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Abstract—Continuous glucose monitors (CGMs) have become
ubiquitous in diabetes care but are unreliable in the hypoglycemic
range, where they are most critical. We present ECGluFormer,
a deep-learning (DL) model that estimates glucose levels non-
invasively from single-lead ECG. Our model addresses two crit-
ical problems in ECG-based glucose prediction: (1) conventional
DL models tend to under-report hypoglycemia due the rarity of
those events, and (2) ECG signals can be intermittent in free-
living conditions (e.g., motion artifacts, packets drops). To address
these issues, ECGluFormer uses a multi-objective loss function
that ensures the distribution of glucose predictions is consistent
with ground-truth, and a Transformer-based model to aggregate
beat-level glucose predictions when significant data losses (over
30% of all beats) are missing. We validate ECGluFormer on
ambulatory data containing up to 17 days of synchronized ECG
and CGM data from patients with type-1 diabetes. Our multi-
objective loss function outperforms alternative loss functions
across regression and classification metrics. ECGluFormer also
consistently outperforms five baseline models that also aggregate
beat-level predictions.

Index Terms—Diabetes, deep learning, ECG analytics, non-
invasive glucose prediction, hypoglycemia.

Clinical relevance. Diabetes is a chronic condition that
affects nearly 600 million people worldwide. We propose a
deep-learning model that can estimate glucose levels from
intermittent ECG signals, avoiding the need for continuous
glucose monitors, which are invasive, expensive, and notori-

ously inaccurate in the critical range of hypoglycemia.

I. INTRODUCTION

A critical aspect in managing diabetes is to keep glucose
levels in range (within 70-180 mg/dl). Sustained glucose
above 180 mg/dl (hyperglycemia) can lead to serious long-
term complications, including heart disease, kidney failure,
blindness and amputation [1], [2]. Glucose levels below 70
mg/dl (hypoglycemia) are dangerous in the short-term, as they
can lead to confusion, seizure, loss of consciousness, and death
[3]. Though CGMs are ubiquitous, they are invasive, must be
replaced periodically (every 10-15 days), and most importantly
have low accuracy in the hypoglycemic range, with mean
absolute relative differences (MARD) 2-3 times higher than
those in the normoglycemic range (MARD<10%) according
to FDA approval letters for the four leading selling CGMs
(Abbott Freestyle Libre 3: 13.4-18.8%; Dexcom G7 (16.0-
27.8%; Medtronic 780G: 14.9-19.4%; Senseonics Eversense
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E3: 13.0-19.5%). Further, CGMs are susceptible to temporal
shifts and compression artifacts, especially at night when
counter-regulatory responses are attenuated [4]. Finally, CGM
accessibility is limited due to socioeconomic disparities or
insurance barriers [5], [6]. Therefore, there is a critical need
for new sensing techniques that can monitor glucose levels
continuously and non-invasively.

Several physiological variables may be used as indirect
indicators of hypoglycemia [7], in particular changes in
cardiac signals such as time-domain information, e.g., heart
rate (HR) and heart rate variability (HRV) [8], and morpho-
logical information at the beat level, e.g., a lengthened QT
interval [9]. HRV measurements are appealing since they can
be estimated from photoplethysmography (PPG). However,
PPG is notoriously sensitive to motion artifacts, particularly
when measured at the wrist (e.g., smartwatches). In contrast,
ECG is robust to motion artifacts and provides fine-grained
information about beat morphology.

This paper addresses three critical issues in ECG-based
glucose prediction. First, there is a large imbalance in the
distribution of glucose levels (less than 4% are in the hypo-
glycemic range). As a result, models trained on conventional
loss functions (i.e., mean squared error) tend to over-predict
in the hypoglycemic range. Second, when recorded in free-
living conditions, ECG experience data losses due to wireless
connectivity issues and changes in the electrode-skin interface.
As a result, glucose estimation models must be able to
operate when sensor data is intermittent. Finally, framing the
problem as one of binary classification (i.e., hypo- vs. eu-
glycemia) is problematic given that GCMs are inaccurate in
the hypoglycemic range.

