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Abstract
Prior work found that superhuman Go AIs
such as KataGo are vulnerable to opponents
playing simple adversarial strategies. This
shows that superhuman average-case capabil-
ities may not translate to satisfactory worst-
case robustness. However, Go AIs were never
designed with security in mind, raising the
question: can simple defenses make KataGo
robust? In this paper, we test three natu-
ral defenses: adversarial training on hand-
constructed positions, iterated adversarial
training, and changing the network architec-
ture. We find these defenses protect against
previously discovered attacks, but we un-
cover several qualitatively distinct adversarial
strategies that beat our defended agents. Our
results suggest that achieving robustness is
challenging, even in narrow domains such as
Go. Our code is available at https://github.
com/AlignmentResearch/go_attack.†

1. Introduction
It is essential that AI systems work robustly, especially
when deployed at a societal scale or used in safety-
critical systems. While average-case performance of
AI systems is rapidly improving, building systems with
good worst-case performance remains unsolved. Super-
human Go systems (Wang et al., 2023a) fail severely
under adversarial inputs, as do state-of-the-art image
classifiers (Liu et al., 2023; Croce et al., 2021) and lan-
guage models (Zou et al., 2023). This shows that strong
average-case capabilities may not lead to robustness:
building robust AIs requires a concerted effort.

In this paper, we aim to make KataGo (Wu, 2021c), a
state-of-the-art Go AI, robust. Wang et al. (2023a) pre-
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viously found a “cyclic attack” that beat a superhuman
KataGo version 97% of the time, yet loses to human
amateurs. Since game-playing AIs like KataGo were
not designed with security in mind, we investigate three
natural defenses (Figure 1.1). We find these defenses
protect KataGo against Wang et al.’s adversary but
can be overcome by new attacks.

We first consider a positional adversarial train-
ing defense (deferred to Appendix E): augmenting
KataGo’s training data with examples of Wang et al.
(2023a)’s cyclic attack. This intervention hardens
KataGo against Wang et al. (2023a)’s adversary, yet
further training enables that adversary to beat the ad-
versarially trained version of KataGo 91% of the time;
we also discover a qualitatively new “gift attack” by
training from an earlier adversary checkpoint.

Nonetheless, this first approach shows that training
against a known adversary can be effective in defeating
a specific, fixed attack. This leads us to our second ap-
proach of iterated adversarial training (Section 3)
that simulates an “arms race” of an adversary con-
tinuously searching for new attacks to overcome the
victim’s defenses and a victim continuously building
defenses against new attacks. The resulting victim is
robust to Wang et al. (2023a)’s adversary. However, we
were still able to train a new attack that defeats this
victim 81% of the time using just 5% of the compute
used for training the victim.

Systematically exploring all possible adversarial strate-
gies is intractable. Instead, we must rely on the AI
learning generalizable representations. The limited
generalization observed might suggest a fundamental
limitation of the convolutional neural network (CNN)
architecture used by KataGo and other leading Go AIs.
To test this hypothesis and to try to build a more robust
system, we train a new professional-level Go AI using a
vision transformer (ViT) instead of a CNN (deferred
to Appendix G.1). We find the ViT-based agent is less
vulnerable to Wang et al.’s original adversary. However,
after fine-tuning the original adversary against the ViT
agent, the adversary defeats a superhuman version of
the ViT agent 78% of the time.

We view building a robust Go AI as a natural starting
point for designing robust AI systems more broadly. Go
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Figure 1.1: The interventions we study to defend Go AIs against adversarial attacks. Left: Positional adversarial
training involves self-play initialized from adversarial positions for the agent to “study”. Middle: Iterated
adversarial training involves multiple rounds of an adversary finding attacks and a victim building defenses.
Right: We replace the convolutional neural network (CNN) model with a vision transformer (ViT) to test the
hypothesis that the adversarial vulnerability of Go AIs are due to CNNs’ inductive biases.

has long driven AI development, with insights from Al-
phaGo (Silver et al., 2016) being generalized to a wide
variety of tasks through algorithms like MuZero (Schrit-
twieser et al., 2020). At the same time, we expect the
narrow domain of Go makes achieving robustness easier
than in more open-ended tasks. Furthermore, as Go is
a zero-sum or adversarial game with solution concepts
like Nash equilibria that minimize exploitability, it
should theoretically be possible to be fully robust while
maintaining average-case performance. By contrast, in
domains like image classification there are fundamental
trade-offs between clean and robust accuracy (Tsipras
et al., 2019).

Unfortunately, our results suggest that building robust
AI systems will be quite challenging. None of our
defenses provide a complete solution, even in the narrow
domain of Go, and several of the attacks can even be
executed by a human (Appendix I). A more extensive
redesign is likely needed to build robust AI systems,
both in Go and more complex domains. However,
our defenses do make attacks more computationally
demanding and less effective with higher victim search
depth. This suggests that a concerted research effort
could develop robust AI that can be relied on in many
contexts. The path to this, however, may be orthogonal
to that required for impressive average-case capabilities.

2. Background
We follow the threat model of Wang et al. (2023a) set
in a two-player zero-sum Markov game (Shapley, 1953).
A threat actor trains one of the agents, the “adversary,”
and seeks to win against a “victim” agent. The threat
actor has grey-box access to the victim: they can query
the victim’s policy network on arbitrary inputs any

number of times. However, the adversary does not
have direct access to the victim’s weights and cannot
take gradients through the victim.

We aim to make the victim robust. Though the vic-
tim will always be exploitable by some adversary since
optimal play in Go is intractable, it may be possible
to make finding such an adversarial strategy compu-
tationally impractical. Accordingly, our threat model
restricts itself to compute-limited adversaries. We use a
small, fixed inference budget and report the amount of
compute used to train the adversary. We are also con-
cerned with AI systems that fail dramatically in cases
humans do not, framed more precisely in Appendix C.
We find these non-human failure modes in all of the
following vulnerabilities.

We use Wang et al. (2023a)’s state-of-the-art attack
method to produce adversaries for adversarial train-
ing and to test our defenses. Wang et al. train an
adversary with victim-play where the adversary plays
games against a frozen copy of the victim, and train-
ing data is saved only from the adversary’s moves.
The adversary selects moves using Adversarial MCTS
(A-MCTS), a modification of MCTS that queries the
victim’s policy network when traversing MCTS nodes
corresponding to the opponent’s move. The adversary
is pitted against increasingly stronger victims as part
of a training curriculum, switching to a stronger victim
once the adversary’s win rate exceeds a certain thresh-
old. We follow Wang et al. by evaluating adversaries
with 600 A-MCTS visits per move.

Wang et al. (2023a) trained base-adversary against
a 2022 KataGo network base-victim.∗We typi-

∗Wang et al. refer to base-adversary as
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cally train our adversaries by warm-starting from
base-adversary, which achieved a 97% win rate
against base-victim at 4096 victim visits. To find di-
verse attacks, in some experiments we warm-start from
base-adv-early, which is the first base-adversary
checkpoint that beats base-victim at 1 victim visit
after just 7% of base-adversary’s compute. See Ap-
pendices B and D for details on these networks and
training parameters.

3. Iterated adversarial training
Appendix E, examining positional adversarial training,
shows that an adversarially trained agent can still be
vulnerable to new attacks. Can we create a robust agent
by repeatedly defending against new attacks until the
space of possible attacks is exhausted? In this section,
we design an iterated adversarial training procedure
that alternately trains a victim and an adversary. Our
procedure produced a victim that was largely robust
to the attacks it observed, losing only a low single-digit
percentage of games. However, the victim did not gain
robustness to new attacks, as we were able to train a
new adversary to exploit the final victim.

3.1. Methodology

Our approach differs from KataGo’s adversarial train-
ing (Appendix E.1) in three key ways. First, we perform
iterated adversarial training, with multiple rounds of
attack and defense to train against a broader range
of attacks. Second, we include a higher proportion of
adversarial games in the training data: since our prior-
ity is robustness, we are more willing to take a hit in
average-case capabilities than the KataGo developers.
Third, we play games directly against the adversary:
this method is less sample-efficient than starting from
hand-curated positions, but more scalable and does not
require domain-specific knowledge.

We label the adversary and victim at iteration n of ad-
versarial training as “an” and “vn”. The initial victim
is v0 = base-victim, and the initial adversary is a0 =
base-adversary, which Wang et al. trained to defeat
base-victim. Each subsequent iteration involves train-
ing the victim to be robust against the latest adversary,
then training an adversary to attack this hardened
victim. We repeat this process for 9 iterations.

vn is fine-tuned from vn − 1 with 18% of games played
against a frozen copy of an − 1, and 82% of self-play
games against itself. This mixture teaches the victim
to be robust to the attack while maintaining its Go
capabilities. We stop the training when the victim’s
cyclic-adversary and base-victim as Latest.

win rate plateaus. an is fine-tuned from an − 1 using
victim-play with a curriculum of checkpoints from the
previous vn step. We stop the training after either the
victim reaches a threshold visit count or a set maximum
compute budget is reached. See Appendix F for details.

3.2. Results

Each defender vn learned an effective defense against
the simulated adversary an − 1 but rarely reached a
100% win rate despite an − 1 following a weak, degener-
ate strategy. We tested the final victim v9 by pitting it
against the final simulated attacker a9 as well as a vali-
dation adversary trained separately from the simulated
adversaries a1, . . ., a9. We found the victim was still
vulnerable to both attacks but is somewhat less so at
high visit counts, indicating that iterated adversarial
training offers partial protection against attacks.

3.2.1. Robustness against the iterated
adversaries

Each victim vn achieves a high win rate against the
adversary an − 1 it was trained against when vn uses at
least 16 visits of search (Fig. 3.2, middle). vn quickly
learns to beat an − 1 > 95% of the time (Fig. M.1;
256 visits). However, our defense runs rarely reached
a 100% win rate, and the victims were persistently
vulnerable at extremely low visits (Fig. 3.2, left).

Both victims and adversaries are able to beat oppo-
nents from all previous iterations. This is clearly shown
by the adversary win rate in Fig. 3.2 being much higher
below the diagonal (adversary playing against older vic-
tim) than above the diagonal (victim playing against
older adversary). In the victim case, this can be ex-
plained by the training window being large enough
to contain data from all previous iterations. By con-
trast, since adversary training takes many more time
steps, all data from one iteration exits the training win-
dow during the next iteration. This suggests that the
adversary strategy transfers well to previous victims.

The final victim v9 is still vulnerable even at high
visits. Our final simulated adversary a9 wins 42% of
the time against v9 even at 65,536 visits. We trained
a9 for longer than preceding adversaries, but its total
training compute was still only 26% of v9’s.

All adversaries an exploit a cyclic group, but there are
qualitative variations in the size and location of that
group, other stones, and especially the group inside
the cyclic one (elaborated in Appendix F.2.1). For
example, a9 favors a small, nearly minimal inside shape
(Fig. E.1c). To humans, the differences are subtle,
and the difficulty of defending against them does not
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Figure 3.1: Win rate (y-axis) of adversaries (legend) for varying amounts of search (x-axis) given to victims (plot
title). dec23-victim is a KataGo network that had substantial positional adversarial training. The adversary
win rate declines with victim visit counts; however, some adversaries generalize better to higher victim visit
counts than others. All the victims are vulnerable even at 65,536 visits. Shaded regions are 95% Clopper-Pearson
confidence intervals in this and following figures.

vary significantly. But to the KataGo victims vn, the
representations learned do not appear to generalize
smoothly between these variations.

3.2.2. Robustness against a new adversary

Though the final iterated victim v9 bests all previous
adversaries a1 to a8, the ultimate judge of a defense is
whether it works against real attacks. To evaluate this,
we train a new adversary atari-adversary (initialized
to base-adv-early) against v9 (Fig. 3.3). This is
analogous to a randomly initialized adversary trained
to first beat the publicly available KataGo checkpoint
base-victim at 1 visit and then—without access to any
intermediate adversarial training checkpoints v1,. . . ,v8—
trained to attack v9.

atari-adversary wins 81% of the time against v9
playing with 512 visits despite being trained with less
than 5% of v9’s compute. The attack quickly learns to
exploit v9 at low visits, winning over 60% of the time
against v9 at 256 visits after just 500 V100 GPU days
(Fig. 3.3), sooner than our original base-adversary
adversary learned to exploit base-victim.

