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Abstract

Machine learning systems often must generalize across real-world domains with
different data distributions. These distributions change along multiple factors:
while some of these factors are spuriously correlated with the label, others are
robustly predictive. For example, in wildlife conservation, animal classification
models must generalize across camera deployments, with cameras’ background
distributions varying along both spurious factors (e.g., low-level background varia-
tions) and robustly predictive factors (e.g., the background’s habitat type). In this
work, we show that data augmentations offer significant out-of-distribution gains
when they are carefully designed to randomize only spurious variations, while
preserving the robust variations. On IWILDCAM2020-WILDS and CAMELYON17-
WILDS, two domain generalization datasets, targeted augmentations outperform the
previous state-of-the-art by 3.2% and 14.4% respectively. Our results suggest that
data augmentations, when targeted to selectively randomize spurious cross-domain
variations, can be an effective route to real-world out-of-distribution robustness.

1 Introduction

Machine learning systems are often deployed across multiple domains, including new domains
that were unseen during training. Distribution shifts between domains can substantially degrade
model performance [1, 2, 3, 4], especially in real-world settings, where generalizing to new domains
remains persistently challenging, even for state-of-the-art domain generalization methods [1]. In this
work, we show that data augmentations are very effective at improving out-of-distribution (OOD)
robustness on two such real-world settings from the WILDS benchmark [1]. In particular, while we
benchmark several data augmentations, we find that a set of augmentations, which we term targeted
augmentations, are most effective by a large margin. Targeted augmentations incorporate application
knowledge to decompose cross-domain variations into a set of spurious factors (i.e., uninformative
across domains) versus robustly predictive factors. They then selectively randomize only the spurious
factors, while preserving the robustly predictive factors.

We study targeted augmentations for two settings. The first setting, IWILDCAM2020-WILDS, involves
classifying animals for wildlife conservation; the domains are camera traps (Figure 1, top) [5], which
differ along spurious factors such as low-level variations in backgrounds (e.g., whether there is a tree
on the left vs. right) and along predictive factors such as high-level variations in backgrounds that
encode the habitat (e.g., jungle vs. grassland). A targeted augmentation in IWILDCAM2020-WILDS,
adapted from application-specific prior work [6], copies and pastes animals onto backgrounds from
other cameras to be invariant to low-level background variations. However, this augmentation only
selects backgrounds from cameras that have observed the copied species in the training set, which
avoids breaking correlations between label and the background’s habitat type. The second setting,
CAMELYON17-WILDS, involves classifying tumors for histopathology (Figure 1, bottom) [7]; the
domains are hospitals, which differ along spurious factors like stain color [8] as well as predictive
factors inherited from different patient populations (e.g., tumor staging and morphology) [9, 10]. In
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Figure 1: We study two domain generalization datasets, IWILDCAM2020-WILDS (top) and
CAMELYON17-WILDS (bottom). They consist of data from different domains, which vary along
factors such as location for IWILDCAM2020-WILDS and stain intensities for CAMELYON17-WILDS.
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Figure 2: Our targeted augmentations randomize camera backgrounds (for IWILDCAM2020-WILDS)
and average stain color intensities (for CAMELYON17-WILDS), eliminating a selected factor of
variation between domains shown in Figure 1.

CAMELYON17-WILDS, we jitter the average stain color for each patch to be invariant to staining
variations [11]; this augmentation randomizes stain levels, without affecting cell shapes.

These targeted augmentations achieve state-of-the-art performance by a wide margin: 3.2 points
on IWILDCAM2020-WILDS and 14.4 points on CAMELYON17-WILDS over the previous best,
outperforming two sets of baselines: standard augmentations in computer vision applications, and
domain invariance methods. Standard augmentations encourage invariance to specific transformations,
but they do not necessarily target cross-domain variations. We observe that these augmentations
can improve both out-of-distribution (OOD) and in-distribution (ID) performance, but their OOD
gains do not outpace their ID gains as much as targeted augmentations; in other words, they do
not improve effective robustness [12]. On the other hand, domain invariance methods encourage
broad invariance across domains [13, 14, 15], but unlike our targeted augmentations, they do not
selectively target spurious cross-domain variation. We observe that while these methods can improve
effective robustness, they have substantially worse ID and OOD performance compared to targeted
augmentations, and we speculate that their broad, untargeted nature makes them both less effective
at encouraging invariance to spurious variation and at preserving predictive variation. Altogether,
our results suggest that targeted augmentations, which isolate and randomize spurious cross-domain
variations using prior knowledge, are a promising avenue for improving real-world OOD performance.
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2 Related Work