To address these issues, we propose ECGluFormer, a two-
stage deep learning (DL) framework for estimating glucose
levels (i.e., a regression rather than a binary classification
task) from ambulatory ECG. ECGluFormer combines a beat-
level encoder that captures morphological information with a
transformer that incorporates time-based positional encodings
to model the relative timing of each heartbeat. This design
allows the model to learn physiologically meaningful temporal
patterns (e.g., HRV) even in the presence of significant data
losses (over 30% missed beats). To address the distribution
imbalance, we introduce a composite loss function that jointly
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Error Grid. Zone A: clinically accurate; B: clinically acceptable; C: over-correcting; D: failure to detect; E: erroneous treatment. (b).

Mismatch in the distribution of blood glucose (yellow), and predictions using the MSE loss. (¢) ECGluFormer architecture. An ECG encoder based on
InceptionTime consumes 3-sec ECG windows to predict the next glucose level CGM;. Each 3-sec ECG embedding is treated as a token with time-based
positional encoding. A 1-layer Transformer encoder processes tokens and aggregates them via attention pooling. (d) Visualization of time-based positional
encodings for ECG beats within a CGM segment. The y-axis represents individual ECG beats, sorted by time relative to the CGM timestamp, while the x-axis
corresponds to the embedding dimensions (ngim = 64). This allows the model to incorporate precise timing information rather than an index in the sequence.

penalizes deviations in the distribution of predictions and per-
sample errors, with greater emphasis on lower glucose values.
The main contributions of this paper are:

o An encoder model for short ECG segments (3 seconds)
that uses a composite loss function to jointly optimize
the distributional alignment of glucose predictions against
ground truth and per-sample accuracy, to address data
imbalances in the hypoglycemic region.

o A transformer model that aggregates information from
intermittent sampled ECG embeddings through a time-
based positional encoding that accounts for the relative
timing of non-uniformly sampled heart beats.

¢ Model evaluation on regression (predicting glucose lev-
els) and classification tasks (hypo- vs. normo-glycemia).

II. RELATED WORK

A. Physiological indicators of hypoglycemia

Several physiological variables have been investigated as
potential indirect indicators of hypoglycemia [7]. Early work
focused on skin temperature and skin conductivity, which
decrease at the onset of hypoglycemia [10]. Several commer-
cial devices were developed in the 1980s [11] but showed
high false-alarms rates (3:1) due to perspiration unrelated to
hypoglycemia [12], so they never received FDA approval.
Electroencephalography (EEG) has also been used as a poten-
tial indicator of hypoglycemia. Early work [13], [14] showed
an association between hypoglycemia and increases in § and ~y
bands and decreases in « frequency. More recent work shows
an association with a decrease in signal complexity [15].
However, EEG measurements are far more involved than skin
temperature/conductivity, so at present ECG is impractical for
hypoglycemia detection in free-living settings.

B. ECG-based glucose prediction

Most of the work on non-invasive hypoglycemia detection
has focused on ECG. Early work focused on extracting physi-
ologically relevant features (e.g., QRS duration, QTc interval,

T-wave amplitude) [16], [17] and feeding them to statistical
machine learning (ML) models. While these methods offer
some interpretability, their performance heavily depends on
accurate detection of fiduciary points, which is often not
guaranteed in noisy ECG ambulatory recordings. To mitigate
these issues, recent studies have used DL to learn latent repre-
sentations directly from raw or minimally preprocessed ECG
signals. For example, Porumb et al. [18] proposed a CNN-
based beat encoder followed by recurrent layers to aggregate
information across time. Other models [19] use CNNs and
bidirectional LSTMs to process longer ECG sequences for
broader classification tasks.

A key limitation of both traditional and DL methods is
the lack of attention to temporal alignment between ECG
beats and glucose measurements. Fixed-size beat sampling
can obscure the true timing of physiological events relative
to glucose dynamics, especially under irregular heart rates
or in noisy environments. Few models explicitly account for
the variable intervals between beats or leverage their temporal
context as a predictive signal. Our model address these gaps
by modeling beat timing explicitly using positional encodings
within a transformer architecture. This approach enables finer-
grained temporal reasoning and also improves robustness to
sampling irregularities.

