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ABSTRACT

Machine learning models are known to exploit spurious features: features that are
predictive during training (e.g., the exclamation mark) but are not useful in general
(e.g., the exclamation mark does not imply sentiment). Relying on such features
may result in significant performance drops under distribution shift. Recent work
has found that Pretrained Language Models (PLMs) improve robustness against
spurious features. However, existing evaluation of PLMs only focuses on a small
set of spurious features, painting a limited picture of the inductive bias in PLMs.
In this work, we conduct a comprehensive empirical analysis to compare the
generalization patterns of PLMs on diverse categories of spurious features as a
way to analyze the inductive biases of PLMs. We find systematic patterns when
finetuning BERT and few-shot prompting GPT-3: they exploit certain types of
spurious features (e.g., content words) to a much larger extent than others (e.g.,
function words). Our findings inform the kinds of settings where pretraining alone
can be expected to confer robustness, and the kinds of spurious features where
other mitigation methods are necessary, for which we also study how different
finetuning and prompting methods affect the robustness of PLMs.

1 INTRODUCTION

Many NLP datasets contain spurious correlations: features that are correlated with the target labels
but do not generalize to the intended test distribution. For example, in movie review datasets, certain
directors (e.g., Spielberg) are more likely to be mentioned in positive movie reviews (Wang &
Culotta, 2020; Wang et al., 2022). Models trained on such datasets might perform poorly in settings
where these correlations no longer hold—for example, if Steven Spielberg releases a bad movie. To
generalize successfully in these settings, we require a learning algorithm that has a suitable inductive
bias—that is, an algorithm that tends to prefer the “true” function to the other functions that are
consistent with the data. In this paper, we study the ways in which pretrained language models
(PLMs) can confer such an inductive bias.

Specifically, we hypothesize that PLMs may be more likely to generalize on the basis of some
features, such as n-grams and content words, rather than others, such as stop words, and this bias
determines how sensitive or robust the classifier will be to a spurious correlation. We aim to answer
two research questions:

1. Are PLMs more robust to certain classes of spurious features than others? We consider both
the standard pretrain/finetune setting, using BERT (Devlin et al., 2019), as well as in-context
learning using GPT-3 (Brown et al., 2020).

2. Can prompting supply an additional inductive bias to increase robustness to spurious fea-
tures? We consider prompt-based finetuning (Schick & Schütze, 2021; Gao et al., 2021)
using BERT, and prompting GPT-3 using prompt templates and label words that are seman-
tically related to the target task.

Prior work has shown that PLMs can be more robust to spurious correlations (Tu et al., 2020) and
that prompt-based fine-tuning can increase robustness in low-resource settings (Utama et al., 2021).
However, these studies have mainly focused on a limited set of spurious features, namely word overlap
in commonly used challenge sets (McCoy et al., 2019; Zhang et al., 2019), which may not generalize
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to other spurious features. Another line of work has studied whether PLMs acquire an inductive bias
in favor of linguistic generalizations (Warstadt et al., 2020b; Lovering et al., 2021; Mueller et al.,
2022); these studies focus on aspects of syntactic structure—for example, whether models are more
likely to generalize on the basis of the syntactic argument of a verb or the noun immediately before
the verb—and use template-generated data. In contrast, we are interested in a wider variety of shallow
features, such different categories of unigram and n-gram features, appearing in real classification
datasets. Additionally, prior work has mainly focused on the pre-training and fine-tuning paradigm,
in which a neural network classifier is initialized using the weights of a PLM and then fine-tuned on a
classification objective. In particular, to our knowledge, prior work has not explored whether large
language models like GPT-3 are sensitive to spurious features in the demonstration examples. We
extend this investigation to in-context learning, in which a large language model is prompted with a
set of demonstration examples.

Our main approach is to perform controlled experiments on a set of train/test splits that contain a
variety of spurious features. These training sets are drawn from commonly used text classification
datasets and are meant to approximate a realistic classification setting. In each training set, a particular
spurious feature (for example, the presence of the word “film” in a movie review) is correlated with
a target label (e.g., positive sentiment), and the test set is designed to measure the extent to which
the resulting classifier uses the spurious feature. We experiment with two common paradigms for
adapting PLMs to downstream tasks: fine-tuning, using BERT, and in-context learning, using GPT-3.
In each setting, we also investigate how prompting can supply an inductive bias promoting robustness
to spurious features: we consider prompt-based fine-tuning using BERT, and prompting GPT-3 using
prompt templates and label words that are semantically related to the target task.

