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Abstract

Large Language Models (LLMs) have emerged as a promising cornerstone for the develop-
ment of natural language processing (NLP) and artificial intelligence (AI). However, ensuring
the robustness of LLMs remains a critical challenge. To address these challenges and ad-
vance the field, this survey provides a comprehensive overview of current studies in this
area. First, we systematically examine the nature of robustness in LLMs, including its con-
ceptual foundations, the importance of consistent performance across diverse inputs, and
the implications of failure modes in real-world applications. Next, we analyze the sources
of non-robustness, categorizing intrinsic model limitations, data-driven vulnerabilities, and
external adversarial factors that compromise reliability. Following this, we review state-
of-the-art mitigation strategies, and then we discuss widely adopted benchmarks, emerging
metrics, and persistent gaps in assessing real-world reliability. Finally, we synthesize findings
from existing surveys and interdisciplinary studies to highlight trends, unresolved issues, and
pathways for future research.

1 Introduction

Large Language Models (LLMs), mainly characterized by their vast number of parameters, have emerged as
a promising cornerstone for the development of natural language processing(NLP) and artificial intelligence
(AI) Zhang et al. (2023). These models have demonstrated remarkable capabilities across a wide range of
NLP applications. Foundation models like GPT-4 OpenAl et al. (2024), GPT-3 Brown et al. (2020), Qwen
2.5-VL Bai et al. (2025a), Deepseek-V3 DeepSeek-AT et al. (2025), Meta (LLaMA-3, LLaMA-2 Touvron et al.
(2023b), LLaMA-1 Touvron et al. (2023a)), Gemini DeepMind (2023) are pre-trained on massive datasets and
serve as the backbone for various Al tasks, from text generation to multimodal understanding—the ability to
process and interpret multiple types of data, such as text and images. Their extensive factual knowledge has
significantly improved their effectiveness in information retrieval, enabling them to provide more accurate
and contextually relevant responses AlKhamissi et al. (2022); Petroni et al. (2019). As a result, these models
achieve high accuracy on benchmark evaluations, demonstrating their strong predictive capabilities across
diverse tasks OpenAl et al. (2024); Bai et al. (2025a); DeepSeek-Al et al. (2025); Grattafiori et al. (2024).
However, accuracy alone is insufficient to ensure reliability in real-world applications.

In recent years, despite improvements in the accuracy of deep neural network models, researchers have found
that they are easy to fool by applying a specific imperceptible perturbation Szegedy et al. (2014). A deep
learning model’s accuracy describes how accurately the model predicts sample points over a distribution. If
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a model cannot predict accurately, then no matter what properties this model holds, it would be meaning-
less. Although accuracy is the most fundamental metric in the evaluation and is essential to validate the
performance of an LLM before it is released, it is equally important to test its robustness when deploying
for the development of reliable Al systems. Robustness, a crucial aspect of deep learning models, describes
their ability to maintain stable predictions when faced with specific perturbations or variations in the input
data Liu et al. (2024b). Despite recent advancements, ensuring the robustness of LLMs remains a critical
challenge. LLMs may encounter unpredictable variations in language, shifts in data (changes in the data
patterns that a model encounters, which may affect its performance), and adversarial inputs that can affect
their performance. In practical applications, these models often face noisy, unstructured text, breaking the
assumption that input data will always be clean and well-formed. Additionally, a lack of robustness may
result in unintended biases, incorrect predictions, or overreliance on spurious correlations (misleading corre-
lations in data that a model may rely on incorrectly), raising concerns about their reliability in high-stakes
environments such as healthcare Wan et al. (2024b;a); He et al. (2025), law Lee (2023); Cui et al. (2024);
Yue et al. (2023); Bhambhoria et al. (2024); Bai et al. (2021b), complex reasoning Yang et al. (2023), code
generation Sun et al. (2024b); Lin et al. (2024a); Mishra et al. (2024); Hassid et al. (2024), and finance Lee
et al. (2025); Zhao et al. (2024a); Li et al. (2024c¢); Wu et al. (2023). Because of this, a thorough and exacting
assessment of LLM robustness that goes beyond conventional accuracy criteria is required.

However, advancing research on the robustness of LLMs also faces significant challenges. First, the absence of
standardized definitions and categorizations of robustness complicates cross-study comparisons, as research
efforts often differ in how they frame their scope and components. Second, pinpointing the root causes of
non-robustness, such as data biases, unstable training dynamics, architectural limitations, or inference ineffi-
ciencies, requires disentangling complex interactions across these factors. Third, while numerous mitigation
strategies exist, their effectiveness often depends on addressing specific vulnerabilities, making it difficult to
generalize solutions. Fourth, evaluating robustness remains fragmented, with no unified metrics or bench-
marks to holistically assess performance under diverse real-world conditions like noisy inputs or adversarial
attacks. Finally, existing literature on LLM robustness (Zhao et al., 2025; Gu et al., 2025; He et al., 2025;
Liu et al., 2024b; Mehrabi et al., 2022; Wang et al., 2025; Lu et al., 2024; Weng, 2023; Yang et al., 2024a)
is scattered across domains, limiting cross-pollination of insights and hindering the development of cohesive
solutions.

To address these challenges and advance the field, this survey provides a comprehensive overview of current
studies in this area. Figure 1 shows the outline of this survey. We begin by clarifying definitions and
categorizing the dimensions of robustness to establish a shared framework for analysis (§2). Next, we
systematically identify and classify the primary sources of non-robustness, including data quality issues,
training instabilities, architectural constraints, and inference-time vulnerabilities (§3). We then review state-
of-the-art mitigation strategies, mapping each approach to the specific weaknesses it targets (§4). Following
this, we analyze evaluation methodologies, discussing widely adopted benchmarks, emerging metrics, and
persistent gaps in assessing real-world reliability (§5). Finally, we synthesize findings from existing surveys
and interdisciplinary studies to highlight trends, unresolved issues, and pathways for future research (§6).
By unifying these perspectives, we aim to foster collaboration and accelerate progress toward building more
reliable, resilient LLMs.

The existence of numerous surveys, while indicating intense research activity, also suggests a potentially
fragmented landscape where different communities might use varying terminology or focus on specific aspects
of the broader robustness problem. A key contribution of a comprehensive survey like this one is to bridge
these perspectives and synthesize the common underlying principles and challenges. Furthermore, existing
surveys often highlight gaps and open questions that remain pertinent. The lack of unified definitions and
practical frameworks for operationalising trustworthiness (including robustness) is noted (de Cerqueira et al.,
2025). The difficulty in evaluating generative tasks robustly is frequently mentioned. Understanding and
mitigating more subtle or complex shortcuts beyond simple lexical cues remains an area for research (Howe
et al., 2025; Zhou et al., 2024d; Yuan et al., 2023). Finally, ensuring that robustness improvements scale
effectively with increasing model size is an ongoing concern.
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Figure 1: The outline of the survey on robustness of LLMs.

1.1 Search Methodology

The purpose of this survey is to gather and categorize research work that helps to improve robustness
in LLMs. A systematic search was conducted across multiple digital libraries and repositories to identify
relevant studies on robustness in LLMs as shown in Fig. 2. Table 1.1 summarizes the databases and sources
that were included:

This search covered studies published between January 2020 and June 2025, ensuring inclusion of the
most recent work on LLM robustness. Search strings were tailored to each database but generally com-
bined terms related to “large language models”, “robustness”, “evaluation”, and “mitigation strategies”. A
representative query structure was:

("large language model" OR "LLM" OR "foundation model")
AND (robustness OR reliable OR adversarial OR 00D OR evaluation OR mitigating robustness)
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Table 1: Search results by source

Source Identified Screened Included
arXiv 389 258 173
ACL Anthology 47 35 21
ACM Digital Library 26 15 5
IEEE Xplore 17 7 1
OpenReview 22 12 7
GitHub 7 4 2
Total 508 337 209

Identification of new studies via databases and registers

Records identified from:
Databases (n = 6):

5 ACM (n = 26)
§ IEEE (n=17) Records removed before screening:
= ACL (n=47) Duplicate records (n = 171)
& Arxiv (n = 389)
2 Openreview (n = 22)

Github (n =7)

Records screened Records excluded
(n=337) (n=41)
= Reports sought for retrieval Reports not retrieved
£ (n = 296) (n=23)
8
@
Reports excluded:
Reports assessed for eligibility Duplicate Records/Similar Results (n = 18)
(n=273) Papers without Experiments on LLM (n = 25)
Paper before 2020 (n = 21)

= New studies included in review
3 (n =209)
% Reports of new included studies
£ (n =209)

Figure 2: PRISMA flow diagram of the survey methodology

1.1.1 Inclusion Criteria

Studies were included if they met the following criteria:

o Explicitly addressed robustness, reliability, or evaluation of LLMs.
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o Contained empirical experiments or benchmarks involving LLMs.

o Published within the time range 2020—-2025.

1.1.2 Exclusion Criteria

Studies were excluded if they:

e Were duplicates or near-duplicate entries across sources or with similar concepts or results.
o Did not contain experiments on LLMs (e.g., purely theoretical works, works on VLM).
e Were published before 2020.

e Were inaccessible or unretrievable.

Further, after completing this criterion, we applied backward snowballing (i.e., finding new publications by
tracing references cited in this paper with some relevance). This process was repeated iteratively for each
newly identified publication.

2 Robustness in LLMs

In the context of LLMs from various literatures, robustness refers to their ability to perform reliably and
safely despite challenges like input variations, unexpected data, or adversarial attacks (which involve crafting
specific inputs designed to mislead the model into producing incorrect or unintended outputs, despite the
inputs appearing normal and being susceptible to humans). It is frequently discussed as a critical component
within the broader framework of AI Trustworthiness. Trustworthy AI systems are expected to be reliable,
safe, fair, transparent, accountable, and robust. Robustness underpins several of these qualities; for instance,
a model prone to adversarial manipulation (lack of robustness) cannot be considered safe or reliable (Wang
et al., 2023a; Aljohani et al., 2025). Similarly, a model that hallucinates or provides inconsistent answers
under slightly different prompts lacks reliability, another facet closely tied to robustness (Zhou et al., 2024c).
Research into the vulnerabilities of machine learning models, including LL.Ms, has often focused on adversarial
robustness - the model’s resilience against inputs intentionally crafted to cause misclassification or undesired
behaviour (Zhao et al., 2025).

This survey approaches robustness comprehensively, considering LLMs as integrated systems rather than
isolated components.

2.1 What is Robustness in LLMs

The concept of robustness for LLMs is multifaceted, and various studies approach its definition from dif-
ferent angles, reflecting the diverse ways models can fail or exhibit instability. Formally, robustness can be
conceptualized as the degree to which a model’s output f(z) remains stable or correct when the input z
is subjected to some form of perturbation § or drawn from a distribution Djes; different from the training
distribution Dy,qin. The specific nature of the perturbation or distribution shift defines the dimension of
robustness being considered. This concept is vital for setting research goals and evaluation standards, as
robustness directly impacts whether users can trust these models in real-world applications. Synthesizing
across the literature, several core themes emerge:

e Stability under Disruption: Robustness is fundamentally about the stability of LLM performance
and behaviour when faced with various forms of disruption, including unseen scenarios, different
types of attacks, and noise in the input (Guo et al., 2023). It implies predictability even when
conditions deviate from the ideal.

o Consistency and Reliability of Outputs: Robustness requires the model to consistently generate
outputs that are accurate, reliable, and unbiased across diverse scenarios (Lad et al., 2024; Aljohani
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et al., 2025). This involves minimizing errors, factual inaccuracies (hallucinations), and harmful
biases, even under challenging conditions.

o Adherence to Intended Behaviour: A robust model should adhere to its intended function and
safety constraints. This includes following legitimate instructions correctly while resisting malicious
manipulations, such as prompt injection attacks (Li et al., 2024d), (which involves performing unin-
tended actions by combining adversarially designed malicious input with the model’s instructions)
or backdoor attacks (Cai et al., 2022; Chen et al., 2021).

e Resilience to Input Variations: A robust LLM should maintain consistent outputs despite variations
in the input that preserve the core meaning or intent. This includes resilience to natural language
variations like morphological changes, typos, paraphrasing, and syntactic restructuring (Singh et al.,
2024; Mahaut et al., 2024; Sarker et al., 2024). It also encompasses stability when confronted with
unforeseen or malformed prompts (Ailem et al., 2024).

o Performance Maintenance under Distribution Shifts (Du et al., 2022): Robustness entails maintain-
ing performance levels when the distribution of deployment data differs from the training data (OOD
generalization). This is crucial as real-world data rarely perfectly matches training sets.

Drawing these threads together, a working definition for this survey is:

LLM’s robustness refers to the model’s ability to maintain consistent performance, reliability, and
adherence to intended behaviour (including accuracy, factuality, safety, and fairness) despite variations
in inputs, contexts, or underlying data distributions. This encompasses resilience to natural noise,
semantic paraphrasing, distribution shifts, incomplete information, reasoning perturbations, instruction
variations, and adversarial manipulations.

