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ABSTRACT

The discovery of complex multicellular organism development took millions of
years of evolution. The genome of such a multicellular organism guides the de-
velopment of its body from a single cell, including its control system. Our goal is
to imitate this natural process using a single neural cellular automaton (NCA) as
a genome for modular robotic agents. In the introduced approach, called Neural
Cellular Robot Substrate (NCRS), a single NCA guides the growth of a robot and
the cellular activity which controls the robot during deployment. In this paper,
NCRSs are trained with covariance matrix adaptation evolution strategy (CMA-
ES), and covariance matrix adaptation MAP-Elites (CMA-ME) for quality diver-
sity, which we show leads to more diverse robot morphologies with higher fitness
scores. While the NCRS can solve the easier tasks from our benchmark envi-
ronments, the success rate reduces when the difficulty of the task increases. We
discuss directions for future work that may facilitate the use of the NCRS approach
for more complex domains.

1 INTRODUCTION

Multicellular organisms are made of cells that can divide into many, which specialize in control-
ling and maintaining the body, sensing the environment, or protecting from external threats. Such
features were acquired by evolution from the first living cell. After millions of years, colonies of
unicellular organisms appeared and were essential to the development of multicellular organisms
with cellular differentiation (Niklas & Newman, 2013). Developmental biologists study that the
growth and specialization of an organism are coordinated by its genetic code (Slack & Dale, 2021).

The field of artificial life tries to create life-like computational models taking ideas from biological
life, such as decentralized and local control (Langton, 2019). One of the sub-fields of artificial life,
artificial development (Harding & Banzhaf, 2009; Doursat et al., 2013), focuses on modeling or
simulating cell division and differentiation. The techniques applied in artificial development are
often based on the indirect encoding of developmental rules (i.e. analogous to the genome of a
biological organism describing its phenotype). This type of encoding facilitates the scaling of an
organism because the information in the genome is much smaller than in the resulting phenotype.
This property is referred to as genomic bottleneck (Zador, 2019; Variengien et al., 2021), and it
implies that the genetic code of an organism compresses the information to grow and maintain its
body, and in some species even complex brains.

One of the simplest computational models of artificial life or dynamical systems is a cellular au-
tomaton (CA) (Wolfram, 2002). A CA can be described as a universe with discrete space and time,
which is governed by local rules without any central control. Such a discrete space is divided into a
regular grid of cells and can possess any number of dimensions. The most commonly studied CAs
have one or two dimensions and their most well-known versions are, respectively, elementary CA
(Wolfram, 2002) and Conway’s Game of Life (Conway et al., 1970). Both have cells with binary
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states, but other CA can have many discrete states or continuous ones. In the 1940s, the first CA
was introduced by Ulam and von Neumann (Topa, 2011). Von Neumann aimed to produce self-
replicating machines, and Ulam worked on crystal growth. In 2002, a CA with rules defined by
an artificial neural network was described (Li & Yeh, 2002). Nowadays, this type of approach is
called neural cellular automaton (NCA). In 2017, Nichele et al. (2017) presented an NCA that has
developmental features that were learned through neuroevolution using a method called composi-
tional pattern-producing network (Stanley, 2007). Recently, Mordvintsev et al. (2020) introduced a
differentiable NCA, which possesses growth and regeneration properties. In their work, an NCA is
trained through gradient descent to grow a colored image from one active “seed” cell.

In evolutionary robotics, co-evolution of morphology and control has the inherent challenge of opti-
mizing two different features in parallel (Bhatia et al., 2021). It also presents scalability issues when
it deals with modular robots (Yim et al., 2007). Our goal is to implement an approach where the op-
timization happens in just one dynamical substrate with local interactions. Here we introduce such a
system, a Neural Cellular Robot Substrate (NCRS), in which a single NCA grows the morphology
of an agent’s body and also controls how that agent interacts with its environment. The NCA has
two phases (Fig. 1). First is the developmental phase, in which the robot’s body is grown, including
where to place its sensors and actuators. In the following control phase, copies of the same NCA
are running in each cell of the agent, taking into account only local information from neighboring
cells to determine their next state. The optimization task thus entails figuring out how to transmit
information from the robot’s sensors to its actuators to perform the task at hand.