C. Transformer models

First introduced for NLP tasks [20], Transformers have
gained traction in physiological signal modeling due to their
ability to capture long-range dependencies and contextual
relationships without relying on recurrence. Several Trans-
former models have been applied to ECG analysis—primarily
in arrhythmia classification. For example, ECG-DETR [21]
combines a CNN backbone with a Transformer encoder-
decoder to detect and classify heartbeats from short ECG
segments. ECGTransForm [22] enhances temporal and spatial
features via multi-scale CNNs and channel recalibration before
a BiTransformer encoder. CAT-Net [23] integrates attention



layers between convolutional blocks and passes their output
into a transformer encoder to classify arrhythmias.

While effective for short-term diagnostic tasks (e.g., beat
classification or arrhythmia detection), these models operate
on short, fixed-length ECG segments, typically 5-10 sec long.
To our knowledge ours is the first effort to apply Transformers
to minute-scale glucose prediction from ECG by treating ECG
beats as time-aware tokens. This enables interpretable and
scalable modeling of glucose dynamics using transformer-
based architectures without the computational burden of pro-
cessing raw waveforms over long windows.

III. METHODS

Mlustrated in Figure 1c, ECGluFormer consists of two key
building blocks: an encoder that consumes 3-sec windows
of ECG to produce a glucose prediction, and a Transformer
that aggregates ECG embeddings over a 5-min period to
produce a final estimate of glucose levels. Before feeding
data to the encoder, we pre-process the ECG signals using
NeuroKit2 [24], which performs signal denoising and R-peak
detection. For each detected R-peak, we extract a fixed 3-
sec window centered on R peaks to capture the morphology
of individual heart beats. Each beat is then aligned with the
nearest future CGM measurement to assign a corresponding
glucose label. Finally, we apply z-score normalization to each
extracted ECG beat to remove inter-beat amplitude variability
and allow the encoder to focus on shape-based features.

A. Beat-level ECG encoder

Our encoder uses a backbone based on InceptionTime [25],
a 1D CNN that captures multi-scale temporal patterns through
parallel convolutional branches with varying kernel sizes. As
illustrated in Figure 1b, however, the probability density of
glucose levels for an individual is significantly lower in the
critical hypoglycemic range (<70 mg/dl). As a result, models
trained to minimize the mean-squared-error (MSE) tend to
under-report in that range. To address this issue, ECGluFormer
uses a multi-objective loss function that combines a distribu-
tion loss (DistLoss) [26], and a Normalized MSE (NMSE) [27]
term to minimize the per-sample prediction error:
E(Gbatcha Gbatoh) =

MSE(S(;bmha Gpseudo)

distribution loss ( 1 )

+ A - NMSE(Gaceh; Ghareh )

Sample-wise loss

where A\ is a hyperparameter that balances both terms,
Gbaeh = {91, -,9n} are the ground truth glucose values in
the batch, Gpaen = {41,.-.,Gn} are the corresponding model
predictions, épseudo is the set of pseudo-labels constructed by
replicating each label g; according to its expected frequency
in the batch (estimated via KDE over the label distribution),
Sé,., is the sorted sequence of predictions, representing
the prediction distribution, L4 measures the discrepancy
(e.g., via MSE) between the sorted predictions and pseudo-
labels, both normalized to focus on distributional shape rather

than scale, and NMSE is computed on the original (non-
normalized) glucose values to maintain numerical stability and
avoid division by near-zero values:

A 1 g—gl* 1
NMSE(G,G) =~ 3 |9| g -
n N
Goece Y !
Additionally, we apply an inverse-frequency ﬁ weighting

based on the distribution of ground truth glucose values
to over-penalize prediction errors in low-probability regions,
encouraging the model to perform robustly across the full
glucose range. This composite loss enables the model to align
its output distribution with the ground truth while preserving
accuracy at the sample level, which is particularly beneficial
under imbalanced data conditions.

B. CGM-level glucose prediction

We use a Transformer model to aggregate time-stamped
beat-level ECG information at the CGM level (5-min in-
tervals). Unlike conventional approaches that treat all beats
uniformly, our model explicitly accounts for the temporal
misalignment between ECG beats and CGM measurements.
Since the number of ECG beats within a CGM segment
varies with heart rate, we randomly sample k& beats without
replacement from each segment (k¥ = 64) and sort them
according to their recorded time.

