
Multi-Armed Bandits with Generalized
Temporally-Partitioned Rewards

Ronald C. van den Broek
Eindhoven University of Technology
r.c.v.d.broek@student.tue.nl

Rik Litjens
Eindhoven University of Technology

r.litjens@student.tue.nl

Tobias Sagis
Eindhoven University of Technology
t.g.m.sagis@student.tue.nl

Nina Verbeeke
Eindhoven University of Technology
n.c.verbeeke@student.tue.nl

Pratik Gajane
Eindhoven University of Technology

p.gajane@tue.nl

Abstract

Decision-making problems of sequential nature, where decisions made in the past
may have an impact on the future, are used to model many practically important
applications. In some real-world applications, feedback about a decision is de-
layed and may arrive via partial rewards that are observed with different delays.
Motivated by such scenarios, we propose a novel problem formulation called multi-
armed bandits with generalized temporally-partitioned rewards. To formalize how
feedback about a decision is partitioned across several time steps, we introduce
β-spread property. We derive a lower bound on the performance of any uniformly
efficient algorithm for the considered problem. Moreover, we provide an algorithm
called TP-UCB-FR-G and prove an upper bound on its performance measure. In
some scenarios, our upper bound improves upon the state of the art. We provide
experimental results validating the proposed algorithm and our theoretical results.

1 Introduction

The classical multi-armed bandit (MAB, or simply bandit) problem is a framework to model sequential
decision-making [Bubeck and Cesa-Bianchi, 2012a]. In a MAB problem, the learning agent is faced
with a finite set of K arms, and a decision taken by the agent is symbolized by pulling an arm.
Feedback about the decisions taken is available to the agent via numerical rewards. Multi-arm bandit
literature typically focuses on scenarios where rewards are assumed to arrive immediately after
pulling an arm. In contrast, the works on delayed-feedback bandits (e.g., [Joulani et al., 2013; Mandel
et al., 2015]) assume a delay between pulling an arm and the observation of its corresponding reward.
In those studies, the reward is assumed to be concentrated in a single round that is delayed. This
setting can be extended by allowing the reward to be partitioned into partial rewards that are observed
with different delays. This type of bandit problem, known as MAB with Temporally-Partitioned
Rewards (TP-MAB), was introduced by [Romano et al., 2022].

In the TP-MAB setting, an agent will receive subsets of the reward over multiple rounds. The
cumulative reward of an arm is the sum of the partial rewards obtained by pulling an arm. [Romano
et al., 2022] present α-smoothness to characterize the reward structure. The α-smoothness property
states that the maximum reward in a group of consecutive partial rewards cannot exceed a fraction

16th European Workshop on Reinforcement Learning (EWRL 2023).

of the maximum reward (precise definition given in Definition 2). However, the assumption of
α-smoothness does not fit well if the cumulative reward is not uniformly spread. In this article, we
introduce a more generalized way of formulating how an arm’s delayed cumulative reward is spread
across several rounds.

As a motivating application, consider websites (e.g., Coursera, Khan Academy, edX) that provide
Massive Open Online Courses (MOOCs). Such websites aim to provide users with useful recommen-
dations for courses. This problem can be modeled as a TP-MAP problem. A course, which consists
of a series of video lectures, might be thought of as an arm. A course can be recommended to a user
by an agent, which corresponds to pulling an arm. When the student follows a course, the agent can
observe partial rewards (e.g., by checking the watch time retention). In this setting, α-smoothness
rarely captures the actual cumulative reward distribution. Many students watch the video lectures at
the beginning of a course but never finish the last few lectures, making the spread of partial rewards
non-uniform. As a result, the existing work on delayed-feedback bandits and the algorithms proposed
by [Romano et al., 2022] may fail to recommend courses that are relevant for the user. Motivated by
such scenarios, we investigate a more generalized way of formulating the reward structure.

Our Contributions

1. We introduce a novel MAB formulation with a generalized way of describing how an arm’s
delayed cumulative reward is distributed across rounds.

2. We prove a lower bound on the performance measure of any uniformly efficient algorithm
for the considered problem.

3. We devise an algorithm TP-UCB-FR-G and prove an upper bound on its performance measure.
The proven upper bounds are tighter than the state of the art in some scenarios.

4. We provide experimental results that validate the correctness of our theoretical results and
the effectiveness of our proposed algorithm.

2 Background and Related Work

Online learning with delayed feedback is a well-studied problem in the literature. Owing to the
space restrictions, a necessarily incomplete list of the works on this topic includes [Weinberger
and Ordentlich, 2002; Agarwal and Duchi, 2011; Mesterharm, 2005, 2007; Desautels et al., 2014;
Zinkevich et al., 2009]. In the rest of this section, we focus on MAB with delayed feedback.

[Joulani et al., 2013] studied the non-anonymous delayed feedback bandit problem and proposed a
variant of the UCB algorithm [Auer et al., 2002] as a solution. In [Joulani et al., 2013], it is assumed
that knowledge of which action resulted in a specific delayed reward is available. [Wang et al.,
2021] extend this problem to contain anonymous feedback and, in addition, eliminate the need for
accurate prior knowledge of the reward interval. Recently, a variety of delayed-feedback scenarios
were studied in MAB settings different from ours, such as linear and contextual bandits [Arya and
Yang, 2020; Zhou et al., 2019; Vernade et al., 2020a], non-stationary bandits [Vernade et al., 2020b].
Furthermore, [Pike-Burke et al., 2018] and [Cesa-Bianchi et al., 2022] consider the case of delayed,
aggregated, and anonymous feedback.

The majority of past research on the delayed MAB setting assumes that the entire reward of an arm is
observed at once, either after some bounded delay [Joulani et al., 2013; Mandel et al., 2015] or after
random delays from an unbounded distribution with finite expectation [Gael et al., 2020; Vernade et
al., 2017]. Our article studies the setting in which the reward for an arm is spread over an interval with
a finite maximum delay value. This is consistent with the applications that we aim to model, such as
MOOC providers mentioned in Section 1. To the best of our knowledge, [Romano et al., 2022], were
the first to analyze this setting. They introduced the Multi-Armed Bandit with Temporally-Partitioned
Rewards (TP-MAB) setting. In the TP-MAB setting, a stochastic reward that is received by pulling
an arm is partitioned over partial rewards observed during a finite number of rounds followed by
the pull. [Romano et al., 2022] assume that the arm rewards follow α-smoothness property (precise
definition given in Definition 2).

While the study by [Romano et al., 2022] provides promising results in the TP-MAB setting, it is based
on the strong assumption that the α-smoothness property holds. As a result, their proposed solutions
are not suitable for a broader variety of scenarios where rewards are partitioned non-uniformly.

2

As a remedy, we propose to use general distributions that can more accurately characterize how the
received reward is partitioned. Consider a scenario in which additional information is available about
how the cumulative reward is spread over the rounds. An example of such a scenario is a MOOC
provider recommending courses to users, as described in Section 1. By generalizing the reward
structure, our approach will be able to handle partitioned rewards in which the maximum reward per
round is not partitioned uniformly across rounds, such as those shown on the right side of Figure 1.

[Romano et al., 2022] introduce two novel algorithms based on the UCB algorithm that leverage
α-smoothness property: TP-UCB-EW and TP-UCB-FR. Both algorithms take an assumed α value as
input and use it to calculate confidence terms similar to UCB [Auer et al., 2002]. [Romano et al.,
2022] showed that the TP-UCB-EW algorithm performs better with short time horizons T , whereas
the TP-UCB-FR outperforms in the long run. Furthermore, they show that the cumulative regret of
the TP-UCB-FR algorithm is greatly impacted by the assumed α, whereas TP-UCB-EW only shows
relatively minor changes in cumulative regret for different α values as input. Therefore, we believe
that the setup of TP-UCB-FR is most suitable for leveraging assumed distribution in a generalized
setting. Subsequently, we use TP-UCB-FR as a baseline for our proposed algorithm.

3 Problem Formulation

Consider a MAB problem with K arms over a time horizon of T rounds, where K,T ∈ N. At every
round t ∈ {1, 2, ..., T} an arm from the set of arms {1, 2, ...,K} is pulled. The performance of an
algorithm A after T time steps for the considered problem can be measured using expected regret (or
simply, regret) denoted asRT (A).

Definition 1. (Regret) The regret of an algorithm A after T time steps isRT (A) :=µ∗T −
∑K

i=1 µi ·
E [Ni(T)], where µ∗ :=max1≤i≤K µi and Ni(T) = number of times an arm i is selected till time t.

The total reward is temporally partitioned over a set of rounds T ′ = {1, 2, ..., τmax}. Let xi
t,m(m ∈

T ′) denote the partitioned reward that the learner receives at round m, after pulling the arm i at round
t. It is known to the agent which arm pull produced this reward. The cumulative reward is completely
collected by the learner after a delay of at most τmax. Each per-round reward xi

t,m is the realization

of a random variable Xi
t,m with support in [0, X

i

m]. The cumulative reward collected by the learner
from pulling arm i at round t is denoted by rit and it is the realization of a random variable Ri

t such
that Ri

t :=
∑τmax

n=1 Xi
t,n with support [0, R

i
]. Straightforwardly, we observe that R

i
:=
∑τmax

n=1 X
i

n.

[Romano et al., 2022] have shown that, in practice, per-round rewards for an arm provide information
on the cumulative reward of the arm. [Romano et al., 2022] introduce an α-smoothness property
(defined in Definition 2) that partitions the temporally-spaced rewards such that each partition
corresponds to the sum of a set of consecutive per-round rewards. Formally, let α ∈ T ′ be such that
α is a factor of τmax. The cardinality of each partition, where we refer to partition as ’z-group’ from
now on, is denoted by ϕ := τmax

α with ϕ ∈ N. We can now define each z-group zit,k, k ∈ {1, 2, ..., α}
as the realization of a random variable Zi

t,k, with support [0, Z
i

α,k], such that for every k:

Zi
t,k :=

t+kϕ−1∑
n=t+(k−1)ϕ

Xi
t,n (1)

Definition 2 (α-smoothness). For α ∈ {1, ..., τmax}, the reward is α-smooth iff τmax

α ∈ N and
for each i ∈ {1, ...,K} and k ∈ {1, 2, ..., α} the random variables Zi

t,k are independent and s.t.