Our experiments find answers to the above research questions: (1) There are systematic differences
in robustness depending on the category of spurious features. For example, we find that PLMs are
more likely to rely on spurious content words but are more robust when the spurious features are
function words; this is in contrast with randomly initialized Transformer, which perform similarly
across different lexical features. This result is true for both finetuning and in-context learning. In
particular, we find that GPT-3 also exploits spurious patterns in the demonstration examples and,
moreover, exhibits similar biases to BERT, proving more sensitive to content words and more robust
to function words. (2) Prompting can improve robustness, but the benefit is much greater in the
in-context learning setting. For finetuning, prompt-based finetuning leads to moderate improvement
on some classes of features. For in-context learning, using meaningful label words considerably
improves robustness. This result provides some evidence that very large language models could
be better able to exploit the inductive bias specified by a prompt, and suggests that better prompt
engineering could be a promising direction for future work on mitigating spurious correlations.

2 PRELIMINARIES

2.1 PROBLEM STATEMENT

In this work, we study models’ robustness with regard to different types of spurious features. By way
of illustration, consider a simple binary text classification dataset:

X Y

Good film! 0
What a good film! 0
What a great film! 0

X Y

This movie was bad. 1
Bad movie. 1
This movie was terrible. 1

What decision rule determines the relationship between sentences and labels? One possibility is
that label 0 is assigned to sentences with positive sentiment, and label 1 to sentences with negative
sentiment; but it is also possible to conclude that label 0 is assigned to sentences that contain the
word “film”, or end with an exclamation mark. As a test, we can try to classify ambiguous sentences,
like “What a terrible film!”. Our hypothesis is that the inductive biases of PLMs can be understood
in part as a systematic robustness or sensitivity to certain classes of features relative to others. For
example, a learning algorithm might generalize on the basis of sentiment in this case if it is more
robust to punctuation features, meaning that it is more likely to select classifiers that are invariant to
punctuation. Our goal is to understand how PLMs affect robustness to different kinds of features. To
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measure this, we construct datasets in which a feature is correlated with a label and and estimate the
extent to which the resulting classifier is invariant to the feature.

2.2 MEASURING SPURIOUS FEATURES

We focus on binary classification tasks, where X denotes the set of sentences and Y = {0, 1} is
a binary label. Following Lovering et al. (2021), we define a spurious feature s : X → {0, 1} as
a boolean function of the input which is irrelevant to the label, e.g., whether the input contains an
exclamation mark, and we define the target feature t : X → {0, 1} as the positive label, i.e t(x) = y.
For each feature, we construct a training set in which s(x) is highly correlated with y and a test set
in which s(x) and y are independent. For each feature, we sample a training set by specifying the
prevalence and strength of the correlation between s(x) and y (Dranker et al., 2021). Given training
examples D = {(x1, y1), . . . , (xN , yN )}, the prevalence is defined as the empirical frequency of the
feature and the strength as the conditional likelihood of the target label (y = 1) given the feature:

prevalence(s,D) = p̂(s(x) = 1) =

∑N
i=1 1[s(xi) = 1]

N

strength(s,D) = p̂(y = 1 | s(x) = 1) =

∑N
i=1 1[s(xi) = 1 ∧ yi = 1]∑N

i=1 1[s(xi) = 1]
.

For example, in the toy dataset in Section 2.1 the feature denoting presence of the word movie has
prevalance(s,D) = 50% and strength(s,D) = 100%. Because we are interested in whether PLMs
are more or less robust to different kinds of features, we hold these two factors constant in all our
experiments. We balance the labels in the overall dataset, meaning that p̂(y = 0 | s(x) = 0) >
p̂(y = 0), but focus our evaluation on the subset of examples for which s(x) = 1.