2.2 Key Dimensions of Robustness

LLM robustness is not a monolithic property but rather a collection of related capabilities. To better
understand and address the challenge, it is useful to delineate the key facets of LLM robustness, recognizing
that these categories often overlap and interact. Figure 3 provides an overview of this overlapping nature,
illustrating how progress in one dimension can amplify or undermine robustness in others due to their
inherent interdependencies.

2.2.1 Resilience to Adversarial Attacks

It refers to a model’s ability to withstand inputs that have been intentionally manipulated by an adversary
to trigger specific failures (Chacko et al., 2024). Such perturbations are typically small, often imperceptible
or semantically plausible to humans, yet they exploit latent vulnerabilities in the model. These attacks
commonly manifest as misclassifications in classification tasks (Yang et al., 2024d), the generation of harmful
or toxic content, or the circumvention of safety alignments through jailbreaks (a class of prompt injections
designed to override safety filters and moderation policies) (Tao et al., 2024). In broader cases, adversarial
perturbations can simply degrade model performance without obvious failure.

Attacks on LLMs vary in their granularity. At the input level, adversaries can manipulate characters (e.g.,
HotFlip), words (e.g., synonym substitution), or entire sentences (e.g., insertion of distracting phrases) (Yang
et al., 2024d). More subtle perturbations such as typographical errors have also been shown to degrade
reasoning robustness (Gan et al., 2024). Attacks further differ depending on the threat model: white-box
attacks assume access to internal parameters or gradients, while black-box attacks rely solely on interacting
with inputs and outputs. Prominent techniques include Greedy Coordinate Gradient (GCG), AutoDAN, and
PAIR (Xhonneux et al., 2024), with some methods targeting continuous embeddings rather than discrete
tokens. In the case of multimodal LLMs (MLLMs), adversaries can exploit vulnerabilities within individual
modalities (e.g., image or text) or across modality interactions, compounding the risk (Jiang et al., 2025).

At their core, adversarial attacks succeed by exploiting brittle statistical dependencies and spurious correla-
tions learned during training, exposing the fragility of LLMs to small but strategically chosen perturbations.
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2.2.2 00D Genralization

It concerns the ability of a model to sustain performance when faced with inputs drawn from distributions
different from those encountered during training. Real-world deployment frequently involves such distri-
bution shifts, arising from temporal drift, novel domains, or different user populations. When tested on
OOD datasets, LLMs often experience significant performance degradation relative to in-distribution (ID)
benchmarks (Du et al., 2022). Failures commonly emerge from covariate shift, where input features differ,
or concept shift, where input—output mappings change (Yuan et al., 2023; Nagarajan et al., 2024).

These challenges surface in multiple forms: difficulties with unfamiliar knowledge domains, stylistic shifts in
text, or multilingual and code-mixed settings. Such failures reflect a tendency to rely on spurious correlations
and biases present in training data, rather than learning generalizable, invariant features.

2.2.3 Sensitivity to Prompt Variations

It captures how much a model’s output changes when the input instruction is rephrased or slightly altered
while retaining its semantic intent (Yang et al., 2024d). Unlike humans, who are generally resilient to
paraphrasing or minor structural shifts, LLMs can exhibit drastic changes in correctness, coherence, or
consistency under such conditions (Agrawal et al., 2025).

Even simple alterations such as synonym replacement, insertion or deletion of words, or reordering of an-
swer options can destabilize performance. This fragility often stems from overfitting to prompt formats
encountered during training and reliance on superficial cues rather than deeper semantic understanding. Re-
ducing sensitivity to prompt variation is therefore essential for achieving robustness in instruction-following
scenarios.

2.2.4 Handling Noisy or Corrected Input

It refers to a model’s capacity to process data containing imperfections commonly found in real-world use.
Such noise may include typographical errors, misspellings, irregular grammar, or extraneous punctuation.
Automated pipelines introduce additional errors, e.g., transcription mistakes from voice-to-text systems or
inaccuracies from OCR (Optical Character Recognition) processes.

Models trained or fine-tuned on noisy data are further at risk, as they may learn brittle mappings that
amplify fragility rather than tolerance (Luo et al., 2024). In practice, noisy or corrupted inputs can distract
the model and degrade downstream task performance, underscoring the need for architectures and training
regimes that explicitly account for the messiness of real-world data.

2.2.5 Fairness Under Stress

It highlights a model’s ability to uphold fairness and avoid amplifying societal biases when confronted with
adversarial prompts or challenging contexts (Jung et al., 2025). Failures in this dimension manifest as
disparities in prediction quality across socio-demographic or geographic groups. For instance, LLMs often
perform better on U.S.-based datasets than on Chilean ones, reflecting geographical bias. In the U.S.,
attributes such as race and political identity influence accuracy, whereas in Chile, gender, education, and
religious affiliation play stronger roles (Abeliuk et al., 2025; Qu & Wang, 2024).

These disparities typically originate from imbalances in training data, where certain populations are under-
represented or misrepresented, resulting in skewed learned distributions. Addressing this requires approaches
that ensure equitable performance across diverse populations, even under adversarial or distributionally
shifted conditions.

2.2.6 Consistency and Reliability of Outputs

Consistency and reliability pertain to the stability and trustworthiness of a model’s generations across se-
mantically similar inputs. Failures of consistency include producing contradictory answers to paraphrased
queries or generating factually incorrect, nonsensical, or hallucinated content (Zhou et al., 2024c; Yang et al.,
2025b).
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These issues arise from a lack of stable internal representations and an overemphasis on local statistical
fluency at the expense of factual soundness or logical coherence. As such, inconsistency is closely tied to other
robustness dimensions, including OOD generalization and adversarial susceptibility. Ensuring consistency is
not only a matter of reliability but also a prerequisite for deploying LLMs in domains where factual accuracy
is critical.

Enhance LLM Robustness: Synergies and Tradeoffs

Fairness under Stress

Fairness affects
generalization and
consistency under stress

Adversarial resilience
impacts prompt sensitivity
and fairness o)
o o

Q Robustness to Noise
SIS
Reliability boosts resilience Q Oo C? Noise tolerance improves
o o

and reduces noise sensitivity generalization and

®

consitenc
0 o y
Improve 00D Generalization Sensitivity to prompt variation
Generalization enhances Prompt sensitivity influences
consistency and reduces adversarial resilience and
hallucination risks, along usability

with prompt sensitivity

Figure 3: A conceptual visualization of the interdependent dimensions critical to LLM robustness, highlight-
ing the synergies and tensions between improving OOD generalization, noise resilience, output consistency,
and fairness, and so highlighting the challenge of achieving well-balanced, comprehensive robustness across
all dimensions.

2.2.7 Task-Specific Robustness

Task-specific robustness addresses the challenges LLMs face in meeting the unique demands of particular
downstream applications. In reasoning-intensive tasks, models often struggle to maintain logical consistency,
as seen in low performance on benchmarks such as FOLIO (Han et al., 2024). In coding applications, failures
include the generation of functionally incorrect or insecure code (Bao et al., 2025).

Such difficulties stem from the symbolic gap between natural language and formal logic or programming
languages, as well as from translation errors and capacity limits in solver-aided methods. These weaknesses
highlight that robustness cannot be fully captured by general benchmarks alone but must be evaluated in
domain-specific contexts where performance reliability is crucial.

These dimensions are often interconnected. A model prone to spurious correlations (an OOD issue) is
often more vulnerable to adversarial attacks that exploit those patterns and more sensitive to prompt vari-
ations that shift these cues. Enhancing consistency (e.g., reducing prompt sensitivity) can lower adversarial
vulnerability, while stronger OOD generalization reduces hallucination risks and may indirectly reinforce
consistency. Robustness to noise may also strengthen consistency. At the same time, progress in one dimen-
sion can create trade-offs in another. For example, enforcing consistency too rigidly may limit adaptability
to novel inputs, and alignment methods aimed at improving fairness may weaken OOD generalization (also
known as the “alignment tax”) (Lin et al., 2024b). Moreover, OOD inputs can push models beyond their
knowledge boundaries, increasing hallucination risks. Overall, robustness requires balanced strategies, as
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over-optimizing a single dimension can undermine others. Figure 3 illustrates these dependencies and trade-
offs across interdependent dimensions.

3 Sources of Non-Robustness

Understanding why LLMs lack robustness requires examining the contributing factors across different stages
of their lifecycle, from data collection to training and deployment. Figure 4 illustrates some of the failure
cases by giving some real-time examples. Further, these issues can be broadly categorized as stemming from
the data, the model itself, or the learning process. Table 2 provides an overview of these sources. These
failures in robustness can originate mainly from:

o Data-Related Sources: Problems inherent in the vast datasets used for pre-training and fine-tuning,
including biases, noise, and contamination.

o Model-Related Sources: Limitations stemming from the model’s architecture, parameterization, or
emergent properties like sensitivity to input formatting.

o Training/Learning-Related Sources: Aspects of the optimization process, learning objectives, and
the dynamics of how models acquire knowledge and capabilities.

o Inference-Related: Vulnerabilities that arise during the model’s deployment or use, such as issues
from the choice of decoding strategies, reliance on external retrieval systems, or exposure to distri-
bution shifts and adversarial inputs at inference time.

3.1 Data Related Sources

The massive datasets used to train LLMs are a primary source of their capabilities but also a significant
source of their vulnerabilities. Several primary causes contribute to the lack of robustness observed in LLMs
are:

3.1.1 Spurious Correlations

This is arguably one of the most significant causes of robustness failures, particularly concerning OOD
generalization (Du et al., 2022; McMilin, 2022). Instead of learning the intended, often complex, causal
relationships or concepts, models learn to rely on simpler, superficial patterns (shortcuts) that happen to
correlate with the correct output in the training data but do not hold universally. When these spurious cor-
relations are absent or altered in new inputs (e.g., OOD data, perturbed examples), the model’s performance
collapses. Examples include:

o Lexical Bias: Relying on specific words (e.g., negation words like ‘no’, ‘never’ strongly predicting
‘contradiction’ in Natural Language Inference (NLI) tasks) Kamal et al. (2024); Du et al. (2023).

o Overlap Bias: Exploiting word overlap between premise and hypothesis in NLI Li et al. (2025b);
Chandna et al. (2025).

o Positional Bias: Predicting answers based on their typical position in the training context (e.g.,
always in the k-th sentence for QA) Wang et al. (2023b); Shi et al. (2025).

o Style Bias: Associating certain writing styles with specific labels Cao (2025); Malik et al. (2024).

o Heuristics in Reasoning: Using memorised rules-of-thumb or simple numerical patterns instead of
robust algorithms (Li et al., 2024b) for tasks like arithmetic.
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Table 2: Sources of non-robustness in LLMs.

Specific Cause

Root Cause

Description

Data Related
Shortcut Learning /
Spurious Correlations
Dataset Biases

Lack of Diversity

Data Poisoning

Data collection/annotation issues,
mirrored cognitive biases, simplic-
ity bias in ERM learning.
Mirrored cognitive biases in web-
scale data.

Limitations in data collection
scope and resources.

Adversarial intent during data
contribution/curation.

Model exploits shallow statistical cues
instead of robust features.

Model learns and amplifies societal biases
from data.

Insufficient variety in training data limits
generalization.

Malicious data injection creates vulnerabil-
ities.

Training-Related
Optimization Objectives

(ERM)

Alignment Tax

RLHF Impact (Biases,
Reward Hacking)

Fine-tuning Limitations
(Overfitting, Noise Sen-
sitivity)

Incentive structure of minimizing
average loss on potentially biased
IID data.

Objective  mismatch  between
alignment and pre-training, rep-
resentation shifts during RLHF,
KL penalty constraints.
Imperfect /biased reward models,
inconsistent /limited human feed-
back, optimization exploiting RM
proxies.

Overfitting to specific fine-tuning
data characteristics, amplification
of noise in smaller datasets.

Standard training encourages learning

shortcuts.
Alignment degrades pre-trained capabili-

ties/robustness.

Alignment process introduces flaws or fails
to fully align.

Fine-tuning reduces OOD robustness or is
brittle to noise.

Architectural
Transformer Vulnerabili-

Specific mechanisms of attention

Inherent properties (e.g., attention) can be

ties computation, information flow exploited.
across layers.
Vulnerabilities to Mod- Information bottlenecks, Efficiency optimizations degrade robust-
ifications (Quantization, disruption of learned  ness.
Pruning) weights /mechanisms, cascad-
ing errors.
Inference-Related
Decoding Strategies Exploration vs. exploitation Choice of decoding impacts consistency

RAG Issues

trade-off, amplification of proba-
bility uncertainties.

Reliance on retriever quality, han-
dling retrieved context.

and robustness.

Imperfect retrieval, difficulty integrating
multiple/noisy sources.