Z
i

α,k = Z
i

α = R
i

α .

The α-smoothness property ensures that all temporally-partitioned rewards contribute towards bound-
ing the values of future rewards within the same window. If the α-smoothness holds, then the
maximum cumulative reward in a z-group Z

i

α,k is equal for all z-groups k ∈ {1, 2, ..., α}. Therefore,

we can say that ∀k ∈ {1, 2, ..., α}, Z
i

α,k = Z
i

α.

The assumption of α-smoothness is unsuitable for scenarios in which the cumulative reward is
not uniformly partitioned across rounds. The goal of this article is to generalize the spread of the

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.00
0.05
0.10
0.15
0.20
0.25

P(
Y
=
k)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.00
0.05
0.10
0.15
0.20
0.25

P(
Y
=
k)

Figure 1: α-smoothness reward distribution for the MOOC setting (left) and a near-perfect approxi-
mation of the reward distribution using β-spread (right)

rewards across z-groups. To that end, one has to eliminate the assumption that every z-group has an
equal probability of attaining a partial reward. To accomplish this, we replace α-smoothness with
β-spread property that allows for modeling scenarios in which the cumulative reward is distributed
non-uniformly across rounds i.e., a property that allows Z

i

α,k to differ across z-groups.

3.1 Our Solution approach: β-spread property

Formally, we define this concept of β-spread as follows:

Definition 3 (β-spread). For α ∈ {1, ..., τmax}, the reward is β-smooth if and only if

1. τmax

α = ϕ with ϕ ∈ N

2. The reward distribution can be described by a distribution D on a finite integer domain
{1, 2, ..., α} with probability mass function PD(k)

3. for each i ∈ {1, ...,K} and k ∈ {1, 2, ..., α} the random variables Zi
t,k are independent and

s.t. Z
i

α,k = PD(k) ·R
i

Based on prior information about how the cumulative reward is distributed over the rounds, the actual
reward distribution can be approximated by a distribution D̂ with corresponding probability mass
function PD̂(k), as long as it adheres to the definition of β-spread. We specify this, because the true
reward distribution might not be known exactly in all cases. However, our solution approach requires
at least some knowledge of the reward distribution.

As an example, consider the MOOC setting described at the end of Section 1. Consider the case where
the watch time retention is considered a partial reward, and reduces linearly over time. The reward
distribution under α-smoothness over the z-groups is illustrated in Figure 1 (left). Since we expect
the partial reward to reduce linearly over time, the distribution of rewards under α-smoothness is
inappropriate. Rather, we closely approximate the linear reduction with a Beta-binomial distribution
with parameters α = 1 and β = 3 (right), which will result in lower cumulative regret. In this
article, we use Beta-binomial distributions frequently due to its capability to describe a wide variety
of distributions.

4 Lower Bound on Regret

Using the β-spread property, we can derive the following lower bound for a uniformly efficient policy
i.e., any policy with regret in O(T x) with x < 1.

Theorem 1. The regret of any uniformly efficient policy U applied to the TP-MAB problem with the
β-spread property after T time steps is lower bounded as

lim inf
T→+∞

RT (U)

lnT
≥

∑
i:µi<µ∗

2

(α+ 1)

α∑
k=1

kPD(k) ·α
α∑

k=1

(PD(k))
2 ∆i

αKL
(

µi

R̄max
, µ∗

Rmax

)
where ∆i :=µ∗ − µi and KL(p, q) := Kullback-Leibler divergence between Bernoulli random vari-
ables with means p and q [Kullback and Leibler, 1951].

4

Comparison with the Lower Bound given by [Romano et al., 2022]

By assuming α-smoothness, [Romano et al., 2022] proved the following lower bound for TP-MAB:

lim inf
T→+∞

RT (U)

lnT
≥

∑
i:µi<µ∗

∆i

αKL
(

µi

R̄max
, µ∗

Rmax

) . (2)

Notice that the difference between the lower bound with the β-spread property and the lower bound
derived in [Romano et al., 2022] lies in two factors. The first factor, 2

(α+1)

∑α
k=1 kPD(k) is equal to

the normalized expected value of our assumed reward spread distribution.
∑α

k=1 kPD(k) calculates
the expected value for the chosen discrete distribution. (α+1)

2 is the expected value when the chosen
distribution is the uniform distribution. Hence, its inverse can be seen as a normalization term.
The second factor, α

∑α
k=1 (PD(k))

2, can be seen as a normalized approximation of the index
of coincidence [Friedman, 1987] between rewards. The index of coincidence,

∑α
k=1 (PD(k))

2

determines the probability of two reward points being observed in the same z-group. Its minimal
value equals 1

α and occurs when the α-smoothness property holds (uniform distribution). The value
is maximal and equal to 1 if all rewards fall into one z-group. Multiplying the index of coincidence
with α gives this factor more weight in the lower bound and extends the domain from [1α , 1] to [1, α].
This essentially means that it is ‘harder’ for algorithms to perform well when the rewards come in
bulk, rather than over the course of multiple rounds.
The lower bound given in Theorem 1 resolves to the lower bound given by [Romano et al., 2022]
in Eq.(2) in case of α-smoothness. However, our lower bound for the considered problem setting
is tighter when 2

(α+1)

∑α
k=1 kPD(k) ·α

∑α
k=1 (PD(k))

2
> 1. This means that rewards that are

expected to be observed late, or rewards that come all at the same time, contribute negatively to the
performance of an algorithm in the described setting. Rewards that are expected to be observed early
or are more spread out contribute positively.

Proof Sketch for Theorem 1

We start by constructing two MAB problem instances that call for different behaviors from the
algorithm attempting to solve them. Then, we use the change-of-distribution argument to show
that any uniformly efficient algorithm cannot efficiently distinguish between these instances. The
complete proof for Theorem 1 is given in Appendix A.

5 Proposed Algorithm and Regret Upper Bound

In this section, we propose an algorithm that makes use of the β-spread property in the TP-MAB
setting and prove an upper bound on its regret.

5.1 Proposed Algorithm: TP-UCB-FR-G

Our proposed algorithm, called TP-UCB-FR-G, is an extension of the algorithm TP-UCB-FR given by
[Romano et al., 2022]. In TP-UCB-FR-G, the most significant modification is the confidence interval
cit−1 which is rigorously built to suit the β-spread property.

As input, the algorithm takes a smoothness constant α ∈ [τmax], a maximum delay τmax and a
probability mass function PD̂. The algorithm uses PD̂ to be able to give a proper judgment of an arm
before all the delayed partial rewards are observed. This is realized by replacing the not yet received
partial rewards with fictitious realizations, or in other words, the expected estimated rewards.

At round t, the fictitious reward vectors are associated with each arm pulled in the span H :=

{t − τmax + 1, ..., t − 1}. These fictitious rewards are denoted by x̃i
h =

[
x̃i
h,1, . . . , x̃

i
h,τmax

]
with

h ∈ H , where x̃i
h,j := xi

h,j , if h + j ≤ t (the reward has already been seen), and x̃i
h,j = 0, if

h+ j > t (the reward will be seen in the future). The corresponding fictitious cumulative reward is
r̃ih :=

∑τmax

j=1 x̃i
h,j .

5

Algorithm 1 TP-UCB-FR-G

1: Input: α ∈ [τmax], τmax ∈ N∗, PD̂
2: for t ∈ {1, ...,K} do
3: Pull an arm it ← t
4: for t ∈ {K + 1, ..., T} do
5: for i ∈ {1, ...,K} do
6: Compute R̂i

t−1 and cit−1 as in (3) and (4)
7: ui

t−1 ← R̂i
t−1 + cit−1

8: Pull arm it ← z = argmaxi∈[K] u
i
t−1

9: Observe xih
h,t−h+1 for h ∈ {t− τmax + 1, ..., t}

In the initialization phase of the algorithm (lines 2-3), each arm is pulled once. Later, at each time
step t, the upper confidence bounds ui

t−1 are determined for each arm i by computing the estimated
expected reward R̂i

t−1 and confidence interval cit−1 using Eq. (3) and (4) respectively.

R̂i
t−1 :=

1

Ni(t− 1)

(
t−τmax∑
h=1

rih1{ih=i} +
∑
h∈H

r̃ih1{ih=i}

)
(3)

cit−1 :=
ϕR̄i

Ni(t− 1)

α∑
k=1

kPD̂(k) + R̄i

√√√√2 ln(t− 1)
∑α

k=1

(
PD̂(k)

)2
Ni(t− 1)

(4)

where Ni(t− 1) :=
∑t−1

h=1 1{ih=i} is the number of times arm i has been pulled up to round t− 1
and ih represents the arm that was pulled at time h. The algorithm then pulls the arm i with the
highest upper confidence bound ui

t−1 and observes its rewards.

5.2 Regret Upper Bound of TP-UCB-FR-G

Theorem 2. In the TP-MAB setting with β-spread reward, the regret of TP-UCB-FR-G after T time
steps with PD̂(k) matching PD(k) is upper bounded as

RT (TP-UCB-FR-G) ≤
∑

i:µi<µ∗

4 lnT (R̄i)2
∑α

k=1 (PD(k))
2

∆i
·

(
1 +

√
1 +

∆iϕ
∑α

k=1 kPD(k)

R̄i lnT
∑α

k=1 (PD(k))
2

)

+ 2ϕ

α∑
k=1

kPD(k)
∑

i:µi<µ∗

R̄i +

(
1 +

π2

3

) ∑
i:µi<µ∗

∆i

Observe that
∑α

k=1 kPD(k) is equal to the expected value of our assumed reward spread distribution,
similar to the factor in the lower bound but not normalized. The other factor is the index of coincidence∑α

k=1 (PD(k))
2, which also occurs in the lower bound but is not weighted for the upper bound.