Spurious versus predictive cross-domain variations. In this work, we decompose features which
vary between domains into spurious and predictive features. A related decomposition has been used
in the context of causal approaches to robust learning [16, 17, 18], where prior knowledge is used
to map all non-causal features to spurious features, treating only causal features as predictive. Our
experiments on IWILDCAM2020-WILDS suggest that such a restrictive definition for a robust feature
(which excludes background habitat features, for example) can hurt task performance. Orthogonally,
domain invariance methods penalize reliance on any (conditional) variations across domains [19, 13].
This set may include both spurious and robust features if these distributions vary across domains [18].
For example, in CAMELYON17-WILDS, this set includes features impacted by cancer staging, which
varies across hospitals.

Data augmentations for OOD robustness. Data augmentations are a cornerstone of in-distribution
(ID) image classification [20, 21, 22, 23]. The mechanism by which augmentations are helpful is
not well-understood, although in the ID setting, prior work has framed augmentation as providing
variance reduction or other regularization [24, 25, 26]. ID-successful augmentations have also been
evaluated in OOD settings, where they can sometimes outperform domain generalization algorithms
[4, 1]. Others have designed augmentations specifically for OOD generalization [27, 2, 28]. Our
work suggests that augmentations are most successful OOD when they are targeted to a particular
distribution shift, eliminating spurious cross-domain variations while preserving predictive ones.

3 Setup

Domain generalization. We consider a domain generalization setting based on Koh et al. [1],
where the goal is to generalize to test domains Dtest which are disjoint from the training domains
Dtrain (i.e., Dtrain ∩ Dtest = ∅). Each domain d corresponds to a data distribution Pd over examples
(x, y, d), where x is the input, y is the label, and d is the domain. The training distribution P train =∑

d∈Dtrain qtraind Pd is a mixture of per-domain data distributions, made up of training domains Dtrain

with mixture weights qtraind . Similarly, the test distribution P test =
∑

d∈Dtest qtestd Pd is mixture
composed of test domains Dtest with mixture weights qtestd . We train a model θ ∈ Θ on examples
drawn from the training distribution P train, with the goal of maximizing its out-of-distribution (OOD)
performance on the test distribution P test. In addition to the OOD performance, we evaluate the
model’s in-distribution (ID) performance on held-out samples from the training distribution P train.

Targeted augmentations. We study application-tailored augmentations that randomize the spurious
factors of variation across domains. These targeted augmentations rely on a decomposition of the
input into predictive and spurious components, as defined using prior, application-specific knowledge:
x = f(xcore, xspu), where xcore refers to the robustly predictive features and xspu is the spurious
feature. A targeted augmentation A applies a spurious transform Aspu on the spurious features, while
preserving the predictive features: A(x) = f(xcore, Aspu(xspu)), where Aspu is a stochastic function
that intuitively transforms the spurious features into those from another domain. We train a model by
minimizing the average loss on the augmented examples: θ̂ = argminθ∈Θ EP̂ train [ℓ(θ; (A(x), y))].

4 Datasets and Augmentations

We study targeted augmentations from prior work on two datasets from the WILDS benchmark [1],
as summarized in Figures 1 and 2. Appendix A provides additional details on the augmentations.

Copy-Paste on IWILDCAM2020-WILDS. In IWILDCAM2020-WILDS [1, 29], the input x is a
color photograph, the label y is either an animal species or “empty”, and the domain d is the identity
of the static camera trap that captured the image. There are 243 ID cameras and 48 OOD cameras. We
study the Copy-Paste augmentation [30, 31, 32, 33], which targets cross-camera variations in image
backgrounds, extending earlier work by Beery et al. [6] (see Appendix D). Copy-Paste randomizes
image backgrounds while fixing the animal foreground; specifically, this is a spurious transform Aspu

that samples a background from the subset of training domains in which the same animal species
has been observed. This roughly corresponds to sampling backgrounds within the same habitat (see
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Figure 3: ID Test (horizontal) vs. OOD Test (vertical) performances of targeted augmentations
and baselines over 5 replicates for IWILDCAM2020-WILDS and 10 replicates for CAMELYON17-
WILDS. Points are mean performances, and error bars are standard errors. Targeted augmentations
significantly outperform standard augmentations and domain invariance methods.