We also introduce a virtual environment with three benchmark tasks for evaluating the NCRS’ capac-
ity of designing a robot and then controlling it. Two benchmarks consist in growing and controlling
a robot to approach a light source (Fig. 1b and Fig. 2a). The third task challenges the robot to carry
a ball to a target area. In this benchmark, a second type of rudimentary eye is added, so the robot
can differentiate the ball and the target area (Fig. 2b).

The main contribution of this work is the introduction of a single neural cellular automaton that
first grows an agent’s body and then controls it during deployment. While the solved bench-
mark domains are relatively simple, the unified substrate for both body and brain opens up
interesting future research directions, such as opportunities for open-ended evolution (Stanley,
2019). The source code of this project is available at https://github.com/sidneyp/
neural-cellular-robot-substrate.

Figure 1: Neural Cellular Robot Substrate (NCRS). In the developmental phase (a), the robot is
grown from an initial starting seed, guided by a neural cellular automaton (c). Once grown, the same
neural cellular automaton determines how the signals propagate through the robot’s morphology
during the control phase (b).
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(a) Light chasing with obstacle task (b) Carrying ball to target
task

Figure 2: Extensions from the light chasing task. (a) It depicts the original size of the playing field,
which is 60.

2 RELATED WORK

The co-design of robot bodies and brains has been an active area of research for decades (Medvet
et al., 2021; Sims, 1994; Komosiński & Ulatowski, 1999; Veenstra & Glette, 2020; Gupta et al.,
2021). Brain and body co-design stands for producing a control policy and a morphology for a
robotic system. For example, in the work of Lipson & Pollack (2000) the same genome directly
encodes the robot’s body and the artificial neural network for control. A method that uses genetic
regulatory networks to define separately a body and an artificial neural network was introduced by
Bongard & Pfeifer (2003) and named artificial ontogeny. The evolved robots are able to locomote
and push blocks in noisy environments. More recent work by Bhatia et al. (2021) presents several
virtual environments and also an algorithm for brain and body co-design with separated descrip-
tion methods for the morphology and control. In comparison with NCRS, our co-design algorithm
consists of only one neural cellular automaton.

The work on NCAs by Mordvintsev et al. (2020) is one of the first examples of self-organizing
and self-repair systems that use differentiable models as rules for cellular automata. Before that,
NCA models were typically optimized with genetic algorithms (Nichele et al., 2017). After the
work on growing NCA, other neural CAs were introduced, including methods optimized without
differentiable programming. There exist other generative methods for growing 3D artifacts and
functional machines (Sudhakaran et al., 2021), for developing soft robots (Horibe et al., 2021).
Moreover, an NCA was used as a decentralized classifier of handwritten digits (Randazzo et al.,
2020).

The developmental phase of our approach is similar to the generative method with NCA for level
design trained with CMA-ME in the work of Earle et al. (2021). Morphology design is also present
in other works (Hejna III et al., 2021; Talamini et al., 2021; Kriegman et al., 2018; Brodbeck et al.,
2015). The control phase is based on the NCA for controlling a cart-pole agent introduced by
Variengien et al. (2021), but their NCA is trained using a reinforcement learning algorithm named
deep-Q learning and the communication between NCA and environment happens in predefined cells.
Our approach, NCRS, unifies these two methods by having two phases. The first phase is generative,
and the second one is an agent’s policy.

