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ABSTRACT

In this work, we introduce a novel coalition formation mechanism for ridesharing
services. Specifically, we extend the current literature to integrate walking options
within the trip. This allows us to effectively account for a user’s value of time
when walking, which is not negligible. Additionally, we propose a cost allocation
method that ensures proportionality for sharing the costs, i.e. those who walk more
should pay less. We present a preliminary formal evaluation of the efficacy of our
cost allocation method and discuss its desirable properties. Our study is a step
towards developing smart mobility systems that recommend optimal ridesharing
coalitions to users and suggest cost allocations that accounts for the marginal cost
and contributions of each rider.

1 INTRODUCTION

Ridesharing services allow individuals with similar itineraries to share a car and split the cost of the
trip. As a mobility option, ridesharing presents advantages on several fronts. From a social point
of view, it contributes to lower congestion, bringing a positive externality to traffic Santos & Xavier
(2015); Stiglic et al. (2015). From the user’s standpoint, ridesharing is usually more affordable than
travelling alone Li et al. (2021). For these reasons, ridesharing services have become a popular
mobility option across big cities. In recent times, several commercial platforms have started to offer
ridesharing services such as Uber1, Lyft2 and DiDi3 as a sign of the changing landscape in mobility
patterns. According to the US Census Bureau US Census Bureau (2020), by 2019, ridesharing
represented approximately 8–11% of the transportation modality in Canada and the USA.

Inspired by the surge in ridesharing, we propose a mechanism to allocate riders in a cost-efficient
way. We consider a setting where users meet at a common departure point and take a car to a
single drop-off point, to where they walk to their own destinations. To account for the walking time,
we introduce a mechanism to distribute the car cost, compensating riders for the inconvenience of
walking. We believe it is important to acknowledge the walking time as a cost, since it is part of
the user’s value of time (VoT), and therefore, has a monetary value Mayet & Hansen (2000); Santos
(2004).

The surge in ridesharing has motivated the production of academic studies on different related as-
pects. One of the main questions is how to combine different riders into the available set of cars.
For this, there have been many approaches using game-theoretic solutions, for example the work
by Bistaffa et al. (2015; 2017) uses cooperative game theory to find the optimal coalitions or rid-
ers. They propose the concept of feasible coalitions in which commuters are grouped according

1https://www.uber.com
2https://www.lyft.com
3http://www.didiglobal.com
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to their proximity in social networks. This concept allows the reduction of the dimensionality of
the search space; however, it requires a certain degree of information regarding the users’ social
network. Moreover, this work, like many others,Golpayegani & Clarke (2018); Ye et al. (2021); Lu
& Quadrifoglio (2019) assumes that cars make multiple stops and riders are not required to walk,
which is unrealistic in a ridesharing setting.

Focusing now on the cost allocation problem, the traditional literature borrows from game theoretic
concepts to propose cost sharing mechanisms, for example, Yan et al. (2021) uses the VCG auction
mechanism to achieve stable allocations, the work of Bistaffa et al. (2015) proposes the kernel as
an allocation method and Lu & Quadrifoglio (2019) propose an algorithm to find the core. None
of these methods include walking as a cost to consider in the allocation mechanism. Two works
include some form of walking in the ridesharing problem. The paper by Stiglic et al. (2015) con-
siders a ridesharing scheme where there is a single departure and drop-off point, with no additional
stops or detours. However, their focus is on solving a bipartite matching problem between taxi cabs
and riders. Their work does not factor in the walking time as a cost incurred by riders, and there is
no monetary compensation for the walking time nor accounting for the different walking times that
users might have. The second work by Kaan & Olinick (2013) considers a situation where employ-
ees drive from their homes to a common car park and board a company van to their workplace. The
objective here is to determine the minimum van cost so that employees choose the company service
over the private cars.

We expand the current literature by explicitly considering a more general setting in which riders are
willing to walk: first from their home to a departure point, and then from the car drop-off point to
their own destination. The main difference with the existing literature is in that we explicitly model
the walking cost and compensate riders for their walking time. The example below depicts the main
points of our methodology.