5.2.1 Comparison with the Upper Bound of TP-UCB-FR given in [Romano et al., 2022]

Let us compare our upper bound given in Theorem 2 with the upper bound given in [Romano et
al., 2022]. For the latter bound to hold, the α estimate given as input to their algorithm has to
match the α of the real reward distribution as well. Note that

∑α
k=1 kPD(k) = α+1

2 in case of
α-smoothness. For other assumed distributions with

∑α
k=1 kPD(k) <

α+1
2 our upper bound on the

regret is lower. Furthermore, choosing a β-spread distribution as input with a low mean and a low
index of coincidence will result in a better upper bound, by Theorem 2, compared to choosing D̂ with
rewards centered towards the end (high mean) and not spread out (high index of coincidence).

6

Distribution name α β

extreme_begin 1 100
very_begin 1 16
begin 2 8
begin_middle 2 4
middle 5 5
middle_end 4 2
end 8 2
very_end 16 1

Table 1: Parameter values for
Beta-Binomial distributions

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0.0

0.5

1.0

1.5

2.0

2.5

R
T
(�

)

×106
Delayed-UCB1
UCB1
TP-UCB-FR-G(50,extreme_begin)
TP-UCB-FR-G(50,very_begin)
TP-UCB-FR-G(50,begin)
TP-UCB-FR-G(50,begin_middle)
TP-UCB-FR-G(50,middle)
TP-UCB-FR-G(50,middle_end)
TP-UCB-FR-G(50,end)
TP-UCB-FR-G(50,very_end)
TP-UCB-FR(50)
Upper Bound β-spread
Upper Bound α-smoothness

Figure 2: Regret against time for Setting 1 with αest = 50

5.2.2 Proof Sketch of Theorem 2

Here we provide a proof sketch for Theorem 2. The complete proof can be found in Appendix B. The
approach can be divided into three steps. Firstly, we show that the probability that an optimal arm is
estimated significantly lower than its mean is bounded by t−4. Secondly, we show the probability of
a suboptimal arm being estimated significantly higher than its mean is bounded by t−4. Finally, we
assess the algorithm’s ability to differentiate between optimal and suboptimal arms.

6 Experimental Results

In this section, we compare our proposed algorithm TP-UCB-FR-G with TP-UCB-FR [Romano et
al., 2022], UCB1 [Auer et al., 2002], and Delayed-UCB1 [Joulani et al., 2013]. We observe how
well TP-UCB-FR-G performs in settings with different reward distributions. We use the experimental
settings proposed by [Romano et al., 2022]. That is, two synthetically generated environments
and a real-world playlist recommendation scenario. In these settings, we inherit learners used in
the provided experiments in [Romano et al., 2022], and create new learner configurations using
TP-UCB-FR-G. As input distributions for the new learners, we use Beta-Binomial distributions with
unique parameter values for each learner. The Beta-Binomial distribution gives us the opportunity to
model extreme scenarios, which should result in more insightful experimental results. We observe
that other distributions do not grant the flexibility of a Beta-Binomial distribution, as demonstrated
in experiments deferred to Appendix C.4. In the plots under this section, we use the notation
TP-UCB-FR-G(α, dist_name) to denote a learner for our algorithm, where dist_name is the name
of the Beta-Binomial distribution for which the exact parameters are shown in Table 1. Details about
the used Beta-Binomial distributions and experimental settings are given in Appendix C.4.

Setting 1: Uniform Reward Distribution

In this setting, we evaluate the influence of α on TP-UCB-FR-G. We set K = 10, τmax = 100 rounds,
and the maximum reward such that it is more difficult for a learner to converge to the optimal arm,
by letting R

i
= 100ζi where ζ ∈ {1, 3, 6, 9, 12, 15, 18, 21, 22, 23}. The aggregate rewards are s.t.

Zi
t,k ∼ R

i

α U [0, 1], and we use a setting α-smoothness constant of α = 20. We run the algorithm
over a time horizon T = 105, and average the results over 100 independent runs. We run the setting
for αest ∈ {5, 10, 20, 25, 50}, where αest is the estimation of the α-smoothness constant. To mimic
real-world applications where the underlying data generating distribution and α values are possibly
unknown, we use αest to estimate this constant.

Results. Let us focus on the results for αest = 501. Its performance is plotted against time in Figure
2, along with the theoretical upper-bounds for the corresponding setting. Note that the upper-bounds
for β-spread and α-smoothness are equal, which is expected in this setting with uniform spread. The
high upper bound at low values for t is caused by constants in the upper-bound equation, which are
dependent on the experimental set-up. The maximum cumulative reward of the arms is the most dom-

1Full results for other values of αest are deferred to Appendix C.

7

inant factor. First, note that it has been shown by [Romano et al., 2022] that optimistic (large) values
for αest lead to better performance in practice. However, overly optimistic values for αest do not nec-
essarily lead to better performance. Thus, TP-UCB-FR is largely influenced by the mis-specification
of αest. Note that the learners TP-UCB-FR-G(50, begin) and TP-UCB-FR-G(50, begin_middle)
perform significantly better than the TP-UCB-FR learner proposed by [Romano et al., 2022]. In
fact, TP-UCB-FR-G(50, begin) and TP-UCB-FR-G(50, begin_middle) are approximately asymp-
totically parallel to TP-UCB-FR, granting significant performance gains as T increases. This implies
that our contribution improves the performance bound in the setting by [Romano et al., 2022].

Further results show that, for lower αest values, TP-UCB-FR-G learners with begin-oriented distribu-
tions perform slightly better. In the specific case of αest = 5, numerical analysis of the exact regret
results deferred to Appendix C, shows that our proposed learner TP-UCB-FR-G(5, begin_middle)
performs ≈ 4.5% better than the TP-UCB-FR learner by [Romano et al., 2022]. Furthermore, as αest

starts to increase, the performance of begin-oriented TP-UCB-FR-G learners increases faster than
that of TP-UCB-FR, resulting in an improvement of ≈ 22.1% for αest = 20, and to ≈ 36.1% for
αest = 50. We observe that TP-UCB-FR-G(αest, begin) is essentially the ’ideal’ learner, since it
always delivers better performance than the learner by [Romano et al., 2022] in the tested settings.
These results suggest that the issue of being overly/underly optimistic is essentially inherited from
the setting by [Romano et al., 2022] in a different shape. Overly-optimistic2 TP-UCB-FR-G learners
perform worse in general. This can be attributed to the fact that overly-optimistic learners generally
have an assumed distribution with a high index of coincidence, because the rewards are assumed to
be more concentrated at the beginning or at the end. The indices of coincidence for the ‘extreme
begin’ and ‘very end’ learners in Setting 1 with αest = 50 are ≈ 0.51 and 0.14, respectively. These
are significantly higher than ≈ 0.05, for both the ‘begin’ and the ‘end’ learner in the same setting.
Similarly, underly-optimistic learners with a middle-oriented distribution also perform poorly. This
can be explained by the expected value of their assumed distributions, which is higher than the
begin-oriented distributions as indicated by their name.

Setting 2: Non-Uniform Reward Distributions

The second setting aims to test the performance of the TP-UCB-FR-G algorithm in scenarios where
the distribution of the aggregate reward over the time steps after an arm pull is non-uniform. The
distribution of rewards in this setting are s.t. Zi

t,k ∼ R
i

α Beta[aik, b
i
k] where Beta is a Beta distribution

with a, b s.t. rewards are distributed according to the spread of the corresponding setting. Again, we
model K = 10 arms, an α-smoothness constant of α = 20 and a maximum reward s.t. convergence
to an optimal arm takes longer. That is, R

i
= 100ζi with ζ ∈ {1, 3, 6, 9, 12, 15, 18, 21, 22, 23}.

However, there is a difference in the τmax, αest and the parameters used for the assumed Beta
distribution by the learners. The exact configurations can be found in Appendix C. In general, there
are 12 combinations consisting of 4 configurations with 3 scenarios each. The configurations differ
in τmax and αest, whereas the scenarios differ in distribution parameters. Generally, there is one
uniform scenario (equal to Setting 1), one where the rewards are observed late after the pull (Setting
2.1), and one where the results are observed just after the pull (Setting 2.2). We use learners with the
same estimated distributions as in Setting 1 (see Table 1).

Results. Running the proposed Setting 2.1 and 2.2 for τmax = 100 and αest = 50 produces results
that are visually identical to the results from Setting 1 given in Figure 2. However, analysis of the
numerical results reveals that differences exist. The cumulative regret generally increases slightly
from Setting 2.2 to Setting uniform and then to Setting 2.1.

Let us denote ∆(s1, s2) for s1, s2 ∈ {Setting 2.1, Setting 2.2, Uniform} as the absolute
difference in cumulative regret between Settings s1 and s2. The pairwise differences in cumulative
regret observed between settings are marginal. As an example, ∆(Setting 2.1, Setting 2.2) ≈
4.8× 103 for learner TP-UCB-FR-G(50, very_end) which is the highest difference in average regret
observed across all compared settings. Since the regret of TP-UCB-FR-G(50, very_end) averaged
over T is ≈ 1.61 × 106, the observed change of ≈ 0.3% is neglectable. Furthermore, the same
experiment performed with different values for both τmax and αest seems to confirm the same
marginal change. For example, Setting 2 for τmax = 200 and αest = 20 results in a maximum change

2We consider a TP-UCB-FR-G learner to be ’optimistic’ if it has a ’tail-oriented’ Beta-Binomial distribution,
and thus expects most of the rewards to be distributed across the first z-groups

8

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0.0

0.5

1.0

1.5

2.0

R
T
(�

)

×106
Delayed-UCB1
UCB1
TP-UCB-FR(50)
TP-UCB-FR-G(50,extreme_begin)
TP-UCB-FR-G(50,very_begin)
TP-UCB-FR-G(50,begin)
TP-UCB-FR-G(50,begin_middle)
TP-UCB-FR-G(50,middle)
TP-UCB-FR-G(50,middle_end)
TP-UCB-FR-G(50,end)
TP-UCB-FR-G(50,very_end)
Upper Bound β-spread
Upper Bound α-smoothness

Figure 3: Regret against time for Setting 2.2 with τmax = 100 and αest = 50

in average regret of only ≈ 0.5%. These findings indicate that the performance of TP-UCB-FR-G
learners in a uniformly distributed aggregate rewards setting is indistinguishable from that in a
non-uniformly distributed aggregate rewards setting. Therefore, we can align with the conclusion
of Setting 1; TP-UCB-FR-G(α, begin) delivers a significant performance increase compared to the
learner proposed by [Romano et al., 2022]. The gain that we observe for the mentioned settings is as
high as ≈ 48.2%. An extensive performance summary is deferred to Appendix C. Again, due to the
flexibility of choice for a distribution, there is potential for even higher performance gains.