To capture the temporal context of each beat relative to
the CGM reading, we incorporate a time-based positional
encoding based on each beat’s timestamp offset from the CGM
time, rather than using simple sequential indices (e.g., 0, 1,
2...). This allows the model to learn from the actual timing
of events rather than their order in the input sequence. Let
x; denote the i-th ECG token, where each token represents
a 3-sec ECG window, and let ¢(z;) be the timestamp at the
center of that window. Let ¢(CGM;) denote the timestamp of
the CGM reading at prediction time ¢. We define the relative
position of each token as:

pos; = t(CGM;) — t(x;) 3)

To encode this timing information, we use the standard
sinusoidal positional encoding scheme [20]. An example of
this positional encoding is shown in Figure 1d.

Since we use a S-minute prediction window and each ECG
token spans 3 seconds, the input sequence consists of approx-
imately 100 ECG tokens. Each pos, € [0,300] is measured
in seconds and encoded using sinusoidal positional encoding
to retain timing information relative to the prediction target.
This design allows the Transformer to contextualize each beat
embedding based on its relative timing, enabling the model
to attend more effectively to temporally relevant beats. Its
attention mechanism captures inter-beat dependencies, while
the positional encoding grounds the model in the temporal
structure of the ECG-CGM alignment. Furthermore, unlike
NLP models where tokenizers provide fixed embeddings for
each word, our ECG encoder is not frozen. This allows the
transformer to refine the beat-level embeddings during training
to improve glucose prediction performance.



To improve generalization and reduce overfitting, we adopt a
BERT-style masking strategy [28] during training. Specifically,
10% of the input ECG tokens, each representing a 3-sec
segment, are randomly selected and replaced with a learnable
[MASK] embedding. This encourages the model to infer
information from surrounding context, increasing robustness
to missing or noisy beats. Each sequence of embeddings
is augmented with time-based sinusoidal positional encoding
and normalized using LayerNorm. The resulting sequence
is then passed through a single-layer Transformer encoder,
producing contextualized token representations h; € R,
where t = 1,...,T indexes the tokens. A second LayerNorm
is applied after the transformer to stabilize training.

To aggregate information across the sequence, we apply
attention pooling, computing attention weights:

T
o = Texp(w hy) @
Yop—i exp(wThy)

and pooled representation:

T
z = Zatht 5)
t=1

Unlike average pooling, attention pooling enables the model
to focus on more informative or salient beats, producing
a context-aware summary that better reflects the predictive
features relevant to glucose dynamics. This summary vector z
is passed through a feedforward regressor to predict the target
glucose value. The same objective function introduced in the
previous section is used to train the ECGluFormer.

IV. IMPLEMENTATION
A. Model training

The experiments and evaluations in this paper are conducted
on the PhysioCGM dataset [29], which contains synchronized
ECG (Zephyr Bioharness) and CGM (Dexcom G6) recordings
from 10 participants who wore both devices for up to 17 days.

We implemented ECGluFormer in PyTorch. Due to large
inter-individual differences, we developed a separate model
for each subject. We used a batch size of 512 for to train
the ECG encoder and 50 for the CGM-level aggregator. The
ECG encoder uses an InceptionTime backbone with 16 filters.
The CGM-level aggregator uses a single-layer encoder-only
Transformer with 4 attention heads, followed by two fully
connected (FC) layers of size 64 and 1, respectively. A ReLU
activation and dropout (rate = 0.2) are applied between the
layers. Both models are optimized using AdamW with a
weight decay of 0.01. The learning rates are set to 0.0005 for
the ECG encoder and 0.0001 for the CGM-level model. We
apply learning rate decay with a factor of 0.5 if the validation
loss does not improve for 20 consecutive epochs. Models were
trained on NVIDIA RTX 3090 GPUs.