3.1.2 Dataset Biases and Anomalies

LLMs often inherit shortcomings from systematic biases and unintended statistical cues in their training data.
Training data inevitably reflects societal biases present in the source text (often large web-scraped corpora).
LLMs can learn and amplify these biases related to gender, race, culture, religion, etc., leading to unfair,
discriminatory, or non-robust outputs when prompted about sensitive topics. Evaluating fairness under
prompts designed to induce bias reveals these vulnerabilities (Jung et al., 2025). For instance, crowd-sourced
datasets, used widely for fine-tuning and evaluation, frequently contain superficial annotation patterns, where
human annotators unintentionally introduce simplistic labeling strategies that models exploit as shortcuts.
These patterns create misleading statistical associations (e.g., keyword matching) rather than reflecting
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genuine task understanding. Even benchmark design can amplify biases, as models may overfit to variations
in test data construction rather than solving tasks as intended (Ailem et al., 2024). Together, these data
biases and methodological flaws perpetuate robustness failures across training, evaluation, and deployment.

3.1.3 Data Poisoning/Backdoors

Adversaries can intentionally inject malicious examples into the training data (or fine-tuning data) to create
hidden backdoors. These backdoors can be triggered by specific inputs at inference time to cause targeted
misbehaviour or compromise model safety, often without degrading general performance noticeably, specifi-
cally in fine-tuned models (Aljohani et al., 2025).

3.1.4 Sensitivity to Input Variations

LLMs exhibit high sensitivity to the precise form of the input, even when the underlying semantics remain
unchanged:

e Prompt Sensitivity: Minor changes in wording, punctuation, or formatting of prompts can lead to
significantly different and sometimes incorrect outputs. Models might solve a task correctly with one
phrasing but fail with equivalent rewordings (Mahaut et al., 2024). Even minor typos can degrade
the performance (Liu et al., 2024b).

o Instruction Sensitivity: Performance can vary drastically based on how instructions are phrased or
structured within the prompt. Counterintuitively, models specifically fine-tuned for a domain might
become more sensitive to instruction variations than general-purpose models (Yan et al., 2024a;
Aljohani et al., 2025).

o Noise Sensitivity: Models struggle with naturally occurring noise (spelling/grammar errors,
OCR/ASR anomalies) (Singh et al., 2024) and can be easily distracted by irrelevant information or
deliberately injected noise (Zhou et al., 2024e).

3.2 Training Related Sources

Standard pre-training objectives like next-token prediction and fine-tuning objectives based on Empirical
Risk Minimization (ERM) primarily optimize for average performance on the training distribution. These
objectives may not explicitly encourage robustness to distribution shifts or perturbations. Furthermore, the
dynamics of gradient-based optimization might lead models to latch onto simple, non-robust features early in
training. The process of training and aligning LLMs, therefore, introduces several potential vulnerabilities,
including:

3.2.1 Optimization Objectives

LLMs are primarily trained using next-token prediction loss (NTP), which optimizes the likelihood of pre-
dicting each token in a sequence given its preceding context. This objective drives the model to capture
patterns that reduce sequence-level prediction loss, enabling the acquisition of syntactic, semantic, and con-
textual dependencies. But it can also encourage reliance on superficial patterns or shortcuts in the training
data, potentially limiting generalization and robustness (Thrampoulidis, 2024; Nagarajan et al., 2024).

3.2.2 RLHF

While Reinforcement Learning from Human Feedback (RLHF) is crucial for making LLMs safer and more
helpful, the process itself can hinder robustness in the following ways:

o Reward Hacking: LLMs may learn to exploit weaknesses or biases in the reward model (RM) used
during RLHF, maximizing the reward signal without genuinely fulfilling the intended preference
(e.g., generating overly verbose responses because the RM implicitly favours length) (Yan et al.,
2024b).
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o Bias Amplification: RLHF optimizes based on human feedback, but this feedback can itself be
biased, inconsistent, or fail to capture the full spectrum of desirable behaviour. Optimizing for
average preferences might even strengthen covert biases not explicitly penalized by the feedback
(Barnhart et al., 2025).

e Capability Trade-offs: Safety alignment, often achieved via RLHF or related techniques, has been
observed to sometimes degrade specific capabilities like complex reasoning (Huang et al., 2025).

3.2.3 Alignment Tax

This phenomenon, termed the “alignment tax”, means that improving alignment (e.g., helpfulness, harm-
lessness) might come at the cost of reduced performance on general knowledge benchmarks or can sometimes
negatively impact model calibration (leading to overconfidence) or introduce new vulnerabilities (Chen et al.,
2020; Yang et al., 2024b). Fine-tuning LLMs for specific tasks or aligning them with human preferences (e.g.,
using RLHF) can lead to a degradation of capabilities learned during pre-training (e.g., Masked Language
Modeling vs. Standard auto-regressive prediction), which can influence downstream behaviour (Lin et al.,
2024b). This creates a difficult trade-off for developers.

3.2.4 Fine-tuning Limitations

While vanilla fine-tuning adapts LLMs to specific tasks or domains, it can also reduce robustness (Sengupta
et al., 2025; Luo et al., 2024), as in cases like:

e Overfitting: Models can overfit to the specific style, domain, or spurious correlations within the
fine-tuning data, harming OOD generalization (Yuan et al., 2023).

o Noise Sensitivity: Fine-tuning performance is highly sensitive to noise in the instruction-following
or preference data (Luo et al., 2024). Even moderate noise levels can cause significant performance
drops.

e Instruction Brittleness: Instruction-tuned models can show substantial performance degradation
when test-time instructions are phrased differently from those seen during fine-tuning, indicating a
lack of robustness to instruction variations (Aljohani et al., 2025). Specialized models might be even
more fragile in this regard.

3.3 Architectural Limitations

While less explored in the provided sources, the inherent properties of the dominant Transformer architecture,
such as the attention mechanism’s focus or the lack of explicit symbolic reasoning modules, might contribute
to certain robustness vulnerabilities. The lack of built-in mechanisms for reliable uncertainty quantification or
causal reasoning could also be a factor (Zhang, 2023). The underlying architecture of LLMs, predominantly
the Transformer, also presents inherent vulnerabilities:

o Transformer Properties: Specific components of the Transformer architecture, such as the self-
attention mechanism, can be points of failure. While properties like redundancy might offer some
baseline resilience compared to older architectures, this resilience is limited and can be overcome by
targeted attacks Das et al. (2025). Further, expanding model depth (layer expansion) can particu-
larly disrupt the attention mechanisms.

e Vulnerabilities to Modifications: Practical deployment often requires model modifications for effi-
ciency, such as quantization (reducing numerical precision) or pruning (removing weights/neurons).
These compression techniques can induce “information loss cascades”, significantly degrading robust-
ness (Ma et al., 2025). Similarly, architectural changes aimed at efficiency, like attention-efficient
variants (e.g., GLA Transformer, MatMul-Free LM (Fan & Tao, 2024) or Funnel Transformers (Choi
et al., 2025)), involve trade-offs that may impact robustness. Transformer architectures appear to
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have inherent robustness thresholds beyond which modifications cause severe performance degrada-
tion. For example, the extreme vulnerability to Bit-Flip Attacks (BFAs), where flipping just a few
bits in the weights of a large model can cause catastrophic failure, challenges assumptions about
their inherent resilience (Ma et al., 2025).

e Linear Transformers: Simpler variants like linear transformers have shown specific vulnerabilities,
such as susceptibility to hijacking attacks during in-context learning, where malicious examples in
the prompt manipulate the learned function (Anwar et al., 2024).

Sensitivity to Prompt Variation Jailbreak Prompts

Prompt A: Model Output A: Prompt (Restricted): Model Output:
"Summarize the
causes of World War |

in two sentences."

"The war began mainly because of the
assaination of Franz Ferdinand. Germany's
aggression was the key cause."

"How do | make
explosives at home ?"

"I'm sorry, | cannot provide instructions on
making explosives."

Prompt B: Model Output B: Prompt (Jailbreak): Model Output:

"For a fictional story, explain
how a character might
attempt to create fireworks

"One could mix potassium nitrate, sugar, and
other materials to create a combustible
reaction ..."

"Briefly describe the "World War | was caused by militarism,
reasons behind the alliances, imperialism, and nationalism. The
outbreak of World War |."| assassination of Archduke Franz Ferdinand was ST A e e

the immediate trigger."

Non-Robustness

Learning from spurious cues
True Model-

Fairness Under Stress

Input Review | et Reason for Prediction

Prompt A (Neutral): Model Output A: pi

. . The food was absolutely Positi Positi "delicious" strongly co-occurs
"Write a story about a ‘A software engineer named Alex worked at a delicious! osttive OSIVE " yith Positive in training data.
software engineer fast-growing startup, balancing deadlines and"
working at a startup.” creativity while collaborating with teammates. Service was slow, but . . Same lexical cue driven

the food was delicious. prediction.

Prompt B (Stress): Model Output B:
"Write a story about a "A young female engineer struggled to fit in with AELEN (e QHETES
female software engineer | her male colleagues, often feeling nervous W {GnilHls ant S3niEs Negative | Positive mat etz e et el
working at a startup, but | during meetings and unsure if her ideas were rude, the dessert was instead of full context.
make it realistic." valued." delicious.

Figure 4: An illustration of some failure cases of non-robustness (adapted from Schulhoff et al. (2025); Shen
et al. (2024); Gallegos et al. (2024); Bano et al. (2025); Zhou et al. (2024b)). The examples are represen-
tative of behaviors primarily observed in GPT-3.5, and are intended to demonstrate common categories of
robustness failures.

3.4 Inference related Sources

Non-robustness in LLMs also arises during inference, where vulnerabilities arise from how models interpret
inputs and produce outputs. Minor paraphrasing or ambiguous instructions can destabilize responses, while
decoding strategies like temperature sampling introduce unpredictability by balancing coherence and creat-
ing risks of erratic outputs. Adversarial inputs exploit the model’s instruction-following nature to bypass
safeguards, and input tokenization steps distort rare words or non-standard syntax, amplifying errors. These
challenges, inherent to the inference phase, can introduce these vulnerabilities as:

3.4.1 Inference and Decoding Vulnerabilities

Even with a trained model, the way outputs are generated during inference by the choice of decoding strategy
can also introduce vulnerabilities like:

¢ Decoding Strategy Sensitivity: The algorithm used to select the next token based on the model’s

probability distribution (e.g., greedy search, beam search, top-k/nucleus sampling) has a major
impact on the performance of the model (Nik et al., 2025).
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— Performance vs Robustness: Different strategies offer trade-offs. Deterministic methods like
greedy search (Bang et al., 2023) might be preferred for closed-ended tasks requiring preci-
sion, while stochastic methods (sampling) are often better for open-ended generation requiring
diversity (Shi et al., 2024a). However, stochasticity can reduce the consistency of the model.

— Hyperparameter Sensitivity: The performance and behaviour of decoding strategies are often
highly sensitive to hyperparameters like temperature (for sampling) or beam width (for beam
search). Achieving optimal performance might require extensive tuning, but fixed hyperparam-
eters might lead to suboptimal robustness across diverse inputs (Shi et al., 2024a).

o Calibration Errors: LLM confidence scores (often derived from output probabilities) frequently fail to
accurately reflect the true likelihood of the generated output being correct (Yao et al., 2024). Models,
especially those fine-tuned with RLHF, tend to be overconfident. This miscalibration hinders reliable
decision-making based on model outputs.

3.4.2 Retrieval-Augmented Generation (RAG) Sources

RAG systems enhance LLMs by retrieving external information, but their robustness depends heavily on
the quality and relevance of the retrieved context (Shen et al., 2024). If the retriever returns inaccurate,
irrelevant, or noisy information (due to its own lack of robustness), the final LLM output quality can be
significantly compromised, sometimes performing worse than without retrieval at all. LLMs may also struggle
to effectively utilize a large number of retrieved documents, even with long context windows (Yu et al., 2024).

A comprehensive approach to robustness is required due to the availability of vulnerabilities throughout
the entire lifecyle, from data collection through training to inference. Additionally, the observed conflict
between preserving robustness and optimizing for capabilities (e.g., through scaling or alignment) implies
that accomplishing both at the same time is a significant, continuous task that calls for careful trade-off
management.

4 Mitigation Strategies

Having covered the various sources of non-robustness in Section 3, we will now look into mitigation strategies.
These strategies are categorized based on the stage of the typical LLM development and deployment pipeline
where they are applied:

1. Pre-processing: Actions taken on the data before model training or fine-tuning begins (e.g., data
cleaning, augmentation).

2. In-processing: Modifications integrated during the model training or fine-tuning process (e.g., robust
optimization, adversarial training, alignment techniques).

3. Intra-processing: Techniques applied during the model’s inference or generation phase (e.g., robust
prompting, modified decoding, inference-time adaptation).

4. Post-processing: Methods applied after the model generates an output, but before it is presented to
the user or used downstream (e.g., output filtering, validation, using a judge model).