In Figure 3, the theoretical upper bound of TP-UCB-FR-G as well as the the upper bound of the
TP-UCB-FR algorithm is plotted on top of the results for the Setting 2.2. The figure shows that the
upper bound proposed in this article is tighter in this setting. Note that the theoretical upper bounds
for TP-UCB-FR-G and TP-UCB-FR only hold for specific learners that assume the data generating
distribution precisely and that the ‘very end’ learner exceeds the β-spread upper bound. This shows
another reason to estimate the assumed distribution optimistically.

User recommendations: Spotify Playlists

We evaluate our algorithm on real-world data by addressing the user recommendation problem
introduced by [Romano et al., 2022], using the Spotify dataset from [Brost et al., 2019]. We select
the K = 6 most played playlists as the arms to be recommended. Each time a playlist i is selected,
the corresponding reward realizations xi

t for the first N = 20 songs are sampled from the dataset. In
this setting, the α-smoothness is α = 20, the maximum delay τmax = 4N = 80 and the results are
averaged over 100 independent runs.

Results. In Figure 4, we observe that optimistic learners significantly outperform the
learner TP-UCB-FR(20) introduced by [Romano et al., 2022]. We focus on the learner
TP-UCB-FR-G(20, begin), since it is by far the best performing learner. This learner achieves
a decrease of ≈ 26.3% in regret, averaged over time horizon T , when compared to TP-UCB-FR(20).
Table 2 summarizes the performance gains of TP-UCB-FR-G learners in the Spotify setting. We
also observe that, in line with the conclusion from Setting 1, overly optimistic learners such as
TP-UCB-FR-G(20,extreme_begin) perform significantly worse than TP-UCB-FR(20). As shown in
Table 2, the average regret increases by ≈ 72.5%. However, TP-UCB-FR-G(20, begin) outperforms
TP-UCB-FR(20) for larger t, making it a better option for playlist recommendations.

7 Concluding Remarks and Future Work

In this paper, we model sequential decision-making problems with delayed feedback using a novel
formulation called multi-armed bandits with generalized temporally-partitioned rewards. To general-
ize delayed reward distributions, we introduce the β-spread property. We establish a tighter lower
bound for the TP-MAB setting with the β-spread property compared to the TP-MAB setting with the
α-smoothness property. Specifically, even when α is equal for both settings, a high mean or high
index of coincidence for the assumed distribution leads to a tighter bound in the setting introduced in
this paper. We also introduce the TP-UCB-FR-G algorithm, which exploits the β-spread property. We

9

Learner Regret Decrease
TP-UCB-FR-G(αest = 20) (×104) (%)

extreme_begin 4.40 ≈ −72.5
very_begin 2.40 ≈ 5.9
begin 1.88 ≈ 26.3
begin_middle 2.11 ≈ 17.2

Table 2: TP-UCB-FR-G Learn-
ers and their decrease in re-
gret compared to the regret of
TP-UCB-FR(20) = 2.55× 104

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0

1

2

3

4

5

6

R
T
(�

)

×104

Delayed-UCB1
TP-UCB-FR(20)
TP-UCB-FR-G(20,extreme_begin)
TP-UCB-FR-G(20,very_begin)
TP-UCB-FR-G(20,begin)
TP-UCB-FR-G(20,begin_middle)
UCB1

Figure 4: Regret against time for begin-oriented learners in
the Spotify Setting

demonstrate that in certain scenarios, the upper bound of this algorithm can be lower than that of the
TP-UCB-FR algorithm, thus surpassing the upper bounds of the classical UCB1 and Delayed-UCB1
algorithms as well. Finally, we demonstrate that our algorithm outperforms TP-UCB-FR and other
UCB algorithms in diverse experiments using synthetic and real-world data, achieving a remarkable
26.3% decrease in regret compared to the state-of-the-art TP-UCB-FR algorithm.

A possible future research direction is to explore removing the restriction of the β-spread property
to discrete probability distributions bounded by a finite domain of size α. This can enhance the
algorithm’s flexibility and broaden its practical applications. Additionally, a valuable extension
involves considering scenarios where arms are treated as subsets, each assigned distinct α-values
and distributions. This approach proves advantageous in settings where arms are treated as clusters,
as exemplified by the work of [Pandey et al., 2007]. Moreover, an intriguing area of exploration
involves studying scenarios where the partitioned reward time span, denoted as τmax, varies. While
our present study assumes a fixed and uniform τmax across all arms, removing this assumption would
be highly advantageous for practical applications involving variable τmax, such as observing the
lifetime of online advertisements measured in clicks.

Acknowledgments

This work is supported by the Dutch Research Council (NWO) in the framework of the TEPAIV
research project (project number 612.001.752).

References
Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In Advances in

Neural Information Processing Systems, volume 24, 2011.

Sakshi Arya and Yuhong Yang. Randomized allocation with nonparametric estimation for contextual
multi-armed bandits with delayed rewards. Statistics & Probability Letters, 164:108818, 2020.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning 2002 47:2, 47:235–256, 5 2002.

Brian Brost, Rishabh Mehrotra, and Tristan Jehan. The music streaming sessions dataset. CoRR,
abs/1901.09851, 2019.

Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. CoRR, abs/1204.5721, 2012.

Nicolò Cesa-Bianchi, Tommaso Cesari, Roberto Colomboni, Claudio Gentile, and Yishay Man-
sour. Nonstochastic bandits with composite anonymous feedback. Journal of Machine Learning
Research, 23(277):1–24, 2022.

10

Thomas Desautels, Andreas Krause, and Joel W. Burdick. Parallelizing exploration-exploitation
tradeoffs in gaussian process bandit optimization. The Journal of Machine Learning Reseacrh,
15(1):3873–3923, jan 2014.

William Frederick Friedman. The index of coincidence and its applications in cryptanalysis, vol-
ume 49. Aegean Park Press California, 1987.

Manegueu Anne Gael, Claire Vernade, Alexandra Carpentier, and Michal Valko. Stochastic bandits
with arm-dependent delays. In Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 3348–3356, 13–18
Jul 2020.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

Pooria Joulani, András György, and Csaba Szepesvári. Online learning under delayed feedback.
In Proceedings of the 30th International Conference on International Conference on Machine
Learning - Volume 28, ICML’13, 2013.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathemati-
cal statistics, 22(1):79–86, 1951.

T.L Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied
Mathematics, 6(1):4–22, 1985.

Peter M. Lee. 3.1 The binomial distribution. Wiley, 4 edition, 2012.

Travis Mandel, Yun-En Liu, Emma Brunskill, and Zoran Popović. The queue method: Handling
delay, heuristics, prior data, and evaluation in bandits. In Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

Chris Mesterharm. On-line learning with delayed label feedback. In Proceedings of the 16th
International Conference on Algorithmic Learning Theory, page 399–413, 2005.

Chris Mesterharm. Improving on-line learning. PhD thesis, Rutgers University, 2007.

Sandeep Pandey, Deepayan Chakrabarti, and Deepak Agarwal. Multi-armed bandit problems with
dependent arms. In Proceedings of the 24th international conference on Machine learning, pages
721–728, 2007.

Ciara Pike-Burke, Shipra Agrawal, Csaba Szepesvari, and Steffen Grunewalder. Bandits with
delayed, aggregated anonymous feedback. In International Conference on Machine Learning,
pages 4105–4113. PMLR, 2018.

Giulia Romano, Andrea Agostini, Francesco Trovò, Nicola Gatti, and Marcello Restelli. Multi-armed
bandit problem with temporally-partitioned rewards: When partial feedback counts. Proceedings
of the Thirty-First International Joint Conference on Artificial Intelligence, 2022.

Claire Vernade, Olivier Cappé, and Vianney Perchet. Stochastic Bandit Models for Delayed Con-
versions. In Conference on Uncertainty in Artificial Intelligence, Sydney, Australia, August
2017.

Claire Vernade, Alexandra Carpentier, Tor Lattimore, Giovanni Zappella, Beyza Ermis, and Michael
Brückner. Linear bandits with stochastic delayed feedback. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 9712–9721, 13–18 Jul 2020.

Claire Vernade, András György, and Timothy A. Mann. Non-stationary delayed bandits with
intermediate observations. In Proceedings of the 37th International Conference on Machine
Learning, ICML’20, 2020.

Siwei Wang, Haoyun Wang, and Longbo Huang. Adaptive algorithms for multi-armed bandit with
composite and anonymous feedback. Proceedings of the AAAI Conference on Artificial Intelligence,
35(11):10210–10217, 2021.

11

M.J. Weinberger and E. Ordentlich. On delayed prediction of individual sequences. IEEE Transactions
on Information Theory, 48(7):1959–1976, 2002.

Zhengyuan Zhou, Renyuan Xu, and Jose Blanchet4. Learning in Generalized Linear Contextual
Bandits with Stochastic Delays. Curran Associates Inc., 2019.

Martin Zinkevich, John Langford, and Alex Smola. Slow learners are fast. In Advances in Neural
Information Processing Systems, volume 22, 2009.

12

A Proof of Theorem 1

Proof. The proof follows along the lines of the proof of Theorem 2.2 from [Bubeck and Cesa-Bianchi,
2012b], which is based on [Lai and Robbins, 1985]. Because the β-spread property has no effect on
the cardinality ϕ of the z-groups, we can generalize to a setting where multiple rewards are earned by
a single arm pull. Let us define an auxiliary TP-MAB setting in which:

• only two arms exist with expected values µ1 and µ2 s.t. µ2 < µ1 < 1.

• upper bound on the reward for each arm is equal to the maximum upper bound, i.e.,
R

i

t = Rmax

• The total rewards in each z-group, Zi
t,k, are independent, and the expected value of the

rewards in each z-group is PD(k) · µi.