Introductory example. Consider a group of friends who want to share a ride after a night out,
or colleagues who live close by and want to share a ride. In both cases, the riders agree to meet
at a departure point and ride together to a drop-off point. Given a set of riders, and assuming an
infinite number of cars, there are many possible allocations of riders into cars. Our premise is that
individuals choose with whom to share a ride based on the cost of the trip, including riding and
walking costs. We illustrate the interplay between walking and riding costs below.

As an example, consider Figure 1 below. On the left panel there are 3 individuals {A,B,C} who
choose to share a car. They walk from their individual origins {Ao,Bo,Co} to a common departure
point o and then drive to a single stop d, from where they walk to their individual destinations
{Ad,Bd,Cd}. This is just one example of a possible arrangement of riders, but there can be many
others. For example, the right panel on Figure 1 depicts an alternative arrangement. In this case,
{A,B} ride-share together while {C} travels alone (and therefore has no need for walking). Indeed,
there are five possible combinations in which three individuals can be arranged. The formation of
these possible travel arrangements, their cost optimality, and the fair cost distribution is the subject
of this paper.

Figure 1: Example of two ridesharing formations for three individuals. The left panel shows three
riders sharing a car and their respective walking distances, the right panel shows two individuals
ridesharing and a third one opting to travel alone.

Our contributions are as follows: first, we propose a methodology based on game-theoretic guaran-
tees for the cost-efficient formation of ridesharing groups. Secondly, we propose a cost-allocation
method that compensates users for the walking time spent. To the best of our knowledge, we are the
first to include the cost of walking into the ridesharing problem (in both source and destination) and
factor this cost in when performing the cost allocation.
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2 FORMAL PRELIMINARIES

Following Rothe (2016) and Nisan et al. (2007), in cooperative games a set of A = {a1, ..., an}
agents work together by forming coalitions, and take joint actions so as to maximize their utility. The
goal is to find what is the best coalitional structure to form. A coalitional cost game can be described
in terms of its characteristic function, which expresses the cost of each coalition. Intuitively, this is
the cost that a subset of agents face and need to pay collectively.

Definition 1 A coalitional cost game with transferable utilities (TU) is the tuple (A,C) where A
is the set of agents and C(S), is a characteristic function C ∶ 2S ↦ R that returns the cost that a
subset S ⊆ A of agents face on their own regardless of what the remaining agents do (i.e., without
any externality present).

Given a coalitional cost game (A,C), the Coalition Structure Generation (CSG) problem focuses on
generating a coalition structure (as a partitioning on the set of agents A) with desirable properties,
e.g., those that yield a minimum cost.

Definition 2 Given a coalitional cost game (A,C), a coalition structure C = {S1, . . . , Sm}, is a
partitioning on A, with m ≤ n. That is, for arbitrary distinct 1 ≤ k, l ≤ m, we have that Sk ⊂ A,
Sk ∩ Sl = ∅(k ≠ l), and ∪mk=1Sk = A. The set of all possible coalition structures is denoted by Ĉ.

3 RIDESHARING AS A COALITIONAL COST GAME

A ridesharing game is a tuple (A,C,M) where A = {a1, .., an} is the set of riders, C ∶ 2S ↦ R is
the characteristic function, and M ∶ A ↦ R2 × R2 is the coordinate function that yields the origin
and destination coordinates for each rider e.g., M(ai) = ((xorigin

i , yorigini ), (xdest
i , ydesti )) are the

origin and destination coordinates of a rider. For simplicity, we consider an unbounded supply of
cars with up to four seats each. We formulate our problem in a game-theoretic setting where our
goal is to construct partitions of A of up to four members (i.e., ∣Sk ∣ ≤ 4,∀k) such that the coalitional
structure obtained has the minimum cost across all the possible ones in Ĉ . The following sections
cover how to calculate the coalitional cost and how the optimal coalition structure is obtained.