3 APPROACH: A UNIFIED SUBSTRATE

The modular robots grown by the NCA consist of different types of cells such as sensors, actuators,
and connecting tissue. After growth, the robot is deployed in its particular environment. Importantly,
in our approach, the same NCA controls both the growth of the modular robot (Fig. 1a) and the robot
itself (Fig. 1b). Therefore, it is a unified substrate for body-brain co-design and is called Neural
Cellular Robot Substrate (NCRS). The architecture of NCRS is illustrated in Fig. 1c. When the
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(a) Final time-step of developmental phase (b) Final time-step of control phase

Figure 3: Channels of the neural cellular automaton in different stages.

growth process is finished, the channels responsible to define the body modules reflect the robot’s
morphology, then the NCA can observe and act in the environment using the cells assigned to the
specific types of modules, which are sensors, wheels, and tissue.

The state of a cell is updated considering the eight surrounding neighbors and itself, then it forms a
3×3 neighborhood. The values of the nine cells with all the n channels are processed by a trainable
convolutional layer with 30 filters of size 3 × 3 × n. Followed by a dense layer of 30 neurons and
another one with n neurons for the n channels of the neural CA. After all cells have been computed,
the result of this process is added to the previous state of the neural CA, and then it is clipped to the
range of [−5, 5]. This update is only valid for the cells that are considered “alive”, which are the
ones that have their value in the body channel greater than 0.1 and their neighbors. This architecture
is very similar to the ones in self-classifying MNIST (Randazzo et al., 2020) and in self-organized
control of a cart-pole agent (Variengien et al., 2021).

The channels have specific roles in the neural CA, as shown in Fig. 3. The number of channels
n differs because of the different number of sensors in the types of benchmark tasks. The body
channel is the one that indicates that there is a body part in that cell if its value is greater than
0.1. The neighbors of a body part are allowed to update their states because they are considered
“growing”. The next channel has fixed values and works as a control flag. When the neural CA is
in the developmental phase, all cells in this channel are set to zero. When it is in the control phase,
they are set to one. The following channels are responsible to define the type of the body part. The
channel with the highest value is the one that specifies the body part. In the case of a tie, the first
channel is selected. The order of those channels is: body/brain tissue, light/ball sensor, target area
sensor (if needed), and wheel. In this way, it can define a robot as depicted in Fig. 1a. Then, there
are the hidden channels to support the computation in the neural CA. For all benchmark types, the
neural CA contains six hidden channels. Finally, the input/output channel, which is the one that
receives the values from the sensors and gives the values to the actuators (wheels).

The initial state of the neural CA is a “seed”. The middle cell of the grid has the state set as one
in the body channel, and the rest is zero. After a few time-steps in the developmental phase, all
channels are updated except the control flag channel. This phase lasts for ten time-steps. The end
of the developmental phase is represented in Fig. 3a. After development, the control phase starts. In
this phase, the benchmark environment initializes with the developed robot body. For advancing one
time-step in the environment, the NCA takes two time-steps for defining an action after receiving
observations from the sensors. The body and body parts channels become fixed and their values
are defined by the robot body. This is used to support the neural CA by identifying the cells with
body modules, such as tissues, sensors, and actuators. The cell is assigned the value one to the
body channel if there is a body part and to the specific body parts channel. Fig. 3b shows this
assignment for the identification of body parts during the control phase. The robot designed by this
NCA is depicted in Fig. 4a. At the start of the control phase, the cellular activity of the hidden and
input/output channels is set to zero. In the input/output channel, only the input cells are fixed and
their values come from the sensors.
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In our neural CA, there is no noise. Even all “alive” cells are updated every time-step. This is done
because the stochastic update or any other type of noise would affect the development of the robot
body. After the developmental phase, the same model could produce different types of robot body.