• The total reward in z-group, Zi
t,k, is a scaled Bernoulli random variable s.t. Zi

t,k ∈
{0, PD(k) ·Rmax}

• Pulling an arm at time t provides rewards {Zi
t,1, ..., Z

i
t,α} that can all be observed immedi-

ately at the time of the pull.

In this proof of the lower bound, we trivially observe that finding the optimal arm in a setting in
which all of the partial rewards are observed at once can never be more difficult than in a setting in
which rewards are spread out over a set of rounds {t, t+ 1, ..., τmax}. As a result, a lower bound in
this defined setting corresponds to a lower bound in our β-spread setting.

To give an idea of how good an arm is compared to its maximum, we derive a new alternative mean
for each arm as µAi =

µi

Rmax
. Note that µAi < 1 as mentioned before.

Let E[Ni(T)] denote the expected number of times an arm i is pulled over a set of rounds T . To
compute E[N1({t, t+ 1, ..., τmax})] and E[N2({t, t+ 1, ..., τmax})], we can use the scaled reward
values without loss of validity. If we now consider a second, modified instance of the above TP-MAB
setting, with the only difference being that arm 2 is now the optimal arm s.t. µA1

< µ′
A2

< 1, we can
show that the learning agent choosing the arms cannot distinguish between the different instances.
This reasoning implies a lower bound on the number of times a suboptimal arm is played. We know
that x 7→ KL(µA1

, x) is a continuous function, and we can find a µ′
A2

for each ϵ > 0, such that:

KL(µA2
, µ′

A2
) ≤ (1 + ϵ)KL(µA2

, µA1
) (5)

The proof follows the steps given in the work by [Bubeck and Cesa-Bianchi, 2012b] to derive a lower
bound for any uniform policy U.

Step 1: P(Ct) = o(1)

For this proof, we change the notation of the rewards slightly such that each variable in the sequence
Zi
1,1, ..., Z

i
n,α represents the cumulative reward of an arm i when pulled n times, at timestep k ∈

{1, 2, ..., α}. Zi
s,k for s ∈ {1, 2, ..., n} represents the cumulative reward of an arm i after the s’th pull

at timestep k after a pull. Using this notation, we can define the empirical estimate of KL(µZ2 , µ
′
Z2
)

as:

K̂Lαβ :=

s∑
n=1

α∑
k=1

ln
µA2Z

2
n,k + (1− µA2)(1− Z2

n,k)

µ′
A2

Z2
n,k + (1− µ′

A2
)(1− Z2

n,k)

Using this, we define an event that links the behavior of the original agent to the modified version

Ct :=
{
αN2(t) < ft and K̂LαN2(t) ≤ (1− ε/2) ln t

}
(6)

with

13

ft =

(
2

α+ 1

α∑
k=1

kPD(k) ·α
α∑

k=1

(PD(k))
2

)
1− ϵ

KL(µA2
, µ′

A2
)
ln t

Using the change of measure identity defined in [Bubeck and Cesa-Bianchi, 2012b] and the second
inequality in the definition of Ct given in Eq. (6):

P′ (Ct) = E
[
1Ct exp

(
−K̂LαN2(t)

)]
≥ e−(1−ε/2) ln tP (Ct)

Then, we first rearrange the terms of the above inequality to obtain

P (Ct) ≤ t(1−ε/2)P′ (Ct)

≤ t(1−ε/2)P′ (αN2(t) < ft)

≤ t(1−ε/2)E′ [t−N2(t)]

t− ft/α

= o(1)

In the equations above, we use P′ (Ct) ≤ P′ (αN2(t) < ft), Markov’s inequality and the fact that
the policy U is uniformly efficient (i.e. E[N2(t)] = o(tγ) with γ < 1).

Step 2: P (αN2(t) ≤ ft) = o(1)

Using Theorem 2.2 from [Bubeck and Cesa-Bianchi, 2012b] and observing that we always have

1.
∑α

k=1 kPD(k) ≥ 1 =⇒ 2
α+1

∑α
k=1 kPD(k) ≥ 2

α+1

2.
∑α

k=1 (PD(k))
2 ∈ [1α , 1] =⇒ α

∑α
k=1 (PD(k))

2 ∈ [1, α]

3. 2
α+1

∑α
k=1 kPD(k) ·α

∑α
k=1 (PD(k))

2 ≥ 2
(α+1) > 0

Next, we define two events

E1 = αN2(t) < ft

and

E2 =

(
α+ 1

2α
· 1∑α

k=1 kPD(k) ·
∑α

k=1 (PD(k))
2 ·
KL

(
µZ2

,mu′
Z2

)
(1− ε) ln t

· max
β<ft/α

K̂Lαβ

≤ 1− ε/2

1− ε
· α+ 1

2α
·

KL(µZ2
, µ′

Z2
)∑α

k=1 kPD(k) ·
∑α

k=1 (PD(k))
2

)

such that we obtain:

o(1) = P (Ct) ≤ P(E1 ∧ E2)

Using the strong law of large numbers for the event E2 s.t. limt→+∞ P (E2) = 1, we can conclude
that P (E1) = P (αN2(t) < ft) = o(1), and that for t→ +∞ we have E [N2(t)] > ft/α.

14

Final Step

Using Equation (5) we know that, for t→ +∞ :

E [N2(t)] > ft/α

=
2

α+ 1

α∑
k=1

kPD(k) ·α
α∑

k=1

(PD(k))
2 1− ε

αKL
(
µA2

, µ′
A2

) ln t
≥ 2

α+ 1

α∑
k=1

kPD(k) ·α
α∑

k=1

(PD(k))
2 1− ε

α(1 + ε)KL (µA2
, µA1

)
ln t

where the theorem statement is derived from the arbitrariness of the value of ε, substituting µA1 with
µ∗

R̄max
and µA2

with µ2

R̄max
, and summing over all the sub-optimal arms.

B Proof of Theorem 2

B.1 Preliminaries

The relation between the expected amount of sub-optimal arm pulls and the regret of the algorithm is
given by

RT (TP-UCB-FR-G) =
∑

i:µi<µ∗

∆iE [Ni(T)]

Let us define the true empirical mean of the cumulative reward of arm i computed over Ni(t) arm
pulls:

R̂i, true
t :=

1

Ni(t)

t∑
h=1

rih1{ih=i}

The value above assumes that the cumulative reward of an arm pull is known, even if partial rewards
are still to come in the future. We bound the difference between the true empirical mean and the
observed empirical mean as follows:

R̂i, true
t − R̂i

t =
1

Ni(t)

t∑
h=1

τmax∑
j=1

(
xi
h,j − x̃i

h,j

)
1{ih=i}

≤ 1

Ni(t)

t∑
h=1

τmax∑
j=1

(xi
h,j − x̃i

h,j)

=
1

Ni(t)

t∑
h=max{1,t−τmax+2}

τmax∑
j=t−h+2

xi
h,j (7)

≤ 1

Ni(t)

α∑
k=1

kϕR̄iPD(k) (8)

=
ϕR̄i

Ni(t)

α∑
k=1

kPD(k) (9)

Eq. (7) states that the difference between the true and observed mean equals the sum of all future
rewards that are yet to be observed for a maximum of τmax−1 arms that have been pulled. The closer
index h gets to the current time t, the more pulled arms exist with unobserved rewards. Therefore,
the amount of reward that is unobserved can be bounded by looping over all z-groups in Eq. (8) to

15

calculate the maximum reward still to be observed and giving higher weight to late z-groups through
index k. Furthermore, Eq. (8) holds because of the β-spread property.
Fact 1 (Hoeffding inequality [Hoeffding, 1963]). Let X1, . . . , Xn be random variables in [0, 1] such
that E [Xt | X1, . . . , Xt−1] = µ. Let Sn = X1 + · · ·+Xn. Then, for all a ≥ 0

P {Sn ≤ nµ− a} ≤ e−2a2/n.

Deriving the upper bound

By construction of the algorithm TP-UCB-FR-G, the upper bound on the expected number of times a
suboptimal arm i is pulled can be expressed as follows:

E [Ni(t)] ≤ ℓ+

∞∑
t=1

t−1∑
s=1

t−1∑
si=ℓ

P
{(

R̂∗
t,s + c∗t,s

)
≤
(
R̂i

t,si + cit,si

)}
(10)

where R̂∗
t,s and c∗t,s are the empirical mean and the confidence term of the optimal arm and R̂i

t,si and
cit,si denote the empirical mean and the confidence term for arm i.

For (10) to hold, one of the following three inequalities have to hold as well:

R̂∗
t,s ≤ µ∗ − c∗t,s (11)

R̂i
t,si ≥ µi + cit,si (12)

µ∗ < µi + 2cit,si (13)
Let us pay attention to (11) first and find the following:

P
(
R̂∗

t,s − µ∗ ≤ −c∗t,s
)
= P

(
R̂∗ true

t,s − µ∗ ≤ −c∗t,s + R̂∗ true
t,s − R̂∗

t,s

)
≤ P

(
R̂∗ true

t,s − µ∗ ≤ −c∗t,s +
ϕR̄i

s

α∑
k=1

kPD(k)

)

= P

sR̂∗ true
t,s ≤ sµ∗ − s

√
2 ln t

∑α
k=1

(
R̄∗PD(k)

)2
s



≤ exp


−

(
2

√
2 ln t

∑α
k=1(R̄∗PD(k))

2

s

)2

s2∑s
l=1

∑α
k=1

(
R̄∗PD(k)

)2


≤ e−4 ln t

= t−4

where we use Hoeffding’s inequality (defined in Fact 1), the penultimate step and

cit,si :=
ϕR̄i

s

∑α
k=1 kPD(k) + R̄i

√
2 ln t

∑α
k=1(PD(k))2

s

Similarly, the bound from (12) can be derived:

P
(
R̂i

t,si − µi ≥ cit,si

)
≤ P

(
R̂i, true

t,s − µi ≥ R̄i

√
2 ln t

αsi

)
≤ e−4 ln t

= t−4

16

where we use Hoeffding’s inequality (defined in Fact 1) and the fact that by definition R̂i
t,si ≤ R̂i,true

t,si .
All that is left to do is to consider Eq. (13). Let us assume that Eq. (13) does not hold i.e.,
µ∗ ≥ µi + 2cit,s. This is equivalent to

∆i ≥ 2

ϕR̄i

si

α∑
k=1

kPD(k) +

√
2 ln

∑α
k=1

(
R̄∗PD(k)

)2
si


Rearranging the terms.