However, v9 proves harder to attack at high visits
than base-victim. Quadrupling to 1024 visits takes
slightly more than 4× the compute, largely due to
the increased cost of playing training games at higher
visits. atari-adversary plateaus after 1401 GPU days
(♦) with a meager 4% win rate at 4096 visits. By
contrast, base-adversary generalized rapidly to beat
base-victim at higher visits. See Appendix F.3 for
more information.

atari-adversary’s attack is still cyclic, but with a
characteristic tendency to leave many stones and groups

in “atari”, i.e. that could be captured on the next
move by v9. Moreover, it sets up “bamboo joints”
(Fig. F.3a): shapes where a player has two pairs of two
stones with a one-space gap between them. They are
common in normal play, and often advantageous: the
two sides cannot be separated, as playing in the gap
still allows connection through the remaining space.
atari-adversary induces the victim to form a large
cyclic group including these bamboo joints (Fig. F.3b).
The attack culminates by surrounding the cyclic group
and threatening to split one of the bamboo joints. The
correct play for v9 is to capture one of the numerous
atari-adversary stones in atari, but v9 misses the
danger and connects the bamboo joint, leading to the
entire cyclic group being captured.

4. Discussion
We explored three natural approaches for defending
against adversarial attacks in Go: adversarial training
with hand-constructed positions (Appendix E), iterated
adversarial training (Section 3), and swapping the CNN
backbone for a ViT (Appendix G.1). Each defense
made attacks harder—but never impossible, with the
attack algorithm finding successful attacks in a fraction
of the compute used to train the victims. Moreover,
none of the defenses achieve the robustness of a human
(Appendix C), and humans are even able to execute
several attacks (Appendix I). Our results highlight the
challenge of defending against all possible attacks, or
even all possible cyclic attacks, suggesting an offense-
defense balance (Jervis, 1978) favoring attackers.

We do, however, find it cheap to defend against a
specific attack. Perhaps we could fully defend a Go
AI by training it against each possible attack? This
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Figure 3.2: Win rate of all adversaries (y-axis) against all victims (x-axis) throughout iterated adversarial training
for varying victim visits (plot title). The adversary an is typically able to beat the victim vn it is trained to
exploit (top-left-to-bottom-right diagonal), especially at 16 visits or less (middle and left plots). However, given
at least 16 visits (middle and right) the victim vn is typically able to beat the adversary an − 1 it trained against
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an extended version including other adversaries, victims and visit counts.
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poses two key challenges. First, the space of adversarial
strategies may be large. Second, finding new strong
attacks to generate high-quality adversarial training
data is computationally expensive.

In order for adversarial training to be an effective de-
fense, it therefore seems necessary for the victim to
generalize from a limited number of adversarial strate-
gies. Unfortunately, our results show that current Go
AIs do not generalize in this way: v9 and KataGo’s
adversarially trained networks remain vulnerable to
cyclic attacks even after being trained against many
cyclic attack variants. Algorithmic improvements are
likely needed for effective generalization.

Promising defenses to explore in future work include
latent adversarial training (Casper et al., 2024) and

more sophisticated multi-agent reinforcement learning
algorithms like PSRO (Lanctot et al., 2017) or Deep-
Nash (Perolat et al., 2022). We are also eager to see
explorations of attacks in domains other than Go where
AI has surpassed human performance. Finally, we rec-
ommend a systematic study of whether increases in
capabilities lead to increased robustness.

Our results highlight the obstacles to building robust
AI systems. If we are unable to achieve robustness
in the well-defined and self-contained domain of Go,
achieving robustness in more open-ended real-world
applications will be even more challenging. To build
AI safely, future advanced systems must have intrinsic
robustness at the heart of their design.
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A. Related work
We focus on robustness against adversarial policies: strategies designed to make an opponent perform poorly.
Adversarial policies give an empirical lower bound for an agent’s exploitability: its worst-case loss relative to
Nash equilibria (Timbers et al., 2022). Gleave et al. (2020) previously explored such policies in a zero-sum
game between simulated humanoids trained with self-play. The policies (Bansal et al., 2018) attacked by Gleave
et al. were below human performance, raising the question: were the agents vulnerable because of their limited
capability? To investigate this, Wang et al. (2023a) searched for adversarial policies against the superhuman Go
AI KataGo (Wu, 2020b), finding a strategy that beats KataGo in 97% of games.

We focus on KataGo (Wu, 2020b) as it is the most capable open-source Go AI. Moreover, other superhuman
open-source Go AIs such as ELF OpenGo (Tian et al., 2019) and Leela OpenZero (Pascutto, 2019a) all follow the
same basic AlphaZero-style training architecture. However, alternative multi-agent reinforcement learning methods
may be more robust. Approaches that maintain a population of strategies are promising (Vinyals et al., 2019;
Czempin & Gleave, 2022; Lanctot et al., 2017). Another alternative, counterfactual regret minimization (Zinkevich
et al., 2007), has been used to beat professional human poker players (Brown & Sandholm, 2018). Furthermore,
Perolat et al. (2022) found a method for approximating Nash equilibria (Perolat et al., 2021) that scaled to the
boardgame Stratego, whose game tree is 10175 times larger than Go’s.

We replace the CNN backbone of KataGo with a vision transformer (ViT) and train the ViT agent to a superhuman
level, finding it to be slower to train than a CNN agent and weaker at the same inference budget. By contrast,
Sagri et al. (2024) found the transformer-based EfficientFormer architecture (Li et al., 2022) performed similarly to
CNNs for Go—however, their models were trained only with supervised learning, not self-play. Transformers have
been investigated more thoroughly in chess. Our results are consistent with Czech et al. (2023) who found that
CNNs are stronger at chess than both ViTs and a ViT-CNN hybrid at a given inference budget. Yet transformers
have shown strong performance, with the transformer-based Leela Chess Zero (Pascutto & Linscott, 2019; Monroe,
2023) winning the Top Chess Engine Championship Cup 11 (TCEC, 2023).

Although we find ViTs are weaker than CNNs in average-case capabilities, our primary metric is robustness.
Past research in image classification indicates ViTs are modestly more robust than CNNs against adversarial
perturbations and other out-of-distribution inputs (Benz et al., 2021; Shao et al., 2022; Bhojanapalli et al., 2021;
Zhang et al., 2022; Paul & Chen, 2022), although some research contests this (Bai et al., 2021; Mahmood et al.,
2021; Tang et al., 2022; Pinto et al., 2022; Wang et al., 2023b). Even if ViTs are not overall more robust, their
differing inductive biases might cause them to fail in different ways to CNNs, with prior work finding ViTs are
more vulnerable to patch perturbations (Fu et al., 2022). Surprisingly, we find that not only are ViT-based Go
agents exploitable by new attacks, but the attack of Wang et al. (2023a) transfers zero-shot to our ViT agent.
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B. KataGo networks reference
We build on top of KataGo (Wu, 2020b), the strongest open-source Go AI system. KataGo learns via self-play
using an AlphaZero-style training procedure (Silver et al., 2018). The agent selects moves with Monte-Carlo Tree
Search (MCTS), using a neural network to propose and evaluate moves. The neural network contains a policy
head that outputs a probability distribution over the next move and a value head that estimates the win rate
from the current state. KataGo trains its policy head to mimic the outcome of tree search and its value head to
predict whether the agent wins the self-play game.

We evaluate and fine-tune a variety of KataGo models. We refer to each model’s architecture as bBcC where B
is the number of blocks in the convolutional residual network and C is the number of channels. We refer to each
model by bBcC-sSm where S is the number of million time steps for which the model has been trained. We
may omit the channel term cC when there is no ambiguity. All of our adversaries have 6 blocks and 96 channels,
abbreviated to b6c96 or just b6.

The victims we attack are either b40c256 networks or b18c384. The b18c384 networks use a new convolution-
based architecture with modified bottleneck blocks (He et al., 2016; Wu, 2024). They were introduced into
KataGo’s official training run in 2023, becoming the strongest networks by the end of the year. The inference
cost of these b18 networks is similar to that of standard b40 networks. Given the same inference compute budget
per move to perform search, they outperform the best standard b40 and b60c320 networks.

In Table B.1 we enumerate all victims used in this work, comprising official KataGo networks, those developed by
Wang et al. (2023a) and those developed in this work. In Table B.2 we enumerate all adversaries used in this
work, including our own and those developed by Wang et al..
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Name Params Training Date Description
B C Steps (M) GPU-days

base-victim 40 256 11841 21681 2022-06 Original target KataGo network
for Wang et al. (2023a)’s adver-
sarial attack. “kata1-b40c256-
s11840935168-d2898845681” at
https://katagotraining.org/
networks/.

may23-victim 60 320 7702 25888 2023-05 KataGo network that had
received 5 months worth of
adversarial training against
cyclic positions. “kata1-b60c320-
s7701878528-d3323518127” at
https://katagotraining.org/
networks/.

dec23-victim 18 384 8527 33482 2023-12 KataGo network that had
received 1 year worth of adver-
sarial training against cyclic
positions. “kata1-b18c384nbt-
s8526915840-d3929217702” at
https://katagotraining.org/
networks/.

vn 40 256 – – – The victim at iteration n of
our iterated adversarial training
(see Section 3). v0 is warm-
started from base-victim. See
Appendix F for breakdown.

v9 40 256 12097 28296 2024-01 Our final iterated adversarially
trained victim (see Section 3),
warm-started from base-victim.

ViT-victim 16 384 650 537 2024-01 A network we trained from
scratch using the same approach
as KataGo but with the CNN
backbone replaced with a vision
transformer.

Table B.1: All victim networks used in this work with Blocks, Channels, training steps (in millions), and estimated
compute cost (in V100 GPU days). The estimate of base-victim’s compute cost is from Wang et al. (2023a).
The training cost for v9 includes both the training cost of all iterated victims and all iterated adversaries up to
and including a8.
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Name Training Attack Description
Steps (M) GPU-days Style

base-adversary 545 2223 cyclic Original attack trained by Wang et al.
(2023a) from scratch to defeat the
KataGo network base-victim.

base-adv-early 227 164 non-cyclic The first checkpoint able to defeat
base-victim at one victim visit from the
base-adversary training run.

attack-may23 713 3378 cyclic base-adversary fine-tuned by Wang
et al. (2023a) to defeat KataGo’s adver-
sarially trained network may23-victim.

cont-adv 1343 4476 cyclic A network we trained using victim-play
to defeat dec23-victim, using a fine-
grained curriculum and fine-tuned from
attack-may23.

gift-adversary 878 1865 gift A network we trained using victim-play
to defeat dec23-victim, using a coarse-
grained curriculum and fine-tuned from
base-adv-early.

an – – cyclic The adversary at iteration n of our iter-
ated adversarial training (see Section 3).
a0 is fine-tuned from base-adversary.
See Appendix F for breakdown.

a9 4132 7337 cyclic The final adversary resulting from our
iterated adversarial training (see Sec-
tion 3).

atari-adversary 791 1401 complex
cyclic

A network we trained using victim-
play to defeat v9 fine-tuned from
base-adv-early, to test the general ro-
bustness of iterated adversarial training.

ViT-adversary 871 2632 cyclic A network we trained using victim-play
to defeat ViT-victim, fine-tuned from
base-adversary.

Table B.2: All adversary networks used in this work with training steps (in millions) and estimated compute cost
(in V100 GPU days). The adversaries use a 6 block, 96 channel KataGo CNN architecture b6c96. The training
cost for a9 includes both the training cost of all iterated adversaries.

13



Can Go AIs be adversarially robust?

Victim Opponent Opponent vs Victim
Name Visits Name Visits Compute (%) Win rate (%)

base-victim 4096 base-adversary 600 10 97
base-victim 107 base-adversary 600 10 72
may23-victim 4096 attack-may23 600 13 47
dec23-victim 4096 continuous-adversary 600 13 65
dec23-victim 65536 continuous-adversary 600 13 27
dec23-victim 512 gift-adversary 600 6 75
v9 4096 base-victim 4096 77 66
v9 512 atari-adversary 600 5 81
v9 4096 a9 600 26 59
v9 65536 a9 600 26 42
ViT-victim 512 base-adversary 600 414 2.5
ViT-victim 65536 ViT-adversary 600 490 78

Table B.3: The adversary win rate and fraction of opponent’s compute used to train the opponent (right) for
various victims (left) and opponents (middle). In most cases the victim was trained with much more compute
than the opponent; the exception is ViT-victim which was trained for a relatively brief period, 4× less than
base-adversary, although the additional fine-tuning compute used to train ViT-adversary was still less than
that of ViT-victim. We standardize on 600 visits for adversary evaluation. The non-adversarial opponent,
base-victim, is evaluated at the same number of visits as the victim. The first two rows show evaluations
performed by Wang et al. (2023a).
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C. Human-robustness standard
We are concerned with whether AI systems may fail dramatically in cases where humans succeed. Broadly, we
seek an operationalizable definition such that if a system were human-robust, its worst-case performance would
not be worse than human average-case performance. That is, a human-robust system is not just sometimes but
consistently superhuman.