3.1 COST CALCULATION

Our work considers two main costs, the individual walking cost and the car cost, which is shared by
passengers sharing a car. A key input for the determination of both are the meeting points, which
in turn, depend on the geometric median of the riders’ coordinates. The main contribution of our
cost calculation methodology is the addition of walking costs on top of the car cost. In a sense, the
walking cost can be viewed as the cost of entry into a coalition, as it represents the time investment
required to join a ridesharing coalition. The walking distance of each individual depends on the
central origin and destination points, while the walking cost depends on the monetary value of time,
as explained below.

Determination of the Central O-D Points. The first step in determining the walking time is to
calculate the departure and destination points for all the the riders sharing a car. Our approach
determines these points using the geometric median of the individuals’ coordinates (as given by M )
4. Once we have identified the departure and destination points, we assign a monetary value to the
walking time.

Cost of Walking. In order to assign a monetary value to the time spent walking, we use the concept
of value of time (VoT). We assume that the VoT can be expressed as a function proportional to the
distance walked and this proportion increases at an increasing rate. Similar to Shrestha & Zolnik
(2013), the justification for the over-proportionality of the walking cost follows from the idea of
a threshold distance for reasonable walking, over which individuals see walking as a burden. To
capture the marginal aversion to walking as a monetary cost, the VoT of walking from a to b for the
individual ai is modeled as a continuous and convex function as below.

4The geometric median of a set of points is defined as the point minimizing the sum of Euclidean distances
to all points Cohen et al. (2016)
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V oTi(a, b) = dist(a, b) +
1

α
⋅ dist(a, b) ∗ logα dist(a, b) (1)

where α is an arbitrary parameter related to the function’s convexity. Figure A.1 in the Appendix A
illustrates the convexity of V oTi against the simple Euclidean distance function.

Cost of Riding. The total cost of the car for a ridesharing coalition S is simply the product of
the distance travelled from points a to b times a constant, accounting for the taxi fare: Pcar(S) =
dist(a, b) ⋅K.

Coalition Cost. For a set of riders S ⊆ A, we calculate the geometric median of their origin and
destination coordinates 5, and derive the walking and car costs using the equations above. The total
cost of the trip for this coalition (i.e. the characteristic function of the ridesharing game) is:

C(S) = {Pcar(S), ∣S∣ = 1
Pcar(S) +∑∣S∣i=1 V oTi(S), otherwise

(2)

where V oTi is the total walking done by individual i (i.e. sum of walking at origin and at destina-
tion).

Lastly, from definition 2, the cost of a coalitional structure C is simply the total cost across its
component coalitions:

Ccost(C) = ∑
S∈C

C(S) (3)

Example. To illustrate the cost calculation, consider a given coalition S with only two individ-
uals {a1, a2}. The rider’s origin and destination coordinates are, respectively, (xorigin

i , yorigini )
and (xdest

i , ydesti ) for i = 1,2. The car’s origin and destination points are calculated as the me-
dian of the individual’s origin and destination coordinates.6 In this example, the car departure
point is (xo, yo) = ( 12 ∑

2
i=1 x

origin
i , 1

2 ∑
2
i=1 y

origin
i ); and the car drop-off point is: (xd, yd) =

( 1
2 ∑

2
i=1 x

dest
i , 1

2 ∑
2
i=1 y

dest
i ). The rideshare car travels: dist ((xo, yo), (xd, yd)), which is the in-

put for Pcar. Each rider walks at most two times, first from their individual origin to the meet-
up point dist ((xorigin

i , yorigini ), (xo, yo)) and then from the drop-off point to their destination
dist ((xdest

i , ydesti ), (xd, yd)). Each of these walking distances are passed to equation 17.

4 OPTIMAL COALITION STRUCTURE

Across all the possible coalitions of up to four individuals, our aim is to find the coalitional structure
with minimal travel cost. Below we explain the steps performed.