To evaluate whether a model is robust to the spurious correlation between s(x) and y, we need to
check if the model has learned a function that is sensitive to s(x). Following Lovering et al. (2021),
we partition the evaluation data into supporting examples, for which s(x) = 1 and y = 1, and
counter-examples, for which s(x) = 1 and y = 0. We define the spurious gap as the accuracy on
the supporting examples minus the accuracy on the counter-examples. Formally, letting f : X →
Y denote a classifier and Dsupport,Dcounter denote the set of supporting- and counter-examples
respectively, then

spurious gap(f,Dsupport,Dcounter) =

∑
x,y∈Dsupport

1[f(x) = y]

Dsupport
−

∑
x,y∈Dcounter

1[f(x) = y]

Dcounter
.

The spurious gap gives an estimate of the degree to which the classifier is sensitive to the presence of
s(x). In the next section, we contextualize these measures in our SpuriousBench benchmark where
we will specify the spurious features to be analyzed.

3 SPURIOUSBENCH: A BROAD COVERAGE OF SPURIOUS FEATURES

Our goal is to compare the spurious gap across different categories of spurious features. We therefore
construct a new diagnostic suite, SpuriousBench, which covers a broad set of spurious features. In
this section, we describe the datasets we use to construct SpuriousBench, the spurious correlations
we introduce, and the methods for introducing these correlations.

Datasets: SST-2 and MNLI. We construct our data splits based on two widely used classification
datasets: SST-2 (Socher et al., 2013) and MNLI (Williams et al., 2018). SST-2 is a binary sentiment
classification task, based on movie reviews. We define the target feature y = 1 to be the positive
sentiment label. (In Appendix D we also present results in which the target feature is the negative
label.) MNLI is a natural language inference dataset; given a premise sentence x and hypothesis
sentence x′, the objective is to predict whether x logically entails x′, contradicts it, or is neutral. We
follow McCoy et al. (2019) and collapse the neutral and contradiction label to a single non-entailment
label and define the target feature to be the entailment label. For the SST-2 subset we create a training
with a size of 3,000 and dev set of size 400; for the MNLI subset we use a training size of 10,000 and
dev size of 1,000. The sizes of the test sets vary and are reported in Appendix E.
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Category Spurious features Construction

SST-2 Subset
punctuation exclamation (“!”), semicolon (“;”), asterisk (“*”) insertion

adverbs “actually”, “surprisingly”, “generally”, “completely” insertion

nouns “film”, “movie”, “show”, “drama”, “play” re-sample

determiners “the” , “a” , “that” re-sample

prepositions “to”, “in”, “of” re-sample

n-gram “For those who haven’t watched it yet,”, “My thought: ”,
“From the press: ”, “I have to say, ”, “What you have to
know: ”

insertion

syntax AdjP, NP → NP PP, NP → Det N, S → NP VP, S → VP re-sample

MNLI Subset
punctuation exclamation (“!”), semicolon (“;”), asterisk (“*”) insertion

adverbs “only”, “just”, “very”, “well”, “really” re-sample

nouns “people”, “time”, “way” re-sample

determiners “the”, “a”, “an”, “any” re-sample

prepositions “in”, “of”, “by”, “on” re-sample

syntax AdjP, NP → NP PP, NP → Det N, S → NP VP, S → VP re-sample

sentence-pair lexical overlap re-sample

Table 1: The spurious features that we include in the SpuriousBench. For each feature, we construct
datasets with a specified strength and prevalance by either inserting these features into randomly
sampled examples or re-sampling the original data.

Categories of spurious features. The spurious features we introduce are illustrated in Table 1.
We consider features from four broad categories: unigram, n-gram, syntactic, and sentence-pair
features. We further divide the unigram features according to part-of-speech (punctuation, adverb,
noun, determiner, and preposition), in order to test whether PLMs are more or less robust to features
from different lexical categories. For each unigram and n-gram, we define the feature s(x) to be
1 if x contains the unigram (or n-gram) and 0 otherwise. For each syntactic feature, we use an
off-the-shelf parser to extract a constituency parse and define s(x) to be 1 if the syntactic feature
appears in the parse tree. For MNLI, s(x) is defined in terms of the premise sentence. We consider a
single sentence-pair feature, lexical overlap, which is defined to be 1 if every non-stop-word in the
hypothesis is contained in the premise, following the definition introduced by McCoy et al. (2019).

