users. In contrast,
traditional perspective videos are more accessible, as they can be easily captured using smartphone
cameras or generated by advanced video synthesis models. To enable more user-friendly and
personalized 360◦ video creation, we propose a new task: perspective-to-360◦ video generation,
which transforms standard video inputs into 360◦ equirectangular videos. Specifically, we take a
perspective video with narrow FOV as the anchor video, project it to a 360◦ × 180◦ FOV video
canvas, and synthesize the surrounding pixels.

One relevant task is video outpainting [2; 30; 8], which aims to fill in missing regions outside the
edges of video frames in a larger canvas, typically in the perspective domain with fixed video masking
across frames. Simply applying standard video outpainting methods does not achieve satisfactory
results, as our perspective-to-360◦ video generation exhibits more challenges. First, due to the large
domain gap between perspective and 360 videos, learning the spherical visual and motion patterns
requires sophisticated design when trained on limited 360 video data. Second, as videos exhibit
different camera poses across frames, after mapping to the 360 canvas, the video mask would change
significantly in shape, size, and location, requiring rotation-aware designs for robust generation.

To address these challenges, we introduce Imagine360, the first framework to generate high-quality
360° videos from standard perspective video inputs. Inspired by the dual-domain concept [42] in text-
to-image generation, our model employs dual-branch video outpainting Unets in the perspective and
panoramic domains. These two branches jointly denoise the partially masked 360 spacetime canvas
in the global scope and in each perspective window. A cross-domain attention module establishes
interactions between dual-branch latents that map to the same position in the 360 sphere, enabling
high-quality and plausible spherical video patterns. While positionally aligned latents offer local
consistency, they fall short in accounting for a unique characteristic of panoramic videos, where
each pixel undergoes reverse camera translation of its antipodal counterpart. Hence, we improve
the cross-domain attention with an antipodal mask, to extend each pixel’s receptive field from its
local neighborhood to its antipodal region across the 360 sphere, making it easier to learn long-range
panoramic motion dependencies. Another key challenge lies in the varying input camera poses.
Handling general videos as anchors requires the framework to accommodate changing camera poses
across frames. In practice, we incorporate rotation-aware designs, including rotation-aware data
sampling in training and a camera pose estimation module in inference. Through explicit tracking
of the rotating input video in the 360 spacetime canvas, our model streamlines robust generation
from customized video inputs. Effective training of our framework also relies on high-quality 360°
video data. However, existing datasets are either small in scale [34; 37; 38] or consist of large-scale,
unfiltered web-scraped content that requires extensive cleaning [28]. In this regard, we introduce
YouTube360, a ready-to-train 360° video dataset comprising 10K curated clips from YouTube. Our
dataset incorporates manual quality control and sophisticated data cleaning to select high-quality
training segments with diverse and structured motion.

With these three key designs and our curated dataset, Imagine360 pioneers end-to-end, high-quality
360◦ video generation from perspective inputs. Extensive experiments show that our model achieves
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state-of-the-art performance in both frame quality and motion consistency. As a bonus, our pipeline
also demonstrates superior results in panoramic image outpainting. We believe Imagine360 can
empower the 360◦ video generation community to create personalized, hyper-immersive experiences
for real-world applications.

2 Related work

2.1 Video outpainting

Video Outpainting aims to fill in the missing regions at the edges of source videos. Compared
to advanced image-level outpainting, video-level outpainting remains under-explored due to its
challenges in maintaining both spatial and temporal fidelity and consistency. Recent video outpainting
methods leverage diffusion to generate high-quality pixels in the missing regions. M3DDM [8]
proposes a frame-guided Masked 3D diffusion model and a coarse-to-fine inference strategy to
tackle artifact accumulation in long video outpainting. MOTIA [30] employs a per-case optimization
strategy to learn the data-specific patterns of source video for better outpainting quality. Follow-Your-
Canvas [2] divides the canvas into multiple windows and achieves outpainting of different sizes and
resolutions by merging each outpainted window. These methods focus on handling perspective video
outpainting with fixed masking in each frame. Despite their appealing outpainting results, it remains
difficult for them to handle perspective-360◦ video generation that requires high-quality outpainting
in panoramic distribution and continuously changing video masks from varying camera poses. In
contrast, our Imagine360 handles the perspective-to-360◦ video generation with global and local
constraints from dual-branch diffusion and rotation-aware designs to handle changing video masks,
producing high-quality 360◦ video generations from perspective video anchors.