For our experiments, the neural cellular automaton has a grid of size 5 × 5. Therefore, it generates
a body for an agent with the same size. Since this is a neural CA, the grid size does not affect the
number of trainable parameters. The light chasing and light chasing with obstacle environments
require just the light sensor. Therefore, the robot can have tissue, light sensor and wheel. A wheel’s
orientation is always vertical during the initialization of the benchmark environment. The wheel
rotates upwards and downwards relative to the initial angle of the robot. The maximum speeds for
each of those directions are, respectively, +1 and -1. This takes three body part channels. With one
body, one control flag, six hidden, and one input/output channels, the total number of channels is 12.
In this way, the number of trainable parameters is 4,572. In the carrying ball to target environment,
the robot needs one additional sensor. Therefore, it adds one more channel. It results in a neural CA
with 4,873 trainable parameters.

4 BENCHMARK ENVIRONMENTS

To test the capacity of controlling the developed robot, we implemented three benchmark envi-
ronments, which are: light chasing (LC), light chasing with obstacle (LCO), and carrying ball to
target (CBT). They are environments where a modular robot equipped with simple light sensors and
wheels can be evaluated. In those environments, we decided that the size of the playing field and the
distance between the objects are affected by the maximum size that the robot can have. Thus, the
larger the robot can be, the bigger the playing field. In our experiments, we use a robot and a neural
cellular automaton grid with size 5 × 5. Because the possible maximum size of the robot is 5, we
chose the size of the playing field to be 60.

The fitness score is calculated using the average score of 12 runs where the location of the agent,
light, ball, and target can differ for each run. The light or ball has some predefined regions to be
initially placed.

The benchmark environments are based on the implementation of the top-down racing environment
in Open AI gym (Brockman et al., 2016). We use the pybox2d, which is a 2D physics library in
Python.

4.1 LIGHT CHASING

The light chasing (LC) environment is shown in Fig. 1b. The goal of the agent is to be closer to the
light during the entire simulation. The agent starts in the middle of the playing field. One light is
randomly placed around the region of one of the four corners of the playing field. The fitness score
is calculated by the average distance between the center of the robot and the center of the light over
all simulation time-steps, and a successful run means that this distance reached less than 10 times
the module size. The activity s of the agent’s light sensors is calculated as:

s = e−distance/playfield, (1)

where the distance between the objects is normalized by the size of the playing field playfield,
which is 60. The values of the sensor activity or fitness score are between 0 and 1, where 1 means
no distance. The values exponentially decay to 0 with an increase in distance.

4.2 LIGHT CHASING WITH OBSTACLE

The light chasing with obstacle (LCO) environment is a more difficult version of the light chasing
one (Fig. 2a). The robot does not have sensors to detect the obstacle, thus its morphology plays a
bigger role in this benchmark. The passage width is calculated by the possible maximum size of
the robot. If the robot can have up to 5× 5 body parts, then the passage width would be the size of
three body parts. The robot is randomly initialized at the bottom of the playing field. An obstacle is
procedurally generated with a target passage width and wall roughness. The obstacle has the shape
of a funnel because there are no sensors to it, then this helps the robot to reach the passage depending
on its body. The passage is randomly located on the horizontal axis and fixed on the vertical axis.
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The light is at the top and after the obstacle. The initial light location has four predefined regions
on the horizontal axis, which are left, center-left, center-right and right. The fitness and success
definition are the same as the light chasing task.

4.3 CARRYING BALL TO TARGET AREA

Among the three benchmark environments, the task to carry a ball to a target area is the most difficult
one (Fig. 2b). For the control phase, the robot needs to move towards the ball, and then move to the
target area without losing the ball during the transport. For the developmental phase, the body of the
robot needs to be adequate to push or kick the ball to the target area, and properly placing the sensors
of each type, so it can successfully locate ball and target area. The agent is located at the bottom
in a random horizontal location. The ball is located in the middle of the vertical axis of the playing
field, but it has the same four predefined regions as the light chasing with obstacle environment. The
target is located at the top and its location on the horizontal axis is randomly defined. Besides the
sensor for the ball (or light for the other two environments), there is a new sensor type that calculates
the distance to the center of the target area (following equation 1).