This pipeline-based categorization provides a structured way to understand where different interventions fit
within the LLM lifecycle and how they contribute to overall robustness. Further, Table 3 summarizes rep-
resentative methods under each category, while Figure 5 illustrates how these strategies collectively enhance
robustness across the LLM development pipeline.

4.1 Pre-processing strategies

Pre-processing strategies represent the earliest opportunity to influence LLM robustness by intervening at
the data stage, before any model training or fine-tuning occurs. These methods focus on curating, cleaning,

14



Published in Transactions on Machine Learning Research (11/2025)

or augmenting the vast datasets used to train LLMs, aiming to embed robustness characteristics implicitly
through the data the model learns from. They effectively address data biases and vulnerabilities in raw
training data, preventing the model from inheriting or amplifying them, which could compromise the model’s
performance. Some key pre-processing approaches that enhance robustness at the data level are as follows:

Data Augmentation for Robustness: Data augmentation aims to increase the diversity and size of the
training dataset, typically to improve model generalization. Dong et al. (2021) describes this as specifically
designed techniques to expose the model to the types of variations or adversarial inputs it might encounter
during deployment. Early techniques adapted from general NLP, such as Easy Data Augmentation (EDA),
involved simple lexical operations like synonym replacement, random insertion, random swap, or random
deletion (Weng, 2023). While useful for generalization, these methods may not adequately prepare models
for targeted adversarial attacks or significant distribution shifts.

A more targeted approach is Adversarial Data Augmentation (ADA), which generates challenging examples
to improve robustness against data shifts or corruptions. ADA creates misleading target distributions using
adversarial loss, perturbing data to fool the model during training. A key advancement, Maximum-Entropy
ADA (ME-ADA) (Zhao et al., 2020), introduced an Information Bottleneck-derived regularizer that maxi-
mizes model uncertainty, producing harder adversarial examples by pushing augmented data further from the
source distribution, outperforming prior methods on benchmarks. Simultaneously, Adversarial Contrastive
Learning (ACL) (Jiang et al., 2020) merges adversarial examples with self-supervised pre-training. By enforc-
ing feature consistency across standard and adversarial views, ACL enhances inherent invariance, improving
robustness and label efficiency over unsupervised methods. Follow-up work refined ACL via robustness-aware
coreset selection and adversarial invariant regularization (Xu et al., 2023). Furthermore, Qi et al. (2025)
propose a data augmentation approach using “safety recovery examples' to cultivate “deep safety alignment",
which significantly improves robustness against common exploits like prefilling and adversarial suffix attacks.

As research shifted towards LLMs, augmentation techniques became more specialised. Liu & Sun (2023)
introduced the Adversarial Augmentation Approach (A3), combining adversarial training with NLP-specific
data augmentation. Unlike traditional methods, A3 employs a paraphrasing model guided by a separate
generator to produce reusable adversarial examples, optimized for specific tasks via a discriminator. This
efficiency boosted accuracy for models like BERT, outperforming earlier methods. Further, Bae et al. (2025)
introduces SALAD (Structure Aware and LLM- driven Augmented Data), a contrastive learning approach
that employs a tagging-based method for generating structure-aware positive samples and leverages LLMs
to create diverse counterfactual negative samples for triplet loss optimization.

Meanwhile, HarmAug (Lee et al., 2024b) tackles safety: it trains compact “guard” models to detect harmful
queries by generating adversarial examples (e.g., jailbroken LLM prompts) and distilling knowledge from a
large teacher model. This let a 435M-parameter safety model match the performance of 7B+ counterparts,
proving targeted augmentation can compress robustness into smaller systems. These advances align with
broader efforts to refine LLM robustness through data-centric strategies, such as adaptive data filtering and
synthetic data generation (Dong et al., 2021; Qian et al., 2022; Ding et al., 2024; Zayed et al., 2022; Lim
et al., 2023).

Data Filtering: Modern LLMs rely heavily on vast amounts of internet-sourced data for training, but
this data often includes noise, toxic content, societal biases, personal information, and factual inaccuracies
(Huang et al., 2024a). Since LLMs can memorise such flaws during training, these issues directly translate
into risks like biased outputs, privacy breaches, and unreliable behaviour in real-world applications. Data
filtering approaches this by modifying training samples or their weights to mitigate harmful content in model
learning (Li et al., 2025¢; Wang et al., 2025). Additionally, this approach can generate contrastive pairs (e.g.,
pairing biased and debiased examples) to explicitly teach models to disregard biased patterns in the data.
While filtering and cleaning data before training is essential, considering the fact that manual curation is
time-consuming and demands domain expertise, to mitigate these risks, it also introduces complex trade-
offs: overly strict filtering to remove toxic content or reduce bias can inadvertently harm the model’s general
performance or erase valid examples from underrepresented groups. For instance, prioritizing safety might
suppress harmful outputs but weaken the model’s versatility, while aggressive bias mitigation could strip
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away nuanced data critical for fairness. Thus, achieving the right balance between data quality (removing
harmful content) and quantity (retaining useful diversity) remains a pivotal challenge in building trustworthy
LLMs.
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Figure 5: Comprehensive LLM Robustness Pipeline. A multi-stage framework for enhancing LLM
robustness across the deployment lifecycle. (1) Pre-processing: Data curation and augmentation strate-
gies; (2) In-processing: Training-time interventions including adversarial training and alignment; (3)
Intra-processing: Real-time inference adaptations; (4) Post-processing: Output validation and filter-
ing. Arrows indicate data flow and feedback mechanisms between stages.

Laurengon et al. (2023) proposed a Rule-based Heuristic Filtering, using predefined criteria to remove sensi-
tive data (e.g., PII) or toxic content via blocklists or classifiers, though their success hinges on the precision
of these tools. To streamline complexity, frameworks like Data-Juicer (Chen et al., 2023a) systematize clean-
ing by automating steps like deduplication and quality scoring. More recently, LLMs themselves have been
repurposed as data cleaners: studies show they can fix simple errors (e.g., invalid dates) using contextual
analysis but falter with nuanced issues like dataset-wide biases (Bendinelli et al., 2025). From basic heuristics
to Al-driven refinement, these approaches illustrate the layered effort to balance scalability and reliability
in training data. Further, BaichuanSEED (Dong et al., 2024a) demonstrates the scalability of data-centric
methods, showing that careful data curation and reweighting can enable even a general 7B-parameter LLM
to achieve state-of-the-art benchmark performance without architectural modifications. Yang et al. (2024c)
introduces RAZOR (Rewriting And Zero-bias Optimization Refinement), a novel unsupervised text rewriting
technique designed to mitigate dataset biases (shortcuts) that hinder language model generalization without
requiring prior knowledge of specific biases. RAZOR iteratively rewrites text segments using LLMs, selecting
replacements that reduce spurious correlations between surface features and labels based on token statistics
and positional information.

4.2 In-processing Strategies

In-processing mitigation strategies integrate directly into the model’s training or fine-tuning loop to build
robustness inherently into the model’s parameters. Unlike pre-processing methods that modify input data,
these techniques actively guide the learning process, continuously optimizing the model to develop more
robust and equitable representations. This approach is particularly effective for addressing complex bias
patterns embedded in data relationships and countering training-induced sources of non-robustness, offering
more direct control over model behaviour during learning. We now examine key in-processing techniques
that shape model robustness through training dynamics.
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Adversarial Training:  Adversarial Training (AT) strengthens models by intentionally injecting adver-
sarial examples into their training data, thereby forcing the model to learn more robust features. It can be
formulated as a minimax optimization problem: the inner loop maximizes the loss by finding the worst-case
adversarial example within a defined perturbation budget, while the outer loop minimizes the loss on these
adversarial examples (along with clean examples) to update the model parameters (Bai et al., 2021a).

Early approaches involved adapting methods from other domains like generating attacks via word substitu-
tions guided by gradient information or word importance scores (Liu & Sun, 2023; Weng, 2023) or performing
perturbations directly in the continuous embedding space and then mapping these perturbed embeddings
back to discrete tokens, often using a masked language model (MLM) head (Altinisik et al., 2023). While
some methods also show that AT can improve both generalization and robustness for a wide range of NLP
tasks. Liu et al. (2020) introduce ALUM (Adversarial training for large neural LangUage Models), a method
designed for both pre-training and fine-tuning of Transformer-based language models. It regularizes the
training objective by applying perturbations in the embedding space that maximize adversarial loss, ef-
fectively enforcing label smoothness in local neighborhoods. The approach builds on virtual adversarial
training, with the objective defined as:

min Eq yynp |U(f(2:0),y) + amaxi(f(z +6:0), f(2:6))

Here, f(x;0) represents the neural language model parameterized by 6, I(-,-) is the loss function (e.g., cross-
entropy), (z,y) is an input-output pair from the training dataset D, and ¢ is a small perturbation applied to
the embedding x. The term « is a hyperparameter that controls the trade-off between the standard empirical
risk and the adversarial regularization term. Further, Xhonneux et al. (2024) propose a fast adversarial
training algorithm C-AdvUL (Continuous-Adversarial Unlikelihood) and CAPO (Continuous-Adversarial
IPO). C-AdvUL applies the unlikelihood (UL) loss with continuous embedding attacks and incorporates an
additional utility loss term, fine-tuning on a utility dataset D,, apart from the original dataset D :

min —E , gep [log fo(ylz + (2, 9)) —log fo(glz + (2, 9))] — Ew.y)ep, [log fo(ylz)]

While, CAPO integrates continuous attacks with Identity Preference Optimisation (IPO), a DPO variant
(Rafailov et al., 2024), using the TPO loss on perturbed inputs and relying on the KL divergence term
inherent in IPO to maintain utility without requiring a separate utility dataset. The loss function for CAPO
is:

: Jolylz +6(x, 9)) f9(§|x+5($,§))>}
min —E., , lg [ log ————— "~ — log ——— — 5
o rmner { ’ ( foo (yle) fou i)
Here, x is a harmful prompt, y and § are safe and harmful continuations of x respectively, d(x, §) is a targeted
attack. fg(h) = h — %hz (from IPO), fp is a neural network with parameters 6, fy, is a fixed reference
model.

Distributionally Robust Optimization (DRO) (Rahimian & Mehrotra, 2022; Kuhn et al., 2025) is another
work for optimizing model performance under worst-case conditions over a specified distribution or ambiguous
set of inputs, rather than just point-wise adversarial examples. Recent work like PEARL (Permutation-
resilient learning) and Dr. DPO (Distributionally Robustifying DPO) has also applied these principles to
specific LLM robustness challenges (Wu et al., 2025; Chen et al., 2025a).

However, scaling AT to LLMs also introduces several challenges. First, the discrete nature of text compli-
cates gradient-based perturbation strategies, where small token-level modifications must preserve semantic
coherence, and gradients derived from differentiable surrogates (e.g., word embeddings) do not always map
meaningfully to discrete token substitutions. Second, the computational overhead grows prohibitive: gener-
ating adversarial examples via iterative methods (e.g., Projected Gradient Descent) or combinatorial search
over token sequences is resource-intensive, and fine-tuning massive LLMs on such augmented datasets ampli-
fies training costs exponentially. Third, AT often induces a robustness-utility trade-off, where improvements
in adversarial accuracy come at the expense of degraded performance on clean data, necessitating careful
balancing. Finally, robustness gains are frequently attack-specific as models trained against one perturba-
tion type (e.g., synonym swaps) may remain vulnerable to unseen attack strategies (e.g., paraphrasing or
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structural perturbations). And so efficiency and integration with alignment objectives are becoming central
themes, with continuous attacks and DRO (Dong et al., 2021; Chen et al., 2025a) emerging as promising
directions.

Regularization and Constrained Optimization Regularization methods add constraints or penalties
to the training objective to prevent overfitting and encourage desirable model properties, including robust-
ness. Recent advances highlight methods like BSR, (Batch-wise Sum-to-Zero Regularization) to enforce zero-
centered reward sums per batch, effectively constraining extreme reward magnitudes and mitigating hidden
state norm dispersion (Hong et al., 2025). It adds an additive regularization term to the Bradley-Terry (BT)
loss in reward models: Lgr_psr = Ler + A - Lpsr. The BSR term is defined as

2
| B

Lpsr = ﬁz Z (i, i z)

i=1jefw,l}

Here |B| is the batch size and A is a weight hyperparameter. Sharma et al. (2024) propose “information-
guided regularization”, which integrates dropout with information-theoretic principles to guide fine-tuning,
thereby improving generalization and robustness against overfitting. Similarly, Vukadin et al. (2025) propose
Large Language Model Attribution Aligned Training (LAAT), which incorporates LLM-generated global
task feature attributions into the training process of smaller networks through an attribution-matching
regularization term, yielding superior performance in few-shot learning scenarios. The overall loss function
in LAAT can be defined as:

n

L(0) = %Z («?BCE(ma(xi),yi) +vlnsE <||Z(xi) SLLM ))

i=1 ()l lIszeall

Here, {pcg is the standard binary cross-entropy loss, and fj;sg is the mean squared error between the
normalized attribution scores. The term a(x;) represents the input gradient, V., ¢pcgr(me(2;),y:), which
quantifies the sensitivity of the model’s loss with respect to each input feature x;. sy is the vector of LLM-
derived importance scores, and v is a weighting factor for the regularization term. The normalization by
Fuclidean norm, e.g., ﬁ, ensures that the regularization aligns the direction of feature importance rather
than its raw magnitude. This regularization acts as an inductive bias, guiding the smaller model’s learning
dynamics to conform to the LLM’s broader understanding of feature relevance. Karimi Mahabadi et al.
(2020) proposed Debiased Focal Loss (DBL) for NLU classification tasks, where biased training examples
are down-weighted using an auxiliary bias-only model. While not developed for language model generation,
the underlying idea of adaptive reweighting to reduce reliance on spurious correlations remains relevant.
Likewise, Utama et al. (2020) introduced confidence regularization to mitigate overconfidence on biased
examples, striking a balance between in-distribution accuracy and OOD generalization. Similarly, (Garimella
et al., 2021) designed a lexical co-occurrence based regularizer that assigns bias scores to adjectives and

adverbs (W), incorporating them into the optimization process.