2.2 360 panorama generation

Early methods [31; 4; 1; 5; 15; 21; 35] exploit GAN-based framework for panorama image genera-
tion [19; 27]. OmniDreamer [1] proposes transformer-based framework for 360-degree outpainting
and devises circular inference to obtain 360◦ close-loop continuity. Recently, diffusion-based meth-
ods [33; 17; 36; 42; 32; 9; 16; 26; 43] have dominated image-level panorama generation. Due to
the data scarcity of large panorama image datasets, methods [33; 32] that directly fine-tune LDM
to generate the panorama results in low-quality images with simple structures and sparse assets.
PanFusion [43] introduces panorama and perspective branches to leverage the synergy from both
global and local constraints for text-to-panorama generation.

Despite numerous efforts in image-level panorama generation, there are few works [34; 18; 20]
focusing on panorama video generation. 360DVD [34] takes text prompts and additional panorama
video optical flow as guidance and learns a 360-Adapter on standard T2V models to generate plausible
360◦ videos. 4K4DGen [18] animates a static panoramic image at user-selected regions with I2V
pre-trained prior in a training-free manner. These fine-tuning-based or training-free approaches
struggle to bridge the distribution gap between panoramic and perspective videos, resulting in simple
natural perturbations, such as clouds moving and water running. In contrast, our Imagine360 benefits
from the dual-branch video denoising structure with antipodal relation modeling and rotation-aware
designs, resulting in more dynamic 360◦ videos with rich and structured motions.

3 Our approach

Given a perspective video, we aim to generate an equirectangular (ERP) 360 video that replicates its
visual appearance and motion, and extends to the complete 360◦ × 180◦ field of view.

We propose Imagine360, the first perspective-to-360◦ video generation framework, incorporating
three key designs to synthesize high-quality panoramic videos, as illustrated in Fig. 2. First, to learn
the spherical visual and motion patterns based on pre-trained perspective generative prior, we employ
the dual-branch design, consisting of a panorama branch and a perspective branch, to jointly denoise
the 360◦ spacetime latent. Second, to obtain more fine-grained and plausible panoramic motion, we
refine the cross-domain attention to highlight antipodal masking that captures long-range motion
dependencies in antipodal directions. Lastly, to handle diverse video inputs with varying camera
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Figure 2: Pipeline of Imagine360. Given a perspective anchor video, Imagine360 uses a dual-branch denoising
structure across panorama and perspective domains, featuring cross-domain spherical attention with antipodal
masking for modeling long-range antipodal motion, and rotation-aware designs to handle varying camera
rotations.

poses, we propose rotation-aware training and inference designs to obtain robust generations from
different video anchors.

3.1 Preliminary: 360 video format

360◦ video is a video format that captures a full horizontal 360° field of view (FOV) and vertical
180° FOV. Unlike standard perspective videos, which are limited to a fixed, narrow field of view,
360° video enables viewers to look in any direction at each frame location, creating an immersive
experience. For encoding, storage, and playback, 360 video must be projected onto a 2D plane from
the 3D sphere. In our work, we use 360 videos encoded by Equirectangular Projection (ERP).

To create perspective video frame from ERP video frame of resolution H × W , we simulate a
virtual pinhole camera looking in a specific direction defined by yaw (θ), pitch (ϕ) and roll (ψ)
Euler angles and FOV parameter. Each pixel on the image plane is computed with a direction
vector v⃗ij = [1, 2j

W − 1,−
(
2i
H − 1

)
]T · tan

( FOV
2

)
in 3D space and is rotated according to the

desired viewing orientation v⃗′ = Rψ · Rϕ · Rθ · v⃗ij given the Euler angles. Then, these vectors
are converted into spherical coordinates λ = arctan 2(v⃗′y, v⃗