Appendix A), so it preserves not only animal foregrounds, but also high-level habitat features in the
background, while encouraging invariance to spurious, low-level background variations.

Stain Color Jitter on CAMELYON17-WILDS. In CAMELYON17-WILDS [1, 7], the input x is a
colored image of a tissue patch, the label y is whether the patch contains a tumor, and the domain
d is the identity of the hospital that collected the sample. There are 3 ID hospitals and 1 OOD
hospital, with a 5th hospital used for validation. We study the Stain Color Jitter augmentation from
Tellez et al. [11], which targets cross-hospital variations in staining procedures. Stain Color Jitter
randomizes the average stain level of each patch, while fixing all other information as predictive
features, including the cell structures and relative stain levels within each patch. This is contrast
with standard augmentations like MixUp [21], which average stain colors between examples but also
affect the resulting image’s cell shapes. Specifically, the spurious transform Aspu applies a random
affine transform to the average staining level for each stain.

5 Experiments

We compare targeted augmentations with two domain invariance methods: (C)DANN [19, 13],
which penalizes representations from which a (label-conditioned) discriminator can predict domain;
and LISA [15], a data augmentation that interpolates between examples of the same class from differ-
ent domains. We also compare to standard data augmentations in computer vision: RandAugment
[20], CutMix [22], MixUp [21], and Cutout [34], which were designed to improve ID performance
but have also improved OOD performance in some settings [35, 3, 36]. Additional baseline and
training details are in Appendices B and C.

Results. Targeted augmentations significantly improve OOD performance (Figure 3), achieving
state-of-the-art performance on both datasets. Compared to the best-performing baseline on the
WILDS leaderboard [1] (RandAugment [20]), targeted augmentations improve OOD Macro F1 on
IWILDCAM2020-WILDS from 33.3% → 36.5% and OOD average accuracy on CAMELYON17-
WILDS from 77.7% → 92.1%. We note that these targeted augmentations also match or outperform
unsupervised domain adaptation methods as benchmarked by Sagawa et al. [35], where previous
bests were 32.1% OOD Macro F1 on IWILDCAM2020-WILDS (set by Noisy Student [37]) and
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Copy-Paste (Same Y) Copy-Paste (All Backgrounds) Foreground Only
OOD Macro F1 36.5 (0.4) 34.7 (0.4) 32.9 (0.5)
ID Macro F1 50.2 (0.7) 47.1 (1.1) 42.5 (0.7)

Table 1: Ablation on preserving predictive features in IWILDCAM2020-WILDS. Performance
degrades when habitat-based predictive features in the background are randomized (center column)
or removed (right column).

91.4% OOD average accuracy on CAMELYON17-WILDS (set by SwAV [38]). Both unsupervised
methods also rely on data augmentation as a core subroutine.

On IWILDCAM2020-WILDS, Miller et al. [12] showed that the ID and OOD performance of a wide
variety of models were strikingly linearly correlated; we plot their linear fit on Figure 3a. We found
that our targeted Copy-Paste augmentation conferred what Miller et al. [12] term effective robustness,
which is represented in the plot by a vertical offset from the line. In contrast, none of the standard
augmentations we tested improved effective robustness. While the domain invariance methods we
tested also showed effective robustness, their overall ID and OOD performances are substantially
worse, even when compared to standard empirical risk minimization (ERM). On CAMELYON17-
WILDS, Miller et al. [12] did not establish a clear linear trend. Nevertheless, we found that targeted
augmentations compare similarly to baselines on CAMELYON17-WILDS as on IWILDCAM2020-
WILDS; consistent with prior work exploring stain color jitter in histopathology applications, [8, 12],
it significantly improves OOD accuracy.

Preserving predictive features. To illustrate the importance of preserving predictive features that
vary between domains, we ran an ablation on the Copy-Paste augmentation for IWILDCAM2020-
WILDS. Our augmentation Copy-Paste (Same Y) attempts to preserve the plausibility of the augmented
image by only swapping backgrounds with from training domains in which the same animal species
has been observed. In contrast, we now study a Copy-Paste (All Backgrounds) variant that swaps
backgrounds randomly with all other training domains, including training domains in which the
same animal species was not observed. This variant does not preserve habitat-based predictive
features—e.g., the fact that camels are found in arid regions (Figure 2)—and its OOD performance
correspondingly drops by 1.8% (Table 1), illustrating the value of designing targeted augmentations
to preserve predictive cross-domain variations.