4.1 DIMENSIONALITY REDUCTION

The problem of searching for optimal structures is NP-hard because the size of different possible
coalition structures is exponential in the number of coalition members, since there are 2n possible
coalitions for a set of n individuals. The common practice in the ridesharing literature is to reduce the
dimensionality of the problem in a sensible way. Here, a popular technique is the use of DBSCAN
Ester et al. (1996) to find proximity clusters among riders with similar origin and destination (see for
example, the works of Samy & Elkorany (2018) and Syafira et al. (2021)). Following this approach,
we use DBSCAN to reduce the partitions space by first grouping together individuals whose origin
and destination points are closer (i.e., clustered structures). This allows us to narrow down the space
of possible coalitions into a selection of feasible coalitions.

5for the geometric median, we used the Weiszfeld (1937) algorithm
6In this example, since n = 2, we use the fact that the geometric median matches the mean.
7In the particular case of two riders, both walk the same distance.
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Definition 3 (Feasible Coalition) In a ridesharing game (A,C,M), we say a coalition S ⊆ A is
ϵ-feasible if all of its members are interior points of a closed ball Nϵ(p) = {q ∈ R4 ∣ dist(p, q) ≤ ϵ},
where the dist(⋅) function is the Euclidean distance of points in a four-dimensional space composed
by (xo, yo, xd, yd) (as sources and destinations of any two riders in S), ϵ is an arbitrary radius in
4D, and p is an arbitrary point in this space.

In Section 7 we develop a numerical example exemplifying the implementation of DBSCAN and
the selection of ϵ.

4.2 OPTIMAL COALITIONAL STRUCTURE ALGORITHM

After partitioning the space with DBSCAN, we calculate the set of all feasible coalitions structures
of up to four riders on each cluster. We calculate their cost of riding following equation 2, then
we aggregate them to obtain the cost of each of the possible coalitional structures as in equation 3.
The objective is to find the combination of coalitions per cluster (i.e., the coalition structure) that
minimizes this cost. Formally, we want the specific C ∈ Ĉ such that argminC{Ccost(C)}. If there
exist more than one coalitional structures with the minimum cost, we (randomly) take one with the
least number of coalitions.

Algorithm 1, summarizes the steps required to find the coalition structure with the minimum cost on
each cluster. We refer to such a coalition structure as the optimal coalition structure. The algorithm
starts by calculating all the possible partitions (i.e. coalition structures) within the elements of a
cluster. For this, the function func partitions takes in the list of individuals in a cluster and returns
a list of all possible coalition structures with coalitions up to size four. Then the algorithm loops
over all coalitions within a coalition structure to calculate equations 2 and 3. Lastly, it returns the
minimum cost and its associated structure per cluster.

Algorithm 1: Determination of the socially optimal coalition structure on each cluster
1 input: set of all clusters, game components (A,C,M)
2 output: socially optimal coalition structure per cluster and its cost
3 foreach cluster in set of clusters do
4 Ĉlst ←func partitions(ai ∈ cluster, 4) ; // list of coalition structures

5 foreach coalition structure C, in Ĉlst do
6 Ccost(C)← 0
7 foreach coalition S in C do
8 Ccost(C)← Ccost(C) +C(S)
9 end

10 end
11 return argminC{Ccost(C)}
12 end

5 COST ALLOCATION PROBLEM

After obtaining the socially optimal coalition structure, the next question is how to split the price
of the car across members of a coalition (i.e., riders sharing a car). This aspect is important, as it
will determine whether individuals would prefer ridesharing rather than traveling alone, and thus a
coalition can be formed.

Formally, the goal is to calculate a payoff vector (x) that is the share of the coalition cost allocated
to rider ai after joining coalition S as one of the components of the optimal coalition structure. For
the price sharing phase,the challenge is that the walking part of the cost is an NTU (non-transferable
utility) component and the only part of the cost that has transferable utilities is the cost of the car.
According to Nisan et al. (2007), two common desirable properties are required over the payoff
redistribution:

1. Efficiency. The entire cost of coalition S is split among the coalition members.
2. Individual rationality. The cost paid by a coalition member (walking plus car share) is at

most equal to its singleton cost (i.e., riding alone).
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Next we develop our methodology for solving the cost allocation problem.