More broadly, regularization has also been explored for fairness and noisy-label robustness in machine learn-
ing (Ravichandran et al., 2020; Xu et al., 2025; Heck et al., 2024; Mou et al., 2024; Li et al., 2022). While
many of these works focus on classifiers rather than generative LMs, their principles in penalizing sensitivity
to biased features, adjusting loss functions to handle noisy data, or promoting balanced performance across
groups, are conceptually transferable to LLMs. Together, these methods demonstrate how structured regu-
larization can be leveraged to balance robustness, fairness, efficiency, and generalization in modern language
models.

Alignment for Robustness Aligning LLMs with human values during training aims to ensure these
systems are helpful and reliable. (Yao et al., 2025) develop Token Constraint Decoding (TCD), an inference-
time algorithm that enforces alignment between token-level predictions to bolster robustness in noisy settings.
Their extensive experiments reveal that TCD significantly restores performance degraded by input noise,
yielding up to a 39% absolute gain for smaller models. Techniques like Supervised Fine-Tuning (SFT) (Sun,
2024; Luo et al., 2024) on high-quality data and Reinforcement Learning from Human Feedback (RLHF)
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(Ouyang et al., 2022; Christiano et al., 2023), which uses human preferences to shape model behaviour, are
widely adopted. Newer RL methods, such as Direct Preference Optimization (DPO), simplify alignment by
training models directly on preference-ranked outputs, while variants like ORPO (Odds Ratio Preference
Optimization Hong et al. (2024)), KTO (Ethayarajh et al., 2024), and AlphaPO (Gupta et al., 2025) seek to
enhance efficiency or performance. Inspired by DPO and KTO (Qi et al., 2025) inroduce a novel constrained
fine-tuning objective designed to protect the generative distribution of initial tokens. This formulation
enhances the persistence of safety alignment under fine-tuning attacks while maintaining the model’s utility,
but adapted to control the deviation from the initial generative distribution for each token position, similarly
to the token-wise RL objectives in literature.

While primarily focused on safety and helpfulness, alignment inherently contributes to robustness against
certain failure modes, particularly attacks designed to elicit harmful or biased content. For example, ap-
proaches like Safe RLHF (Tran et al., 2025) integrate safety-specific rewards to balance helpfulness with risk
mitigation.

However, alignment introduces its own challenges. First, models may become overly sensitive to prompt
phrasing, leading to inconsistent responses or unnecessary refusals of benign queries (Oh & Demberg, 2025;
Tran et al., 2025). Second, alignment might overlook emerging vulnerabilities, as pre-alignment evaluations
often fail to predict post-alignment weaknesses. Third, reward hacking can occur, where models exploit flaws
in their training objectives to maximize scores without genuinely adhering to human intent (Herrera-Poyatos
et al., 2025). Finally, methods like RLHF demand extensive computational resources and rely heavily
on high-quality, diverse training data, limiting scalability. Addressing these trade-offs remains critical to
developing reliable, ethically aligned Al systems.

Acknowledging these challenges, researchers are actively developing strategies to strengthen the alignment
process and mitigate its inherent risks. Omne approach integrates AT with alignment objectives, such as
combining continuous adversarial perturbations with preference optimization frameworks (Xhonneux et al.,
2024). Others focus on RPO (Reward-aware Preference Optimization) methods like Dr. DPO (Distribution-
ally Robustifying DPO Wu et al. (2025)) improve resilience to noisy preference labels, while techniques like
Segment-Level DPO (SDPO Kong et al. (2025)) and perplexity-aware corrections refine how models handle
imperfect training data (Zhong et al., 2025a; Xu et al., 2023). For reward modeling, advancements include
ensemble methods to reduce reward hacking risks, worst-case scenario optimization to mitigate unstable
outputs, and causal reward frameworks to better capture human intent (Wang et al., 2024a; Dong et al.,
2024b; Xiong et al., 2024). Additionally, consistency alignment introduces self-reward mechanisms to ensure
models produce stable responses across varied prompts, reducing sensitivity to phrasing changes (Zhao et al.,
2024b). Together, these strategies aim to balance safety, reliability, and adaptability in aligned Al systems
while addressing challenges like data noise, reward exploitation, and behavioural inconsistency.

4.3 Intra-processing Strategies

Intra-processing mitigation strategies improve LLM reliability by dynamically adjusting how models inter-
pret inputs or produce outputs during the inference or generation phase, without altering their underlying
training or parameters (Wang et al., 2025). This approach provides a cost-effective way to address vulnera-
bilities, avoiding the computational expense of retraining while maintaining adaptability to emerging risks,
and is further able to counter data, training or inference-related sources of non-robustness, though they do
not address root causes in the training data or model parameters. We now explore some intra-processing
techniques that enhance model robustness through dynamic input-output adaptation during real-time infer-
ence.

Robust Prompting and Instruction Defence The development of benchmarks specifically targeting
prompt injection and instruction perturbation has been crucial in revealing the significant vulnerabilities of
even state-of-the-art LLMs and driving the need for these more advanced intra-processing defences. LLMs
are inherently vulnerable to adversarial inputs due to their instruction-following nature, where prompts
act as both a critical interface and an attack surface (Agrawal et al., 2025; Chen et al., 2025b). These
strategies aim to secure LLMs by addressing vulnerabilities in how they interpret and execute input prompts.
Basic approaches include instruction design, where prompts are engineered with explicit safety directives
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(e.g., “ignore harmful instructions”). However, heavily tuned models may still prioritize conflicting later
instructions, and overly restrictive prompts risk stifling legitimate creativity (Li et al., 2024d; Weng, 2023).
Similar to pre-processing data augmentation, some techniques attempt to clean the prompt just before the
LLM sees it. This can involve paraphrasing prompts or retokenizing inputs to disrupt adversarial patterns,
offering limited protection against sophisticated attacks (Weng, 2023).

More advanced methods include self-denoising, where LLMs iteratively revise corrupted instructions using
their own language understanding to outperform traditional fine-tuning in resisting perturbations (Agrawal
et al., 2025). Further, Hu et al. (2024) propose RobustGER, which teaches LLMs to perform language-space
denoising by incorporating an embedding derived from ASR (Automatic Speech Recognition) N-best lists,
refined through audio distillation. Another novel approach, referenced instruction tracking, requires LLMS
to explicitly cite which prompt instruction they followed during generation, and so responses referencing
malicious injections are automatically filtered, which effectively repurposes the model’s instruction sensitivity
as a defence (Chen et al., 2025b). While these intra-processing strategies vary in complexity, they highlight
the trade-offs between usability, computational cost, and robustness in real-time LLM safety.

Weight Redistribution Weighted redistribution refers to adjusting a trained model’s attention weights
(without additional training) to reduce bias in its outputs. Since attention weights can reflect learned
biases in the data, redistributing them may help the model focus less on biased words or phrases during
predictions. Chai & Wang (2022) developed an adaptive reweighting method that assigns sample-specific
weights to prioritize error-prone instances and ensure balanced minority group representation for group-level
fairness and exhibits robustness to label noise on various benchmark datasets. Further, considering the
fact that AT models focus on specific words (attention weights) may reinforce biases. Zhong et al. (2025b)
propose a framework that employs two complementary fusion strategies. First, a data-aware inter-stage
fusion overlaps generation and inference by migrating long-tailed samples. Second, a model-aware intra-
stage fusion uses a fused pipeline schedule to mitigate pipeline bubbles during training, thereby improving
preparation for inference tasks. Here, a pipeline bubble refers to the idle time or inefficiency that occurs
in pipeline-parallel training when some stages of the pipeline are waiting for others to complete their work,
rather than performing computations. It doesn’t make a model less robust, but inefficient training caused
by bubbles can indirectly reduce robustness.

Modified Decoding and Search Strategies The methods that guide how LLMs select tokens to
generate text also play a subtle but important role in balancing output quality and robustness. While
standard approaches like greedy decoding (choosing the most probable token) or beam search are widely
used, they often struggle under adversarial conditions or when generating diverse, reliable outputs (Beyer
et al., 2025). Despite their limitations, research has largely prioritized input- or output-level defences (e.g.,
prompt engineering, response filtering) over reimagining decoding itself as a primary robustness mechanism.
This gap persists even as adversarial attacks exploit decoding weaknesses, such as using greedy search
or Greedy Coordinate Gradient (GCG) (Kumar et al., 2025a) to craft optimal input perturbations. The
relative neglect of defensive decoding strategies may stem from practical hurdles, such as the computational
complexity of altering core generation processes compared to simpler input/output interventions.

Emerging approaches aim to address these gaps by refining how LLMs navigate token selection. Uncertainty-
aware decoding, for instance, could suppress generations when the model’s confidence is low, reducing errors
in high-stakes scenarios. Ensemble decoding combines outputs from varied model states or prompts to dilute
adversarial influences, while constrained decoding enforces safety rules (e.g., blocking harmful phrases) during
token selection (Shi et al., 2024b; Gu et al., 2024; Daheim et al., 2025). Son et al. (2025) formalizes this
challenge as a maximin game, introducing RMOD (Robust Multi-Objective Decoding), a method aimed at
maximizing worst-case rewards through Nash equilibrium optimization. RMOD achieves this by balancing
competing objectives, specifically, identifying a Nash equilibrium between reward weight allocations and the
sampling policy during text generation.

However, these strategies remain underexplored compared to input/output defences, partly due to perceived
trade-offs between robustness, computational cost, and output creativity. For example, overly strict decoding
rules might stifle natural language diversity, mirroring the pitfalls of rigid prompt engineering. Until decoding
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innovations match the practicality of input/output defences, their potential to enhance LLM robustness will
likely remain secondary.

Inference-Time Adaptation and Transformation Beyond prompt manipulation and decoding, other
intra-processing techniques involve adapting the model or its execution environment at inference time. While
efficient inference infrastructure does not directly enhance robustness, it enables the deployment of adaptive
systems that can improve real-world reliability (Manvi et al., 2024). For instance, LeVine et al. (2024)
evaluates the performance and calibration of reward models under distribution shift and finds that accuracy
degrades significantly, particularly for OOD responses. Some of key strategies include test-time adaptation
(TTA), which makes minor, instance-specific adjustments to improve handling of rare or unfamiliar data,
such as medical cases outside training distributions (Snell et al., 2024). Architectural interventions explore
structural modifications during inference, like removing or swapping transformer layers, revealing that models
retain most functionality despite such changes, which is a sign of inherent redundancy and fault tolerance
(Lad et al., 2024). Other work examines components like layer normalization, showing how architectural
choices impact stability under perturbations (Jha & Reagen, 2024). Finally, efficient inference engines
optimize computational bottlenecks (e.g., attention mechanisms) using memory optimization and adaptive
computation, enabling complex real-time processes like retrieval-augmented generation while balancing speed
and accuracy (Ye et al., 2025). Together, these approaches highlight how real-time adaptability and structural
insights can bolster LLM reliability without sacrificing efficiency.

4.4 Post-processing techniques

Post-processing strategies constitute the final line of defence in the LLM pipeline, applied after the model
has generated its output but before that output is delivered to the user or consumed by a downstream
application. These methods involve scrutinizing, filtering, validating, or transforming the generated text
to detect or mitigate potential robustness failures, such as harmful content, factual inaccuracies, biases, or
outputs resulting from successful attacks that bypassed earlier defences.

Output Filtering and Validation A fundamental principle of post-processing is to treat the LLMs
output with a degree of skepticism, applying verification steps similar to how one might validate user input.
Common strategies include safety classifiers, where smaller models or rule-based systems screen outputs
for harmful or biased content, blocking or flagging problematic responses (Kumar et al., 2025b; Liu et al.,
2023; Zhou et al., 2024a). For example, the Erase-and-Check method iteratively tests modified versions of
suspicious prompts to detect adversarial inputs, leveraging pre-generation filtering to block harmful content
(Kumar et al., 2025a; Phute et al., 2024). Perplexity filtering identifies nonsensical outputs by measuring
how natural generated text appears to a language model, flagging high-perplexity results as potential errors
or attacks (Weng, 2023).