More formally, we say a system is human-robust if there are no points at which an omniscient observer could
ask a human having ordinary skill in the art to make a decision or sequence of decisions, and the human making
the decisions—without the benefit of hindsight— would consistently and intentionally produce a substantially
better outcome than if the system were making them. In the context of Go, this means the system must not lose
from a board state where a human could take over temporarily and consistently produce a win. None of the
defense strategies studied in this work meet even weak versions of this human-robust standard.

We note that the concept of a “human having ordinary skill in the art” is derived from patent law,† referring to a
person with “normal skills and knowledge” of a particular field “without being a genius”. We can also define related
concepts like lay- or expert-human-robustness, or amateur- or professional- or world-champion-human-robustness,
in the natural way by specifying a different group of humans.

The decisions for a human to control are chosen by an omniscient observer so that the human does not need
hindsight. If the human themselves were choosing when to intervene without hindsight, they would have to
anticipate the robustness failures of the system or perform better than the system in all cases. The former would
be unrealistic in most cases, while the latter would be defining a standard that cannot apply to systems that are
sometimes superhuman. On the other hand, if the human had hindsight, they would be able to choose where to
intervene themselves, but they would also have knowledge of how to intervene that a human with ordinary skill
in the art would not, leading to a more stringent standard than just cases where the system would not fail where
a human would succeed.

Besides adding hindsight, we could also define a stronger form of robustness by removing “intentionally.” This
would allows for humans making correct decisions without legitimate reasons for them, and reflects situations
where humans might be more robust but in an unstable equilibrium where a change to a different but equally
valid decision-making process could destroy that robustness.

We note that an even stronger form could be defined by relaxing “consistently”. There are plenty of decisions
where a human would randomly make the right decision. However, flipping a coin could too. We suggest that
depending on the application, the definition of human-robustness might be strengthened by specifying a particular
chance below 100% that a human would make the right decision.

The meaning of “substantially” should depend on the context and level of robustness needed. In the context of
Go, the clearest standard is winning or losing the game. This could be made more stringent by considering even
some amount of points lost “substantial,” but that is currently unnecessary since we find none of the Go AIs
meet even the weaker standard.

We note that this standard is not meant to be a mathematically rigorous definition. There could be pathological
examples where a system’s robustness might be unsatisfactory despite meeting this standard. For example, one
could imagine adversaries that detect if a human is playing and adjust their own play (e.g., resigning when they
believe they’re playing against a human) to break this standard in a contrived way.

Nonetheless, we propose it as one useful lens to think about robustness. On the one hand, if a system met this
standard in a non-pathological way, that would suggest that it is robust in a practical way where it will only fail
in ways humans would too, and will not create new, potentially dangerous vulnerabilities. On the other hand, it
is sufficiently concrete to be falsifiable in real-world scenarios.

In our case in particular, we note that the Go AIs in our experiments do not even achieve the weakest version of
these criteria, given that a human would make correct decisions to defend against our attacks virtually 100% of
the time. Specifically, for all the cyclic attacks in Fig. E.1, the human could simply capture the adversary’s group
inside the cyclic group, before the cyclic group itself is captured. This is trivial since the inside groups have few

†https://en.wikipedia.org/wiki/Person_having_ordinary_skill_in_the_art
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liberties and no options to defend against that. Meanwhile, to defend against gift-adversary, a human would
simply not offer the gift, for example, connecting at the location marked with △ in Fig. E.1b. Similarly, to defend
against atari-adversary, a human just needs to avoid filling in their own last liberty, i.e., playing anywhere else
such as one of the numerous captures available, instead of the location marked with △ in Fig. F.3b.
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D. Training parameters
D.1. Training window

KataGo generates training data from self-play games. The model then trains on a sample from a sliding window
of the most recent training data. The default starting window size is m0 = 250, 000 samples or “rows,” and when
there are N total training rows, the window size m scales as a power law in N :‡

m = .4m.35
0

.65 ·
(
N .65 − m.65

0
)

+ m0. (1)

Each training “epoch” consumes approximately 250,000 data rows and performs 1 million training steps.

All of our models, besides our self-play ViT models, involve warm-starting from KataGo models or models trained
by Wang et al. (2023a). Warm-starting from a model, or fine-tuning a model, means we initialize our training
from that model and pre-seed the training data with that model’s training history. The pre-seeding increases the
window size by increasing N in Eq. (1), and it populates the training window with the pre-existing training data.
Without pre-seeding the data, the default starting window size would be small and cause over-fitting. We could
also increase the training window size by increasing m without pre-seeding, but then there is a high initial cost to
generate enough new data to populate the starting window.

D.2. Configuration parameters

The board size varies randomly between training games, allowing KataGo to learn to play Go on various board
sizes. Because we focus on 19x19 games in our evaluations, we train our adversaries primarily on 19x19 games:
53.6% to be precise, matching the distribution used in recent KataGo training. This contrasts with the attack of
Wang et al. (2023a) who set only 35% of games to be 19x19, following a distribution of board sizes matching
those used for early KataGo training of small 6-block and 10-block models.

When training our adversaries, we disable the variance time loss (vtimeloss in the KataGo code), an auxiliary
loss on a model output predicting uncertainty in the game’s outcome. We disabled it following Wang et al.’s
finding that this stabilized their early training runs, although we did not confirm its impact on our training.

Like Wang et al., our adversary training uses curricula in which the adversary plays against increasingly strong
victims, switching to a stronger victim once the adversary win rate exceeds a certain threshold. We usually set
the threshold to 75%. However, we increased the threshold to 90% for higher visit count victims (typically 512 or
more) since at that point higher victim visit counts substantially increase the cost of generating games, making it
more computationally efficient to train at a slightly lower sample efficiency but with cheaper samples.

When training adversaries against a victim using fewer than 100 victim visits, we enable Wang et al.’s pass-alive
defense to prevent the adversary from learning the degenerate “pass attack” that they encountered in low-visit
victims.

We change several training configuration parameters listed below compared to Wang et al., usually tweaking these
parameters partway into training runs since we only identified or began experimenting with them after launching
the runs.

Enabling selecting moves by the lower-confidence bound (LCB) on their utility. Selecting moves by
LCB is the default in evaluation but is disabled in training because the creator of KataGo found that enabling
LCB reduced self-play training progress despite making evaluation stronger.§. We found that having LCB disabled
led to a large strength gap between training and evaluation. We preferred to keep train and evaluation similar so
that we could be more confident that training progress correlated with evaluation strength.

Adjusting other victim configuration parameters to more closely match the settings used during
evaluation. For example, parameters that govern exploration vs. exploration trade-offs (like temperature), or

‡The sliding window is implemented by the script at https://github.com/lightvector/KataGo/blob/
eaaddd82339750d9defc70f566e6c59d7068b7b3/python/shuffle.py, and the --help documentation string for the script
gives this equation.

§The creator of KataGo details their LCB experiments at https://github.com/leela-zero/leela-zero/issues/2411.
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the KataGo “optimism” feature¶.

In some training runs, we only changed a subset of these parameters because we had not yet discovered all of
these parameters disparities. The full list of parameters we change in the final runs is:

antiMirror = true
chosenMoveTemperature = 0.10
chosenMoveTemperatureEarly = 0.50
conservativePass = true
cpuctExploration = 1.0
cpuctExplorationLog = 0.45
cpuctUtilityStdevScale = 0.85
dynamicScoreCenterScale = 0.75
dynamicScoreCenterZeroWeight = 0.2
dynamicScoreUtilityFactor = 0.3
enablePassingHacks = true
fillDameBeforePass = true
policyOptimism = 1.0
rootDesiredPerChildVisitsCoeff = 0
rootFpuReductionMax = 0.1
rootNoiseEnabled = false
rootNumSymmetriesToSample = 1
rootPolicyOptimism = 0.2
rootPolicyTemperature = 1.0
rootPolicyTemperatureEarly = 1.0
staticScoreUtilityFactor = 0.1
subtreeValueBiasFactor = 0.45
subtreeValueBiasWeightExponent = 0.85
useNoisePruning = true
useNonBuggyLcb = true
useUncertainty = true
valueWeightExponent = 0.25

Adjust adversary configuration parameters to more closely match the settings used in the latest
KataGo training runs. This involves slight adjustments in exploration and utility computation, as well as a
small bugfix related to LCB. We made these changes under the assumption that later KataGo configurations are
superior to early ones our initial parameter settings were based on, although we did not check if this made a
major difference in our training. The full list of parameters we change is:

cpuctExploration = 1.05
cpuctExplorationLog = 0.28
dynamicScoreCenterScale = 0.75
dynamicScoreUtilityFactor = 0.30
rootPolicyTemperatureEarly = 1.5
staticScoreUtilityFactor = 0.05
subtreeValueBiasFactor = 0.30
useNonBuggyLcb = true

¶Policy optimism is described at https://github.com/lightvector/KataGo/blob/
828f1bc27617f9a7dc881d11a7296856ef7c4fc0/docs/KataGoMethods.md#optimistic-policy. Wang et al. used a
version of KataGo that had not yet introduced this feature.
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E. Positional adversarial training
E.1. Defense methodology

We target models from KataGo’s main training run, which began to include adversarial training against cyclic
positions soon after their discovery. Since December 2022, 0.08% of KataGo’s self-play games have been initialized
from a set of hand-written positions based on base-adversary’s strategy (Wu, 2022a; 2023a). Other positions
were added as online Go players found different configurations of cyclic positions, growing the fraction of
seeded self-play games to a few tenths of a percent (Wu, 2023b). The resulting models defended well against
base-adversary.

Despite this positive result, Wang et al. (2023a) were able to fine-tune base-adversary to produce attack-may23
achieving a 47% win rate against an adversarially trained KataGo checkpoint may23-victim at 4096 visits.
Building on Wang et al.’s evaluation, we test dec23-victim which has had over twice as much adversarial training
as may23-victim.

KataGo’s official training run performed adversarial training on board positions exhibiting the cyclic attack.
Despite this, we show that KataGo’s adversarially trained network remains exploitable by training two new
adversaries that beat the strongest KataGo network from the end of 2023, which we call dec23-victim. The first
adversary, continuous-adversary, wins 65% of games against dec23-victim (4096 victim visits) using a cyclic
strategy. The second adversary, gift-adversary, defeats dec23-victim in 75% of games (512 victim visits)
using a qualitatively different exploit where the victim repeatedly gifts the adversary two stones (though it does
not scale to high victim visits as well as continuous-adversary). Both attacks can be replicated by a human
expert (Appendix I).

E.2. The continuous adversary

continuous-adversary was initialized from attack-may23 and fine-tuned using victim-play (Wang et al., 2023a)
against dec23-victim. continuous-adversary’s curriculum involved increasing the victim search budget along
with periodically or “continuously” updating the victim to the latest KataGo checkpoint over several months. See
Appendix E.2.1 for more details.

The final continuous-adversary achieves a win rate of 91% against dec23-victim (at 512 victim visits—above
the superhuman threshold of 64 visits, see Appendix H). The attack can exploit even high-visit victims, attaining
a win rate of 65% against 4096 visits (Fig. 3.1). Although still cyclic, unlike Wang et al.’s original cyclic attack
the continuous-adversary always forms nearly the same shape in the interior of the cycle (an example is shown
in Fig. E.1a and is also visible in Fig. L.3). Moreover, continuous-adversary did not achieve as high win rates
as Wang et al. achieved against the non-adversarially trained base-victim. This suggests that while adversarial
training complicates attacks and may narrow the range of feasible attacks, it does not comprehensively eliminate
the cyclic vulnerability.

E.2.1. Extra details

We warm-started from attack-may23 since Wang et al. found it to be effective against KataGo’s b18 networks.
attack-may23 was trained to attack an adversarially trained KataGo network may23-victim (b60c320-s7702m)
released on May 17, 2023 (see Table B.1). We trained the adversary for a further 1098 V100 GPU-days and 630
million training steps, for a total of 4476 GPU days and 1343 million training steps (Table B.2).

We started the curriculum at 1 victim visit, doubling the visits when a win rate threshold was reached. We set
the threshold to 75% up to 256 visits, and 90% after that due to the increased cost of generating training games
against high visit-count victims. We periodically updated the KataGo b18 checkpoint used.

Figure E.2 shows continuous-adversary’s win rate against dec23-victim throughout adversary training.
Figure E.3 shows continuous-adversary’s win rate against several b18 KataGo networks. We see that
continuous-adversary successfully attacks all b18 networks up until b18-s9432m when continuous-adversary
positions were introduced into KataGo’s training data, at which point continuous-adversary’s win rate drops
quickly. This decline was faster than when KataGo initially introduced positions from base-adversary into
KataGo’s training data—at that time, it took several hundred million training steps to make base-adversary’s
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(a) dec23-victim (B) vs. cont-adv (W) (b) dec23-victim (W) vs. gift-adv (B).