Predictive features need not be causal. The IWILDCAM2020-WILDS setting also illustrates that
robustly predictive factors need not be causal factors: for example, in IWILDCAM2020-WILDS, a
camel placed in a jungle is still a camel, but in realistic wildlife conservation settings we would
expect a jungle background to be robustly indicative that the animal is unlikely to be a camel. While
only utilizing causal features guards against worst-case variations across domains, keeping predictive,
possibly non-causal features aims to guard against only realistic shifts across domains. Fully utilizing
such predictive, non-causal factors is particularly important in real-world settings where causal
features have high noise rates, such as in IWILDCAM2020-WILDS, where animal foregrounds may
be blurry, dimly lit, or camouflaged. To illustrate this, we trained a model on IWILDCAM2020-
WILDS using images containing only the animal foreground (i.e., the backgrounds are replaced with a
solid color). We then evaluated this model on a transformed version of the evaluation set, such that
images only contain the animal foreground. In this setting, the model is trained and evaluated on its
ability to predict animal species using only the causal feature (foreground). However, this model
attains an average OOD performance of 32.9%, underperforming Copy-Paste’s 36.5% (Table 1). This
suggests that leveraging robustly predictive, non-causal features can preserve task performance across
realistic shifts.

Conclusion. Altogether, our results show that using prior knowledge to design targeted augmenta-
tions, which randomize spurious cross-domain variations while preserving predictive variations, can
lead to significant improvements in out-of-distribution robustness. We hope that such an approach
can be helpful in other real-world applications seeking to generalize across domains.
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A Augmentation Details

A.1 Copy-Paste on IWILDCAM2020-WILDS

The full Copy-Paste protocol is given in Algorithm 1. We consider two strategies for selecting the set
of valid empty backgrounds B(i).

1. Copy-Paste (All Backgrounds): all empty train split images. B(i) = {(x, y, d) ∈
Dtrain : y = “empty”}, i.e., all augmented examples should have a single distribution of
backgrounds. There is a large set of training backgrounds to choose from when executing
the procedure – of 129, 809 training images, 48, 021 are empty images.

2. Copy-Paste (Same Y): empty train split images from cameras that have observed y(i).
Let Y(d) represent the set of labels domain d observes. Then B(i) = {(x, y, d) ∈ Dtrain :
y = “empty” and y(i) ∈ Y(d)}.

Algorithm 1: Copy-Paste

Input: Labeled example (x(i), y(i), d(i)), binary segmentation mask m(i), set of images to
sample empty images from to use as backgrounds B(i)

if y(i) = “empty” or |B(i)| = 0 then
return x(i)

Copy out foreground by applying segmentation mask f (i) := m(i) ◦ x(i)

Randomly select a background b ∈ B(i)

Paste f (i) onto b and return x̃(i) := Paste(f (i), b)

Segmentation Masks. The IWILDCAM2020-WILDS dataset is curated from real camera trap data
collected by the Wildlife Conservation Society and released by Koh et al. [1], Beery et al. [29].
Beery et al. [29] additionally compute and release segmentation masks for all labeled examples in
IWILDCAM2020-WILDS. These segmentation masks were extracted by running the dataset through
MegaDetector [39] and then passing regions within detected boxes through an off-the-shelf, class-
agnostic detection model, DeepMAC [40]. We use these segmentation masks for our Copy-Paste
augmentation.

Intuition. Most cameras in IWILDCAM2020-WILDS observe a very limited set of labels; although
there are 182 classes in IWILDCAM2020-WILDS overall, Irie et al. [41] report that more than 50%
of domains observe fewer than 6 labels. The label support of each camera is strongly correlated
with the habitat that a camera observes – cameras in the jungle are unlikely to include camels in
their support. This suggests that when cameras overlap classes, the cameras are themselves related:
i.e., , the cameras observe the same ecological habitat. We thus expect that Copy-Paste (Same Y)
to randomize low-level variations in background (e.g., , the particular location observed within a
habitat) while preserving high-level background variations between cameras (e.g., keeping jungle
animals on jungle backgrounds and desert animals on desert backgrounds).