To simulate the effect of missing ECG data, we randomly
sample 64 non-overlapping 3-sec ECG beats per epoch during
training, which amounts to 34% data loss over a 5-min

CGM period. This randomized sampling forces the Trans-
former to extract dynamic information from intermittent beats,
and introduces natural variability across epochs, effectively
serving as a form of data augmentation that enhances model
robustness. To ensure a balanced evaluation, we split the
dataset into training, validation, and test sets in a 70:15:15
ratio using stratified sampling to preserve the proportion of
hypoglycemic events. We perform hyperparameter tuning on
the validation set, and report results on the test set. During
testing, we apply the same sampling strategy, and the reported
performance metrics are averaged over 20 independent test
runs to ensure robustness.

B. Evaluation metrics

We evaluate model performance using quantitative metrics
of glucose prediction and hypoglycemia prediction:

o Clarke Error Grid (CEG): Proportion of predictions in
Zone A+B (clinically accurate/acceptable) and Zone D
(failure to detect).

« Root Mean Square Error (RMSE): Average prediction
error between predicted and ground truth glucose values.

o Hypoglycemia classification: Glucose predictions are
converted into pseudo-probabilities using min-max nor-
malization (40 to 180 mg/dL). Ground truth glucose
values are binarized (1: below 70 mg/dL; O: otherwise).
We report sensitivity and specificity at the EER threshold
(false positive rate = false negative rate).

This combination of metrics offers a comprehensive assess-
ment of both clinical safety and numerical accuracy.

V. RESULTS
A. Encoder capacity

We performed hyperparameter tuning for the ECG encoder
with ny € 4, 8,16, which yield output embedding dimensions
of 16, 32, and 64, respectively. Increasing the number of
filters enables the encoder to capture more complex temporal
patterns, potentially improving predictive performance at the
cost of higher computational complexity. An encoder with
ny = 16 (embedding size nqg = 64) achieves the best overall
performance (results not shown due to page limits), and was
used for all subsequent experiments. Figure 2 shows a t-SNE
projection of the ECG embeddings. Each point corresponds to
an encoded ECG beat, color-coded by the ground truth glucose
values (Figure 2a) and heart rate (Figure 2b). We observe a
distinct left-to-right gradient from low to high glucose levels
in the t-SNE embedding but not for heart rate, indicating that
the ECG encoder is able to disentangle glucose information
from heart rate, which otherwise is more dominant.

B. Loss functions

We evaluated our proposed loss function mean-squared-
error (MSE), normalized MSE (i.e., percent error w.r.t. ground
truth) [27], and Distribution Loss (DistLoss) on NMSE
[26]. Results are illustrated in Figure 2c¢ and summarized in
Table I. Our combined loss shows the lowest percentage in
Zone D (failure to detect) —the most critical region in the



TABLE I
EVALUATION OF LOSS FUNCTIONS ON CLARKE ERROR GRID MEASURES (A+B, D), HYPOGLYCEMIA CLASSIFICATION (SENSITIVITY AND SPECIFICITY
AT EER), AND GLUCOSE PREDICTION (RMSE)

Metrics Model Type Subject
cls0l  c1s03  cl1s05  ¢2s01  ¢2s02  ¢2s03  ¢c2s04  ¢2s05 \ Average
MSE 9437  96.60 98.10 96.89 9759 9895 9792 95.28 96.96
Zone A+B (%) 1 NMSE 9494 9688 9824 97.67 9879 99.04 98.64 96.15 97.54
Dist Loss (NMSE)  95.05 97.18 9840 97.69 9839 99.19 9847 96.32 97.58
Ours 96.58 98.11 9891 9819 99.13 9889 99.08 97.39 98.28
MSE 5.63 3.39 1.90 3.11 2.41 1.05 2.08 4.72 3.04
Zone D (%) | NMSE 5.06 3.11 1.76 2.31 1.21 0.95 1.35 3.85 2.45
Dist Loss (NMSE)  4.94 2.82 1.60 2.29 1.61 0.80 1.50 3.68 2.41
Ours 3.37 1.87 1.09 1.59 0.87 0.56 0.80 2.60 1.59
MSE 0.65 0.71 0.79 0.74 0.87 0.79 0.76 0.75 0.76
Sensitivity 1 NMSE 0.70 0.72 0.82 0.79 091 0.80 0.84 0.76 0.79
Dist Loss (NMSE)  0.70 0.73 0.83 0.80 0.90 0.85 0.82 0.77 0.80
Ours 0.70 0.76 0.84 0.80 0.92 0.80 0.86 0.74 0.80
MSE 0.58 0.67 0.75 0.69 0.86 0.77 0.73 0.71 0.72
Specificity 1 NMSE 0.64 0.69 0.79 0.76 0.89 0.78 0.82 0.73 0.76
P ¥ Dist Loss (NMSE)  0.66 0.69 0.80 0.76 0.88 0.82 0.81 0.74 0.77
Ours 0.66 0.73 0.80 0.77 0.89 0.79 0.84 0.72 0.77
MSE 2353 2252  17.08 19.73 1565 18.66 22.08 19.34 19.82
RMSE | NMSE 2559 2493 1759 2171 1751 2413 2326 23.00 2221
Dist Loss (NMSE) 2481 25.07 1821 2193 1819 2032 23.61 20.76 21.61
Ours 3093 29.64 1994 29.81 1936 31.62 3054 2549 27.17