(c) v9 (W) vs. a9 (B) (d) ViT-victim (W) vs. ViT-adversary (B)

Figure E.1: The learned adversarial strategies are qualitatively unique. a, c, d are variants of the cyclic attack
with the × groups soon to be captured. The inside shapes are distinctive of each attacker but have little impact
on optimal play, and are similarly easy for a human to navigate correctly. The gift-adversary in b follows a
distinctly different strategy, inducing the victim (white) to play the stone marked × “gifting” the adversary two
stones it can capture by playing at △. Each subcaption links to the complete game history on our website.
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Figure E.2: Win rate (%) of continuous-adversary (marked ♦) against dec23-victim throughout fine-tuning
against dec23-victim. The zero of the x-axis represents the win rate of attack-may23 against dec23-victim
before the fine-tuning against dec23-victim began.
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Figure E.3: The win rate (%) of continuous-adversary against the main KataGo training run between networks
b18-s4975m and b18-s9732m. The marked point ♦ is dec23-victim. At the dashed line, the KataGo developers
added positions from continuous-adversary and gift-adversary into KataGo’s adversarial training data,
which caused the win rate to drop.
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win rate to dramatically drop, see Wang et al. (2023a, Figure L.2).

The full curriculum was:

• b18-s7283m (released August 17, 2023), 1–16 visits.

• b18-s7313m, 16–32 visits.

• b18-s7343m, 32–256 visits.

• b18-s7373m, 256 visits.

• b18-s7500m, 256–512 visits.

• b18-s7590m, 1024 visits.

• b18-s7620m, 256 visits. (Here we reverted visits to 256 because earlier visit increases were due to non-
representative samples of games skewing our curriculum advancement script into giving inaccurate win rate
estimates.)

• b18-s7680m, 256 visits.

• b18-s7740m, 256 visits.

• b18-s7830m, 256 visits.

• b18-s7890m, 256 visits.

• b18-s7950m, 256 visits.

• b18-s8010m, 256 visits.

• b18-s8071m, 256–512 visits.

• b18-s8191m, 512 visits.

• b18-s8282m, 512 visits.

• b18-s8463m (released Dec 11 2023), 512 visits. This is the last curriculum checkpoint that our chosen
adversary checkpoint continuous-adversary at 1098 V100 GPU-days saw. The remaining curriculum
checkpoints were seen by adversary checkpoints beyond the one we chose for main evaluations in this paper.

• b18-s8588m-v512

• b18-s8678m-v512 (released Jan 9 2024)

We initially observed a large win rate gap between training and evaluation. To close this gap, we made only two
changes to the training configuration, rather than all the changes listed in Appendix D.2: we enabled LCB move
selection and activated optimism for the victim.

E.3. The gift adversary

The gift-adversary was initialized from the earlier base-adv-early checkpoint, encouraging exploration, and
fine-tuned against dec23-victim with a curriculum of increasing victim search budgets (Appendix E.3.1). The
attack wins 91% of games against dec23-victim (at 512 victim visits) after training with just 6% as much compute
as the victim. The gift-adversary does not scale to high victim visits as well as the continuous-adversary
(Fig. 3.1). However, the attack reveals a qualitatively new exploit against KataGo (Fig. E.1b).

In particular, the adversary sets up a so-called “sending-two-receiving-one” situation where the victim, for no
valid reason, gifts the adversary two stones and needs to capture one back. However, the victim’s recapture is
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Figure E.4: Win rate (%) of gift-adversary (marked ♦) against dec23-victim throughout fine-tuning against
dec23-victim. The zero of the x-axis represents the win rate of base-adv-early against dec23-victim before
the fine-tuning against dec23-victim began. The large drop in win rate at 700 GPU-days occurred when the
curriculum prematurely increased from 128 visits to 256 visits. The adversary’s win rate against dec23-victim
at 256 visits was poor, and it was not learning well. After we reverted the curriculum back to 128 visits, the win
rate surprisingly recovered, seemingly without hindering training progress.

blocked by positional superko rules.‖ The adversary sets up the position such that the resurrection of one of
its dead groups is at stake, leading to a disaster for the victim. This occurs despite no benefit for the victim in
initiating the scenario even if superko rules were not in play. Moreover, the victim was trained with superko rules
and has an input feature that marks superko moves illegal if they come up in the search.

E.3.1. Extra details

The adversary is warm-started from base-adv-early. The curriculum began with dec23-victim at 4 visits,
increasing up to 8 visits in 1 visit increments, then doubling visits each time until 512 visits. We added the extra
victim visits between 4 and 8 because after finding that a direct increase from 4 to 8 visits led to a large win
rate drop and minimal training progress. The adversary was trained for a further 1697 V100 GPU-days and 651
million training steps, totalling 1861 GPU-days and 878 million steps (Table B.2).

Figure E.4 shows the win rate of gift-adversary throughout training. Figure E.5 shows gift-adversary’s win
rate against several b18 KataGo networks. Either gift-adversary is highly specialized to setting up the gift
attack against dec23-victim, or the gift vulnerability only appears in recent KataGo b18 nets. David Wu, the
main developer of KataGo, suggests the former is more likely. After we disclosed this vulnerability, he examined
older KataGo nets and found that they also misjudge board positions produced by gift-adversary.

At 163 V100 GPU-days (79 million training steps), we adjusted victim configuration parameters to more closely
match evaluation as described in Appendix D.2.

At 170 V100 GPU-days (81 million training steps), we reduced the training move limit per game from KataGo’s
default of 1600 moves to 900 ∗ (board area)/(192) moves since we noticed several games dragging out to hit the
move limit due us enabling the pass-alive defense (Appendix D.2), which lengthens games, on low-visit victims
during training. This is before the adversary had discovered the gift attack, and games were not noticeably longer
than atari-adversary’s games at a similar point in atari-adversary’s training. Still, we hypothesized this
would increase training efficiency by cutting the duration of lengthy games, which cost compute and generate an
excessive amount of end-game policy training data.

At 475 V100 GPU-days (220 million steps), we noticed that the adversary learned to prolong a significant portion
‖To prevent an infinite loop, most rule sets include a superko rule forbidding repetition of a previous board state

(“positional superko”) or state and player’s turn (“situational superko”).
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Figure E.5: The win rate (%) of gift-adversary against the main KataGo training run between networks
b18-s4975m and b18-s9732m. The marked point ♦ is dec23-victim. At the dashed line, the KataGo developers
added positions from continuous-adversary and gift-adversary into KataGo’s adversarial training data.

of games using extended ko fights to hit the 900-move limit. Normally during training, such games are scored
and assigned a winner based on the final board state. Not only does having lots of games hit the move limit
significantly slow down training, but we were also worried that the final board state score does not necessarily
reflect what the score would have been had the game been played out to completion. The adversary could reward
hack by stalling in a state that is winning if scored prematurely but is losing if played to the end.

We therefore at 632 V100 GPU-days (307 million steps) began scoring games that hit the move limit with a score
of 0 and marked them as losing for the adversary (-1 utility). This drove the hit-move-limit rate from 59% to 22%.
At 836 V100 GPU-days (393 million steps), we reduced the utility of such games even further to -1.6, below the
worst typically possible utility -1.35 resulting from losing a game and having the opponent control all territory on
the board. This drove the hit-move-limit down to 0%.
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Figure F.1: The victim vn win rate (%) against an − 1 throughout iterated adversarial training. Iterations are
signified by alternating between a white and grey background. The curves for v1 to v4 only have a few data
points along the x-axis as intermediate checkpoints were lost.

F. Iterated adversarial training
F.1. Defense

At each iteration, we train a victim vn to defend against a fixed adversary an − 1. Figure F.1 shows the training
progress of each vn against an − 1. Figure M.1 shows the same information but with a separate plot for each
iteration. We see that the victim always made rapid progress in defending against the adversary, but continued
to lose a significant fraction of the time at 16 victim visits, and still suffered occasional losses at 256 victim visits.

The first v1 is warm-started from v0 (base-victim) and is trained against base-adversary. We do not use a
curriculum in victim training. We reduced the learning rate by a factor of 10 from KataGo’s default since the
base model base-victim had been trained with a lower learning rate scale as well. We found that fine-tuning
with the default learning rate led to a large initial drop in model strength.

The victim plays with 300 MCTS visits, while the adversary plays with 600 A-MCTS visits. We chose 600
A-MCTS visits for the adversary to follow the default number of visits for adversary training and evaluation
used by Wang et al. (2023a). We chose 300 MCTS visits for the victim because it keeps the inference cost of
the victim similar to the adversary’s—roughly 600/2 = 300 visits of the adversary’s A-MCTS invoke the victim
model, with the remaining visits invoking the smaller, cheaper adversary model.

The training window size begins at 68 million rows to match the window size of base-victim.∗∗ This is large
enough that throughout defense training, all games generated in prior defense iterations remain in the training
window. Although keeping all the games in the window was not an intentional design choice, it likely contributes
to each vn defending well against every am with m < n.

The victim was trained with a mixture of self-play games and games against the adversary. Self-play games help
preserve general Go strength, whereas games against the adversary focus on overcoming specific attacks. We set the
game mix to 82% self-play and 18% against the adversary. This proportion was based on preliminary experiments
suggesting that training on 90% self-play data and 10% adversary data makes rapid progress in overcoming the
adversary without compromising general Go strength (estimated via win rate against base-victim). Self-play
games generate twice as much policy training data as games against the adversary because the model only trains
on its own moves in adversary games. Setting the proportion of selfplay games to 82% makes the generated game
data roughly match 90% from self-play.

For simplicity, we only used Tromp-Taylor rules, since the adversaries were also only trained on these rules. We
also disabled many KataGo self-play flags (auto-komi, komi randomization, handicap games, game forking, cheap

∗∗The window size was calculated from Eq. (1) using the fact that base-victim was trained on 2.9 billion rows of data.
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Iteration Victim Adversary
n GPU-days Steps (M) GPU-days Steps (M)

1 61 61 238 150
2 16 22 439 253
3 10 16 273 213
4 8 11 1195 983
5 12 10 862 535
6 38 20 304 228
7 20 13 491 372
8 32 32 308 230
9 85 71 1005 622
Total 282 256 5114 3587

Table F.1: The cost of training the victim vn and adversary an at each iteration n of iterated adversarial training.

search, reduced search when winning, playing initial moves directly from policy) to simplify implementation.

In each iteration, we hand-select the final model for the subsequent iteration based on expected strength. All
else equal, we choose the checkpoint with the highest win rate against the adversary. However, as the win rate
against the adversary tends to plateau, we additionally favor checkpoints from stable periods of training where
immediately preceding and succeeding checkpoints also have high win rates. We break ties in favor of earlier
checkpoints.

F.1.1. Defense per-iteration

In this section we discuss each individual iteration in more detail. We provide the training cost (in training steps
and V100 GPU-days) of each iteration in Table F.1. Additionally, we discuss any configuration changes or notable
results that occurred in iterations below.

Defense iteration 1: The win rate at 300 victim visits against the cyclic adversary already plateaued after 14
of the 61 GPU-days (16 of 61 million steps), but we continued training in hopes of achieving a consistent 100%
win rate against the adversary.

Defense iteration 4: An error occurred in populating the training history, where extra data from running the
previous defense iteration was added for an additional 58 million steps beyond our selected checkpoint v3. We
identified this error and removed the extraneous data for subsequent defense rounds.

Defense iteration 6: In iteration 6 and 7 we unintentionally generated games faster than we were training on
them, which is why the GPU-days relative to the number of training steps is higher.

Defense iteration 9: We ran this iteration longer than usual because it was our final defense iteration. We
also noticed that its win rate at 8 visits increased modestly (from 49% to 74% at the end of training), even though
the training win rate at 300 visits against a8 remained around 97% for the entire run.

F.2. Attack

At each iteration, we train an adversary an to attack vn warm-starting from the previous adversary an − 1. The
very first iteration a1 is warm-started from a0 = base-adversary. Figure F.2 shows the training progress of each
an against vn. Figure M.2 shows the same information but with a separate plot for each iteration.

As can be seen in Fig. 3.2, the adversaries at iterations 5, 6 and 8 perform especially poorly for victim visits of 16
or above. The main reason for this is that training progress significantly slowed down; the number of victim visits
reached by each iteration from a5 onwards was at most 64. Additionally, in iterations 6 and 8, those adversaries
were trained for relatively brief periods. The computational expense of training potent attacks is a bottleneck to
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Figure F.2: The adversary an win rate (%) against vn throughout iterated adversarial training. Iterations are
signified by alternating between a white and grey background.

performing a large number of iterations of adversarial training.