Introducing spurious correlations. For each feature s, we construct train/development/test splits
such that s(x) is correlated with y in the training and development splits, and the test split can
be partitioned into supporting examples and counter-examples as defined in Section 2.2. For each
feature, we need to create data splits by specifying a desired strength and prevalance. We use two
methods to control these correlations, depending on the category: (1) Insertion: for certain features,
we can insert the feature into the original inputs without changing the original label or affecting the
grammaticality of the input. These categories are punctuation, which we add to the end of the input
(replacing the original punctuation); adverbs, which we insert before the first adjective; and n-grams,
which we add to the beginning. We insert the features into randomly sampled examples to reach the
intended feature prevalence and strength. (2) Re-sampling: For the other features, we partition the
original dataset by s(x) and y and sample datasets that have the specified strength and correlation.
We describe how we implement insertion and resampling in more detail in Appendix B.

In each training set, we fix the prevalence and strength to prevalance(s,D) = 20% and
strength(s,D) = 90% for all features. We use these values to reflect that spurious features
in real datasets may be present only in a small fraction of the dataset but are highly correlated
with a particular label. For example, in the MNLI training set, the lexical overlap feature has

4



Under review as a conference paper at ICLR 2023

Punc Adverb Noun Det Prep N-gram Syntax

0

50

100

S
pu

rio
us

 G
ap

Dataset = SST-2

Model
BERT-random
BERT-base
BERT-large

Punc Adverb Noun Det Prep Syntax Overlap
0

50

100

S
pu

rio
us

 G
ap

Dataset = MNLI

Model
BERT-random
BERT-base
BERT-large

Figure 1: Finetuning different backbone models on SST-2 (first row) and MNLI (second row).
Finetuning the pretrained models shows systematic differences in spurious gaps across different
categories of spurious features while training BERT-random achieves close to 100% spurious gap on
all lexical features. Vertical black bars indicate the variance across features within the same category.
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Figure 2: Training BERT-base with different methods. Prompt-based finetuning is slightly better than
finetuning on most features; data balancing significantly reduces spurious gaps on all features.

prevalance(s,D) = 0.55% and is correlated with the entailment label with strength(s,D) = 89.2%
(McCoy et al., 2019); whereas negation words in MNLI have prevalance(s,D) = 20.41% and are
correlated with the contradiction label with strength(s,D) = 63% (Gururangan et al., 2018). For
in-context learning with GPT-3 (Section 5), where we use very few demonstration examples, we also
compare this with using a larger prevalence and strength of 50% and 100% respectively.

4 SUPERVISED FINETUNING ON BERT

We use SpuriousBench to measure the spurious gap of different features. In this section, we focus on
the supervised finetuning paradigm where we finetune BERT models (uncased) (Devlin et al., 2019)
on our datasets using standard finetuning and prompt-based finetuning.
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4.1 IS BERT MORE ROBUST TO CERTAIN FEATURES?

To reveal the inductive biases acquired from pretraining, we compare BERT-base (110M) with
a randomly initialized transformer of the same model architecture (dubbed BERT-random). To
understand how model size affects the result, we further compare this with BERT-large (340M).

Experiment setup. We evaluate on both the supporting-example test set and the counter-example
test set to compute the spurious gaps. 1 For each spurious feature, we repeat the experiments three
times with different random seeds to obtain the average spurious gap. We then average the spurious
gaps of features within each category and plot the mean and variance of each category (with respect
to the different features) in Figure 1.