′
x), ϕ = arcsin(v⃗′z) and mapped to 2D

ERP coordinates u =
(
λ+π
2π

)
·W, v =

(
1− ϕ+π

2

π

)
· H for sampling. We denote this process as

the Equirectangular-to-perspective (E2P) mapping. The inverse mapping, denoted as P2E mapping,
maps a perspective video frame back to ERP frame. The mapping begins by computing a 3D
directional vector in the spherical coordinates for each pixel in the ERP frame λ = 2π ·

(
u
W

)
−π, ϕ =

π
2 − π ·

(
v
H

)
,v = [cos(ϕ) · cos(λ), cos(ϕ) · sin(λ), sin(ϕ)]T , then rotate the vector inversely into

the perspective camera’s reference frame and projected onto the image plane. Pixels that fall within
the camera’s FOV sample the perspective pixel value and write back to the ERP frame.

3.2 Video-conditioned 360° video generation

Our model is trained on triplets of 360° videos, text captions, and corresponding 360° video masks.
Using E2P (Equirectangular-to-Perspective) mapping, the 360° video mask determines the anchor
perspective video extracted from the full 360° video. To generate different training masks, we sample
sets of Euler angles (θ1:T , ϕ1:T , ψ1:T ) over T frames via P2E (Perspective-to-Equirectangular)
mapping, where θ denotes yaw, ϕ pitch, and ψ roll. Similar to previous inpainting models [23; 2], our
model takes as input a concatenation of the noisy 360° video latent, the video mask, and the masked
360° video latent along the channel dimension. A frozen VAE encodes both the full and masked 360°
video inputs into d-dimensional latent channels. Additionally, we project the masked region of the
360° video into the perspective anchor video to provide fine-grained visual guidance. Following [2],
the anchor video I1:Tanc is encoded into semantic features using the visual encoder from SAM [14].
These features are then processed by a pre-trained query-based Transformer, which distills high-level
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visual and motion cues into compact latent tokens. The visual tokens are concatenated with the
text embeddings in the conditioning branch. To guide large-scale spacetime pixel generation, we
incorporate IP attention [41], which decouples cross-attention for injecting text prompts and visual
tokens in the U-Net layers. This enables our model to effectively propagate visual content and motion
patterns across views and into unmasked regions of the spacetime panorama.

3.3 Dual-branch 360° video denoising

Dual-branch design. Extending a perspective video to a 360° canvas requires careful model design
due to the large differences between panoramic and perspective distributions. Mainstream methods
either train a Latent Diffusion Model (LDM) to directly denoise panorama frames or jointly denoise
multiple perspective view projections. The former results in plain visuals and mild motion from
limited 360 data, while the latter easily produces local, short-range motions in each view. Inspired
by image-level generation [42], we employ a dual-branch video denoising structure. It consists of a
global panorama branch and a local perspective branch based on U-Net structure, where each block
consists of spatial layers initialized from SD weights and a motion module initialized from [2] weights.
The two branches share the same input: the panoramic branch latents of shape RT×(2d+1)×h×w is
projected into m = 20 perspective views according to the P2E icosahedron modeling [22; 42], and
each view gets latent of shape RT×(2d+1)×h/2×h/2 through projection. In the panoramic branch self-
attention, the model gains a holistic modeling of the 360◦ spacetime canvas for global consistency. In
the perspective branch, the latent permutes and flattens the number of views with the batch size for self-
attention to preserve the pre-trained generative power in the local window. In each U-Net downsample
block, the latents from both branches are aligned via cross-attention to enhance the local-global
synergy. The perspective latents z1:TP ∈ RT×m×D×h/2×h/2 are reshaped to RT×D×(m×h/2×h/2),
then bidirectionally cross-attended with panorama latents z1:TE ∈ RT×D×(h×w), where D is the
channel dimension, h,w are the latent spatial dimension. Spherical positional encoding [42] is added
to indicate the relative spherical location. A spherical attention mask on the attention map enforces
E2P and P2E mapping between the flattened latent sequence from the two branches. As illustrated
in Fig. 3, the directly mapped pixels via P2E mapping in the perspective branch are highlighted in
orange. Gaussian blur is also applied to the spherical mask to enable neighboring activations in the
attention.