∆2
i

4
+

ϕ2(R̄i)2

s2i

(
α∑

k=1

kPD(k)

)2

− 2

(
∆iϕ(R̄

i)

2si

(
α∑

k=1

kPD(k)

))

≥
2 ln t

∑α
k=1

(
R̄∗PD(k)

)2
si

s2i
∆2

i

4
+ ϕ2(R̄i)2

(
α∑

k=1

kPD(k)

)2

− 2si

(
∆iϕ(R̄

i)

2

(
α∑

k=1

kPD(k)

)

+ ln t

α∑
k=1

(
R̄∗PD(k)

)2)
≥ 0

By solving for si, the following can be established:

si ≥
2ϕR̄i

∑α
k=1 kPD(k)

∆i
+

4 ln t (R̄i)2
∑α

k=1 (PD(k))
2

∆2
i

+ 4

√(
ln t (R̄i)2

∑α
k=1 (PD(k))

2
)(

1 +
∑α

k=1 kPD(k)∆ϕR̄i

ln t (R̄i)2
∑α

k=1(PD(k))2

)
∆2

i

si ≥
2ϕR̄i

∑α
k=1 kPD(k)

∆i
+

(
4 ln t (R̄i)2

∑α
k=1 (PD(k))

2

∆2
i

)

·

(
1 +

√
1 +

∆iϕR̄i
∑α

k=1 kPD(k)

ln t (R̄i)2
∑α

k=1 (PD(k))
2

)

As a result, we pick

l =

⌈
2ϕR̄i

∑α
k=1 kPD(k)

∆i
+

(
4 ln t (R̄i)2

∑α
k=1 (PD(k))

2

∆2
i

)

·

(
1 +

√
1 +

∆iϕR̄i
∑α

k=1 kPD(k)

ln t (R̄i)2
∑α

k=1 (PD(k))
2

)⌉
to ensure that the inequality in Eq. (13) is always false for si ≥ l.

E [Ni(t)] ≤

⌈
2ϕR̄i

∑α
k=1 kPD(k)

∆i
+

(
4 ln t (R̄i)2

∑α
k=1 (PD(k))

2

∆2
i

)

·

(
1 +

√
1 +

∆iϕR̄i
∑α

k=1 kPD(k)

ln t (R̄i)2
∑α

k=1 (PD(k))
2

)⌉

17

+

∞∑
t=1

t−1∑
s=1

t−1∑
si=ℓ

[
P
(
R̂∗

t,s − µ∗ ≤ −c∗t,s
)]

+

∞∑
t=1

t−1∑
s=1

t−1∑
si=ℓ

[
P
(
R̂i

t,si − µi ≥ cit,si

)]
≤

2ϕR̄i
∑α

k=1 kPD(k)

∆i
+

(
4 ln t (R̄i)2

∑α
k=1 (PD(k))

2

∆2
i

)

·

(
1 +

√
1 +

∆iϕR̄i
∑α

k=1 kPD(k)

ln t (R̄i)2
∑α

k=1 (PD(k))
2

)

+ 1 +

∞∑
t=1

t−1∑
s=1

t−1∑
si=ℓ

2t−4

≤
2ϕR̄i

∑α
k=1 kPD(k)

∆i
+

(
4 ln t (R̄i)2

∑α
k=1 (PD(k))

2

∆2
i

)

·

(
1 +

√
1 +

∆iϕR̄i
∑α

k=1 kPD(k)

ln t (R̄i)2
∑α

k=1 (PD(k))
2

)

+ 1 +
π2

3

The theorem statement follows by the fact thatRT (UFR) =
∑

i:µi<µ∗ ∆iE [Ni(T)].

18

C Experimental Environment Details

C.1 Technical Details

The code has been executed on a server configured with 2 Intel Xeon 4110 2.1Ghz (32 hyperthreads)
CPU’s and 384GB RAM. We did not make use of GPU acceleration during the simulation process.
The operating system used is Ubuntu 16.04.7 LTS. The code for the simulations is created in Python
with version 3.9.12. Furthermore, we use Conda for library management, and for the experiments,
the following libraries are used:

• numpy 1.23.4

• pandas 1.5.1

• tqdm 4.64.1

• scipy 1.9.3

• matplotlib 3.5.3

Because this research is partially based on the findings by [Romano et al., 2022], we used their code
as a base and made adaptations to run the experiments for our learners3. Overall, running all settings
takes approximately 96 hours on the hardware mentioned above.

C.2 TP-UCB-FR-G learner configurations

We introduce new learners to the experimental settings using a variant of the Beta-Binomial distribu-
tion. A brief introduction to the Beta-Binomial distribution itself will be provided first, followed by
the introduction of our variation. For a more complete overview of Beta-Binomial distributions, we
refer to [Lee, 2012].
Let N ∈ N, α ∈ R+ and β ∈ R+, and note that α in this setting is some arbitrary constant instead of
a spread parameter as it is in the rest of this article. For x ∈ {0, .., N}, the probability mass function
is then defined as

BetaBinom(N,α, β)(x) =

(
N

x

)
B(x+ α,N − x+ β)

B(α, β)
(14)

where the B(u, v) is the beta function for some u, v ∈ R+. As can be seen, the domain of the
distribution is not equal to the α-sized domain of {1, 2, . . . , α} required for the β-spread property
to hold. Therefore, we create a variant of the Beta-Binomial distribution that is in this domain in
Equation 15.

BetaBinomV ariant(x) = BetaBinom(α− 1, a, b)(x− 1) (15)

where α denotes the amount of z-groups and a and b are the distribution parameters. The domain of
this function is the desired interval of all integers {1, 2, . . . , α}. Note that formulas for calculating
the mean or variance do not hold anymore for this variant. For each experimental setting, we add 8
synthetic learners that are distributed according to this variant. Their exact parameters are given in
Table 1, and the corresponding probability mass functions are also plotted in Figure 5. Note that the
distribution names are chosen according to their ’center’ on the x–axis.That is, the location on the
x-axis with the highest observed probability.

C.3 Experimental Settings

In this section, we detail the experiment settings presented in Section 6 and some further experiments
that have been run to confirm the results in the main article.

C.3.1 Setting 1

The primary goal of this setting is to discover the influence of adjusting α over TP-UCB-FR-G learners.
We run this setting for different choices of α, αest ∈ [5, 10, 20, 25, 50]. In this setting, we model

3The code is provided with the supplementary material.

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z-group

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ob

ab
ilit

y

extreme_begin
very_begin
begin
begin_middle
middle
middle_end
end
very_end

Figure 5: Probability mass functions for different Beta-Binomial configurations

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0.0

0.5

1.0

1.5

2.0

2.5

R
T
(�

)

×106
Delayed-UCB1
UCB1
TP-UCB-FR-G(5,extreme_begin)
TP-UCB-FR-G(5,very_begin)
TP-UCB-FR-G(5,begin)
TP-UCB-FR-G(5,begin_middle)
TP-UCB-FR-G(5,middle)
TP-UCB-FR-G(5,middle_end)
TP-UCB-FR-G(5,end)
TP-UCB-FR-G(5,very_end)
TP-UCB-FR(5)
Upper Bound β-spread
Upper Bound α-smoothness

(a) Regret against time for Setting 1 with αest = 5

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0.0

0.5

1.0

1.5

2.0

2.5

R
T
(�

)

×106
Delayed-UCB1
UCB1
TP-UCB-FR-G(10,extreme_begin)
TP-UCB-FR-G(10,very_begin)
TP-UCB-FR-G(10,begin)
TP-UCB-FR-G(10,begin_middle)
TP-UCB-FR-G(10,middle)
TP-UCB-FR-G(10,middle_end)
TP-UCB-FR-G(10,end)
TP-UCB-FR-G(10,very_end)
TP-UCB-FR(10)
Upper Bound β-spread
Upper Bound α-smoothness

(b) Regret against time for Setting 1 with αest = 10

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0.0

0.5

1.0

1.5

2.0

2.5

R
T
(�

)

×106
Delayed-UCB1
UCB1
TP-UCB-FR-G(20,extreme_begin)
TP-UCB-FR-G(20,very_begin)
TP-UCB-FR-G(20,begin)
TP-UCB-FR-G(20,begin_middle)
TP-UCB-FR-G(20,middle)
TP-UCB-FR-G(20,middle_end)
TP-UCB-FR-G(20,end)
TP-UCB-FR-G(20,very_end)
TP-UCB-FR(20)
Upper Bound β-spread
Upper Bound α-smoothness

(c) Regret against time for Setting 1 with αest = 20

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0.0

0.5

1.0

1.5

2.0

2.5

R
T
(�

)

×106
Delayed-UCB1
UCB1
TP-UCB-FR-G(25,extreme_begin)
TP-UCB-FR-G(25,very_begin)
TP-UCB-FR-G(25,begin)
TP-UCB-FR-G(25,begin_middle)
TP-UCB-FR-G(25,middle)
TP-UCB-FR-G(25,middle_end)
TP-UCB-FR-G(25,end)
TP-UCB-FR-G(25,very_end)
TP-UCB-FR(25)
Upper Bound β-spread
Upper Bound α-smoothness

(d) Regret against time for Setting 1 with αest = 25

Figure 6: Regret against time for Setting 1 with various αest configurations

k = 10 arms, the reward is collected over τmax = 100 rounds, and the maximum reward is set
to be R

i
= 100i. The aggregate rewards for the learner proposed in [Romano et al., 2022] are

s.t. Zi
t,k ∼ R

i

α U [0, 1]. TP-UCB-FR-G learners in this setting assume a different aggregate rewards

structure such that Zi
t,k ∼ R

i

α Beta(aik, b
i
k). The experiment is run over a time horizon T = 105, and

the α-smoothness constant is α = 20. The results are averaged over 100 independent runs.
Section 6 provides the results for αest = 50. In this section, let us focus on the results of
TP-UCB-FR-G when αest = [5, 10, 20, 25]. These results are plotted in Figures 6a, 6b, 6c and
6d respectively. These results align with the conclusions from Section 6. That is, as αest increases,
begin-centered learners perform increasingly better than other learners. For αest = 5, we see that the
begin_middle learner performs better for larger t. This indicates that, in case of lower αest values,
begin is too optimistic.