Spurious gap for all features is very high for BERT-random. The randomly-initialized Trans-
former (BERT-random) is a baseline that we assume has few or no inductive biases that are relevant
for these tasks. Comparing the blue bars of Figure 1 with the other two, we see a distinct trend
that training the randomly-initialized Transformer (BERT-random) results in similar (close to 100%)
spurious gaps across all lexical features, indicating that the model always learns to exploit the spurious
feature, with no differences between lexical categories. The drop on the syntax feature and the lexical
overlap feature is much smaller, indicating that the model has a weak bias for these features (in other
words, these features are harder to extract; Lovering et al., 2021). 2

Pretrained models are more robust on certain features than others. We see systematic differ-
ences across different categories of features for both BERT-base and BERT-large: on SST-2, content
word features (punctuation, adverb, noun, and n-gram) incur significantly larger spurious gaps than
the function word (determiner, preposition) and syntax features. The trends on MNLI are largely
similar, although there are generally higher spurious gaps on MNLI than on SST-2, which could due
to the relative difficulty of MNLI. Contrasting this pattern with the results on BERT-random, we
conclude that the differences we observe between content word features and function word features
arise from the pretraining stage. We also observe that PLMs have smaller spurious gaps than the
randomly initialized Transformer for all spurious features with the exception of lexical overlap in
MNLI — PLMs are more likely to rely on the lexical overlap feature.

Larger models reduce spurious gaps on most features. Comparing results of BERT-base and
BERT-large, BERT-large incurs smaller drops than BERT-base on most spurious features, however,
there are exceptions, such as the lexical overlap feature on MNLI. This shows the promise of scaling
for improving generalization, but at the same time suggests that scaling alone might not increase
robustness to all spurious features.

4.2 CAN PROMPTING IMPROVE ROBUSTNESS?

Next, we study whether prompt-based finetuning can supply additional inductive biases through
natural language prompts that turn classification tasks into the masked language modeling format.

Experiment setup. For prompt-based finetuning, we follow Gao et al. (2021) and use human-
written templates and label words 3 and finetune the model along with the language modeling head.
As a baseline, we also include a comparison with a data balancing approach (Idrissi et al., 2022). This
method assume that we know what the spurious feature is, and can be thought of as an upper bound
for the improvement that can be obtained from robust training methods. Specifically, we balance the
training data by up-sampling (i.e., duplicating) the counter-examples and down-sample the supporting
examples in order to balance them during training, and then perform standard finetuning on the
balanced training data.

1We also evaluated on the dev sets and find that models perform similarly on the dev sets of different spurious
features.

2Training the random Transformer achieves significantly higher than random performance on the dev sets of
all features and the smaller spurious gap is not just because BERT-random has close to random performance on
both supporting and countering examples.

3More details are in Appendix A.
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Figure 3: GPT-3 results on the SST-2 (first two rows) and MNLI (second row) subsets of Spurious-
Bench. Spurious gaps on the punctuation, n-gram, and lexical overlap are significantly larger than the
preposition and determiner features. Using meaningful label words like ‘positive’ and ‘negative’ can
often reduce spurious gaps.

Prompt-based finetuning brings limited improvement. We present the experiment results in
Figure 2. Prompt-based finetuning brings slight improvement on spurious gaps for most features on
SST-2 and MNLI, but has no benefit on the n-gram feature in SST-2 or the lexical overlap feature in
MNLI. In comparison, data balancing achieves significantly smaller spurious gaps on all features,
which is expected since it assumes knowledge of which examples contain spurious features.

5 FEW-SHOT IN-CONTEXT LEARNING ON GPT-3

Different from supervised fine-tuning, in-context learning does not change the pretrained parameters
at all and instead concatenates a set of demonstration examples as the prompt. To the best of our
knowledge, whether large LMs like GPT-3 can exploit spurious features from in-context examples is
an open question and remains unexplored, which we study in this section.

5.1 IS GPT-3 MORE ROBUST TO CERTAIN FEATURES?

Experiment Setup. For all experiments, we take the average of three different runs, and for each
run, we randomly sample a different set of demo examples. We randomly shuffle the order of the
demo examples and concatenate them as the prompt. The demo examples are sampled from the
training sets, and we do the evaluation on the corresponding test sets in SpuriousBench and report the
spurious gaps on them. We compare the spurious gaps across different features with GPT-3 models
of two scales: Curie (13B) and Davinci (175B). 4

GPT-3 is vulnerable to certain spurious features. As shown in Figure 3, comparing across
different spurious features, although the larger Davinci model achieves smaller spurious gaps than
the Curie model on most features, we see a clear trend on both models that the spurious gaps on
the punctuation, n-gram, and lexical overlap features are much larger than spurious gaps on the
preposition and determiner features. This pattern is consistent with the trend observed in supervised
finetuning of BERT models.