A.2 Stain Color Jitter on CAMELYON17-WILDS

The full Stain Color Jitter protocol, originally from Tellez et al. [11], is given in Algorithm 2. The
augmentation uses a pre-specified Optical Density (OD) matrix from Ruifrok et al. [42] to project
images from RGB space to a three-channel hematoxylin, eosin, and DAB space before applying a
random linear combination.

Intuition. Hospitals in CAMELYON17-WILDS vary in their class-separated color histograms (Figure
4). The means of these color distributions are spuriously correlated with the label. In the three training
hospitals (top 3 panels), the negative class color distribution has a larger mean than the positive class
color distribution; this trend is reversed in the OOD test hospital (bottom panel). We aim for stain
color jitter to remove the correlation between mean color and label in the training data.
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Algorithm 2: Stain Color Jitter Augmentation

Input: Labeled example (x(i), y(i), d(i)), normalized OD matrix M [42], tolerance ϵ = 1−6

S = − log(x(i) + ϵ)M−1

Sample α ∼ Uni(1− σ, 1 + σ)
Sample β ∼ Uni(−σ, σ)
P = exp[−(αS + β)M ]− ϵ
return P with each cell clipped to [0, 255]

Figure 4: Class-separated color histograms for CAMELYON17-WILDS.

B Baselines

We compare our augmentations to baseline methods which have improved OOD performance in prior
work, including both adversarial methods (e.g., DANN, CDAN) and other data augmentations. Some
of these methods were designed for domain generalization – they require domain annotations d(i)
during training and optimize for some notion of domain invariance. Other methods (e.g., standard data
augmentations) were designed for ID generalization but have been applied to domain generalization
problems in prior work.

Below, we describe each baseline and additional implementation decisions.

CDAN [19] – adversarial training, uses domain information. CDAN optimizes for domain
invariance by penalizing representations from which a discriminator can easily predict domains,
conditioned on y. In other words, CDAN penalizes feature variance across domains within y. Given
features Φ(x), classification head g, and a domain discriminator h, the CDAN loss is

CrossEntropy(y, g ◦ Φ(x))− λCrossEntropy (d, h (Φ(x), y))

We use the implementation of CDAN from Gulrajani and Lopez-Paz [4], which uses an MLP for
h. CDAN has four hyperparameters: λ, a featurizer learning rate, a classifier learning rate, and a
discriminator learning rate. We run CDAN on IWILDCAM2020-WILDS. Because each domain in
CAMELYON17-WILDS is class-balanced, we swap CDAN for DANN (below) on CAMELYON17-
WILDS.
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DANN [13] – adversarial training, uses domain information. DANN optimizes for domain
invariance by penalizing representations from which a discriminator can easily predict domains.
Given features Φ(x), classification head g, and a domain discriminator h, the DANN loss is

CrossEntropy(y, g ◦ Φ(x))− λCrossEntropy(d, h ◦ Φ(x))
We use the implementation of DANN from Junguang Jiang [43], Jiang et al. [44], which uses a
3-layer MLP for h and four hyperparameters: λ, a featurizer learning rate, a classifier learning rate,
and a discriminator learning rate. We discuss our tuning strategy in Appendix C. We run DANN on
CAMELYON17-WILDS because each domain is class-balanced. On IWILDCAM2020-WILDS, where
domains have extreme class imbalances, we instead run CDAN (above).

LISA or Domain Mix-Up [15, 45] – data augmentation, uses domain information. LISA
encourages domain invariance by mixing examples from the same label across different domains. It
has improved OOD performance on some datasets [15, 45, 3]. Given an example x(i) from domain
d(i), LISA samples another example x(j) where y(i) = y(j) but d(i) ̸= d(j). LISA then generates
synthetic examples that interpolate between x(i), x(j), either via MixUp or CutMix with parameter α
(see below). We follow Yao et al. [15] and fix α = 2, grid searching over the use of MixUp versus
CutMix to interpolate between x(i), x(j).