Resource-friendly fine-tune strategy. With only thousands of training panorama videos, we seek to
fine-tune a limited proportion of parameters to yield good generation results. Thanks to the space-time
disentangled design from AnimateDiff [10], we do not need to fine-tune the whole model to learn
the distributions of panoramic videos. In practice, we add LoRA on spatial attention layers and IP
attention layers for both branches. As for the panoramic motion, we show in supp. that employing
motion LoRA layers does not have sufficient influence on the pretrained prior to generate good
panorama motion. Therefore, the whole motion module is fine-tuned for the panorama branch to learn
the necessary prior for generating spherical motion patterns. Note that, to fully exploit the perspective
generative prior, we do not fine-tune the motion module in the perspective branch. Experimental
results show that our resource-friendly fine-tuning strategy achieves competitive results for 360◦
video generation despite the limited data and GPU resources. The training objectives in the two
branches are:

LE = EE(x1:T
E ),y,ϵ1:T ,t

[∥∥ϵ− ϵE,Θ
(
z1:TE,t , t, τΘ(y), I

1:T
anc

)∥∥2
2

]
, (1)

LP = EE(x1:T
P ),y,ϵ1:T ,t

[∥∥ϵ− ϵP,Θ
(
z1:TP,t , t, τΘ(y), I

1:T
anc

)∥∥2
2

]
, (2)

where x1:T· and ϵ·,Θ denote the target equirectangular (E) and perspective (P ) video and its predicted
noise, y is the text prompt. To facilitate the synchronous exchange of information between two
branches, we combine the two branches losses as the final training objective L = LE + 1

m

∑m
i=1 LiP .

3.4 Encouraging fine-grained panoramic patterns

The dual-branch design generates plausible spherical patterns for spatial appearance and motion,
however, to achieve fine-grained panoramic videos, i.e., 360◦ close-loop continuity and reversed
antipodal translation, we introduce additional advanced techniques, including circular padding and
antipodal mask in cross-domain spherical mask.
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Circular padding for close-loop continuity. The 360◦ closed-loop continuity ensures seamless
alignment between the left-most and right-most edges of panoramic videos. To preserve this property
and mitigate artifacts from local convolutions, we follow [42; 39] by applying circular padding
before each convolutional layer in the U-Net blocks, then unpadding afterwards to restore the
original resolution. For improved 360° continuity, we adopt circular padding in the optional video
super-resolution [11] to process upsampled latents during decoding.
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Figure 3: Cross-domain Spherical Attention high-
lights interaction for direct-mapped pixels (spherical
mask) and antipodal-mapped pixels (antipodal mask)
between panorama and perspective domains.

Antipodal mask for reversed translational
motion. One distinctive property of panoramic
motion is that antipodal pixels, i.e., those located
on opposite sides of the 360° sphere, often ex-
hibit reversed motion under camera translation.
Specifically, if the camera moves forward rela-
tive to the forward viewing direction, the scene
observed from the backward viewing direction
should appear to move away from the viewer.
However, in both the panoramic and perspective
branches, antipodal pixels are typically distant
in the token sequence. Since attention modules
tend to focus on local neighborhoods, we ob-
serve that motion in antipodal directions tends to be less evident compared to motion in nearby
pixels of the anchor video. To address this, and to better emphasize antipodal relationships in 360°
video generation, we introduce the antipodal mask: a new activation mask for the cross-domain
spherical attention. As illustrated in Fig. 3, we identify, for each latent in the perspective domain,
its corresponding antipodal latent (shown in blue) in the panorama domain, and vice versa. These
antipodal pairs are assigned higher activation values in the attention mask to encourage long-range
attention across opposite directions. Additionally, we apply a Gaussian blur to the mask to softly
include antipodal neighbors.

3.5 Rotation-robustness over general video input

Commonly, we assume the video input to be upright with a fixed camera pose, but in-the-wild
perspective videos are of various rotation angles (θ1:T , ψ1:T and ϕ1:T ). The change of rotation angle
significantly impacts the shape and location of the masking, as shown in Fig. 6. To obtain robust
generation for in-the-wild video inputs, we propose rotation-aware data sampling in training and
camera pose estimation during inference.