Glucose Level (mg/dL)
0 80 100 120 140 160 60

Heart Rate (bpm)
80 100 120

t-SNE 2
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- Ground trutt
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Fig. 2. t-SNE plots of embeddings from the ECG encoder on subject c2s02.
Each point represents a 3-sec ECG segment, color-colored according to (a)
ground-truth glucose levels and (b) heart rate. (c) Distribution of ground
truth glucose (orange) vs. glucose distributions for four los functions: MSE,
NMSE, DistLoss on MSE, and ours (inverse frequency-weighted DistLoss
on MSE). (d-f) Clarke-Error Grid for beat-level predictions, baseline B2 and
ECGluFormer, respectively.

Clarke Error Grid, and the highest percentage in Zones A+B
(clinically accurate+acceptable). We do not report results in
Zones C and E (in most cases, below 1%). Further, a two-
way ANOVA on Zone D percentages using subject identity
and loss function as independent factors shows statistical
significance (Psubject, Ploss < 0.001). However, because each
subject contributes multiple entries (one per loss), the assump-
tion of independent observations may be violated. Hence, we
also performed a non-parametric Friedman test across loss
functions, which confirmed a significant effect (p = 0.0001),

supporting the robustness of our findings.

While the MSE loss achieves the lowest RMSE, it also leads
to the highest %-age in Zone D (failure to detect), as well as
the lowest sensitivity for hypoglycemia detection. This occurs
because MSE-trained models tend to regress toward the pop-
ulation mean. Introducing the DistLoss with MSE improves
performance in this critical region, though at the cost of a
modest increase in RMSE. Our proposed loss function further
enhances performance in the hypoglycemic range by replacing
MSE with Normalized MSE (NMSE), which treats errors in
the lower glucose range as more significant. Additionally,
incorporating inverse frequency weighting further emphasizes
rare but clinically important cases by penalizing prediction
errors in low-probability regions more heavily.

C. Comparison against baselines

We are not aware of any open-source implementations for
ECG-based glucose prediction. Hence, we re-implemented two
representative baseline models for comparison:

o B1: Feature engineering. B1 uses Neurokit2 to extract
six ECG features: P and T wave durations, QRS duration,
QTec interval, and HR. Features were averaged over each
S5-minute interval and fed to a regression pipeline [17].

o B2: Feature learning: B2 is the CNN-LSTM of [18]
for nocturnal hypoglycemia detection from 1-sec ECG
segments. To align it with our task, we modified the
model to allow glucose regression but kept the original
1-sec analysis window. To ensure a fair comparison, we
trained B2 using our proposed loss function.

We also evaluated the Transformer model in ECGluFormer
against three alternative aggregation strategies:



TABLE II
COMPARISON OF ECGLUFORMER VS. BASELINES ON THE SAME METRICS OF TABLE 1.