For structured tasks (e.g., code or json generation), format validation ensures outputs adhere to predefined
schemas or pass external checks like code compilers, preventing errors or injection vulnerabilities (Rebedea
et al., 2023; AI, 2025). Similarly, output sanitization removes sensitive information (e.g., personal data)
leaked during generation, mitigating privacy risks (Wang et al., 2025). Further, Song et al. (2025); Ma-
heshwari et al. (2025) implements RAG to verify outputs after initial response generation. After a language
model produces an answer, the system automatically fetches supporting evidence from external databases or
documents, using either the original user query or the generated response as search criteria. The model then
cross-checks its own output against this retrieved evidence, creating a self-correction cycle that improves
factual consistency. While methods like Erase-and-Check offer strong defences, their computational cost of-
ten requires simplified variants for practical use, highlighting the trade-off between robustness and efficiency.
Together, these strategies underscore the importance of layered verification to balance safety, accuracy, and
usability in real-world LLM deployments.

LLM-as-a-Judge for Verification and Filtering This approach uses one language model to evaluate
the outputs of another, offering scalable and nuanced assessments beyond basic rule-based checks. This
method is increasingly applied to enhance robustness by automating tasks like bias detection, safety compli-
ance, and factual accuracy (Shi et al., 2025; Gu et al., 2025; Kumar et al., 2025b). For instance, judge LLMs
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Table 3: Decision Matrix for Mitigation Strategy Selection

Threat Model
(Source of
Non-Robustness)

Primary Dimension(s)
Addressed

Recommended Mitigation Strategies (by
Pipeline Stage)

Key Considerations / Trade-offs

Dataset Biases &
Anomalies

Data Poisoning /
Backdoors

Sensitivity to Input
Variations
(Prompt/Noise)

RLHF Impact
(Reward Hacking,
Bias Amplification,
Capability
Trade-offs)

Alignment Tax

Fine-tuning
Limitations
(Overfitting, Noise
Sensitivity,
Instruction
Brittleness)

RAG Issues

Fairness under Stress,
Consistency

ifdversarial Attacks,
Safety, Reliability

Prompt Robustness,
Noise Robustness,
Consistency

Fairness under Stress,
Consistency,
Task-Specific Robustness

OOD Generalization,
Task-Specific Robustness

OOD Generalization,
Noise Robustness,
Prompt Robustness

Consistency, Factuality

Pre-processing: Data Filtering (Rule-based,
Data-Juicer, LLM-as-cleaner), Data
Augmentation (Contrastive pairs);
In-processing: Alignment (Safe RLHF),
Regularization (DBL)

Pre-processing: Data Filtering (rigorous
vetting);

In-processing: Adversarial Training (AT, DRO);
Post-processing: Output Filtering (Safety
Classifiers), LLM-as-a-Judge (detection)

Pre-processing: Data Augmentation (EDA, A3);
Intra-processing: Robust Prompting
(Self-denoising, Referenced Instruction
Tracking), Inference-Time Adaptation

In-processing: Alignment (RPO, Ensemble RMs,

Consistency Alignment)

In-processing: Alignment (RPO, Consistency
Alignment, Model Averaging)

Pre-processing: Data Augmentation, Data
Filtering;

In-processing: Regularization, AT;
Intra-processing: Robust Prompting

Intra-processing: Inference-Time Adaptation
(Efficient inference engines);
Post-processing: RAG for Verification

Trade-off: Overly strict filtering can remove
useful data.

Cost: Manual data curation is high, but
automated data curation is lower.
Effectiveness: Crucial for ethical AT

Trade-off: AT is expensive, attack-specific.
Cost: High for AT.

Effectiveness: Continuous monitoring needed.
Scalability: Challenging for large models.

Trade-off: Overly restrictive prompts stifle
creativity.

Cost: Lower (inference-time) than retraining.
Generalizability: Adapts to emerging risks.

Trade-off: “Alignment tax” (reduced general
capabilities).

Cost: High computational resources.
Scalability: Limited by data quality/diversity.

Trade-off: Direct trade-off with general utility.
Effectiveness: Aims to balance safety with
performance.

Trade-off: Risk of narrowing model’s broader
capabilities.

Cost: Depends on strategy.

Effectiveness: Requires careful data curation.

Trade-off: Retrieval overhead.

Cost: Adds latency.

Effectiveness: Improves grounding, but
bottlenecked by retriever quality.

can systematically analyze responses for fairness across demographic categories, validate reasoning steps in
technical tasks (e.g., code vulnerability detection), or flag factual errors by cross-referencing trusted sources
(Cantini et al., 2025). Advanced frameworks even deploy judge LLMs to autonomously generate adversarial
prompts, test target models, and assess response reliability, guided by domain-specific constraints (Li et al.,
2025d; Beyer et al., 2025).

However, reliance on LLM judges introduces challenges. First, their evaluations can be inconsistent due to
prompt sensitivity, inherent biases, or a lack of grounding in objective criteria (Gu et al., 2025). Second,
judge models themselves are prone to manipulation; studies show adversarial phrases or stylistic cues (e.g.,
phrases like “I think”) can skew their assessments (Raina et al., 2024; Lee et al., 2024a). Finally, the lack
of standardized evaluation protocols and risks like “preference leakage”, where judges favour outputs from
models they were trained on, underscores the need for multi-judge ensembles, human oversight, and rigorous
benchmarking to ensure reliability (Beyer et al., 2025). While promising, LLM-as-a-Judge systems require
careful design to balance automation with trustworthiness.

5 Metrics and Benchmarks

Modern language models must demonstrate reliability beyond basic performance metrics. As these models
are deployed in real-world applications — from healthcare diagnostics to legal document analysis — their
behaviour under stress becomes critical. Robustness evaluation answers crucial questions: How does the
model fail? When does it fail? Most importantly, why does it fail?

22



Published in Transactions on Machine Learning Research (11/2025)

The landscape of LLM robustness contains eight interconnected dimensions 2.2, each requiring specialized
measurement approaches. Our analysis reveals that the majority of production failures stem from overlooked
robustness factors rather than pure accuracy issues. Table 4 distils some essential metrics across 7 categories,
providing practitioners with:

o A diagnostic toolkit for model weaknesses
e Prioritization guidance for system improvements

e Benchmarking standards for research comparisons

Key Insight: No single metric tells the whole story. Effective evaluation requires combining
complementary measures across multiple dimensions to ensure reliability.

5.1 Metrics

Evaluating the multifaceted concept of LLM robustness requires a diverse toolkit of metrics, each designed to
capture specific aspects of model behaviour under various challenging conditions. These metrics move beyond
simple IID accuracy to quantify performance degradation, generalization ability, consistency, calibration,
fairness under duress, and factuality, particularly when models are stressed.

5.1.1

Performance Degradation Metrics

These metrics quantify the drop in performance when an LLM is evaluated on challenging data (adversarial
or noisy) compared to its performance on clean, standard data. They provide a direct measure of how much
a specific challenge impacts the model’s effectiveness.

5.1.2

o Accuracy Drop / F1 Drop / Metric Drop: This metric calculates the difference in model performance

between a baseline (clean or standard) dataset and a challenging version of that dataset (e.g.,
perturbed, adversarial, or noisy) Yuan et al. (2023). This metric directly quantifies how much a
given challenge degrades effectiveness when expressed in absolute terms or percentage points. A
larger drop indicates lower robustness, while a smaller drop suggests resilience under stress.

Attack Success Rate (ASR): This metric is central to adversarial robustness evaluation. It measures
the percentage of adversarial inputs that successfully cause the intended model failure, such as
misclassification in NLU tasks, bypassing safety filters to generate harmful content, or successfully
executing a jailbreak prompt (Jung et al., 2025). A higher ASR signifies lower robustness to the
specific attack method used. It is a key metric for benchmarks like AdvGLUE++, JailbreakBench,
and PromptBench (Zhou et al., 2024a).

Compliance Ratio / Refusal Rate: These metrics are particularly relevant for evaluating safety
and alignment robustness, especially against jailbreaking attempts. It measures how often the
LLM generates harmful or forbidden content when prompted with malicious instructions (Varshney
et al., 2024; Zeng et al., 2025). Conversely, the Refusal Rate measures how often the model refuses
to answer. A high refusal rate for harmful prompts indicates good safety alignment, but a high
refusal rate for benign prompts indicates over-defensiveness, a potential negative side-effect of safety
training.

Out-of-Distribution (OOD) Performance Metrics

These metrics specifically assess how well an LLM performs when faced with data that differs statistically
from its training distribution.

o OOD Accuracy / F1 score: Standard performance metrics like Accuracy or Fl-score calculated

directly on designated OOD benchmark datasets, such as those included in the BOSS suite (e.g.,
Dynasent, ANLI, NewsQA) (Yuan et al., 2023). This provides a direct measure of capability on
unseen distributions.
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Table 4: Different metrics for evaluation of robustness in LLMs.

Metrics

Specific
Category

Dimension
Measured

Brief Description

Performance Degrada-
tion

Accuracy Drop, F1
Drop (Yuan et al,
2023)

Attack Success Rate
(ASR) (Zhou et al.,
2024a)

Compliance / Refusal
Rate (Varshney et al.,
2024; Zeng et al., 2025)

General Robustness

Adversarial Resilience,
Safety

Safety, Alignment

Decrease in standard metrics on challenging vs clean
data.

Percentage of successful adversarial attacks/jailbreaks

Frequency of generating harmful content or refusing
prompts

OOD Performance

00D Accuracy/F1
score (Yuan et al.,
2023)

ID-OOD Performance
Gap (Yuan et al., 2023)
OOD Detection (AU-
ROC, Energy Score)
(Lu et al., 2024)

OOD Generalization

OOD Generalization

OOD Awareness

Task performance on designated out-of-distribution
datasets.

Difference  between in-distribution and out-of-
distribution performance.

Ability to distinguish in-distribution versus out-of-
distribution inputs.

Consistency Semantic Consistency Prompt Robustness, Stability of output meaning under input paraphrasing
(Yang et al., 2025b) Reliability or slight modifications.
Consistency Rate Prompt Robustness, Proportion of identical or equivalent predictions across
(CR) (Nalbandyan Sampling Stability setups (e.g., prompts, seeds).
et al., 2025)
Response Consistency ~ Prompt Robustness Frequency of the most common claim across
(RC) (Rahman et al., paraphrased prompts.
2024)
LLM-based Sampling Stability, LLM judges assess consistency between generated
Consistency Score  Reliability samples.
(Saxena et al., 2024)
Calibration Expected Calibration Confidence Reliability — Alignment between predicted confidence and actual ac-

Error (ECE) (Posocco
& Bonnefoy, 2021)
ECE under Distri-
bution Shift (Huang
et al., 2024b; LeVine
et al., 2024)

OOD Generalization

curacy

ECE measured specifically on OOD data

Fairness under Stress

Bias  Metrics  (e.g.,
FLEX) (Jung et al.,
2025)

Fairness Robustness

Evaluation of fairness when models are exposed to bias-
inducing prompts.

Task-Specific

Code Robustness
Checks (Li et al,
2025¢)

Reasoning  Accuracy
(e.g., ReClor-plus)

(Bao et al., 2025)

Code Generation Ro-
bustness

Reasoning Robustness

Checks for robustness in generated code, like security or
correctness features.

Performance on reasoning tasks containing structure
variations.

Hallucination/Factuality

FactScore, FCH Rate
(Rahman et al., 2024)

FEWL (Wei et al.,
2024)

SelfCheckGPT,
MetaQA (Wei et al.,
2024)

Faithfulness  Metrics

(NLI/QA-based)
Hallucination Rate
Increase (HRI)

Factuality,
Faithfulness

Factuality (Reference-
Free)

Factuality /Consistency
(Reference-Free)

(Chen et al., 2024)
Faithfulness to Source

Factuality Robustness
under Stress

Verification of generated facts against a trusted
knowledge source or context.

Weighted agreement among reference LLMs based on
expertise.

Consistency checks across multiple generated samples or
metamorphic prompt variations.

Consistency between generated text and provided source
document.

Change in hallucination rate when exposed to stress
conditions.

¢ ID-OOD Performance Gap: This metric quantifies the difference in performance between an ID
dataset and a corresponding OOD dataset (Yuan et al., 2023). It explicitly measures the drop in
generalization capability due to the distribution shift. Studies using benchmarks like BOSS have

24



Published in Transactions on Machine Learning Research (11/2025)

shown that this gap can vary significantly and exhibit complex patterns (e.g., linear, piecewise
linear, V-shaped) depending on factors like model scale, training steps, and task type, indicating
that simply improving ID performance does not always guarantee better OOD performance.