20

α Regret Regret δ+

TP-UCB-FR TP-UCB-FR-G (%)

5 1.34× 106 1.28× 106 4.6*
10 1.04× 106 9.27× 105 10.9
20 8.56× 105 6.71× 105 21.6
25 8.18× 105 6.07× 105 25.8
50 7.21× 105 4.64× 105 35.6

Table 3: Summary of performance gains by TP-UCB-FR-G in Setting 1. *For αest = 5 we show the
begin_middle distribution as this is the only configuration where it performs better than the begin
distribution implicitly assumed elsewhere.

In Table 3 we present a complete summary of the performance gains δ+ for Setting 1 using the begin
distribution4. Note that δ+ denotes the decrease of average regret in percentages with respect to the
regret of TP-UCB-FR.

Setting 2

In the second setting, the effect of different (non-uniform) data generating distributions for the
delayed partial rewards is evaluated. Furthermore, configurations with a higher τmax are tested. We
model K = 10 arms again with aggregate rewards after an arm pull s.t. Zi

t,k ∼ R
i

α Beta(aik, b
i
k).

The time horizon is set to T = 105. We evaluate four configurations and three scenarios. The four
configurations are related to τmax and α. The three scenarios differ from each other because of the
distribution of partial rewards after an arm pull. The first scenario has a uniform aggregate reward
distribution and is equal to Setting 1. The remaining two have higher rewards at the end of the τmax

interval (Setting 2.1) and higher rewards just after the arm pull (Setting 2.2), respectively. The vectors
ai and bi represent all values aik and bik for k ∈ {1, . . . , α} and can be found in the referenced tables
4, 5, 6 and 7.

• Configuration 1: τmax = 100, α = 10, see Table 4

• Configuration 2 τmax = 100, α = 50, see Table 5

• Configuration 3 τmax = 200, α = 20, see Table 6

• Configuration 4 τmax = 200, α = 100, see Table 7

Setting Parameter vector

ai

Uniform 1α

Setting 2.1 [2,4,6,8,10,10,10,10,10,10]
Setting 2.2 [10,10,10,10,10,10,8,6,4,2]

bi

Uniform 1α

Setting 2.1 [10,10,10,10,10,10,8,6,4,2]
Setting 2.2 [2,4,6,8,10,10,10,10,10,10]

Table 4: Distribution parameters for different
scenarios with Configuration 1

Setting Parameter vector

ai

Uniform 1α

Setting 2.1 [2,4, . . . , 48,50, . . . , 50]
Setting 2.2 [50, . . . , 50,48, . . . , 4,2]

bi

Uniform 1α

Setting 2.1 [50, . . . , 50,48, . . . , 4,2]
Setting 2.2 [2,4, . . . , 48,50, . . . , 50]

Table 5: Distribution parameters for different
scenarios with Configuration 2

4The data for the other distributions within Setting 1 is provided in the supplementary material

21

UC
B1

De
lay

ed
-UC

B1

TP-
UC

B-F
R(5

0)

TP-
UC

B-F
R-G

(50
,ex

tre
me_b

eg
in)

TP-
UC

B-F
R-G

(50
,ve

ry_
be

gin
)

TP-
UC

B-F
R-G

(50
,be

gin
)

TP-
UC

B-F
R-G

(50
,be

gin
_m

idd
le)

TP-
UC

B-F
R-G

(50
,m

idd
le)

TP-
UC

B-F
R-G

(50
,m

idd
le_

en
d)

TP-
UC

B-F
R-G

(50
,en

d)

TP-
UC

B-F
R-G

(50
,ve

ry_
en

d)
0

1

2

3

4

Δ(
s 1

,s
2)

×103

Δ(Setting2.2,Uniform)
Δ(Setting2.1,Uniform)
Δ(Setting2.1, Setting2.2)

Figure 7: ∆ between scenarios for learners in Setting 2 with τmax = 100, αest = 50

Setting Parameter vector

ai

Uniform 1α

Setting 2.1 [2,4, . . . , 18,20, . . . , 20]
Setting 2.2 [20, . . . , 20,18, . . . , 4,2]

bi

Uniform 1α

Setting 2.1 [20, . . . , 20,18, . . . , 4,2]
Setting 2.2 [2,4, . . . , 18,20, . . . , 20]

Table 6: Distribution parameters for different
scenarios with Configuration 3

Setting Parameter vector

ai

Uniform 1α

Setting 2.1 [2,4, . . . , 98,100, . . . , 100]
Setting 2.2 [100, . . . , 100,98, . . . , 4,2]

bi

Uniform 1α

Setting 2.1 [100, . . . , 100,98, . . . , 4,2]
Setting 2.2 [2,4, . . . , 98,100, . . . , 100]

Table 7: Distribution parameters for different
scenarios with Configuration 4

Results

As discussed in the main paper in Section 6, the results for different scenarios within one configuration
are visually indistinguishable. The analysis of Figure 7 in the same section shows that there are no
significant differences between learner increases. It also shows that all learners perform best in Setting
2.2, worse in the uniform setting and worst in Setting 2.1. Because no visual distinction can be made,
the results for Configuration 1 and Configuration 2 are visually identical to the results for Setting 1
with αest = 10 and αest = 50. Similarly, the results of the Setting 2 tests with uniform distribution
are visually identical to the results of Setting 2.1 and 2.2. To show the change of our upper bound
compared to the upper bound of TP-UCB-FR, we present the results of running Configuration 3 and 4
for Setting 2.1 and 2.2. The resulting plots can be seen in Figures 8a, 8b, 8c and 8d. Furthermore,
in Tables 8, 9 and 10, we provide a complete summary of the performance gains δ+ for different
configurations in Setting 2 using the begin distribution5.

5The data for the other distributions within Setting 2 is provided in the supplementary material

22

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0.0

0.2

0.4

0.6

0.8

1.0

R
T
(�

)

×107
Delayed-UCB1
UCB1
TP-UCB-FR(20)
TP-UCB-FR-G(20,extreme_begin)
TP-UCB-FR-G(20,very_begin)
TP-UCB-FR-G(20,begin)
TP-UCB-FR-G(20,begin_middle)
TP-UCB-FR-G(20,middle)
TP-UCB-FR-G(20,middle_end)
TP-UCB-FR-G(20,end)
TP-UCB-FR-G(20,very_end)
Upper Bound β-spread
Upper Bound α-smoothness

(a) Regret against time for Setting 2.1 with
τmax = 200, αest = 20

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0
1
2
3
4
5
6
7
8

R
T
(�

)

×106

Delayed-UCB1
UCB1
TP-UCB-FR(20)
TP-UCB-FR-G(20,extreme_begin)
TP-UCB-FR-G(20,very_begin)
TP-UCB-FR-G(20,begin)
TP-UCB-FR-G(20,begin_middle)
TP-UCB-FR-G(20,middle)
TP-UCB-FR-G(20,middle_end)
TP-UCB-FR-G(20,end)
TP-UCB-FR-G(20,very_end)
Upper Bound β-spread
Upper Bound α-smoothness

(b) Regret against time for Setting 2.2 with
τmax = 200, αest = 20

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0

1

2

3

4

5

6

7

R
T
(�

)

×106

Delayed-UCB1
UCB1
TP-UCB-FR(100)
TP-UCB-FR-G(100,extreme_begin)
TP-UCB-FR-G(100,very_begin)
TP-UCB-FR-G(100,begin)
TP-UCB-FR-G(100,begin_middle)
TP-UCB-FR-G(100,middle)
TP-UCB-FR-G(100,middle_end)
TP-UCB-FR-G(100,end)
TP-UCB-FR-G(100,very_end)
Upper Bound β-spread
Upper Bound α-smoothness

(c) Regret against time for Setting 2.1 with
τmax = 200, αest = 100

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0

1

2

3

4

5

6

R
T
(�

)

×106
Delayed-UCB1
UCB1
TP-UCB-FR(100)
TP-UCB-FR-G(100,extreme_begin)
TP-UCB-FR-G(100,very_begin)
TP-UCB-FR-G(100,begin)
TP-UCB-FR-G(100,begin_middle)
TP-UCB-FR-G(100,middle)
TP-UCB-FR-G(100,middle_end)
TP-UCB-FR-G(100,end)
TP-UCB-FR-G(100,very_end)
Upper Bound β-spread
Upper Bound α-smoothness

(d) Regret against time for Setting 2.2 with
τmax = 200, αest = 100

Figure 8: Regret against time for Setting 2 with various configurations.

τmax α Regret Regret δ+

TP-UCB-FR TP-UCB-FR-G (%)

100 10 1.04× 106 9.27× 105 10.9
100 50 7.19× 105 4.66× 105 35.2
200 20 2.94× 106 1.98× 106 32.7
200 100 2.45× 106 1.27× 106 48.2

Table 8: Summary of performance gains δ+ by TP-UCB-FR-G in Setting 2.1

τmax α Regret Regret δ+

TP-UCB-FR TP-UCB-FR-G (%)

100 10 1.04× 106 9.25× 105 11.0
100 50 7.17× 105 4.64× 105 35.3
200 20 2.93× 106 1.97× 106 32.8
200 100 2.43× 106 1.26× 106 48.1

Table 9: Summary of performance gains δ+ by TP-UCB-FR-G in Setting 2.2

τmax α Regret Regret δ+

TP-UCB-FR TP-UCB-FR-G (%)

100 10 1.04× 106 9.28× 105 10.8
100 50 7.18× 105 4.65× 105 35.2
200 20 2.94× 106 1.98× 106 32.7
200 100 2.44× 106 1.27× 106 48.0

Table 10: Summary of performance gains δ+ by TP-UCB-FR-G in Setting 2 uniform

23

C.3.2 Spotify Setting

The Spotify setting is run with the same pre-processing and configuration detailed in [Romano et al.,
2022] to accurately compare the performance between their TP-UCB-FR algorithm and our proposed
TP-UCB-FR-G algorithm. We average the results over 100 independent runs. The results of this
setting can be seen in Figure 4.