Rotation-aware data sampling. We create flexible masking for each frame with a rotation-aware
data sampling strategy. For simplicity, we randomly sample ϕ ∈ (−20◦, 20◦), θ ∈ (−45◦, 45◦), and
ψ ∈ (−10◦, 10◦) for each frame, then generate smooth angle sequences that are either monotonic or
back-and-forth within the sampling range. Moreover, we add the sinusoidal positional embedding of
the mask and the Euler angles to the conditioning tokens, i.e., the visual tokens of the anchor video
and the text embedding, in order to indicate the relative position of the mask and the global canvas.
For mask positional embedding, we compute based on its maximum inscribed box coordinates. The
positional embeddings are concatenated along the channel dimension.

Camera pose estimation for inference. During inference, we employ MonST3R [44] to estimate
the camera pose for each frame in the test video. The Euler angles are calculated from the extrinsic
matrix at each frame. We do not normalize the Euler angle sequence according to the first frame, as
sometimes the first frame does not map to the center region of the 360 canvas. We create the 360
video mask and masked 360 video pixels based on the estimated Euler angles. The masked video
pixels are encoded by VAE and concatenated with the 360 video mask and noise as inference input.

3.6 YouTube360 dataset

Fine-tuning for 360° motion generation requires substantial text-video paired data due to the domain
gap between panoramic and perspective motions. Existing datasets are insufficient: WEB360 [34] is
small and limited to simple landscape videos, while 360-1M [28], although large in scale, contains
unfiltered low-quality videos with incomplete views and polar artifacts. Cleaning such data requires
large time and computational costs.
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Table 1: Quantitative comparison on Vbench [12], flow-based Endpoint Error (EPE), OmniFVD [7] and user
study results.

Method Guidance Vbench EPE ↓ OmniFVD ↓ User Study

IQ ↑ AQ ↑ MS ↑ SC ↑ GQ ↑ SP ↑ TC ↑
Animatediff+LatentLab360 I2V 0.6248 0.5368 0.9866 0.8770 3.5393 285.9 1.2067 1.7588 1.4279
Follow-Your-Canvas V2V 0.6257 0.5211 0.9799 0.9122 3.1767 315.4 2.7692 2.1298 3.0385
360DVD T2V 0.5501 0.4359 0.9856 0.9356 3.1904 747.4 1.2067 1.7588 1.4279
Ours V2V 0.7372 0.5722 0.9866 0.9649 2.5583 204.0 3.6827 3.7260 3.3942

To address this, we curate a high-quality 360 video dataset, YouTube360, from web videos. We
collected 360-degree videos from YouTube, covering city tours, wildlife documentaries, and VR game
captures. We prioritize long videos with diverse content, as they maintain a consistent format, offer
varied scenes, and are easier to discard if polar artifacts are present. All videos are manually reviewed
to remove sensitive content and low-quality samples with incomplete views or polar distortions.
Then, the videos are converted to equirectangular format, resized to 512 × 1024, and segmented
with TransNet-v2 [25]. For slow-paced clips, we apply 2× speed-up. To filter out static content, we
compute optical flow using PanoFlow [24] and discard clips where fewer than 10% of frames exceed
an average flow magnitude of 0.1. Captions are generated using VideoLLaMa-2 [6]. The final dataset
contains 9,558 five-second clips at 20 fps. Each annotated sample includes a caption, a YouTube
video ID, and a time interval. We provide annotations with documentation in the supplementary.
Please refer to the supplementary material for additional details.

4 Experiments

4.1 Implementation details

Training settings. The spatial and motion modules are respectively initialized on Stable Diffusion
v2.1 and [2]. Training is conducted on 8 NVIDIA A100 GPUs in 50k training steps, with the spatial
LoRA rank and αLoRA set to 32 and 1.0. The training resolution H ×W is set to 256 × 512, the
length of frames to 40, the batch size to 1, and the learning rate to 1×10−5. For inference, generating
a video of 512× 1024 resolution and 32 frames takes approximately 6 minutes on average, using a
single NVIDIA A100 GPU with 39 GB VRAM.