The fitness score of this environment is the average of the distance between robot and ball, and the
distance between the ball and the center of the target area. Since they are distances used to calculate
the fitness score, they are normalized using equation 1. The definition of success in this task means
carrying the ball to the target, so it can have a distance less than ten times the module size of the
robot.

5 TRAINING METHODS

We have chosen to use some derivative-free optimization methods because NCRS needs some ad-
justments for using deep reinforcement learning because of the variable number of inputs and outputs
(Variengien et al., 2021). They are the covariance matrix adaptation evolution strategy (CMA-ES)
(Hansen & Ostermeier, 1996) and covariance matrix adaptation MAP-Elites (CMA-ME) (Fontaine
et al., 2020). The latter is used to add quality diversity to the former, broadening the exploration
of robot designs. For both training methods, we use the library CMA-ES/pycma (Hansen et al.,
2019). There are two training methods and three benchmark tasks. This gives a total of six different
combinations. Because of the computational demands, each of these combinations was trained only
once.

The training process is performed entirely on a CPU. To speed up evaluation times, robots with a
design that would not work properly in the environment are not simulated. For the two light chasing
environments, robots must have at least one light sensor and two actuators. For the carrying ball to
target, they must have one sensor of each type and two actuators. The fitness scores of the failed
designs are calculated according to the number of correct parts they have. For each correct body
part, the fitness score increases by 0.01.

To compare the quality diversity of CMA-ES and CMA-ME, we use the percentage of cells or
feature configurations filled, and QD-score. They measure quality and diversity of the elites (Pugh
et al., 2016). The QD-score is calculated by summing the fitness score of all elites and dividing it by
the total number of possible feature configurations. Moreover, CMA-ES and CMA-ME have their
elites stored, even though CMA-ES does not use elites during training.

5.1 COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY

CMA-ES is one of the most effective derivative-free numerical optimization methods for continuous
domains (Fontaine et al., 2020). CMA-ES runs 20,000 generations for all environments. The initial
mean is 0.0 for all dimensions, and the initial coordinate-wise standard deviation (step size) is 0.01.
The population size or the number of solutions acquired to update the covariance matrix is 112. This
number was selected by the number of available threads in the machine used to train, which contains
56 threads at 2.70GHz.
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Table 1: Best fitness score after training in the tasks of light chasing (LC), light chasing with obstacle
(LCO) and carrying ball to target (CBT)

CMA-ES CMA-ME
LC 0.58274 0.61481

LCO 0.49295 0.47723
CBT 0.48445 0.47884

5.2 COVARIANCE MATRIX ADAPTATION MAP-ELITES

CMA-ME is a variant of CMA-ES with the added benefit of quality diversity from MAP-Elites
(Mouret & Clune, 2015). The changes to CMA-ES are that there are emitters of CMA-ES being
trained in a cycle. Additionally, a feature map stores one elite for each possible feature configuration.
Because there are invalid body designs, they do not produce an elite. When there is a successful robot
design, the number of sensors, actuators, and body parts are used as features. If there are no elites or
the current solution is better than the actual elite stored in the feature map, then the current solution
is assigned to its feature configuration.

We use a slightly modified version of the CMA-ME with improvement emitters (Fontaine et al.,
2020). We only restart an emitter when the number of elites is greater than the number of emitters
and it is stuck for more than 500 generations. Being stuck means that the emitter could not find a
better elite or an elite could not be placed into an empty feature configuration in the map. When an
emitter restarts, the mean used to initialize the CMA-ES is a random elite in the map.

CMA-ME is executed for 60,000 generations for all environments, except the light chasing environ-
ment with 67,446 generations because we forced it to stop a longer training and its best fitness score
was already better than the one trained with CMA-ES. The initial mean and the initial coordinate-
wise standard deviation are the same as CMA-ES for all emitters. The population size is 128 because
the CMA-ME training was executed in a computer with 128 threads at 2.9GHz.