4We use the original GPT-3 versions in our main experiments (referred to as Legacy models) since they are
static and allow reproducibility; but we also experiment with the new InstructGPT models (Ouyang et al., 2022)
and present the results in Appendix C.
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Figure 4: GPT-3 (Legacy) results on SST-2 with different prevalence and strength of spurious features.
We compare a higher prevalence/strength (50%/100%) with the default value of SpuriousBench
(20%/90%). With the smaller prevalence/strength, the Curie model still incurs large spurious gaps,
although to a much smaller extent than using larger prevalence/strength. However, when using the
Davinci model, the small prevalence/strength setting does not incur significant spurious gaps.

GPT-3 is vulnerable to these spurious features even under smaller prevalence and strength.
Since our goal is to test how GPT-3 responds to the spurious features in the prompt, for all the
previous experiments, we construct the prompts to have a stronger strength and prevalence of spurious
features to “stress test” model robustness: we sample all the positive (or entailment) examples to
contain the spurious features. In this way, we control the spurious feature prevalence to be 50%
and the strength to be 100%. One might wonder whether GPT-3 would still be vulnerable to the
punctuation and n-gram features if we use a smaller prevalence and strength, which is more realistic.
To answer this question, we experiment with the default prevalence and strength of 20% and 90%
as in SpuriousBench as a comparison. As shown in Figure 4, even with a much smaller prevalence
and strength of the spurious features, the Curie model still exploits these spurious features and incurs
significant spurious gaps, although these gaps are smaller compared to using prompts with 50%/100%
prevalence/strength.
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Figure 5: GPT-3 results on SST-2. In-
creasing the number of demo exam-
ples in the prompt can reduce spuri-
ous gaps.

Increasing the number of demo examples can improve
robustness. In Figure 5, we compare using 8-shots and
32-shots in the prompt, where the prevalence and strength
of spurious features are controlled to be the same. We see
that for the punctuation and n-gram features that GPT-3 is
more vulnerable to, increasing the number of demo examples
significantly reduces the spurious gaps.

5.2 CAN PROMPTING IMPROVE ROBUSTNESS?

Given the above finding that GPT-3 picks up spurious fea-
tures even in the few-shot manner, we study whether prompts
designed to better specify the task can possibly induce addi-
tional inductive biases and improve robustness.

Experiment setup. In the previous section, we used “1”
and “0” as the label words for positive / negative classes in
SST-2 and entailment / non-entailment classes in MNLI. In this experiment, we compare these label
words with labels that are semantically related to the intended task. In SST-2, we replace “1” and “0”
with the words “positive” and “negative”. In MNLI, we use the labels “yes” and “no” to represent
entailment and non-entailment respectively, and additionally format each sentence pair as PREMISE +
“DOES IT MEAN” + HYPOTHESIS + {“YES”, “NO”}.

Better prompts can improve robustness. The results (Figure 3) show that using better prompts
and label reduces the spurious in most settings. Compared to prompt-based fine-tuning, the benefit of
using prompts is greater in this setting. This could be because prompts are more useful when there
are fewer training examples, or because very large models are better able to exploit the inductive bias
specified by the prompt.
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6 RELATED WORK

Inductive biases and robustness of PLMs. PLMs are more robust to spurious correla-
tions (Hendrycks et al., 2019; 2020) since they can generalize well from a small number of coun-
terexamples where the spurious correlation does not hold (Tu et al., 2020). Recent work has shown
that PLMs acquire inductive biases through masks that implicitly act as cloze reductions (Petroni
et al., 2019; Saunshi et al., 2021) and have proposed methods to predict the inductive biases of
PLMs through probing (Lovering et al., 2021; Immer et al., 2022). In comparison, our goal is to
systematically study the inductive biases of PLMs over a diverse set of spurious features.