Evaluation metrics. We collect a test benchmark by randomly sampling videos from 360-1M [28],
RealEstate10K [45], and CogVideoX [40] generations with prompts from GPT-4o [13], including
both real videos and generated videos. We also randomly select 15 videos from the benchmark for the
user study. Following previous practice, we employ Imaging Quality (IQ), Aesthetic Quality (AQ),
Motion Smoothness (MS), and Subject Consistency (SC) metrics from VBench [12] to measure the
graphics quality and motion consistency. To measure 360 motion correctness, we report Endpoint
Error (EPE) on video optical flow (OF) with groundtruth 360 videos from 360-1M [28]. The EPE
metric is adapted from optical flow to evaluate motion accuracy. We compute optical flow for both the
generated video Vgen and the ground-truth Vgt using PanoFlow [24], and define EPE as the pixel-wise
Euclidean distance between the two flows: EPE(Vgen, Vgt) = |Vgen − Vgt|. Small EPE indicates the
higher similarity of generated video OF with Groundtruth OF. To measure omnidirectional video
quality, we report OmniFVD that extends from OmniFID [7]. OmniFVD projects the 360 video into
six cubemap views, computes FVD on each view, and reports the average as the final score.

Comparison methods. As the first perspective-to-360◦ video generation framework, it’s infeasible
to find a method that has the exact same input condition as ours. We compare with methods that
produce 360 videos from various guidance. 360DVD [34] is the advanced text-guided 360◦ video
generation method that takes text prompts and panorama video optical flow as input for 360◦ video
generation. Here, we feed the same text prompt as ours with GT optical flow into 360DVD for
comparison. Follow-Your-Canvas [2] is the state-of-the-art video outpainting method that employs
tile-based outpainting to handle outpainting of arbitrary size and resolution. Here, we project our
perspective anchor video into the panorama canvas and feed the masked canvas into [2] for evaluation.
AnimateDiff+LatentLab360 [10] takes image inputs and animates with the LatentLab360 LoRA. For
comparison, we feed the first frame of our generations into AnimateDiff+LatentLab360 and take its
animated videos for evaluation.
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Figure 4: Qualitative comparisons on 360° video generations among state-of-the-art methods. Imagine360 gen-
erates 360° video generation with superior visual quality and plausible panoramic patterns.

Table 2: Quantitative ablation studies on dual-branch designs, antipodal mask, rotation-aware designs under
Vbench, EPE, and OmniFVD metrics.

Method Vbench EPE ↓ OmniFVD ↓
IQ ↑ AQ ↑ MS ↑ SC ↑

Ours(Full model) 0.7372 0.5722 0.9866 0.9649 2.5583 204.0
w/o persbranch 0.7269 0.5464 0.9783 0.9491 3.0264 681.6
w/o panobranch 0.7196 0.5081 0.9760 0.9307 3.5308 866.0
w/o antipodal mask 0.7321 0.5377 0.9737 0.9375 2.7169 257.6
w/o rotation-aware designs 0.7319 0.5518 0.9785 0.9441 2.7276 332.1

4.2 Quantitative comparisons

Tab. 1 provides the quantitative comparison with baseline models. Imagine360 outperforms the
existing 360 video generation methods at both ground-level perspective views and overall 360
correctness. 360DVD often produces blurred videos, resulting in lower performance across all image
quality metrics. Follow-Your-Canvas performs comparably to AnimateDiff in perspective image
quality metrics (IQ, AQ); while it generates more aesthetically pleasing details, it may suffer from
distortion in projected perspective views. All methods achieve similar scores in perspective motion
quality metrics (MS, SC). For the 360° motion metric EPE, video-conditioned generation methods
outperform text- or image-based approaches. 360DVD achieves better EPE scores than AnimateDiff,
as it leverages ground-truth optical flow as input.

We also involve a user study to examine the generated 360◦ videos. We invite 26 users with expertise
in video and 3D generation to assess the results across three dimensions: graphics quality, structure
plausibility, and temporal coherence in both 360 videos and projected perspective views. Tab. 1
reports the average user ranking of all four methods, and our method achieves the best performance
in all three dimensions. Please refer to the supplementary material for more details regarding the
setup and metrics. Our method also achieves superior panorama image outpainting performance, and
we provide the comparison in the supplementary material.