6 RESULTS

The training process took around 2.5 days for optimizing the NCA with CMA-ES. The evolution
with CMA-ME took around 5.5 days. It is important to note that they do not have the same machine
configuration, population size, and maximum number of generations.

Fig. 4 shows all robot designs with the best fitness scores in regards to their training method and task.
Almost all robots for the LC and CBT tasks fill the entire 5×5 grid of cells. Those environments do
not have any environmental constraints (any obstacle) for the robot size. Therefore, we infer that the
full grid of modules is easier to design and there are more computational resources for controlling the
robot. Their fitness scores are shown in Table 1. The results indicate that CMA-ES and CMA-ME
can reach almost the same fitness scores after training. However, CMA-ME has fewer generations
for the 15 emitters (4,000 generations per emitter). It is possible that if we run 20,000 generations
per emitter, CMA-ME could reach a better final performance than CMA-ES and with more diversity.
The history of the maximum fitness score per generation is depicted in Fig. 5.

(a) CMA-ES -
LC

(b) CMA-ES -
LCO

(c) CMA-ES -
CBT

(d) CMA-ME -
LC

(e) CMA-ME -
LCO

(f) CMA-ME -
CBT

Figure 4: Robot designs with best fitness scores for the tasks of light chasing (LC), light chasing
with obstacle (LCO) and carrying ball to target (CBT).
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The elites were saved for both CMA-ES and CMA-ME, then we can compare their quality diversity.
In Table 2, the number of cells filled and QD-scores of all six methods and tasks combinations are
presented. It is noticeable that CMA-ME provides much more quality diversity because of its bigger
number of feature configurations and its QD-score. We can visualize it in Fig. 6. This shows a small
part of the elites produced for the light chasing tasks with CMA-ES and CMA-ME. Nevertheless, it
confirms those two quality diversity measurements because more cells are filled, and there are more
cells with higher fitness scores.

For testing the success of our six trained models, we run 100 times the simulation and the percentage
of success is presented in Table 3. We can visualize some examples of those simulations in Fig. 7.
The trained model with CMA-ES for the light chasing task got 92% of success rate with 0.58274
fitness score while the one trained with CMA-ME had 75% of success and 0.61481 of fitness score.
This means that a higher fitness score does not indicate a more successful model for reaching the
light. This can be observed in Fig. 7a-d for CMA-ES, and Fig. 7e-h for CMA-ME. We can see in
Fig. 7g that the light is at the top-right corner and the robot goes to the top-left corner. This explains
the 75% success rate of this NCRS because the light is at the top-right corner in 25 out of the 100
simulations. This model learned to move faster to the light in the other three corners, but it misses
the one in the top-right corner. For the light chasing with obstacle task, the reason for the higher
success rate of CMA-ES robot is that it is much thinner than the CMA-ME robot. Therefore, it is
easier to pass through the passage. If we define success in LCO by passing the center of the body
through the passage, then CMA-ES and CMA-ME had a success rate, respectively, of 77% and
45%. The NCRS did not learn to move to the light after passing through the obstacle. It just moves
forward. Because of the difficulty of this task, we can consider the results for LCO were partially
successful in general and successful in body design. Fig. 7i-l and Fig. 7m-p show that. The task of
carrying a ball to a target had no successful trained model. The robots for both training methods just
move forward and, by chance, it moves the ball to target. This can be seen in Fig. 7q-t and Fig. 7u-x.

Fig. 3 shows how the channels progress through time. The hidden channels are predominantly
different in their behavior for the developmental and control phases. We infer this is mainly due
to the control flag channel which regulates these two phases. We can observe the different patterns
that emerged in their final time-steps. From the initial “seed” state to the state in Fig. 3a, we can
see how the NCA behaves during 10 time-steps of the developmental phase. In Fig 3b, we can see
the end of the control phase during its 200 time-steps (100 time-steps in the environment). We can
still understand its behavior because the hidden and input/output channels were set to zero at the
beginning of the control phase, and the body, control flag, tissue, sensor, and actuator channels were
fixed according to the morphology of the robot.