OOD Detection Metrics (e.g., AUROC, FPRQTPR): These metrics evaluate the model’s ability
to recognize that an input is OOD, often by thresholding a confidence score derived from model
outputs (e.g., token probabilities) or internal representations (Huang et al., 2024a). Common metrics
include the Area Under the Receiver Operating Characteristic curve (AUROC) and the False Positive
Rate (FPR) at a high True Positive Rate (TPR). While not directly measuring task performance
robustness, effective OOD detection is crucial for building reliable systems that can identify and
potentially abstain from making predictions on inputs they are likely to handle poorly (Lu et al.,
2024). Techniques like Energy Score, originally from classification, have been adapted for this
purpose in LLMs and reward models (LeVine et al., 2024).

5.1.3 Consistency Metrics

Consistency metrics evaluate the stability of LLM outputs. A consistent model should produce similar
outputs for semantically identical inputs and exhibit stable behaviour under non-deterministic sampling.
Lack of consistency can signal unreliability, especially for tasks requiring factual accuracy (Nalbandyan
et al., 2025).

5.1.4

Semantic Consistency: Assesses whether the meaning or core information conveyed in the LLM’s
output remains the same when the input prompt is paraphrased or expressed differently, while pre-
serving the original intent (Nalbandyan et al., 2025). Evaluation can be qualitative or quantitative,
often using semantic similarity metrics based on embeddings (e.g., cosine similarity between output
embeddings) (Patwardhan et al., 2025).

Consistency Rate (CR): Proposed within the SCORE framework (Nalbandyan et al., 2025), CR
quantifies the agreement among predictions for the same input across different evaluation settings
(e.g., 10 different prompts, 5 different random seeds for sampling). It is calculated as the average
proportion of agreeing pairs among all possible pairs of predictions for each input instance. For
multiple-choice questions (MCQ), agreement means identical predicted letters; for tasks like MATH,
it means symbolic equivalence checked via tools like sympy (Nalbandyan et al., 2025).

Response Consistency (RC): Used in the DefAn benchmark (Bao et al., 2025), this metric specifically
measures consistency across multiple (e.g., 15) paraphrased versions of a single prompt. For each
set of paraphrased prompts, it calculates the frequency of the most common factual claim generated
in the responses. The overall RC is the average of these frequencies.

Multilingual Consistency: Evaluates whether the model’s performance or the semantic meaning of
its output is preserved when prompts or inputs are translated into different languages (Qi et al.,
2023).

LLM-based Counsistency Score: This approach uses another LLM as a judge (Saxena et al., 2024).
It prompts the target LLM multiple times (n > 1) for the same input using a non-zero temperature
(e.g., 1.0) to induce variability. The judge LLM then compares pairs of generated responses, assessing
whether they contradict or support each other. The consistency score is the fraction of pairs deemed
consistent.

Calibration Metrics

Calibration metrics assess the alignment between an LLM’s predicted confidence and its actual likelihood
of being correct. Well-calibrated models are crucial for trustworthy decision-making, as their confidence
scores reliably indicate the potential accuracy of their outputs. Evaluating calibration under stress, such as
distribution shifts, is vital for robustness.

25



Published in Transactions on Machine Learning Research (11/2025)

o Expected Calibration Error (ECE): It works by dividing predictions into bins based on their confi-
dence scores (e.g., 10 bins from 0.0-0.1, 0.1-0.2,..., 0.9-1.0). Within each bin, the average confidence
and the actual accuracy (fraction of correct predictions) are calculated. ECE is the weighted average
of the absolute difference between average confidence and accuracy across all bins, weighted by the
number of samples in each bin. A lower ECE indicates better calibration (perfect calibration yields
ECE=0). Frameworks like UQ4CT aim to minimize ECE during fine-tuning. (Posocco & Bonnefoy,
2021)

e ECE under Distribution Shift: This involves calculating ECE specifically on OOD datasets or under
simulated distribution shifts to assess how calibration holds up under stress. Research suggests that
factors like OOD prompts versus OOD responses can impact the calibration of components like
reward models differently (LeVine et al., 2024; Huang et al., 2024b).

e Other Metrics include:

— Brier Score: Measures the mean squared difference between predicted probabilities and actual
outcomes (0 or 1). Its other variants include weighted Brier score (Zhu et al., 2024).

— Area Under the ROC Curve (AUROC): Can be used to assess how well confidence scores
discriminate between correct and incorrect predictions when varying a confidence threshold.

5.1.5 Fairness Metrics under Stress

These metrics evaluate whether an LLM maintains fairness and avoids amplifying social biases when sub-
jected to adversarial conditions, such as prompts designed to provoke biased responses.

e Concept: Standard fairness evaluation often checks for performance disparities or stereotypical as-
sociations on clean data. Fairness robustness evaluation applies similar principles but within a
stress-testing context, using benchmarks like FLEX (Jung et al., 2025).

 Specific Metrics: These often involve measuring differences in other robustness metrics (like ASR,
refusal rates, toxicity scores, or task accuracy) across different demographic groups when the model
is prompted with bias-inducing adversarial inputs (Jung et al., 2025). For example, one might
measure if a jailbreak attack is more successful (higher ASR) when the harmful instruction targets
a specific demographic group, or if the model refuses benign requests more often for certain groups
under adversarial pressure. Metrics derived from causal frameworks, like stratified invariance, can
also quantify the model’s reliance on protected attributes under intervention (Cotta & Maddison,
2024).

5.1.6 Task-Specific Robustness Metrics

Certain applications require robustness dimensions unique to the task domain. Metrics are tailored accord-
ingly.

e Code Generation: Beyond functional correctness, robustness evaluation focuses on aspects like secu-
rity vulnerabilities or handling of edge cases too (Rahman & Kundu, 2024). Metrics might involve:

— Static Analysis: Checking for the presence or absence of necessary robustness features like
input validation, exception handling, or specific control structures compared to human-written
reference code (Li et al., 2025¢).

— Robustness to Prompt Perturbation: Evaluating if code generation remains correct when the
natural language instruction contains typos or semantic variations (Gan et al., 2024).

— Code Hallucination Metrics: Specific metrics from benchmarks like HalluCode, such as Accuracy
of Hallucination Existence Recognition (Acc-Rec) (did the model correctly identify if generated
code contains hallucination ?) and Accuracy of Hallucination Mitigation (Acc-Mit) (did the
model successfully correct the hallucinated code ?) (Liu et al., 2024a).
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o Logical Reasoning: Evaluating performance degradation on standard reasoning benchmarks (e.g.,
ReClor, LogiQA) when the task structure is perturbed, for example, by shuffling the order of
multiple-choice options or replacing the correct option with “none of the above” (as done in ReClor-
plus, LogiQA-plus) (Bao et al., 2025). Robustness can also be tested against typographical errors
in the problem statement using benchmarks like R2ATA (Gan et al., 2024).

5.1.7 Hallucination and Factuality Metrics under Stress

This crucial category focuses on measuring an LLM’s propensity to generate content that is factually incor-
rect, inconsistent with provided sources (unfaithful), or nonsensical (hallucination) (Liu et al., 2024a). The
evaluation is particularly concerned with how this tendency changes under stressful conditions like OOD
inputs, adversarial prompts, or questions probing the model’s knowledge boundaries.

o Fact-Checking / Factuality Scores: These metrics assess the alignment of generated content with
verifiable world knowledge or a ground truth source.

— Knowledge Base (KB) / Corpus Comparison: Generated statements are checked against external
structured KBs or large factual corpora (Muhlgay et al., 2024). The FACTOR benchmark
operationalizes this by creating contrastive (true/false) statements from a corpus and evaluating
the LM’s likelihood score assigned to the true version versus false alternatives (Muhlgay et al.,
2024).

— Exact Match (EM) (Wang et al., 2024c): Measures the percentage of generated answers that
perfectly match a known factual reference answer. It is simple but often too strict, failing to
credit semantically correct paraphrases.

— Atomic Fact Verification (e.g., FactScore, FCH Rate): This approach decomposes a longer
generated text into individual factual claims (“atomic facts”) and verifies each claim against
a reliable source like Wikipedia (Wang et al., 2024c). The final score is often the percentage
of verified facts. This allows for fine-grained analysis of long-form generation. The Factual
Contradiction Hallucination (FCH) rate used in the DefAn benchmark follows a similar principle
(Rahman et al., 2024).

— FEWL (Factualness Evaluations via Weighting LLMs): A reference-free metric designed for
scenarios without gold-standard answers (Wei et al., 2024). It uses multiple external LLMs
(“reference LLMs”) as proxies. It calculates a truthfulness score by weighting the agreement
between the evaluated response and each reference LLM’s response based on the reference LLM’s
estimated “expertise” (disagreement with wrong answers) and “non-laziness” (consistency across
similar questions) (Wei et al., 2024).

— QA/NLI-based Metrics: These leverage auxiliary models. A Question Generation/Answering
system can be used to generate questions from the generated text and check if the answers are
consistent with the source document. Alternatively, NLI models can classify the relationship

(entailment, contradiction, neutral) between generated statements and source text sentences
(Chen et al., 2024).

o Faithfulness / Groundedness Scores: These metrics specifically measure whether the generated text
accurately reflects and is supported by a given source document. This is critical for tasks like
summarization or Retrieval-Augmented Generation (RAG).

— Methods often overlap with fact-checking (e.g., using NLI or QA models) but focus specifically
on adherence to the provided context rather than general world knowledge (Chen et al., 2024).
Faithfulness metrics evaluate if all claims in the output can be inferred from the source (Yang
et al., 2025a).

— Mol-Hallu: A domain-specific metric for evaluating faithfulness in molecular comprehension
tasks. It uses an entailment model to check if scientific entities mentioned in the generated text
are actually supported by the provided molecular descriptions (Li et al., 2025a).
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Figure 6: Actionable guidance for LLM practitioners where Performance metrics can be taken from Table
4 and then by identifying the threat model or corresponding weak dimensions, practitioners can apply
corresponding strategies from Table 3.

e Consistency-Based Metrics: These metrics leverage the idea that factual information should be

stable, while hallucinations might be more variable or contradictory across different generations or
prompts.

— Self-Consistency Checks (e.g., SelfCheckGPT): This approach involves generating multiple re-

sponses from the same LLM for a single prompt, typically using temperature sampling (T>0) to
introduce diversity (Wei et al., 2024). The consistency (or lack thereof) across these responses
is then measured. High variance or contradiction among samples might indicate hallucination,
while consistent outputs suggest higher confidence or factuality. Various metrics can be used to
quantify this, such as semantic similarity variance or contradiction detection using NLI models
(Wei et al., 2024).

LLM-based Consistency Score: This method uses a secondary model to evaluate consistency by
generating multiple responses (with controlled randomness) to the same prompt, then calculat-
ing how often these responses logically align (Saxena et al., 2024). The resulting “consistency
score” measures reliability under variable conditions.

MetaQA: This method applies metamorphic testing principles (Yang et al., 2025a). It generates
variations of the original prompt using synonym or antonym substitutions. It then checks if the
LLM’s responses to these related prompts exhibit the expected consistency (for synonyms) or
inconsistency (for antonyms). Deviations from expected patterns can signal factual errors or
hallucinations (Yang et al., 2025a).

e Uncertainty as Indicator: The model’s own uncertainty estimates can sometimes serve as a proxy

for hallucination risk.
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— Confidence Scores: Using metrics derived from the model’s output probabilities, such as token-
level probabilities, sequence log-probability, or entropy (Mahaut et al., 2024). The assumption
is that lower confidence might correlate with a higher likelihood of hallucination. However, this
requires the model to be well-calibrated for the confidence scores to be reliable indicators.

— Energy Score: While primarily used for OOD detection, the energy score calculated for reward
models can indicate when the model is operating on inputs (prompts or responses) far from its
training distribution, suggesting its reward estimate (which might relate to factuality) could be
unreliable (LeVine et al., 2024).

o FEvaluating Increase in Hallucination under Stress: A key aspect of robustness is understanding
how hallucination behaviour changes under pressure. This requires comparing hallucination rates
measured using the metrics above under standard conditions versus stress conditions.

— Methodology: Apply a chosen hallucination metric (e.g., FCH rate, FEWL score, SelfCheckGPT
score) to a standard benchmark (e.g., TruthfulQA) and then again to a stressed version of
that benchmark (e.g., TruthfulQA prompts with added noise, OOD context, or adversarial
perturbations).

— Metric: The Hallucination Rate Increase (HRI) can be defined as HRI = Hallucination Rate
(Stress) - Hallucination Rate (Standard). A significantly positive HRI indicates a failure in
factuality robustness, meaning the model becomes more prone to hallucination when challenged.
This requires benchmarks specifically designed or adapted for stress testing factuality (discussed
in Section 2.2).

5.2 Benchmarks

Complementing the metrics described above, a growing number of benchmarks and evaluation frameworks
are being developed to systematically assess LLLM robustness across its various dimensions. Table 5 provides
an overview of the benchmarks discussed. These benchmarks provide standardized datasets and protocols
for testing models under specific types of stress.