Metrics Model Type Subject
cls0l  ¢l1s03  clIs05  ¢2s01  ¢2s02  ¢2s03  ¢2s04  ¢2s05 \ Average
Feature-based [17]  94.41 95.09 9578 9545 9581 98.13 9694 93.29 95.61
Porumb et al. [18]  95.67 9640 97.64 9659 96.04 9886 97.72 94.15 96.63
Zone A+B (%) 1 Average 96.97 97.85 98.77 9836 99.03 99.13 99.38 97.52 98.37
Histogram + FC 9695 97.16 98.77 97.71 99.03  99.19 99.31 97.48 98.20
LSTM 96.75 9822 99.00 9828 9890 9934 9897  98.30 98.47
ECGluFormer 97.07 9896 99.75 98.71 99.60  99.29 99.22  99.29 98.99
Feature-based [17] 5.59 491 4.22 4.55 4.19 1.87 3.06 6.71 4.39
Porumb et al. [18] 4.33 3.60 2.36 341 3.96 0.95 2.28 5.85 3.34
Zone D (%) | Ayerage 3.03 2.15 1.23 1.64 0.97 0.63 0.62 2.48 1.60
Histogram + FC 3.05 2.84 1.23 2.29 0.97 0.71 0.69 2.52 1.79
LSTM 3.25 1.78 1.00 1.70 1.10 0.62 1.03 1.70 1.52
ECGluFormer 2.93 1.04 0.25 1.29 0.40 0.59 0.78 0.71 1.00
Feature-based [17] 0.88 0.71 0.72 0.89 0.77 0.75 0.65 0.64 0.75
Porumb et al. [18] 0.72 0.53 0.86 0.72 0.81 0.78 0.75 0.63 0.72
Sensitivity T Average 0.72 0.77 0.85 0.88 0.96 0.82 0.91 0.81 0.84
Histogram + FC 0.73 0.78 0.85 0.90 0.96 0.82 0.90 0.81 0.84
LSTM 0.65 0.80 0.88 0.82 0.91 0.78 0.89 0.81 0.82
ECGluFormer 0.71 0.86 0.94 0.85 0.94 0.87 0.92 0.84 0.86
Feature-based [17] 0.34 0.69 0.65 0.36 0.74 0.50 0.64 0.53 0.56
Porumb et al. [18] 0.61 0.52 0.83 0.71 0.79 0.75 0.72 0.55 0.68
Specificity 1 Average 0.69 0.75 0.84 0.83 0.90 0.80 0.89 0.73 0.80
P ¥ Histogram + FC 069 074 083 08 089 079 08 074 | 080
LSTM 0.57 0.76 0.87 0.78 0.90 0.77 0.85 0.74 0.78
ECGluFormer 0.68 0.84 0.92 0.82 0.93 0.86 0.90 0.82 0.85
Feature-based [17] 26.62 2643  20.68 24.88 2243 2533 2302 25.78 24.40
Porumb et al. [18] 31.13  31.33 1933 2796 24.63 3280 32.72  30.39 28.79
RMSE | Average 26.89  26.74 1729  25.39 1694 2687 26.10 22.03 23.53
Histogram + FC 25.09 2232 1597 2352 1412 2577 2339 2036 21.32
LSTM 26.69  23.96 17.85  23.36 15.81 2435 25.77 27.34 23.14
ECGluFormer 22.13 22.05 15.43 24.02 13.09 22.76 23.65 23.49 20.83

o B3: Ensemble averaging: B3 computes the average
glucose prediction from the ECG encoder over the 5-
minute CGM sampling period.

o B4: Stacked generalization: B4 computes the histogram
of glucose predictions at 1 mg/dl resolution over the 5-
min window, and passes it to a fully-connected network
to generate a single glucose prediction [30].

e B5: LSTM: B5 uses a l-layer LSTM (with hidden
dimension equal to the transformer’s djqe1) to consume
the sequence of ECG embeddings, and the same fully
connected prediction head as ECGluFormer to generate
the final glucose prediction over the 5-min window.

Results are summarized in Table II. ECGluFormer consis-
tently outperforms the five baselines for all metrics. It yields
the highest average percentage in Zone A+B (98.99%) and the
lowest Zone D error rate (1.00%), indicating better clinical
accuracy and fewer critical prediction failures. ECGluFormer
also achieves the best overall sensitivity (0.86), while main-
taining the lowest RMSE (20.83) among all models. These
results highlight the advantage of transformer-based beat-level
modeling over both feature-engineered and end-to-end CNN-
LSTM baselines. We conducted the same statistical analysis
to evaluate the effect of model type on the performance in
Zone D percentages. A two-way ANOVA shows significant
effects for both subject and model (Psubject, Pmodet < 0.001),
The Friedman test further confirmed a significant difference
in performance ranks across models (p < 0.0001).