Inversely Proportional Cost Allocation

The idea of the inversely-proportional cost allocation method is that those who walk proportionally
less, pay a greater share of the price. Let Pcar(S) be the cost of the car to be distributed among
members of coalition S. To allocate this cost we define the share of the payment as inversely
proportional to the proportion of walking done by each member.

Let wi = V oTi

∑i∈S V oTi
be the proportion of walking done by individual ai ∈ S . Let w′i be the proportion

of the price paid by individual ai. The goal is to find a proportional split such that the usual condition
holds:

∑
i∈S

w′i = 1 (4)

As an additional condition, we want the w′i to be inversely proportional to walking, i.e.:

w′i =
1

wi
⋅ κ (5)

where the κ term is needed for equation 4 to hold. To determine κ we plug equation 5 into equation
4, obtaining κ = 1

∑
1
wi

.

Finally, the share of the car paid by each member is: ci = Pcar(S) ⋅w′i.

6 PROPERTIES

Below, we analyze the properties of the cost-allocation algorithm based on the inverse proportion of
walking. We start by showing that the formula for the distribution of cost is efficient.

6.1 EFFICIENCY AND FAIRNESS

Equation 4 guarantees that the inverse-walking payment allocation is efficient. Additionally, it is
easy to see that the distribution in 5 has the following properties: (a) if two individuals have walked
the same proportion, their payment allocation is equal (i.e. if wi = wj then w′i = w′j) and also (b) if
individual i has walked p times more (for example) than individual j, then w′i = 1

p
w′j .

This cost allocation method is fair in the sense that it compensates individuals for the cost for en-
tering a coalition. Fairness in this sense would not be captured by an equal allocation or traditional
metrics such as the Shapley value Roth (1988) . The formal results on desired properties of our
approach are further described in Section 6.2.

6.2 STUDY ON THE CONDITIONS FOR INDIVIDUAL RATIONALITY

There are certain conditions that have to be met for the socially-optimal coalition to be individually
rational. In short, the requirement is that the distance travelled by car in ridesharing should be less
than the distance travelled by individual ride, to compensate for the cost of walking. This is obtained
when the origin and destination of ridesharing individuals are close enough. Below we formalize
this idea.

Let the cost of traveling alone be c({ai}) = Pcar(o, d), where Pcar = dist(o, d) ⋅K is the cost of
the taxi for travelling from coordinate points o to d. Without loss of generality, assume the taxi fare
K = 1. Let the cost of riding in coalition S for individual ai be ci(S) = V oTi(S) +Ψi(S), with:
Ψi(S) = Pcar(o′, d′) ⋅ w′i(S), where w′i(⋅) is as defined in equation 5 and (o′, d′) are the common
meetup and drop-off points. We want to analyze under which conditions ci(S) ≤ c({ai}).
We first focus on comparing the distance travelled by the singleton car and the ride share, which
is basically asking that dist(o, d) ≤ dist(o′, d′). This inequality depends on the calculation of the

6



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

points (o′, d′), these points are the result of taking the geometric median across the origin and desti-
nation coordinates of the individuals on the coalition. If individuals are too far apart the ridesharing
scheme is no longer convenient. This distance is controlled by the ϵ parameter of the DBSCAN
algorithm. In the same line, if individuals are close enough to each other, that also helps in reducing
the walking distance term V oTi(S) and thus the coalitional cost.

7 NUMERICAL EXAMPLE

This section provides a numerical implementation of the theory previously described. Our method-
ology consists of three steps: (a) dimensionality reduction, (b) determination of the socially optimal
coalitional value and (c) cost sharing among ridesharing participants. An implementation example
is shown below.

Dimensionality reduction step. We start by simulating an initial set of 30 random points on a
plane. Then, we perform DBSCAN clustering, for the choice of the epsilon parameter we set
it to be proportional to the dimensions of the space, as 0.1 of the total area. Results are shown
below. Note that the clustering zones depicted in Figure 7 below are only indicative, as we actually
performed a DBSCAN clustering in four dimensions (corresponding to the origin and destination
coordinates combined).

Figure 2: Origin and destination of commuters on the plane with clustering zones. Simplification
of clusters in 4D space. The black dots correspond to individuals’ origin and green dots to their
destination.