4.3 Qualitative comparisons

We present the qualitative comparison between Imagine360 and other baseline models in Fig. 4.
At each frame, we present 4 projected perspective views (ϕ = 0◦, θ = [0◦, 90◦, 180◦, 270◦]) to
examine the panoramic structure plausibility. Fig. 4 shows that AnimateDiff+LatentLab360 and
Follow-Your-Canvas fail to achieve 360◦ close-loop continuity (orange box) and they produce mild-
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Table 3: Additional Upgrading Experiments on backbone and camera pose estimation.

Method Vbench EPE ↓ OmniFVD ↓
IQ ↑ AQ ↑ MS ↑ SC ↑

Ours 0.7372 0.5722 0.9866 0.9649 2.5583 204.0
+ TTT3R [3] 0.7406 0.5731 0.9831 0.9659 2.7276 332.1
+ WAN [29] 0.7508 0.4896 0.9929 0.9639 2.7385 268.6
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Figure 5: Qualitative ablation on the dual-branch de-
sign shows reduced artifacts and improved 360 patterns
with dual-branch video denoising.

time

Input

w/
rotation 
designs

w/o
rotation 
designs

Figure 6: Qualitative ablation on the rotation-
aware designs show plausible, consistent scene
geometry with rotation designs.

scale motion, as observed in the change of the canoe location (left-side) and animal size (right-side).
360DVD produces more distorted patterns and blurred visual appearance in both cases. In contrast,
our Imagine360 achieves superior visual quality, and plausible, obvious motion in the generated 360◦

videos. We also provide side-by-side comparison videos in the supplements for clearer visualization.

Table 4: Efficiency analysis with baseline methods
under inference time and VRAM.

AnimateDiff 360DVD Follow-Your-Canvas Ours
Inference Time (s) 122.65 93.18 381.89 182.76
max VRAM (GB) 20.83 18.06 27.99 25.59

Table 5: Inference Runtime Breakdown of Imag-
ine360.

Model Load IO Camera Est. Inference
Runtime (s) 13.29 2.1 47.88 182.76

4.4 Efficiency Analysis

We provide a runtime breakdown table (Tab. 5) and efficiency comparison table (Tab. 4) in terms
of runtime and VRAM consumption. We report the average runtime based on tests using 16-frame
video clips.

From the efficiency comparison, we observe that compared to another V2V model Follow-Your-
Canvas (FYC), our model is faster in inference speed and consumes less VRAM. The main reason
is that FYC requires multiple rounds of outpainting to ensure outpaint quality, and they also train
and infer in float32. Thanks to our dual-branch structure, Imagine360 achieves good visual quality
in a single pass of inference. AnimateDiff and 360DVD have faster inference speeds, which is
within expectation, as they are text-guided and image-guided frameworks. In addition, by employing
multiple memory optimization techniques (bfloat16,vae slicing,cuda.empty_cache, intermediate
tensor cleanup, etc.), our dual-branch structure does not increase VRAM usage by a lot.

In the runtime breakdown table, we observe that the external camera estimation module takes up a
considerable amount of time. Although optimizing the inference speed of off-the-shelf camera pose
estimator is beyond the scope of this work, we will seek to upgrade this module with a faster and
more robust camera estimator.

4.5 Ablative studies

Ablation on dual-branch design. Fig. 5 shows that with limited training data, single panorama
branch often proposes non-spherical patterns, and single perspective branch without global guidance
produces messy boundary artifacts. Quantitative results in Tab. 2 also support the effectiveness of
the dual-branch design. We also study the dual-branch fine-tuning strategy (see supp.), and find that
compared to fine-tuning the pano motion module, adding motion LoRA is insufficient to generate
good spherical pattern.
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Figure 7: Qualitative ablation on the antipodal mask shows improved reversed motion in the antipodal view
for forward-moving camera motion. Best viewed with Acrobat Reader for the motion.

Ablation on rotation-aware designs. As shown in Fig. 6, neglecting camera rotations in the input
anchor video introduces artifacts in the scene geometry of the resulting 360◦ video. Without rotation-
aware processing, the mountain appears to grow unnaturally taller (see yellow box). In contrast, our
rotation-aware design preserves consistent scene geometry. We provide a clearer video comparison
in supp. to show the robustness to diverse rotations. Quantitative results in Tab. 2 also validates the
benefits of rotation-aware designs.