Robust finetuning methods. Various robust finetuning methods have been proposed to train
models which do not latch on to spurious correlations, such as residual fitting (He et al., 2019;
Clark et al., 2019; Sanh et al., 2021; Karimi Mahabadi et al., 2020), instance reweighting (Liu et al.,
2021; Utama et al., 2020), and data augmentation (Wu et al., 2022; Liu et al., 2022). All these
methods rely on some assumptions (e.g. explicit knowledge) about the spurious feature. Specific to
PLMs, another line of work focuses on finetuning methods that preserve pretrained representations
through regularization (Utama et al., 2021), averaging weights of models (Wortsman et al., 2022)
or combining probing with finetuning (Kumar et al., 2022). In this work, we focus on the simpler
adaptation methods such as full model finetuning, prompt-based finetuning, and in-context learning
with the goal of studying the inductive biases of the PLMs. We leave the study of how other robust
training methods affect different spurious features to future work.

Benchmarks for robustness. In NLP, various ‘challenge sets’ or ‘diagnostic sets’ have been created
to test if models are relying on common spurious correlations — lexical overlap in MNLI (Glockner
et al., 2018; McCoy et al., 2019), negation words and antonyms in MNLI (Naik et al., 2018), lexical
overlap in QQP (Zhang et al., 2019), and common named entities in sentiment analysis (Wang et al.,
2022). Other evaluation sets have either focused on evaluating the linguistic knowledge of PLMs
(Dasgupta et al., 2018; Warstadt et al., 2020a) or on more natural distribution shifts (Miller et al.,
2020; Koh et al., 2021). The main difference between these test sets and SpuriousBench is that we
aim to study a much diverse set of spurious features while controlling for other factors such as the
task and the strength of the correlation, with the goal of understanding the inductive biases of PLMs.

Spurious correlations in NLP. While recent work has identified spurious correlations and annota-
tion artifacts in NLP datasets (Gururangan et al., 2018; Geva et al., 2019), there is still active debate
on how to define spurious features in NLP — Gardner et al. (2021) argue that any simple feature-label
correlation is spurious whereas Veitch et al. (2021) argue that counterfactual invariance is the right
objective. Eisenstein (2022) showed that both of these views are not consistent and all feature-label
correlations might not be spurious. In this work, we focus on the simpler setting of spurious features
which are irrelevant to the label and do not causally affect it.

7 DISCUSSION

We list our main findings and their implications for future work.

We find consistent differences among different categories of spurious features. This means that:
(i) some features (e.g., content words, lexical overlap) cause larger spurious gaps than others and
perhaps deserve more effort in mitigating; (ii) good mitigation performance found on one spurious
feature may not generalize to other spurious features, which calls for a more thorough evaluation
scheme for future work on combatting spurious correlation. Future work can also consider analyzing
how such differences arise during pretraining, for example, drawing a connection to theoretical
results (Wei et al., 2021; Saunshi et al., 2021).

Few-shot in-context learning exploits spurious features in the demo examples. This calls for
additional consideration when constructing the prompts. For example, if the demo examples contain
certain gender words as spurious features, it may lead to gender biases. We presented simple and
effective ways of mitigating such exploitation such as scaling up, using meaningful label words, and
increasing the number of shots, which can serve as guidelines for future usage of GPT-3 style models
when spurious correlation is a concern.
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APPENDIX

A FINETUNING EXPERIMENT DETAILS

We train all models with a max of 6 epochs and evaluate the best checkpoint based on the dev set
accuracy. For standard finetuning, prompt-based finetuning, and finetuning with data balancing, we
use a learning rate of 3e-5 for BERT-Base and the same-sized BERT-random, and we use 1e-5 for
BERT-Large. We BitFit, we use a learning rate of 1e-3 as recommended by Ben-Zaken et al. (2022).

For prompt-based finetuning, we use the human-written templates and label words from Gao et al.
(2021). For SST-2, we use “ <Input Sentence> It was [MASK].” with label words “great” (for
positive) and “terrible” (for negative). For MNLI, we use “<Premise>? [MASK], <Hypothesis>”
with label words “Yes” (for entailment) and “No” (for non-entailment).