Optimal Coalitional Structure Step. The next step is to calculate the walking and riding cost for
each coalition structure, as in Equation 2, taking Equation 1 as input. For the α parameter it was
selected according to the dimensions of the threshold value of 800 m suggested by Shrestha & Zolnik
(2013). We used α = 10, which makes the convexity more pronounced at the chosen threshold value
of 800 m.

The next step is to determine which is the socially optimal coalition structure among all feasible
ones. This is achieved by following Algorithm 1, Table 1 shows an example composition of the
socially optimal coalition structures per cluster. Individuals are arranged in cars of up to four riders
such that the total cost of travel (walking time plus trip cost) is minimized. The column Cost
represents the total cost of the coalitional structure (i.e., the sum of the cost of the car for each
coalition plus the total walking cost for each individual on the cluster). The Figure A.2 in Appendix
A shows a visual representation of the socially optimal coalition structure within each cluster.

7.1 ENSURING EFFICIENCY AND FAIRNESS

Achieving the socially optimal coalitional structure is a desirable property at the aggregate level;
however, at the individual level, coalitional costs should be allocated in a way that is individually
rational. After the socially optimal coalition is found, we calculated the allocation of the car cost
among its members. The graph below shows how much each agent saves by ridesharing compared
to riding alone. In no case the individual rationality is violated. For this example, the average cost
savings across all individuals is 63%, which means that, ridesharing produces a saving of more than
60 percent compared to traveling in a taxi alone. The median saving is 81%.

7
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Table 1: Optimal coalition structure per cluster

Cluster Optimal Coalition Structures Cost

1 {{a0, a6, a13, a14},{a7, a11, a24, a27}} 351.03
2 {{a3, a8, a17},{a1, a18, a19, a22}} 685.34
3 {{a4, a5, a10, a16},{a2, a12, a21}} 555.5
4 {{a9, a20, a25},{a23, a26, a28, a29}} 613.43
5 {{a15}} 220.85

Figure 3: Cost savings of ridesharing versus travelling alone, using the inversely proportional cost
allocation method. The horizontal axis represent the agent’s ai index and the vertical axis represents
the savings percentage when ridesharing vs traveling alone.

8 CONCLUSIONS AND FUTURE WORK

In this work we show that the socially-optimal ridesharing problem can be modelled as a coalition
formation problem and solved within the framework of game theory. We proposed a methodology to
include the cost of walking into the coalitional cost structure. Additionally, we proposed a method-
ology for the cost allocation among coalition members that is fair in the sense that it compensates
members for the cost of walking, which is the cost of participation in each coalition. Our preliminary
exploration of the results shows that the proposed method is computationally tractable and leads to
results that are socially optimal.

Our proposed methodology is a centralized approach, having the following benefits. First, it pre-
serves privacy for users of the system. Users communicate location and travel preferences to a
trusted centralized system, without having to share personal information with others. Additionally,
each agent does not need to have observability of all other agents, and communicates only with the
central system.

For future work we would like to explore and compare additional cost allocation methods, and
test stability concepts like the core or Shapley value. Additionally, we could explore different cost
functions where, for example, the cost of the car is dependent on the occupancy level. One extension
could also be to include multiple stops in the car route.
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A APPENDIX

This section provides additional content to improve the clarity on some of the concepts presented in
the main body.

A.1 ADDITIONAL GRAPH FOR THE WALKING COST

The graph below provides a visualization of the weighted walking function against a linear distance
function. The graph depicts the convexity of the walking cost function as described by Equation 1.

Figure 4: Comparison between the weighted walking (in red) function and linear distance (in black)

A.2 ADDITIONAL GRAPH FOR THE OPTIMAL COALITIONS

The Figure below shows an example of the socially optimal coalitions within each cluster. The dif-
ferent colors show how individuals are sub divided into different ridesharing structures (i.e. coali-
tional structures).

Figure 5: Socially optimal coalition structures per clusters using a visual simplification of clusters
in 4D.
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