Ablation on antipodal mask. Fig. 7 illustrates the impact of the antipodal mask on antipodal motion.
Thanks to the antipodal mask, as the camera moves forward in the input direction (center view),
we can observe clear backward motion in the antipodal views (see red box). Quantitative result in
Tab. 2 also proves the effectiveness of adding antipodal activations for general videos. We show the
backward view for both cases: the result without antipodal mask exhibits distorted patterns at faraway
locations, while with antipodal mask, the camera moves away from the scene in a more plausible way.
We further verify that this design does not compromise content quality for rotation-only videos. On a
filtered subset of 100 such videos from the test set, VBench IQ and AQ scores remain comparable:
with the antipodal mask, IQ is 0.6688 and AQ is 0.5553; without it, IQ is 0.6621 and AQ is 0.5649.

Analysis on camera estimation model. In our default setting, we use MonST3R for camera
pose estimation during inference, which provides accurate and stable results in most cases. While
precise pose estimation remains challenging in rare corner cases, this is beyond our paper’s scope.
Nevertheless, as camera pose estimation continues to advance, MonST3R can be seamlessly replaced
with more powerful models. For instance, we replace MonST3R with more advanced TTT3R [3]
and report the results in Tab. 3. Results with TTT3R improve on vbench IQ, AQ, and SC metrics,
indicating more stable pose estimation ability of TTT3R over MonST3R.

Analysis on backbone model. As more advanced video generation backbone emerges, we also
upgrade our backbone model from AnimateDiff [10] to Wan [29] with technical modifications
from Unet to DiT. We find that this upgrade significantly improves the image quality and temporal
consistency, especially solving the temporal flickering issue observed in some of our primary results.
We report the results with Wan [29] in Tab. 3, and show qualitative results in the webpage as well as
in the supplementary.

5 Conclusion

In this paper, we propose Imagine360, the first framework for video-conditioned 360 video generation
with structured 360 motion. Our key contributions are: (1) a dual-branch video denoising network
with panorama and perspective branches for global-local constraints; (2) an antipodal mask in cross-
domain spherical attention to capture reverse translational camera motion; and (3) rotation-aware
designs to handle diverse camera poses. We also introduce YouTube360, a high-quality 360 video
dataset with diverse, structured foreground motion. Experiments show that Imagine360 achieves
superior video quality and panoramic motion realism.

Limitations and future work. During inference, Imagine360 leverages camera pose estimation
model to obtain the input camera poses. While these methods [44; 3] generally performs well, it
can underestimate rapid movements involving large rotations due to data bias, leading to noticeable
distortions (see supp.) that limit the video fidelity in certain scenarios. As research in geometry
estimation continues to progress, we plan to keep our model updated with more advanced techniques
to alleviate this issue.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper tackles perspective-to-360 video generation via a dual-branch video
denoising framework with rotation-aware designs and novel antipodal masking. Evaluation
on 360 video quality and projected perspective video quality with a user study demonstrates
the effectiveness of the model.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As discussed in supp., MonST3R can underestimate large camera rotations
which leads to distorted input video in the canvas and hence distortions in the generated
results.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We discuss the model design and data collection process in Fig. 2 and Sec. 3.6
and in supplementary. We also provide the data annotations in the supplementary folder.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide YouTube ID, time intervals, and text captions in a csv file in the
supplementary material. We also provide the inference code of our proposed model in the
supplementary.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We explain all the training and test details in Sec. 4.1 and in the supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our metrics use standard benchmarks for the tasks we evaluate. These metrics
do not include statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss in Sec. 4.1 that our model is trained on 8 80G A100 GPUs for 60
hours.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential societal impacts in the supplementary.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: As described in the supplementary, the codes and dataset will be made available
under CC BY 4.0. We also employ manual efforts to filter out videos with sensitive content.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited all models and datasets we use in the paper. We also
describe the licenses in the supplementation.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We describe the data curation and usage in Sec. 3.6 and in supplementary pdf.
We also attach a readme file for the annotation file (.csv) in the supplementary.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We provide the details of user study both in the experiment section and in the
supplementary material.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: We follow the standards of the country where user studies were performed and
personal data analyzed.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM is used exclusively for writing, editing, and data processing. See the
method section and supplementary material.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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