The adversary plays with 600 A-MCTS visits. Initially the curriculum for each adversary an consisted of
intermediate checkpoints from vn’s training run before advancing to vn with doubling visit counts. We manually
selected intermediate checkpoints by looking at the win rates of vn’s intermediate checkpoints against an − 1 and
sampling checkpoints with varied win rates. Later we found that the victim vn at 1 visit was always vulnerable
to attack, so we simplified the curriculum by no longer using intermediate checkpoints and instead started the
curriculum at the final vn checkpoint with very low visit counts.

The final an model we select from a training run is always the latest model checkpoint since win rate increases
fairly consistently with more training. We did not have a consistent stopping criterion for each iteration, but
we generally targeted either a high win rate at a particular number of visits or restricted the run to a rough
training step budget. Unlike in defense training, because the adversary training is longer and the training window
is smaller, the data from the previous iteration fully exits the training window (within 132 million training steps)
in every iteration.

F.2.1. Attack strategies

All of the adversaries an exploit a cyclic group, but there are still some qualitative differences. In particular, a1
emphasizes a small alive group inside the victim’s cyclic group and coaxes the victim to form a cyclic group with
an eye, in contrast to the original cyclic attack of Wang et al. (2023a). a2 creates a very large group inside the
victim’s cyclic group. In the middle iterations a4 to a6, the inside group is small. In most attacks, the adversary
sets up the inside group early and allows the victim stake out territory around it. However, in a4 to a6, the
adversary instead stakes out its own territory with the destined inside group on the edge. It then allows the
victim come into its territory, resulting in it separating off the inside group and forming the cycle.

Meanwhile, in iterations 7 through 8, the adversary forms an inside group with kos. For a7 and a8 there are
between 1 and 3 kos – in small sample analysis, there were most often 2 or 3 kos for a7 and 1 for a8, with
more variable inside group shape. With a9, it initially converged to 2 kos and a highly consistent inside group
shape, but then abandoned the kos and started making a diamond, “ponnuki”-like inside shape, which the victim
surrounds with a square shape. This results in a small, nearly minimal inside group at the time of the final
capture. An example of this is shown in Fig. E.1c.

In Appendix L, we plot heatmaps of the inside and cyclic group locations. Paralleling the qualitative analysis
above, we observe differences in where they are concentrated and their sizes. We also notice some variations
in victim stone concentration. Overall, we find clear but constrained evolution in the attacks. To humans, the
differences do not change the difficulty of gameplay—the attacks all fit very well in the same overall type (cyclic
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attacks) so knowing how to beat one would almost certainly mean knowing how to beat them all. But to the
KataGo victims, the representations learned do not appear to generalize smoothly between these variations.

F.2.2. Attack per-iteration

In this section we discuss each individual iteration in more detail. We provide the training cost (in training steps
and V100 GPU-days) of each iteration in Table F.1. Additionally, we discuss any configuration changes or notable
results that occurred in the iterations below. We denote an intermediate checkpoint S million training steps into
the n-th iteration of defense training as vn-sSm.

Attack iteration 1: The curriculum consisted of v1-s4m with 128 visits, v1-s16m with 32–128 visits, and v1
with 32–1024 visits, with a win rate threshold of 75%. We stopped the run due to hitting a large number of
victim visits, which slowed the generation of training data.

In this iteration, we made an error when warm-starting from the original cyclic adversary. When we copied
the original cyclic adversary’s training history, timestamps were erased. Therefore, at the start of the run, the
training window contained the original cyclic adversary’s After 122 of 238 V100 GPU-days (41 of 150 million
training steps), all these data left the window. The most likely effect of this error was hindering early training
progress, though it is also possible that it inadvertently helped encourage exploration in early training.

Attack iteration 2: The curriculum consisted of v2-s4m with 128 visits, v2-s5m with 64–128 visits, and v2
with 64–1024 visits, with a win rate threshold of 75%. Once again we stopped the run due to hitting a large
number of victim visits.

Attack iteration 3: The curriculum consisted of v3-s5m with 128 visits and v3 with 64–256 visits. Here, we
stopped at a 75% training win rate against 256 victim visits because we had used about as much compute as in
previous attack iterations and considered 256 visits to be a sufficiently large number of visits that the attack
likely transfers, at least somewhat, to high visits.

Attack iteration 4: The curriculum consisted of v4-s5m with 128 visits and v4 with 4–256 visits. We aimed
for a training win rate of 75% against v4 at 256 visits but halted early as we found training progress to be much
slower than in previous iterations.

Initially, the curriculum jumped from v4-s5m128 visits to v4
64 visits but the win rate against v4

64 visits was very
low at 3%, and it did not appear to be trending upwards. After this, we reverted the curriculum back to
v4-s5m128 visits and enabled LCB move selection, which remained enabled in all subsequent attack iterations as
well. The result of enabling LCB move selection was a lower training win rate, presumably due to the victim
playing more strongly.

The hope was that training against the earlier checkpoint v4-s5m for longer would yield stronger performance
once the curriculum advanced to v4, but we still had a low win rate of 5% when we reached v4

64 visits.

We then changed the curriculum to reduce the starting visit count for v4 from 64 to 4, which worked better.
We suspect that we could have skipped the v4-s5m intermediate checkpoint entirely and immediately initialized
the curriculum at v4 with 4 visits, saving 420 V100 GPU-days and 360 million steps of training. We therefore
stopped using intermediate curricula checkpoints in subsequent attack iterations and switched to starting the
curriculum against the target victim vn at very low visits.

Attack iteration 5: The curriculum consisted of v5 with 4–32 visits. We halted this run because progress was
slow, and it did not look like we would reach higher victim visits within our compute budget.

Attack iteration 6: From this point onward, we did not anticipate reaching high victim visits during training,
so we decided to run each attack iteration for around 250 million training steps, although it is not entirely clear
that running defense iterations against weak adversaries provides useful training signal on the defense side. We
trained a6 against a curriculum of v6 with 4–16 visits.
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(a) atari-adversary induces the victim to set up several
bamboo joints (×). These are normally strong shapes for
connecting, e.g., if black plays a triangle-marked location,
white can play the other to keep the joints connected.

(b) Ultimately, atari-adversary threatens to split one of
the bamboo joints, and the victim prevents that by playing
at the triangle location. But this is a terrible mistake—on
the next move, the entire cyclic group will be captured.

Figure F.3: The cyclic “bamboo joint” strategy learned by atari-adversary; explore online.

Attack iteration 7: We trained a7 against a curriculum of v7 with 4–64 visits. We initially intended to train
a7 for only 200 million steps, but the win rate in both training and evaluation started increasing noticeably faster
at 190 million steps (272 V100 GPU-days), so we extended the training duration.

Attack iteration 8: We trained a8 with a curriculum of v8 with 4–16 visits.

Attack iteration 9: We trained a9 against a curriculum of v9 with 4–512 visits, raising the win rate threshold
from 75% to 90% at 256 visits. At 82 GPU-days (74 million steps), we adjusted the victim configuration
parameters to match evaluation settings as described in Appendix D.2 due to a large gap between training and
evaluation win rates, and because a higher training win rate was not leading to stronger evaluation strength. We
also updated adversary configuration parameters as described in Appendix D.2.

No defense iteration trains against a9. We trained a9 to see whether it could successfully attack v9.

F.3. Validation attack

In Section 3.2.2, we found that the final iterated adversarially trained victim v9 can be readily exploited at low
visits by the validation attack atari-adversary. This attacker was warm-started from base-adv-early. We
used a curriculum of v9 starting at 1 victim visits and doubling until it reached 512 visits (curriculum changes
denoted by dotted lines in Fig. F.4). The curriculum win rate threshold was 75% until reaching 256 visits, at
which point the threshold increased to 90%. We modified the bot configurations as described in Appendix D.2 to
make the victim configuration closer to evaluation settings and the adversary configuration closer to the latest
KataGo training runs.

Although atari-adversary beats v9 at low visit counts, we did not find an attack that achieved a high win rate
against v9 at high visit counts. However, atari-adversary was only trained for 6% as much compute as v9,
raising the question: how well would the attack perform were we to continue this training run? More generally,
can we predict how much more compute it would take to scale atari-adversary to achieve, say, a 10% win rate
against v9 at 65,536 visits?

Unfortunately, training dynamics are hard to forecast in advance. For instance, base-adversary made little
progress for a few hundred GPU-days before abruptly finding a strategy that generalized to attack base-victim
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Figure F.4: Win rate of atari-adversary (♦) against v9 throughout atari-adversary training, warm-starting
(at x = 0) from base-adv-early. Curriculum changes are denoted by a vertical dotted line.

at high visits (Wang et al., 2023a; Gleave, 2023). Looking at the training progress for atari-adversary (Fig. F.4),
atari-adversary makes fairly consistent progress until it stalls out late in the training run. This training curve
is consistent both with it plateauing and never achieving high win rates against high victim visits, or it suddenly
hitting a phase change in training like base-adversary did and shooting up.

Therefore even with the slowing progress of atari-adversary late in its training and its inability to win against
v9 at 8192 visits, we cannot conclude that v9 is invulnerable at high visits. Indeed, a9 achieves a 42% win rate
against v9 at 65536 visits, showing that there is available attack surface at high visits. This is despite a9 only
training against v9 up to 512 visits.

This brings up another question: how can we encourage adversary training to find strategies that are likely to
generalize against high visits? continuous-adversary, gift-adversary, a9, and atari-adversary only trained
against their victims up to 512 visits. Yet continuous-adversary and a9 generalize to high visits, whereas
gift-adversary and atari-adversary do not. Likewise, Wang et al. (2023a) found one strategy that generalizes
to high visits (base-adversary) and one that does not (their “pass-adversary”).

One hypothesis is that continuous-adversary and a9 simply used more training compute. Another is that training
is highly path-dependent, so initialization, training curriculum, or randomness matter—continuous-adversary
and a9 were initialized from later adversary checkpoints and had a curriculum involving intermediate victim
model checkpoints, whereas gift-adversary and atari-adversary were initialized from base-adv-early and
had coarser curricula not involving intermediate victim models. continuous-adversary and a9 were initialized
from checkpoints attack-may23 and base-adversary that already work against some strong high-visit victim,
which may be important in biasing them away from discovering another vastly different fragile strategy that only
works at low visits.
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G. Vision transformers
In this appendix, after first summarizing our results, we provide an overview of our vision transformer (ViT) archi-
tecture and describe our ViT training procedure. For full architectural details, see our PyTorch implementation:
https://github.com/AlignmentResearch/KataGo-custom/blob/stable/python/model_pytorch.py.

G.1. Results summary

Wang et al. (2023a)’s attack works not only against KataGo but also against a range of other superhuman
Go AIs such as ELF OpenGo (Tian et al., 2019), Leela Zero (Pascutto, 2019b), Sai (Morandin et al., 2019),
Golaxy (北京深客科技有限公司, 2018), and FineArt (Tencent, 2017). While it is possible that each of these
systems is vulnerable to the cyclic attack for a different reason, it is more likely that shared properties such
as their convolutional neural network (CNN) backbone cause their shared vulnerability.†† Indeed, KataGo’s
developer proposed that vulnerability to cyclic attacks may be a result of the CNN backbone learning a local
algorithm for classifying if a group is alive that fails to generalize to larger groups (polytope, 2023). However, we
demonstrate that superhuman Go AIs with vision transformer (ViT) backbones are also susceptible to cyclic
attacks. This suggests the shared weakness is either AlphaZero-style training—or deep learning more generally.

Since no prior work has trained strong Go AIs with a ViT architecture,‡‡ we set out to train the first professional-
level ViT-based Go AI. We follow a training recipe similar to the one used by KataGo (Wu, 2022c), except we
replace the CNN backbone with a ViT (Appendix G). Our strongest ViT network, which we label ViT-victim,
was trained for 537 V100 GPU-days. It is slower to train than a CNN agent and weaker at the same inference
budget, but we estimate it still reaches near-superhuman levels when playing with 32768 visits. This estimate
is derived from benchmarking against KataGo, pitting our agent against players on the KGS Go Server, and
winning two out of three games against Go professionals (Appendix H).

Despite the new architecture, Figure 3.1 shows that our ViT-victim (at 65536 visits) remains vulnerable to the
cyclic attack, losing 78% of games to a fine-tuned version of base-adversary, which we call ViT-adversary
(Appendix G.6). ViT-adversary’s strategy resembles other cyclic attacks but is qualitatively distinct in its
tendency to produce small groups inside the cyclic one, and dense board states with limited open space (Fig. E.1d).
This attack can be replicated by a human expert (Appendix I).

Remarkably, ViT-victim (at 512 visits) also loses 2.5% of games to the original base-adversary—similar to the
zero-shot transfer to CNN Go AIs such as ELF OpenGo reported by Wang et al. (2023a). This definitively shows
that a CNN architecture is not the cause of the cyclic vulnerability. base-adversary certainly does not win
through legitimate means: it is a very weak strategy that loses to amateur human players (Wang et al., 2023a).