B ADDITIONAL DETAILS ABOUT SPURIOUSBENCH

We describe in more detail the two ways we manipulate the original datasets to construct Spurious-
Bench. (1) Insertion: For punctuation, we remove the original punctuation at the end of sentences and
append the spurious feature; for adverbs, we insert them before the first adjective in the sentence, and
if the original example already contains the spurious feature, we do not insert and directly consider
them to contain the spurious feature; for n-grams. we prepend them to the input. (2) Re-sample:
Specifically, we first split the entire dataset into four subsets based on the label and whether the
example contains the spurious feature: {s(x) = 0, y = 0}, {s(x) = 0, y = 1}, {s(x) = 1, y =
0}, {s(x) = 1, y = 1}. We then down-sample and merge these subsets to reach the intended dataset
sizes with the controlled prevalence and strength, while keeping the overall label distribution balanced
for the training/dev sets.

C INSTRUCTGPT RESULTS ON SPURIOUSBENCH
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Figure 6: GPT-3 results on the SST-2 (first two rows) and MNLI (second row) subsets of Spurious-
Bench. We see similar trends as GPT-3 Legacy: spurious gaps on the punctuation, n-gram, and lexical
overlap are significantly larger than the preposition and determiner features, and using meaningful
label words can reduce spurious gaps in most cases.
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D ASSOCIATING SPURIOUS FEATURES WITH NEGATIVE LABELS
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Figure 7: Finetuning BERT-Base on SpuriousBench with the positive label as the target label of
spurious features versus using the negative label as the target label. We see a similar trend that
BERT-Base incurs larger spurious gaps on content word and n-gram features than function word and
syntax features.

E SIZES OF ALL TEST SETS IN SPURIOUSBENCH

Category Spurious Feature Test Size (Supporting) Test Size (Counter)

SST-2 Subset

punctuation exclamation (“!”) 3262 2949
(insertion) semicolon (“;”) 3262 2949

asterisk (“*”) 3262 2949

adverb “actually” 1368 1701
(insertion) “surprisingly” 1375 1686

“generally” 1357 1683
“completely” 1360 1700

noun “film” 590 1094
(re-sample) “movie” 685 1153

“show” 702 1170
“drama” 792 1195
“play” 696 1164

determiner “the” 2074 2414
(re-sample) “a” 1887 2018

“that” 442 886

preposition “to” 751 1418
(re-sample) “in” 472 898

“of” 1496 1691

n-gram “My thought: ” 3262 2949
(insertion) “For those who haven’t watched it yet,” 3262 2949

“From the press: ” 3262 2949
“I have to say, ” 3262 2949

“What you have to know: ” 3262 2949

syntax AdjP 2187 2469
(re-sample) NP → NP PP 1916 2060

NP → Det N 1540 2140
S → NP VP 2190 2756

S → VP 1337 1906

Table 2: Sizes of the test sets for all spurious features in SST-2 (one feature has one test set with
supporting examples and one test set with counter-examples). All training sets have 3000 examples
and all dev sets have 400 examples, only the test set sizes vary across features.
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Category Bias Feature Test Size (Supporting) Test Size (Counter)

MNLI Subset

punctuation exclamation (“!”) 2000 2000
(insertion) semicolon (“;”) 2000 2000

asterisk (“*”) 2000 2000

adverb “only” 1042 2000
(re-sample) “just” 2000 2000

“very” 937 2000
“well” 2000 2000

“really” 1039 2000

noun “people” 2000 2000
(re-sample) “time” 2000 2000

“way” 551 2000

determiner “the” 2000 2000
(re-sample) “a” 2000 2000

“an” 2000 2000
“any” 540 2000

preposition “on” 2000 2000
(re-sample) “in” 2000 2000

“of” 2000 2000
“by” 2000 2000

syntax AdjP 1047 2000
(re-sample) NP → NP PP 2000 2000

NP → Det N 2000 2000
S → NP VP 2000 2000

S → VP 1537 2000

Sentence-Pair lexical overlap (template) 5000 5000
lexical overlap (re-sample) 2000 266

Table 3: Sizes of the test sets for all spurious features in MNLI (one feature has one test set with
supporting examples and one test set with counter-examples). All training sets have 10000 examples
and all dev sets have 1000 examples.
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