VI. DISCUSSION

We have presented ECGluFormer, a DL model that es-
timates glucose levels from ECG recordings in free-living
conditions. ECGluFormer combines two innovations, (1) a
multi-objective loss function that minimizes distributional
differences between ground truth and predicted glucose and
penalizes errors in the hypoglycemic range at the beat level,
and (2) a Transformer architecture that aggregates beat-level
predictions while preserving temporal information in the pres-
ence of missed beats (36% in our experiments).

We compared our combined loss function against the
conventional MSE loss, the normalized MSE loss, and the
DistLoss [26]. Our results show that neither the NMSE or
DisLoss are able to compensate for the large imbalance in
the hypoglycemic range, and that an additional loss term
(inverse frequency; IF) is critical. When trained with our loss
function (NMSE + DistLoss + IF), the ECG encoder extracts
beat-morphology information that captures glucose variability
despite the more dominant information: heart rate.

We validated ECGluFormer against five baselines: (B1) a
traditional feature-engineering approach that extracts fiduciary
points in the ECG signal, (B2) a SOTA CNN-LSTM model
for ECG hypoglycemia detection [18], (B3) an ensemble
averaging method, (B4) a stacked-generalization method that
preserves the distribution of glucose predictions, and (BS) an
LSTM that also preserves ordering. ECGluFormer outperforms
the five baselines in terms of hypoglycemia detection (zones D



in the Clarke Error Grid, sensitivity and specificity at EER) and
glucose prediction (RMSE). Note that baselines B3-5 use the
same ECG encoder as ECGluFormer. Thus, ECGluFormer’s
superiority can only be attributed to the fact that it encodes the
relative timing of ECG embeddings, likely preserving dynamic
ECG information that is associated with hypoglycemia (e.g.,
HRV.) Critically, ECGluFormer can capture this information
even when a high proportion of the beats is missing —time-
frequency HRV analysis is not feasible in such cases.

VII. LIMITATIONS AND FUTURE WORK

A limitation of this study is the relatively small dataset. To
our knowledge, however, PhysioCGM is the largest publicly
available dataset containing synchronized ECG-CGM record-
ings. Due to the dataset size, we have not yet evaluated its gen-
eralization properties across subjects. Based on our experience
with other CGM-related studies, building subject-independent
models requires a minimum of 20+ subjects. Transfer learn-
ing may be a good option to address this challenge, us-
ing pretrained foundation models for ECG (e.g., ECG-FM,
HuBERT-ECG) and then fine-tuning on our glucose-prediction
task. Our two-stage design with separate beat-level encoder
and Transformer aggregator makes it straightforward to swap
in a pretrained backbone without modifying the aggregation
head. Further, we can think of two adaptation strategies
given the current amount of data: (1) Leave-one-subject-out
(zero-shot): train ECGluFormer on N-1 subjects (using a
foundation-initialized encoder + Transformer) and directly test
on the held-out participant with no further tuning to mea-
sure pure cross-patient performance; (2) Few-shot fine-tuning:
fine-tune the entire pipeline (encoder and aggregation head) on
a small amount of subject-specific ECG-CGM data to assess
how quickly it personalizes to new patients.

ECGluFormer is a lightweight model that contains 410k
parameters and achieves an average inference time of 8.2
milliseconds per 5-minute CGM segment on an NVIDIA
RTX 3090 GPU, making the model well-suited for real-time
inference. Future work will examine implementation on edge
devices (e.g., smartphone chipsets.)

VIII. CONCLUSION

Our results show that non-invasive glucose prediction with
consumer-grade ECG devices in free-living conditions and in
the presence of sensor failures is feasible. This requires aggre-
gating morphological information from ECG beat morphology
while preserving the relative timing of ECG signals at the time
scale of glucose dynamics.
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