G.2. ViT inputs

Our ViTs take in the same inputs as standard KataGo CNNs, namely two tensors of spatial and global features.

The spatial features are represented by a three-dimensional binary tensor S taking values in {0, 1}height×width×22,
where height and width are the maximum Go board dimensions the model supports (usually 19). In other words,
each point of the Go board has 22 binary features associated with it. These features encode various properties
such as whether a point is occupied, the color of a stone on a point, move history, and more complicated features
like whether a point is involved in a potential ladder. For an exact specification of these features, see this source
file: KataGo/cpp/neuralnet/nninputs.cpp.

The global features are represented by a real-valued vector G taking values in R19. These 19 features encode
properties like which of the past 5 moves were passes, and the particular ruleset the current game is using.

††Golaxy and FineArt are closed-source but likely use the same design principles as other Go AIs.
‡‡Sagri et al. (2024) train ViT-based Go AIs but did not validate the strength of their systems or release weights.

Moreover, they used supervised learning on KataGo self-play data generated by CNN agents, whereas we trained our ViT
agents only on ViT-generated self-play data.
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G.3. ViT architecture

Our ViT network replaces the KataGo CNN backbone with a transformer-based backbone, but reuses the
same output layers as KataGo’s networks (Figure G.1). Both our transformer backbone and the KataGo’s
CNN backbone output a real-valued tensor with dimensions height × width × c, where c is the embedding /
residual-stream dimension of the network. This embedding tensor is processed by the standard KataGo output
layers to produce the outputs KataGo expects networks to have: a scalar that estimates the value function, a
vector that represents the next-move policy, etc. Our transformer backbone is built using a standard HuggingFace
transformers.ViTModel.

Input preprocessing We zero-pad the spatial dimensions of S so that they are divisible by our ViT patch size
(patch_size=2). We then expand G so it has shape padded_width × padded_height × 19 and concatenate it
with S to form the actual input to our ViTModel of shape padded_width × padded_height × 41.

Unembedding The Huggingface ViTModel outputs a tensor of shape n_patches × c. We linearly project this
tensor to one of size height × width × c in the canonical way that preserves spatial locality.

Architecture hyperparameters We tried a few different ViT architecture hyperparameters and measured
how quickly they trained with supervised learning on training data from katagotraining.org. We found the
following hyperparameters to work fairly well:

Patch size # Attn. heads Embedding dim. MLP dim.
2 6 384 1536

We trained networks of varying depths, ranging from a 4-layer ViT to a 16-layer ViT. See Appendix section G.5
for more details.

Name Model type # Layers Embedding dim. # Parameters

ViT-b4 ViT 4 384 7,952,501
ViT-b8 ViT 8 384 15,050,357
ViT-b16 ViT 16 384 29,246,069
b6c96 CNN 6 96 1,001,613
b10c128 CNN 10 128 2,959,329
b15c192 CNN 15 192 9,875,893
b20c256 CNN 20 256 23,413,525
b40c256 CNN 40 256 46,632,501
b18c384nbt CNN 18 384 26,389,941

Table G.1: Comparison of our ViT nets to KataGo CNNs in terms of depth, width, and parameter count.

G.4. ViT implementation

KataGo implements its architectures in Python for training and C++ for self-play. Because implementing models
in C++ is fairly complex, we only implement the ViT in Python using PyTorch. To use ViTs during inference,
we export the PyTorch model as a TorchScript model and modify KataGo’s C++ code to be able to invoke
TorchScript models. Since TorchScript models are made to be serialized and executed independently of Python,
this removes the need to implement the ViT itself in C++.

However, this comes at the cost of slower inference. On our machines, running inference for a b18c384nbt or
b20c256 KataGo CNN model using TorchScript incurred a 43% and 28% slowdown, respectively, compared to
running them with KataGo’s C++ CUDA implementation.

G.5. Self-play training

In this section we describe our self-play training process for our ViT agent ViT-victim.
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G.5.1. Network scaling

In our ViT training run, we start with a small 4-block ViT network that is quick to generate data. When the
smaller model hits capacity, we switched to an 8-block network, and then finally switch to a 16-block network.
We perform each switch by first pre-training the larger model on the smaller model’s data, using the typical
sliding training window method described in Appendix D.1 to sample training data, but using the smaller model’s
existing self-play games as data. We copy the smaller model’s data into the pre-training dataset gradually in
chronological order, copying roughly one epoch’s worth of data after each pre-training epoch, so pre-training
ends by training on the latest and presumably strongest data. We discard some of the smaller model’s early data
under the assumption that training on it would take extra time without much benefit due to the data being
lower quality. We still increment N in Eq. (1) to keep the window size as large as it would have been had we not
discarded the data.

G.5.2. Training configuration

Our configuration parameters matched those suggested by KataGo’s example self-play configurations available
in its codebase, except that we only used Tromp-Taylor rules instead of having rule variation, did not play any
games on rectangular boards, and increased the percentage of 19x19 games to 53.6% to match the latest KataGo
training runs. We trained exclusively on Tromp-Taylor rules because we always evaluate models under these
rules, and our adversaries like base-adversary were all trained only under Tromp-Taylor rules.

KataGo also seeds 14% of its self-play games from custom positions that are rarely encountered in typical
self-play (Wu, 2023d). This improves play on tricky positions like Mi Yuting’s Flying Dagger joseki and improves
analysis on human games (Wu, 2021a). Since we do not have access to this set of games, we do not include it in
our ViT training run.

G.5.3. ViT training run

Figure G.2 shows the strength of our networks throughout self-play training. We successively trained three ViT
networks (4-block, 8-block and 16-block) along with a control 10-block CNN. Larger ViT networks reached a
higher Elo but quickly saturated. However, the ViT networks did not necessarily reach model capacity, as we were
able to reach still higher Elo ratings by distilling KataGo CNN self-play training games into the ViT network.

We started with training a 4-block ViT with 600 visits using a configuration matching an example KataGo
configuration, similar to the actual configuration used for training KataGo’s 6-block and early 10-block networks.§§

We trained for 64 GPU-days and 213 million steps.

We then switched to a 8-block ViT, pre-training it on the 4-block ViT’s latest 24.9 million data rows (100 million
training steps). After pre-training (2 V100 GPU-days, 92 million steps), the 8-block ViT was about 175 Elo
stronger than the 4-block ViT at 256 visits. We then began self-play with the 8-block ViT. After 20 V100
GPU-days and 48 million steps of self-play, we increased the number of self-play visits to 1000 visits by swapping
our configuration to make it similar to that used for training KataGo’s 10-block and 15-block nets.¶¶ At 461
million steps with self-play, we gained about 264 Elo at 256 visits. At this point we spent 301 V100 GPU-days
on training the 8-block ViT. It was still making slow training progress, but we decided to switch to a larger
architecture in hopes of achieving a faster increase in playing strength.

When we switched to a 16-block ViT, we pre-trained on the latest 24.9 million data rows generated by the
4-block ViT as well as all the data rows generated by the 8-block ViT, totaling 139 million data rows. For this
pre-training, we used data-parallel training on 8 GPUs to decrease wall-clock training time. After training had
reached 78% of the pre-training data, we noticed signs of overfitting: playing strength decreased, and the ViT’s
value loss (loss on the model’s prediction of whether a position will lead to a win or a loss) was decreasing on
training data yet increasing on validation data. We mitigated this by increasing the minimum window size m
from 250000 to 10 million in Eq. (1), which roughly quadrupled the current window size. After training on 93%

§§KataGo example configuration: https://github.com/lightvector/KataGo/blob/
7488c47b6f6952f9703d9209f9afbd8d38a8afb5/cpp/configs/training/selfplay1.cfg

¶¶KataGo example configuration: https://github.com/lightvector/KataGo/blob/
7488c47b6f6952f9703d9209f9afbd8d38a8afb5/cpp/configs/training/selfplay8b.cfg
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of the data, we reduced the learning rate by a factor of 2 since the loss plateaued.

After pre-training (22 V100 GPU-days, 532 million steps), the 16-block ViT was 286 Elo stronger than the 8-block
ViT at 256 visits. We then started self-play. After 75 V100 GPU-days and 74 million steps of self-play, we
increased the visits to 2000 and matched a configuration similar to that used for training KataGo’s b18 models.∗∗∗

At 126 V100 GPU-days and 104 million steps of self-play, we reduced the learning rate by another factor of 2. We
stopped self-play at 118 million steps of self-play, at which point we had spent 172 V100 GPU-days on 16-block
training and gained another 18 Elo at 256 visits. The resulting model is ViT-victim. We likely could have trained
the ViT for longer—strength was still increasing, albeit slowly. Moreover, when we trained a separate 16-block
ViT on training data from katagotraining.org generated by KataGo’s stronger CNN networks, the resulting
model was an estimated 277 Elo stronger than ViT-victim at 300 visits, suggesting there is still capacity in
ViT-victim’s architecture.

G.5.4. Control CNN training run

As a control run, we train a model control-victim with a 10-block CNN architecture (b10c128 in Table G.1). In
total, we train it for 121 V100 GPU-days and 419 million steps. We started with the same 600-visit configuration
used by the 4-block ViT, and at 29 V100 GPU-days (147 million steps), we switched to the 1000-visit configuration
used by the 8-block ViT. At 35 GPU-days and 64 GPU-days (166 million and 251 million steps), we cut the
learning rate in half, and at 110 GPU-days (396 million steps), we reduced the learning rate by 40%. By the end
of the training run, the model was about as strong as the 8-block ViT.

In Fig. G.2, we see that control-victim learned quicker than the 4-block ViT and plateaued at about the same
strength as the 8-block ViT, despite the 8-block ViT having five times as many parameters.

G.6. Training ViT-adversary

Figure G.3 shows the win rate of ViT-adversary against ViT-victim throughout ViT-adversary’s training. We
trained the adversary for 409 V100 GPU-days and 328 million steps, stopping the run once we had high win
rates against ViT-victim at 32768 visits, which we estimate to be just shy of superhuman (Appendix H). We
fine-tuned ViT-adversary from base-adversary after observing that base-adversary is able to win against
the final ViT at low victim visits. We used a curriculum of ViT-victim starting with 1 visit and doubling until
2048 visits. The curriculum win rate threshold was 75% until the curriculum reached 256 visits, after which the
threshold was increased to 90%.

At 262 V100 GPU-days (206 million time steps) the curriculum reached 1024 victim visits. However, we noticed
that the training win rate was higher than the evaluation win rate by about 14%, and also that the drop in win
rate when the curriculum moved on to a higher visit victim was small. We considered it desirable to train for
longer at lower victim visits since it would be cheaper to generate training data and high win rates at low visits
were likely to translate to high win rates at high visits. We therefore changed the configuration parameters to
bring the victim closer to evaluation settings as described in Appendix D.2. This reduced training win rate, so we
rewound the curriculum from 1024 visits to 256 visits. With more training, the curriculum eventually reached
1024 visits again.

G.7. ViT vulnerability throughout training

Figures G.4 and G.5 show the vulnerability of ViT-victim to base-adversary and ViT-adversary. We observe
that vulnerability to both adversaries develops early in training and shows no sign of decreasing. Figures G.6
and G.7 show the same results for the control CNN model control-victim.

Figure G.8 shows the win rate of control-victim against ViT-adversary and base-adversary at vary-
ing amounts of control-victim visits (the corresponding plot for ViT-victim is Fig. 3.1). We see that
control-victim is also highly vulnerable to ViT-adversary, indicating that ViT-adversary is not conducting
an architecture-specific attack.