Vanilla MixUp [21] – data augmentation. MixUp has improved OOD performance on some
distribution shifts [15, 36]. MixUp generates synthetic examples that smoothly interpolate between
pairs of real examples. Concretely, two examples x(i) and x(j), MixUp samples a mixing parameter
λ ∼ Beta(α, α), where α is a hyperparameter, and combines x(i), x(j) to produce

x̃(i) := λx(i) + (1− λ)x(j) (1)

ỹ(i) := λy(i) + (1− λ)y(j) (2)

and corresponding x̃(j), ỹ(j). We follow Zhang et al. [21] and grid search over α ∈ {0.2, 0.4}.

Vanilla CutMix [22] – data augmentation. CutMix has improved OOD performance on some
datasets [36]. CutMix, like Copy-Paste, involves pasting pixels from some training examples onto
other examples. Given two examples x(i) and x(j), CutMix randomly samples a rectangle of area
parameterized by λ ∼ Beta(α, α), where α is a hyperparameter, pastes that rectangle from x(i) onto
x(j) and vice versa, and mixes the labels according to the ratio of pixels, i.e.,

ỹ(i) :=

(
1− number of pixels from x(j)

total number of pixels

)
y(i) +

(
number of pixels from x(j)

total number of pixels

)
y(j) (3)

We follow Yun et al. [22] and grid search over α ∈ {0.5, 1.0}.

RandAugment [20] – data augmentation. RandAugment is a common augmentation explored
for OOD generalization [3, 35] and features as a subroutine in Berthelot et al. [46], Sohn et al.
[47], Xie et al. [37], Sagawa et al. [35]. For each example, RandAugment samples a sequence of k
PIL operations (e.g., rotate, shear, autocontrast, RGB color jitter) and applies these operations in
sequence, each with a randomly sampled magnitude, followed by a random horizontal flip. We use
the implementation of RandAugment from Zhang et al. [48] and search over k ∈ {1, 2}, following
Sagawa et al. [35].

Cutout [34] – data augmentation, uses bounding boxes. Cutout has improved OOD performance
on some datasets [36]. For each example, Cutout samples a random rectangle of the image to erase
(i.e., replace with gray pixels), followed by a random horizontal flip. Because Cutout may accidentally
occlude the animal foreground in IWILDCAM2020-WILDS, we also implement a version of Cutout
with bounding box knowledge, such that no rectangle occludes more than 50% of animal bounding
boxes. We grid search over the original and bounding box-aware version of Cutout.

C Hyperparameter strategy

We tuned all benchmarked methods by fixing a budget of 10 tuning runs per method with one replicate
each. For each method, we selected final hyperparameters and carried out early stopping using the
OOD validation splits of IWILDCAM2020-WILDS and CAMELYON17-WILDS.
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C.1 Hyperparameter grids for IWILDCAM2020-WILDS

All experiments used a ResNet-50, pretrained on ImageNet, with no weight decay and batch size 24.
We applied all data augmentations stochastically with some transform probability, since we found
that doing so improved performance as in prior work [49].

Method Hyperparameters
ERM Learning rate ∼ 10Uni(−5,−2)

Copy-Paste Learning rate ∼ 10Uni(−5,−2)

Transform probability ∼ Uni(0.5, 0.9)

LISA
Learning rate ∼ 10Uni(−5,−2)

Transform probability ∼ Uni(0.5, 0.9)
Interpolation method ∈ {MixUp, CutMix}

Vanilla MixUp
Learning rate ∼ 10Uni(−5,−2)

Transform probability ∼ Uni(0.5, 0.9)
α ∈ {0.2, 0.4}

Vanilla CutMix
Learning rate ∼ 10Uni(−5,−2)

Transform probability ∼ Uni(0.5, 0.9)
α ∈ {0.5, 1.0}

RandAugment
Learning rate ∼ 10Uni(−5,−2)

Transform probability ∼ Uni(0.5, 0.9)
k ∈ {1, 2}

CutOut
Learning rate ∼ 10Uni(−5,−2)

Transform probability ∼ Uni(0.5, 0.9)
Version ∈ {Original, Bounding box-aware}

CDAN
Classifier learning rate ∼ 10Uni(−5.5,−4)

Discriminator learning rate ∼ 10Uni(−5.5,−4)

λ ∼ 10Uni(−0.3,1)

Table 2: Hyperparameter search spaces for methods on IWILDCAM2020-WILDS.