C.4 Additional Experiments

C.4.1 Alternative distributions as input for TP-UCB-FR-G

In Section 6, we describe the results obtained by various settings, using Beta-Binomial distributions
with different choices for their parameters. In general, the domain of a distribution must be
bounded on the interval [1, α] in order to be used as input. Below, we describe several finite discrete
distributions that can be restricted to have such a domain, and the outcomes of the experiments.

The Zipfian distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z-group

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

zipfian(4)
zipfian(3)
zipfian(2)
zipfian(1)

Figure 9: PMF of Zipfian distributions with different parameters

The Zipfian distribution allows us to describe ’begin-oriented’ distributions with different parameters,
as seen in Figure 9. Since we observe that begin-oriented distributions pair well with our algorithm,
Zipfian distributions should perform well in this setting.
Let us consider Setting 1. We run an experiment for αest = 20, which is a perfect estimation of the
smoothness factor. Furthermore, we only consider learners that are begin-oriented. We add 4 learners
using Zipfian distributions with parameters s ∈ [1, 2, 3, 4] with names zipfian(1), zipfian(2),
zipfian(3) and zipfian(4) respectively. We observe that the learner TP-UCB-FR-G_zipfian(1)
performs better than the learner proposed by [Romano et al., 2022], but worse than a begin-oriented
Beta-Binomial learner. These results show that zipfian(ζ) learners for ζ ≥ 2 are outperformed by
most Beta-Binomial learners, and do not bring any improvements to the results.

The Boltzmann distribution
In a similar way, we can also describe ’begin-oriented’ distributions using the Boltzmann distribution.

We denote the input distribution as boltzmann(λ). We notice that as λ→ 0, the distribution provides
a smoother begin-orientation. This experiment is particularly interesting because for λ = 0.25 and
λ = 0.125, the distribution is carefully begin-centered, so it could result in a performance gain. We
consider again Setting 1. We run an experiment for αest = 20, representing a perfect estimation
of the smoothness factor. We consider the Beta-Binomial learners that are begin-oriented, and
add Boltzmann distribution learners for λ ∈ [1, 0.5, 0.25, 0.125]. The results for this experiment
are shown in Figure 12. We observe that Boltzmann distributions, in particular Boltzmann(0.5),

24

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0.0

0.5

1.0

1.5

2.0

R
T
(�

)

×106

Delayed-UCB1
UCB1
TP-UCB-FR-G(20,extreme_begin)
TP-UCB-FR-G(20,very_begin)
TP-UCB-FR-G(20,begin)
TP-UCB-FR-G(20,begin_middle)
TP-UCB-FR-G_20_zipfian(4)
TP-UCB-FR-G_20_zipfian(3)
TP-UCB-FR-G_20_zipfian(2)
TP-UCB-FR-G_20_zipfian(1)
TP-UCB-FR(20)

Figure 10: Zipfian and Beta-Binomial distribution comparison for Setting 1 with αest = 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z-group

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y

boltzmann(1)
boltzmann(0.5)
boltzmann(0.25)
boltzmann(0.125)

Figure 11: PMF of Boltzmann distributions with different parameters

provide marginally better performance for t = [0, 15000], and is nearly identical to the curve of the
very_begin learner. This is only logical, since the curves in Figures 5 and 11 are nearly identical. It
is also important to observe that for t = [0, 38000], Boltzmann(0.25) provides marginally better
performance than begin. For t > 38000, begin is still the learner with the lowest regret. Since
λ = 0.125 starts to under-estimate, and λ = 1, λ = 0.5 are clear over-estimations, we have sufficient
evidence that this distribution does not provide the required flexibility needed for performance gains
over Beta-Binomial distributions. Precise regret values for this experiment, can be found in the
supplementary material. We exclude extreme_begin and Boltzmann(1) because they are clear
over-estimations, and Delayed-UCB, UCB because they are irrelevant for this comparison.

With the above results we conclude that Beta-Binomial distributions still give the best performance
and flexibility, whilst Boltzmann distributions lack in both areas mentioned.

The Hypergeometric distribution
For a mathematical description of the Hypergeometric distribution, we refer to [Lee, 2012]. In short,
a random variable X follows a hypergeometric distribution if its probability mass function is defined
as

pX(k) = P (X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) (16)

where N is the population size, K the number of success rates in the population, n the number
of draws and k the number of successes for which the PMF returns the probability. We set n and
K to α − 1, equal to the number of z-groups minus one and shift each value of k given as input
by 1 (similarly to our Beta-Binomial implementation), such that we bound pX(k) to the domain

25

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0.0

0.5

1.0

1.5

2.0

R
T
(�

)

×106

Delayed-UCB1
UCB1
TP-UCB-FR-G(20,extreme_begin)
TP-UCB-FR-G(20,very_begin)
TP-UCB-FR-G(20,begin)
TP-UCB-FR-G(20,begin_middle)
TP-UCB-FR-G_20_boltzmann(1)
TP-UCB-FR-G_20_boltzmann(0.5)
TP-UCB-FR-G_20_boltzmann(0.25)
TP-UCB-FR-G_20_boltzmann(0.125)
TP-UCB-FR(20)

Figure 12: Boltzmann and Beta-Binomial distribution comparison for Setting 1 with αest = 20

[1, α]. We can then shape the distribution with some choice for N ≥ 2α. In this section, we
denote learners using the Hypergeometric distribution as Hypergeom(N) where the shaping parameter
N ∈ N and N ≥ 2α = 40. We shall describe several begin-oriented hypergeometric distributions for
N ∈ [50, 100, 200, 300, 400, 500]. Figure 13 depicts the corresponding probability mass functions
for N .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z-group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Pr
ob

ab
ilit

y

hypergeom(50)
hypergeom(100)
hypergeom(200)
hypergeom(300)
hypergeom(400)
hypergeom(500)

Figure 13: PMF of Hypergeometric distributions with different parameters

We shall include begin-oriented beta-binomial learners for comparison, and run Setting 1 with
αest = 20, a perfect smoothness factor estimation. The results for this experiment are shown in
Figure 14

Again, we observe that TP-UCB-FR-G(20, begin) is the best performing learner when aver-
aged over the entire time horizon T . However, for t ∈ [0, 15000], hypergeom(N) with N ∈
[200, 300, 400, 500], learners with such distributions perform marginally better. Due to the slope of
the corresponding curves created by hypergeometric distributions, their performance degrades as t
gets larger. Due to the large gaps between N , one could search for the most appropriate value for
N and perhaps discover a distribution that performs better than the begin Beta-Binomial learner,
but this requires running Setting 1 for 200 ≤ N ≤ 500 which is very costly. Moreover, we could
fine-tune the Beta-Binomial learner in a similar way, by running Setting 1 for different α, β in the
proximity of begin, which will result in far less runs. Again, the Beta-Binomial distribution remains
superior in flexibility and performance.

26

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0.0

0.5

1.0

1.5

2.0

R
T
(�

)

×106
Delayed-UCB1
UCB1
TP-UCB-FR-G(20,extreme_begin)
TP-UCB-FR-G(20,very_begin)
TP-UCB-FR-G(20,begin)
TP-UCB-FR-G(20,begin_middle)
TP-UCB-FR-G_20_hypergeom(50)
TP-UCB-FR-G_20_hypergeom(100)
TP-UCB-FR-G_20_hypergeom(200)
TP-UCB-FR-G_20_hypergeom(300)
TP-UCB-FR-G_20_hypergeom(400)
TP-UCB-FR-G_20_hypergeom(500)
TP-UCB-FR(20)

Figure 14: Hypergeometric and Beta-Binomial distribution comparison for Setting 1 with αest = 20

C.4.2 Relation between assumed distribution and upper bound

As mentioned in Theorem 2, the upper bound on TP-UCB-FR-G learners only holds when the
assumed distribution that is given as input to the algorithm matches the data generating distribution.
In this section, we want to go into more detail about this and discuss which type of learner, with a
non-matching assumed distribution, stays below this upper bound.

We note that this phenomenon, although not mentioned explicitly in [Romano et al., 2022], is also
present for the upper bound of the TP-UCB-FR algorithm and that it depends on the α of the data
generating distribution and not on the estimate given as input. Because the assumed distribution for
this algorithm is univariate (only depending on α), determining which learners do not exceed the
upper bound is tested more easily: an increased αest always leads to better results in all tested settings
(see section 6). This means that learners typically stay below the upper bound when αest ∈ [α, τmax].

However, the upper bound of TP-UCB-FR-G depends on three properties of the data generating
distribution, namely its expected value, the index of coincidence and α. In the results (see section 6),
we see that learners with a lower assumed expected value generally perform better. But there is a
limit to how low the expected value can be, because the second factor, the index of coincidence, gets
relatively high for very begin oriented distributions which raises the regret. This makes it harder to
give an empirical estimate about which kind of learners stay below the theoretical upper bound. It
also shows that learners with a higher α perform better, similarly to the case of TP-UCB-FR. Deriving
the precise correlation between these three parameters is highly complex and it is a potential future
work.

27

	Introduction
	Background and Related Work
	Problem Formulation
	Our Solution approach: beta-spread property

	Lower Bound on Regret
	Proposed Algorithm and Regret Upper Bound
	Proposed Algorithm: TP-UCB-FR-G
	Regret Upper Bound of TP-UCB-FR-G
	Comparison with the Upper Bound of TP-UCB-FR given in [Romano et al., 2022]
	Proof Sketch of Theorem 2

	Experimental Results
	Concluding Remarks and Future Work
	Proof of Theorem 1
	Proof of Theorem 2
	Preliminaries

	Experimental Environment Details
	Technical Details
	TP-UCB-FR-G learner configurations
	Experimental Settings
	Setting 1
	Spotify Setting

	Additional Experiments
	Alternative distributions as input for TP-UCB-FR-G
	Relation between assumed distribution and upper bound