∗∗∗KataGo example configuration: https://github.com/lightvector/KataGo/blob/
7488c47b6f6952f9703d9209f9afbd8d38a8afb5/cpp/configs/training/selfplay8mainb18.cfg
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In Figs. G.9 and G.10, we plot how the playing strength of ViT-victim and control-victim throughout training
compares to their vulnerability to base-adversary. More training yields greater strength but also increased
vulnerability. control-victim develops vulnerability to base-adversary at a weaker strength than ViT-victim,
suggesting that ViTs may be marginally more robust than CNNs against cyclic attacks at a given strength.
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Figure G.1: A diagram comparing our ViT architecture to the standard KataGo CNN architecture. Our ViT
architecture replaces the KataGo CNN backbone with a transformer backbone, and reuses the KataGo
CNN output layers. Boxes denote neural network components and unboxed quantities denote tensor shapes.
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Figure G.2: The strength of our ViTs (ViT-victim = black ♦) throughout their training as well as a control
10-block CNN control-victim (blue ♦) trained with the same settings. Playing strength was estimated by
playing the models against each other as well as against a few KataGo networks.
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Figure G.3: Win rate (%) of ViT-adversary (♦) against our superhuman ViT agent ViT-victim throughout
ViT-adversary training. The zero of the x-axis represents the win rate of the warm-start base-adversary against
ViT-victim before the fine-tuning against ViT-victim began. Dotted lines represent victim visit increases.
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Figure G.4: Vulnerability of ViT-victim to base-adversary throughout ViT-victim training. A dotted gray line
represents switching to a larger ViT architecture, at which point the vulnerability drops as the larger architecture
is initialized randomly but then quickly rises during pre-training.
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Figure G.5: Vulnerability of ViT-victim to ViT-adversary throughout ViT-victim training. A dotted gray line
represents switching to a larger ViT architecture, at which point the vulnerability drops as the larger architecture
is initialized randomly but then quickly rises during pre-training.
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Figure G.6: Vulnerability of control-victim to base-adversary throughout control-victim training.
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Figure G.7: Vulnerability of control-victim to ViT-adversary throughout control-victim training.
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Figure G.8: Win rate (%) for control-victim against ViT-adversary and base-adversary, with varying victim
visits.
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Figure G.9: Plot of several ViT-victim (black ♦) and control-victim (blue ♦) training checkpoints with their
playing strength on the x-axis and their vulnerability to base-adversary at 1 victim visit on the y-axis.
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Figure G.10: Same as Fig. G.9 but with vulnerability at 256 victim visits on the y-axis.

40



Can Go AIs be adversarially robust?

100 101 102 103 104 105

Visits

−1000

0

1000

2000

3000

El
o

Network
dec23-victim
base-victim
b20-s5303m
b15-s1504m
ViT-victim
control-victim
b10-s197m

Figure H.1: Elo strength of networks (different colored lines) by visit count (x-axis). The four dotted lines are
KataGo networks.

H. Network strength
H.1. Performance of defenses vs base KataGo networks

We estimate the strength of the defended victims at playing regular Go games by pitting them against regular
KataGo networks. We find that the defended victims ViT-victim, dec23-victim and v9 all possess superhuman
Go capabilities.

We evaluate dec23-victim (positional adversarial training; Appendix E) and ViT-victim (vision transformer;
Appendix G.1) by playing games against several KataGo networks at varying visit counts and then running a
Bayesian Elo estimation algorithm. We plot the results in Fig. H.1. The KataGo networks we use are b10-s197m,
b15-s1504m, b20-s5303m, and base-victim, which Wang et al. (2023a) refer to cp79, Original, cp127, and
Latest respectively.

We estimate that ViT-victim at 32768 visits is 1139 Elo stronger than base-victim at 1 visit. Using Wang
et al. (2023a)’s estimate that base-victim at 1 visit would have an Elo of 2738 on goratings.org, ViT-victim
at 32768 visits has an estimated Elo of 3877. This is just shy of superhuman, as the strongest historical Elo
rating on goratings.org is 3877 at the time of writing (as of 2024-05-02). At 65536 visits, ViT-victim has an
estimated Elo of 3983, which is superhuman.

Likewise, dec23-victim at 64 visits is 1245 Elo stronger than base-victim at 1 visit, giving it a superhuman
estimated Elo of 3983.

We estimate the strength of v9 by playing against base-victim at varying visit counts. We plot the results in
Fig. H.2. We estimate that v9 has an Elo of 4997 at 4096 visits, which is 110 points weaker than base-victim
but still clearly superhuman.

H.2. Performance of ViT-victim against human players

We also deployed a 64-thread, 65536 visit / move version of ViT-victim on the KGS Online Go server (KGS,
2022). From the previous section, we estimate this bot has a goratings.org Elo of 3855, around the level of
a top human professional.††† Our results support this: our ViT-victim bot achieved a peak ranking of 9th

†††In the previous section we estimated a goratings.org Elo of 3983 for ViT-victim at 65536 visits. However, KataGo’s
internal benchmarks suggest that above 5000 visits, each search thread decreases performance by around 2 Elo (see
https://github.com/lightvector/KataGo/blob/v1.13.0/cpp/program/playutils.cpp#L868). Adjusting for this gives
a Elo of 3983 − 2 ∗ 64 = 3855. Using multiple search threads parallelizes inference, decreasing inference latency at the cost
of overall strength. That is to say, for a fixed number of visits, using fewer threads generally leads to a stronger agent. All
of our training and evaluation runs in the paper are done with a single search thread unless noted otherwise.
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Figure H.2: Elo difference between each vn to base-victim at visit counts up to 4096. Shaded regions are the
standard deviation of the Elo estimate. Each vn is slightly weaker than base-victim.

on KGS (KGS, 2022), ahead of many KataGo bots but behind others playing with stronger settings. Since
professional players rarely play on KGS, we also commissioned three games against strong professionals: our
bot won two out of three, losing one largely due to a weakness that also affected early versions of KataGo (see
discussion below).

H.2.1. Public KGS games

Our bot played 1000 ranked games on the KGS website with members of the public, achieving a peak rating
of 10.87 dan on the KGS website (KGS, 2022).‡‡‡ We note that bots are common on the server; we follow the
standard best practice of notifying players that they are playing a bot, and our bot was approved for ranked
games by the KGS administrators. Indeed, the top ranked players on KGS are dominated by bots: our ranking of
9th puts us ahead of several KataGo bots and behind several others, though the exact configuration settings of
these bots are unknown. However, the majority of ranked games played by our ViT-victim bot were against
human players, usually with our bot giving 1 to 6 stones of handicap to the human player.

Despite our ViT-victim bot having a strong showing on the KGS Online Go server, it is understood within the
Go community that strong professional players rarely play on KGS. Thus our results on KGS only show that a
64-thread, 65536 visit / move version of ViT-victim is much stronger than many strong amateur Go players.

H.2.2. Games against professional Go players

We therefore also commissioned a game against the 7 dan professional Yilun Yang and two games against the 4 dan
professional Ryan Li. The players were informed that they were playing a bot and agreed to acknowledgement in
the paper. They were also compensated at a rate greater than 4x the minimum wage in the relevant jurisdiction.

Yilun Yang played with 90 minutes base time for each player, and 5 periods of 30 seconds byo-yomi overtime.
ViT-victim won, with Yang feeling he may have gotten behind early and missed some better ways to play in the
middle game.

Ryan Li played with 5 minutes base time per player, and the same 5x30 byo-yomi overtime. ViT-victim lost the
first game and won the second. In the first game, Li played the “Flying Dagger” joseki, a notoriously difficult
opening corner sequence, and obtained a substantial early advantage after ViT-victim misplayed. Li played
accurately for the rest of the game and ViT-victim never caught up. This joseki was a known weakness in early
versions of KataGo as well; it was eventually corrected through manually adding positions from the sequence to

‡‡‡The KGS website has a special rating system (www.gokgs.com/help/rmath.html). Official ranks are discrete and only
go up to 9 dan, but KGS computes an internal Elo for all players with a minimum number of ranked games. These internal
Elos can go past 9 dan. See the top rated accounts at www.gokgs.com/top100.jsp to see some examples of this.
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the training run. In our training, we did not include those positions (Appendix G.5.2), and it seems ViT-victim
developed a similar weakness.

In the second game Li played, we requested and Li agreed to avoid that joseki, and with that constraint
ViT-victim won.

Overall, these results indicate ViT-victim has some weaknesses that might lead to a lower Elo. But in general it
plays at a strong professional level, in line with our original estimate. Explore the games on the accompanying
project website.
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I. Human replication of attacks
A Go expert author (Kellin Pelrine) was also able to replicate several of our attacks after studying the game
records but without AI assistance at attack time. Full game records, along with additional commentary on the
play, are available on our website and linked in the following sections.

I.1. Human replication of the continuous adversary

This attack was the most challenging to replicate, requiring multiple components chained together. In addition to
carefully engineering the shapes of the attack, a key discovery was that the final step approaching the capture
seems to require obfuscation. That is, the attack failed many times after seemingly achieving the salient features
of the cyclic group like the distinctive double cut formation highlighted in Fig. E.1a. To succeed, it appears that
the final threat against the cyclic group needs to be a natural move for a purpose other than attacking the cyclic
group. This, we hypothesize, leads dec23-victim to be less likely to search follow-up sequences attacking its
cyclic group, and consequently miss the danger that it is in.

The successful attack was performed against dec23-victim playing with 512 visits. Although the final obfuscation
is likely to become more challenging against higher visits, we believe it should still be possible for humans to
achieve, as it is possible to engineer situations where the final threat has a very large threat against something
besides the cyclic group and appears very natural. For example, the critical move in the successful game is also
(mis-)played by KataGo with 4096 visits. Meanwhile, the other components of the attack do not seem related to
search depth and should not be harder to achieve. We plan to test human attacks against higher visits in future
work.

I.2. Human replication of the gift adversary

Unlike the preceding attack, setting up the apparent shapes for this attack is relatively straightforward. It was
not too challenging to produce a successful attack against 1 visit. In particular, it was quite simple to induce
dec23-victim to make errors—the challenge was ensuring dec23-victim’s lead was sufficiently narrow for the
errors to change the game outcome.

Scaling to higher visits, however, proved difficult. Multiple attempts at 256 and 512 visits failed. We hypothesize
that this is because the victim must assign enough value to the sending-two “gift” move to play it, but at the
same time not keep searching locally and see disaster coming after the adversary’s next move. These requirements
are conflicting: if there are valuable areas to play elsewhere then the victim is likely to play those instead of
sending-two, but if there are none, then there are none for the adversary either, so the victim is more likely to
expect the adversary to continue locally and accept the gift – and then to see the danger.

This need for some but not too much local search so that the victim plays the local “gift” move is in stark contrast
with all versions of the cyclic attack, where the attack is more likely to succeed the less search is allocated by the
victim to the locality of the vulnerability. Furthermore, at least in the versions of the attack observed so far,
the number of moves that the victim needs to look ahead locally, between its deciding move and realized loss
(adversary group living), is fixed and small. This again contrasts with the cyclic attack, where the deciding move
can take place a virtually arbitrary amount of moves ahead of realized loss (cyclic group captured or something
else lost while saving the cyclic group).

This requirement means the attack needs to balance search probabilities over the entire board to a greater and
greater degree at higher visits. By contrast, in the cyclic attack it suffices to control the local situation to make
the attack more hidden, requiring a greater victim search depth needed to notice the attack. This also fits
with our empirical observations: humans can perform the attack at one visit but seemingly not at 256+, while
gift-adversary can reach 512 visits and somewhat beyond but falls off vary sharply after 1024 visits (Fig. 3.1).
gift-adversary is likely able to balance search probabilities of the victim with much higher precision than
humans can, but it becomes prohibitively difficult at high enough visits.
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I.3. Human cyclic attack on ViT-victim

Pelrine was also able to use a cyclic attack to beat ViT-victim. This attack was the easiest to execute of those
discussed in this section. It was performed against a 64-thread, 65536 visit / move version of ViT-victim, the
same used in the strength evaluation in Appendix H.2. The shape used for the inside group paralleled some of
the wins by base-adversary against this victim. The attack emphasized ensuring lots of liberties for the groups
surrounding the cyclic one so that ViT-victim would have to see the danger early to have a way out.
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Figure J.1: We extend Fig. 3.2’s plot of adversaries’ win rates against various victims to include more adversaries
on the y-axis and more victims on the x-axis.

J. Transfer
Figure J.1 shows the result of playing adversaries against a variety of victims. The ability of victims to defeat
adversaries they were not trained against provides evidence of their robustness.

Victims: We find all victims remain vulnerable at extremely low amounts of search (4 victim visits), although
dec23-victim does better than others. base-victim through v4 progressively improve at defending against
continuous-adversary, after which their performance plateaus.

Adversaries: a9, trained against v9, transfers surprisingly well to defeat dec23-victim, winning 66% of games
at 256 visits and 36% at 4096 visits (Fig. J.2). atari-adversary, trained against v9, wins 4% of games against
dec23-victim at 256 victim visits. By contrast, continuous-adversary, trained against dec23-victim, wins
5% of games against v9. gift-adversary does not transfer at all to other victims, achieving no wins even at 4
visits against base-victim and ViT-victim.
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Figure J.2: Win rate (y-axis) of a9 versus dec23-victim at varying victim visits (x-axis), demonstrating
considerable transfer performance.
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K. Compute resources
K.1. Compute infrastructure

We ran experiments using cloud computing infrastructure orchestrated with Kubernetes configured with the
Kueue batch scheduler. We used A6000 GPUs for nearly all our training runs. The main exception is that v1, v2,
v3, and v4 used A100 80GB GPUs as we were trying a different compute platform. We also used some H100
GPUs during the gift-adversary and a9 runs, but they were mainly run on A6000 GPUs.