7 DISCUSSION AND CONCLUSION

Body-brain co-evolution is a challenging task (Bhatia et al., 2021). In this work, we develop three
benchmark tasks for robot co-design and introduce a novel method by having a unified substrate
as a genome with its own rules. This substrate is a single neural cellular automaton that works
to develop and control a modular robot. This novelty opens up several possibilities in open-ended
evolution (Stanley, 2019), especially because body and brain can co-evolve to the limits of the
capacity of the artificial neural network. Because it defines the local rules in the CA, NCRS has the
advantage of scalability. We also infer that curriculum learning will be important for complexifying
the evolving robot (Bengio et al., 2009). For example, the number of body parts and dimensions
can increase over time with the progress of the generations. Evolution in multi-agent environments
may also be applied, such as in PolyWorld (Yaeger et al., 1994). We can also try to remove the two
separated phases into one. Thus, we can observe how development and control can emerge and the
performance the modular robots can have.

The presented results were successful for the LC task, but our trained models presented some failures
when increasing the difficulty of the tasks. This may be addressed by adjusting the fitness score to
reflect the success conditions, as well as by applying curriculum learning (Bengio et al., 2009).
In future works, we plan to apply our method in the Evolution Gym (Bhatia et al., 2021), or in a
modified version of VoxCraft (Liu et al., 2020) for 3D soft robots. Moreover, we aim at training and
testing our approach for self-repair and robustness to noise.
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A APPENDIX

(a) Light chasing (b) Light chasing with obstacle (c) Carrying ball to target

Figure 5: Maximum fitness score through generations.

Table 2: Elites stored during training for the light chasing (LC), light chasing with obstacle (LCO)
and carrying ball to target (CBT)

CMA-ES CMA-ME
Cells filled QD-score Cells filled QD-score

LC 67.58% 0.29530 89.57% 0.40152
LCO 17.88% 0.06069 61.80% 0.19841
CBT 58.10% 0.22957 93.82% 0.37996

Table 3: Testing success percentage over 100 runs for the tasks of light chasing (LC), light chasing
with obstacle (LCO) and carrying ball to target (CBT)

CMA-ES CMA-ME
LC 92% 75%

LCO 20% 8%
CBT 1% 2%
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Figure 6: Selected elites trained in the light chasing environment. Those modules were selected
because they are the most different between CMA-ES and CMA-ME. Axes and subplots indicate
the number of components.
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(a) CMA-ES -
LC #1

(b) CMA-ES -
LC #2

(c) CMA-ES -
LC #3

(d) CMA-ES -
LC #4

(e) CMA-ME -
LC #1

(f) CMA-ME -
LC #2

(g) CMA-ME -
LC #3

(h) CMA-ME -
LC #4

(i) CMA-ES -
LCO #1

(j) CMA-ES -
LCO #2

(k) CMA-ES -
LCO #3

(l) CMA-ES -
LCO #4

(m) CMA-ME -
LCO #1

(n) CMA-ME -
LCO #2

(o) CMA-ME -
LCO #3

(p) CMA-ME -
LCO #4

(q) CMA-ES -
CBT #1

(r) CMA-ES -
CBT #2

(s) CMA-ES -
CBT #3

(t) CMA-ES -
CBT #4

(u) CMA-ME -
CBT #1

(v) CMA-ME -
CBT #2

(w) CMA-ME -
CBT #3

(x) CMA-ME -
CBT #4

Figure 7: Last time-step where the robot is fully visible of the best NCRS trained with CMA-ES
and CMA-ME in the environments for light chasing (LC), light chasing with obstacle (LCO) and
carrying ball to target (CBT).
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