C.2 Hyperparameter grids for CAMELYON17-WILDS

We followed the hyperparameters used by Sagawa et al. [35] for their ERM experiments. In particular,
we fixed the batch size to 168 and the learning rate to 0.0030693212138627936, which was selected
in Sagawa et al. [35] after a random search over the distribution 10Uni(−4,−2). For CAMELYON17-
WILDS, we found that the choice of learning rate affected the relative ID vs. OOD accuracies of
models, and we therefore standardized the learning rate across algorithms to remove it as a potential
confounder for our experimental results. Separately tuning the learning rate for each algorithm did not
significantly improve performance. For DANN, we used this learning rate for the featurizer and set the
classifier learning rate to be 10× higher, following Sagawa et al. [35]. We encountered optimization
issues with adversarial discriminator training; to overcome this, we did a separate hyperparameter
search for the discriminator learning rate and penalty strength λ, and selected the hyperparameter
setting that resulted in the representation with the most invariant distributions across domains (as
measured by a linear probe). We fixed the transform probability of all data augmentations to 1.0,
since stochastically applying the augmentations did not seem to significantly affect performance on
CAMELYON17-WILDS, and we took their other hyperparameter values from the original papers.

Because of the large variance in performance between random seeds for some algorithms on
CAMELYON17-WILDS [1, 12], we ran 10 replicates per algorithm after selecting hyperparame-
ters. The error bars were especially large for ERM, so we ran 50 replicates to ensure that we were
accurately reporting its performance.

D Related work

Copy-paste augmentation. Copy-paste has previously been studied in object detection and image
segmentation tasks, where it has increased ID performance [30, 31, 32, 33]. However, several
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Method Hyperparameters
Stain Color Jitter Augmentation strength ∈ {0.05, 0.1}

LISA α = 2
Interpolation method = CutMix

Vanilla MixUp α = 0.2
Vanilla CutMix α = 0.5
RandAugment k = 2

DANN Discriminator learning rate ∼ 10Uni(−4,−2)

λ ∼ 10Uni(−1,0)

Table 3: Hyperparameter search spaces for methods on CAMELYON17-WILDS.

works have found that its gains are limited, or even negative, in the ID object recognition setting
[50, 51], though both of these works only study performance on ImageNet-9 [50]. Unlike ImageNet-
9, IWILDCAM2020-WILDS evaluates both ID and OOD performance. It also contains an explicit
“empty” class, so augmented examples use natural backgrounds from real examples in the dataset,
whereas Xiao et al. [50], Ryali et al. [51] must segment, erase, and inpaint images to retrieve usable
backgrounds. We find that, unlike prior work, Copy-Paste significantly boosts both ID and OOD
performance on IWILDCAM2020-WILDS.

Copy-paste was also used by Beery et al. [6] to generate synthetic examples for minority classes in
CCT-20, a small camera trap dataset with 15 classes and 20 cameras. They find that copy-paste gives
a strong performance boost on both ID and OOD cameras; however, this work was on a smaller scale
than IWILDCAM2020-WILDS.

The object detection and instance segmentation literature has disagreed as to whether to curate the
backgrounds on which object foregrounds are pasted. Ghiasi et al. [30] set B(i) := Dtrain, i.e., any
example may paste onto any other example, including ones already containing other objects. Dwibedi
et al. [31] set B(i) to a separate set of empty images. Dvornik et al. [32], Fang et al. [33] argue B(i)

should be a set of images that semantically concord with the object x(i), i.e., synthesized examples
x̃(i) should appear realistic. These papers also disagree as to whether the foreground should be
intelligently pasted onto images, i.e., whether foregrounds should be translated around the frame such
that we avoid floating or incorrectly scaled objects.

Spurious correlations with image backgrounds in image classification. Empirical work has
observed that models can learn to rely on spurious features for prediction, leading to a large ID-
OOD drop; in image classification, background is a typical example given as a spurious correlation
[5, 52, 53]. However, as we and Xiao et al. [50], Zhang et al. [54] find, background can also contain
signal for prediction, such that removing backgrounds or swapping them indiscriminately significantly
drops performance. Other works have investigated spurious correlations with other objects in the
image frame [55, 56, 57]. Ryali et al. [51] experiment with copy-paste data augmentations to reduce
reliance on background, but they find that copy-paste degrades performance when used for supervised
learning, while it can help when used in contrastive learning.
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