K.2. Compute for our training runs

We convert our compute numbers to V100 GPU-days so that our numbers can be straightforwardly compared to
the V100-based compute estimates of Wang et al. (2023a). According to Wang et al.’s conversion estimates, one
A100 80GB GPU-day is 1.873 A6000 GPU-days and one A6000 GPU-day is 1.704 V100 GPU-days. We estimate
that one H100 GPU-day generated as much training data as 0.369 A6000 GPU-days. Note we did not tune our
H100 setup as we made minimal use of these GPUs.

Most of our compute estimates are measured by parsing our training logs. However, when training a1, ViT, and
ViT-adversary, we made sub-optimal configuration choices that slowed down our training runs. For these runs,
we provide idealized compute estimates by benchmarking the slow-down caused by the poor configuration and
scaling our compute estimates downwards accordingly.

Our error in a1 training was using too few game threads, a parameter controlling how many victim-play games
are played at once. We were using 16–32 game threads rather than the 128–256 game threads that we used in
later training runs, which gave higher training throughput. a1 used 703 V100 GPU-days, and we estimate that
with higher game threads it would have cost 238 V100 GPU-days instead.

Our error in training our ViT networks and ViT-adversary was using single-precision floating point rather than
half-precision floating point for ViT inference. Inference with half-precision floating point is significantly faster.
Our actual compute cost for training ViT with single-precision floating point was 128 V100 GPU-days for the
4-block ViT, 661 V100 GPU-days for the 8-block ViT, and 457 V100 GPU-days for the 16-block ViT, totalling
1247 V100 GPU-days. We estimate that with half-precision floating point, the cost would have been 537 V100
GPU-days instead. For ViT-adversary, we switched to half-precision floating point near the end of the run and
spent 711.0 V100 GPU-days. We estimate that had we used half-precision floating point for the entire training
run, it would have been 409 V100 GPU-days instead.

K.3. Compute for KataGo models

base-victim, may23-victim, and dec23-victim all come from KataGo’s ongoing distributed training run, which
was initialized from KataGo’s “third major run.” Wu (2021b) reports training compute estimates for the third
major run, from which we can extrapolate the training cost of models from the distributed training run. (Our
compute estimate calculations are similar to those of Wang et al. (2023a), except in our estimates we do not
anchor on the initial 38.5 days of the third major run that generated data with smaller models, and we account
for the greater search used in the distributed training run.)

In the last 118.5 out of 157 days in the third major run, the run switched from using b20c256 nets to using
b40c256 and b30c320 nets for self-play data generation. The final b20c256 net used for self-play was trained on
468,617,949 data rows whereas the third major run generated 1,229,425,124 rows in total, so over the course of
those 118.5 days, the run generated 1,229,425,124 − 468,617,949 = 760,807,175 rows. This segment of the run
used 46 V100 GPUs, costing 118.5 × 46 = 5451 V100 GPU-days. The total cost of the the third run across all 157
days is 6,730 V100 GPU-days (Wang et al., 2023a).

The distributed run generates data with b40c256, b60c320, and b18c384nbt nets, all of which have similar or
higher inference cost to the b40c256 and b30c320 used in the third major run.§§§ Therefore, we estimate the
average inference from the distributed run is at least as expensive as the average inference from the last 118.5

§§§b60c320 is a strictly larger in width and depth than b40c256 and therefore has a higher inference cost. https:
//github.com/lightvector/KataGo/blob/v1.14.1/python/modelconfigs.py#L1384 states that b40c256, b30c320, and
b18c384nbt have similar inference costs.
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days of the third major run.

Moreover, the distributed training run uses more inferences to generate each data row. The third major run used
1000 full-search visits or 200 cheap-search visits per move, where full searches are used to generate high-quality
policy data and cheap searches are used to play games quickly (Wu, 2020b). The distributed training run
started with 1500 full-search visits and 250 cheap-search visits (Wu, 2020a). Assuming inference count scales
proportionally with search and that data row compute cost scales proportionally with inference count, we crudely
estimate each training row generated with these search parameters costs 1.25× as much as each training row from
the third major run. The distributed run switched to 2000 full-search visits and 350 cheap-search visits in March
2023 (Wu, 2023c), after about 3.211 billion data rows (including the 1.2 billion from the third major run) were
generated. We estimate each row generated with these parameters costs 1.75× as much as each third-major-run
row.

Putting this all together, our training compute estimate in V100 GPU-days for a model from KataGo’s distributed
training run that has trained on D ≥ 1,229,425,124 rows is

6730 + (min{D, 3211000000} − 1229425124) · 1.25 + max{D − 3211000000, 0} · 1.75
760807175 · 5451.

Since base-victim trained on 2,898,845,681 data rows, its estimated cost is 21681 V100 GPU-days. may23-victim
trained on 3,323,518,127 rows, giving a cost of 25888 V100 GPU-days, and dec23-victim trained on 3,929,217,702
rows, giving a cost of 33482 V100 GPU-days.

For adversarial training, the last KataGo network before adversarial training began was trained with 3,057,177,418
data rows (Wu, 2022b). Based solely on the number of data rows, dec23-victim has had (3929217702 −
3057177418)/(3323518127 − 3057177418) = 3.3 times as much adversarial training as may23-victim.
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Figure L.1: Heat map showing the cyclic attack made by atari-adversary against v9.
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Figure L.2: Heat map showing the cyclic attack made by ViT-adversary against ViT-victim.

L. Heat maps of cyclic attacks
In this section, we present heat maps illustrating the cyclic shapes constructed by each of our cyclic adversaries.
We also plot differences between heat maps to show changes in the cyclic group constructed by different adversaries.

To construct the heat maps for an adversary, we took games where the adversary beats the victim it was trained
against. We then inspect the board state during the move at which a large cyclic group of victim stones is
captured. To remove board symmetries, we rotate the game board so that the center of the cyclic group is in the
top-left quadrant of the board, and flip across the major diagonal of the board to keep the center of the group
above the major diagonal. We then plot the frequency of each board square being in the captured cyclic group.
We also plot the adversary’s stones, the victim’s other stones, and the adversary and victims’ stones falling in the
interior of the cyclic group at the time of capture.

Figure L.1 shows heat maps for atari-adversary against v9, with the dark squares in the cyclic group being the
bamboo joints discussed in Section 3.2.2. We also see a checkerboard pattern of adversary stones near the cyclic
group. These are likely isolated pieces, mentioned in the same discussion, that could be captured if the victim
saw the danger its cyclic group was in.

Figure L.2 shows heat maps for ViT-adversary against ViT-victim, which moves the cycle into the center and
forms another boundary of stones around it.
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Figure L.3: Heat map showing the cyclic attack made by continuous-adversary against dec23-victim with
4096 victim visits of search.
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Figure L.4: Heat map showing the cyclic attack made by base-adversary against base-victim with 4096 victim
visits of search.

continuous-adversary’s attack against dec23-victim (Fig. L.3) shows less variation in the cyclic group than
the attack made by base-adversary (Fig. L.4): the cyclic stone heat map (Fig. L.3) is deeply colored throughout
with few lightly colored squares. We also see a larger and consistent shape of interior adversary stones for
continuous-adversary, along with a pattern in interior victim stones that isn’t present for the base-adversary.

For base-adversary, using more victim visits does not substantially affect the shape of the cyclic attack. Fig. L.5
plots the difference between the heat map for 4096 (Fig. L.4) and 16 (Fig. L.6) victim visits, finding minimal
differences.

Figures L.8 to L.24 show heat maps for each adversary a1 through a9 trained in iterated adversarial training
against their corresponding victims at 16 victim visits:

• a1 (Figs. L.7 and L.8) has a less consistent structure to the stones outside the cyclic group than
base-adversary, which tends to form a boundary of stones near the edge of the board outside the cycle.

• a2 (Figs. L.9 and L.10) forms a larger cycle than a1.

• a3 (Figs. L.11 and L.12) moves the cycle towards the center on one axis, and the cycle shrinks again but
with less consistent shapes.
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Figure L.5: Difference between the heat maps of base-adversary against base-victim with 16 (Fig. L.6) and
4096 (Fig. L.4) victim visits of search. base-adversary’s attack does not change much when victim visits are
increased.
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Figure L.6: Heat map showing the cyclic attack made by base-adversary against base-victim with 16 victim
visits of search.

• a4 (Figs. L.13 and L.14) moves the cycle towards the center along the other axis.

• a5 (Figs. L.15 and L.16) makes the cycle larger.

• a6 (Figs. L.17 and L.18) does not show much qualitative difference in the heat maps.

• a7 (Figs. L.19 and L.20) tends to place stones on board locations of a particular parity near the boundaries
of the board, leading to a checkerboard pattern in the heat map.

• a8 (Figs. L.21 and L.22) does not show much change.

• a9 (Figs. L.23 and L.24) shrinks the cycle slightly.
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Figure L.7: Difference between the heat maps of a1 (Fig. L.8) and base-adversary (Fig. L.6).
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Figure L.8: Heat map showing the cyclic attack made by a1 against v1.
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Figure L.9: Difference between the heat maps of a2 (Fig. L.10) and a1 (Fig. L.8).
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Figure L.10: Heat map showing the cyclic attack made by a2 against v2.
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Figure L.11: Difference between the heat maps of a3 (Fig. L.12) and a2 (Fig. L.10).
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Figure L.12: Heat map showing the cyclic attack made by a3 against v3.
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Figure L.13: Difference between the heat maps of a4 (Fig. L.14) and a3 (Fig. L.12).
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Figure L.14: Heat map showing the cyclic attack made by a4 against v4.
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Figure L.15: Difference between the heat maps of a5 (Fig. L.16) and a4 (Fig. L.14).
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Figure L.16: Heat map showing the cyclic attack made by a5 against v5.
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Figure L.17: Difference between the heat maps of a6 (Fig. L.18) and a5 (Fig. L.16).
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Figure L.18: Heat map showing the cyclic attack made by a6 against v6.
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Figure L.19: Difference between the heat maps of a7 (Fig. L.20) and a6 (Fig. L.18).
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Figure L.20: Heat map showing the cyclic attack made by a7 against v7.
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Figure L.21: Difference between the heat maps of a8 (Fig. L.22) and a7 (Fig. L.20).
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Figure L.22: Heat map showing the cyclic attack made by a8 against v8.
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Figure L.23: Difference between the heat maps of a9 (Fig. L.24) and a8 (Fig. L.22).
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Figure L.24: Heat map showing the cyclic attack made by a9 against v9.
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M. Extra experimental plots
This section collects additional, visually large plots referenced in previous sections.

M.1. Individual iterated adversarial training plots

Whereas Figs. F.1 and F.2 concatenate all defense iterations into one plot and all attack iterations into another
plot, Figs. M.1 and M.2 give training progress plots for each iteration separately.

M.2. Training steps plots

In Figs. M.3 to M.15 we display versions of previous plots but use victim-play or self-play training steps on the
x-axis to measure training time instead of GPU-days. We tended to use GPU-days throughout this paper since it
is a unit that is more understandable for readers, but as GPU-days are machine-dependent, training steps may be
more useful for other researchers who want to compare our runs to other KataGo-like training runs.
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Figure M.1: Win rate (y-axis) of each vN (♦) against aN − 1 throughout vN ’s training (x-axis). The curves for v1
to v4 only have a few data points along the x-axis as intermediate checkpoints were lost.
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Figure M.2: Win rate (y-axis) of each aN against vN throughout aN ’s training (x-axis). Dotted lines represent
advancing to the next victim in the curriculum.
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Figure M.3: This plot is the same as Fig. E.2 but with training steps on the x-axis instead of GPU-days.
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Figure M.4: This plot is the same as Fig. E.4 but with training steps on the x-axis instead of GPU-days.
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Figure M.5: This plot is the same as Fig. F.1 but with training steps on the x-axis instead of GPU-days.
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Figure M.6: This plot is the same as Fig. F.2 but with training steps on the x-axis instead of GPU-days.
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Figure M.7: This plot is the same as Fig. F.4 but with training steps on the x-axis instead of GPU-days.
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Figure M.8: This plot is the same as Fig. G.2 but with training steps on the x-axis instead of GPU-days.
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Figure M.9: This plot is the same as Fig. G.3 but with training steps on the x-axis instead of GPU-days.
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Figure M.10: This plot is the same as Fig. G.4 but with training steps on the x-axis instead of GPU-days.
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Figure M.11: This plot is the same as Fig. G.5 but with training steps on the x-axis instead of GPU-days.
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Figure M.12: This plot is the same as Fig. G.6 but with training steps on the x-axis instead of GPU-days.
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Figure M.13: This plot is the same as Fig. G.7 but with training steps on the x-axis instead of GPU-days.
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Figure M.14: This plot is the same as Fig. M.1 but with training steps on the x-axis instead of GPU-days.
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Figure M.15: This plot is the same as Fig. M.2 but with training steps on the x-axis instead of GPU-days.
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