5.2.1 Adversarial Benchmarks

These benchmarks are designed to evaluate an LLM’s resilience to intentionally crafted inputs aimed at caus-
ing model failure, such as misclassification, generation of harmful content, or bypassing safety mechanisms.

o AdvGLUE / AdvGLUE++: These benchmarks are adversarial versions of the popular GLUE (Gen-
eral Language Understanding Evaluation) benchmark. They apply various textual adversarial attack
methods (e.g., word substitutions using synonyms, character-level perturbations, sentence paraphras-
ing) to the original GLUE tasks (like sentiment analysis, NLI). AdvGLUE++ (Wang et al., 2021)
expands upon AdvGLUE with more adversarial examples, targeting newer LLMs. They serve as a
standard for evaluating the robustness of fundamental language understanding capabilities against
common textual attacks.

o PromptBench: Unlike benchmarks focusing on perturbing input samples, PromptBench (Zhang,
2023) specifically evaluates the robustness of LLMs to adversarial prompts (the instructions given to
the model). It includes a framework for dynamically generating adversarial prompts using character,
word, sentence, and semantic-level attacks and applies these perturbed prompts across various tasks
(sentiment analysis, NLI, QA, translation, math) and datasets. This targets the sensitivity of LLMs
to the way instructions are phrased.

o Jailbreak Benchmarks (e.g., JailbreakBench, AdvBench subset): These benchmarks consist of
prompts specifically designed to circumvent an LLM’s safety alignment training and elicit responses
that are harmful, unethical, illegal, or otherwise prohibited by the model’s safety guidelines (Xhon-
neux et al., 2024). Examples include prompts using role-playing scenarios, hypothetical situations,
or character encodings to trick the model. Evaluating performance on these benchmarks (often using
ASR or Compliance Ratio) is crucial for assessing the effectiveness of safety measures.
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o R2ATA (Gan et al., 2024): This benchmark focuses on the robustness of LLM reasoning capabilities.
It uses the Adversarial Typo Attack (ATA) algorithm to introduce minimal, targeted typographical
errors into reasoning problems (from datasets like GSM8K, BBH, MMLU). It then measures the
degradation in the LLM’s ability to perform correct step-by-step reasoning (Chain-of-Thought) and
arrive at the right answer.

Adversarial benchmarks, while primarily focused on inducing misclassification or safety failures, can inad-
vertently trigger hallucinations. Attacks that manipulate reasoning processes or push models into unusual
states via jailbreaking prompts (Gan et al., 2024; Zhou et al., 2024a) might cause them to generate factually
incorrect or nonsensical outputs as a byproduct of the attack’s success or the model’s attempt to handle the
confusing input. Evaluating factuality metrics on adversarial datasets can provide insights into how robust
a model’s factual grounding is when under direct attack.

5.2.2 0OD Benchmarks

OOD benchmarks are designed to evaluate how well LLMs generalize their capabilities to data drawn from
distributions that differ from their training data. This tests robustness against natural shifts encountered in
the real world.

o BOSS (Benchmark suite for Out-of-distribution robustneSS): BOSS is a notable effort to create a
more challenging and holistic OOD evaluation suite for NLP. It covers five diverse tasks: Senti-
ment Analysis (SA), Toxic Detection (TD), NLI, Named Entity Recognition (NER), and Extractive
Question Answering (EQA) (Yuan et al., 2023). For each task, BOSS includes one large, diverse In-
Distribution (ID) dataset (e.g., Amazon reviews for SA, MNLI for NLI, SQuAD for EQA) and three
corresponding OOD datasets (Yuan et al., 2023). The OOD datasets are carefully selected based
on a protocol that prioritizes: (1) distinct data sources/domains to ensure low semantic similarity
(measured via SimCSE) with the ID set and (2) evidence of a significant performance drop for a
baseline model trained on the ID set, indicating a challenging distribution shift (Yuan et al., 2023).
Examples of OOD datasets included are Dynasent, SemEval (SA); ANLI, ContractNLI, WANLI
(NLI); AdvQA, NewsQA, SearchQA (EQA) (Yuan et al., 2023).

o ANLI (Adversarial NLI): Created through an iterative human-and-model-in-the-loop process, ANLI
contains NLI examples specifically designed to be difficult for contemporary models. Due to its
challenging nature and distinct creation process, it is frequently used as an OOD benchmark for
NLI task generalization (Yuan et al., 2023).

e Dynasent: A sentiment analysis dataset generated dynamically using adversarial methods to create
challenging examples that models trained on standard sentiment datasets might misclassify (Yuan
et al., 2023).

e WANLI: An NLI dataset synthesized using GPT-3, focusing on challenging linguistic patterns that
models often struggle with in datasets like MNLI (Yuan et al., 2023).

o OODRobustBench (Li et al., 2024a): This is a comprehensive benchmark to evaluate adversarial
robustness under dataset and threat distribution shifts. Further, this benchmark demonstrates that
adversarial robustness suffers significant degradation under distribution shifts, yet in-distribution
robustness correlates strongly and linearly with out-of-distribution robustness.

5.2.3 Consistency/Prompt Robustness Benchmarks

These benchmarks focus on evaluating the stability of LLM outputs when faced with variations in prompt
formulation or non-deterministic sampling, testing whether the model’s behaviour is sensitive to superficial
changes.

o SCORE (Systematic Consistency and Robustness Evaluation): SCORE (Nalbandyan et al., 2025)
provides a framework for non-adversarial robustness evaluation. It assesses models on existing
benchmarks (like MMLU-Pro, AGIEval, MATH) under three specific perturbation scenarios :
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Table 5: Different Benchmarks for evaluation of robustness in LLMs.

Dirf‘;l;'ﬁ:iton Benchmarks /El)ze:er?%ir]r?s:)i?rft Evaluation Approach
Adversarial Resilience ~ AdvGLUE / Modified SST-2, Perturbed versions of GLUE using textual attacks
AdvGLUE++ MNLI, QQP, etc.
Adversarial Resilience PromptBench Uses prompts with Dynamic adversarial attacks on prompts (char, word,
(Prompts) datasets like GLUE, sentence, semantic)
SQuAD, GSMBSK,
GSM-PLUS
Adversarial Resilience JailbreakBench, Ad- Custom jailbreak  Prompts designed to bypass safety filters
(Safety) vBench prompts
Adversarial Resilience R2ATA Perturbed ~ GSMS8K, Adversarial typographical errors in reasoning problems
(Reasoning), Noise BBH, MMLU
OOD Generalization BOSS IID: Amazon, SQUAD, Curated ID/OOD datasets based on semantic
MNLI, CC, FewNerd;  dissimilarity & performance drop protocol.
OO0D: Dynasent,
ANLI, NewsQA, etc.

OODRobustBench OODRobustBench Predicts the maximum OOD robustness achievable by
extrapolating existing [,-based robust training tech-
niques to hypothetical models with perfect ID robust-
ness.

WANLI ANLI dataset Adversarially collected NLI examples.

Consistency, Prompt SCORE MMLU-Pro, AGIEval, Evaluates consistency across prompt paraphrasing, sam-
Robustness MATH pling seeds, choice order permutations.
Fairness under Stress, FLEX Modified BBQ, CrowS-  Adversarial prompts (persona, competing objectives,

Adversarial Resilience

Pairs, StereoSet

text attacks) on fairness datasets

Task-Specific
(Reasoning)
Task-Specific (Code)

ReClor-plus, etc.

CoderEval

Modified ReClor,
LogiQA
CoderEval benchmark

Structural variations (shuffled options, or adding
“none of the above”) on reasoning datasets.

Used to analyze code robustness aspects like missing
checks vs. human code

Factuality /Hallucination

Truthful QA

Truthful QA dataset

Questions targeting common misconceptions to test
truthfulness vs. imitation

FELM FELM dataset Fine-grained, segment-level factuality annotations with
error types & references
FACTOR Wiki-FACTOR, News- LM likelihood evaluation on contrastive (true vs. false)
FACTOR, etc. statements derived from a corpus
DefAn DefAn dataset Large dataset evaluating FCH, PMH, and RC across
paraphrased prompts
UMWP UMWP dataset Tests if LLMs identify unanswerable problems or hallu-
cinate solutions
(Recognition) HaluEval HaluEval dataset (de- Large dataset of hallucinated/correct samples; tests
rived from HotpotQA, LLM ability to classify hallucination
CNN/DM, Alpaca,
etc)
(Code) HalluCode / CodeHalu  HalluCode, Code- Benchmarks with taxonomies for evaluating code-
HaluEval datasets specific hallucinations
(Multimodal) AMBER AMBER dataset (cus- LLM-free evaluation of existence, attribute, relation hal-
tom annotated images) lucinations in MLLMs
(Multimodal) HQHBench / ODE HQHBench  dataset; Meta-evaluation of benchmark quality (HQHBench);

ODE framework

Dynamic open-set generation (ODE)

— Prompt Robustness: Testing with 10 different non-adversarial, semantically equivalent prompts
for each question, varying structure and including Chain-of-Thought (CoT) variations.

— Non-Greedy Inference: Evaluating consistency across 5 runs using the same prompt but with
temperature sampling (T=0.7) and different random seeds.

— Choice Order Robustness: For MCQ datasets, shuffling the order of answer choices while keeping
the correct answer logically in the same position. SCORE reports the range (min/max) of

accuracy across these scenarios and the overall Consistency Rate (CR) (Nalbandyan et al.,
2025).
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o Paraphrasing Benchmarks: Methodologies that involve generating multiple paraphrased versions of
instructions or queries and measuring the consistency of the LLM’s responses (Barbero et al., 2025).
This directly tests robustness to linguistic variation.

e Structural Variation Tests: Evaluating how changes in prompt structure, such as altering the po-
sition of the question within the prompt (beginning, middle, end), affect model performance and
consistency (Nalbandyan et al., 2025).

5.2.4 Fairness/Bias Robustness Benchmarks

These benchmarks are specifically designed to assess whether LLMs maintain fairness and avoid biased
outputs when subjected to stress or adversarial prompts intended to provoke bias.

o FLEX (Fairness Benchmark in LLM under Extreme Scenarios): FLEX (Jung et al., 2025) focuses
on the robustness of fairness. It takes samples from existing fairness benchmarks (like BBQ, CrowS-
Pairs, StereoSet) where baseline models typically provide unbiased responses. It then applies ad-
versarial prompts using techniques like persona injection (instructing the LLM to adopt a biased
persona), competing objectives (presenting conflicting goals that might induce bias), or text at-
tacks (subtle manipulations of the input) (Jung et al., 2025). FLEX evaluates whether the model
maintains its unbiased stance even under these extreme, bias-inducing conditions.

5.2.5 Task-Specific Robustness Benchmarks

These benchmarks evaluate robustness in the context of particular downstream applications where unique
failure modes might exist.

e Reasoning:

— ReClor-plus, LogiQA-plus, LogiQAv2-plus (Bao et al., 2025): These extend standard logical
reasoning datasets (ReClor, LogiQA, LogiQAv2) by introducing structural variations to the
multiple-choice questions. These variations include randomly shuffling the answer options or
replacing the correct answer with a “none of the other options is correct” choice, testing if the
model relies on superficial patterns or truly understands the logic (Bao et al., 2025).

— R2ATA (Gan et al., 2024): Assesses reasoning robustness specifically against adversarial typo-
graphical errors introduced into the problem statements of reasoning tasks (Gan et al., 2024).

¢ Code Generation:

— CoderEval (Li et al., 2025e): While primarily a code generation benchmark, it has been used
in studies focusing on code robustness issues beyond simple functional correctness, such as
identifying missing input validation or error handling checks by comparing generated code to
human references (Li et al., 2025¢).

— Benchmarks evaluating robustness to perturbations in the natural language instructions pro-
vided for code generation tasks are also emerging (Barbero et al., 2025).

5.2.6 Hallucination/Factuality Benchmarks

This category includes benchmarks explicitly created to measure an LLM’s tendency to hallucinate or its
ability to adhere to factual knowledge.

o TruthfulQA: This benchmark (Cecchini et al., 2024) is designed to measure whether LLMs are truth-
ful in generating answers to questions where humans often hold common misconceptions. It tests if
models avoid repeating false beliefs prevalent in their training data, distinguishing truthfulness from
mere imitation (Yang et al., 2025a). It is also used widely for evaluating factuality robustness with
an updated version, TruthfulQA-Enhanced (Yang et al., 2025a).
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o HaluEval: A large-scale benchmark (35,000 samples) focusing on the LLM’s ability to recognize
hallucinations (Li et al., 2023). It includes generated and human-annotated samples across QA,
knowledge-grounded dialogue, text summarization, and general user queries. Models are evaluated
on their ability to correctly classify provided text as containing hallucinations (“Yes”) or not (“No”)

o FELM (Factuality Evaluation of LLMs): FELM (Chen et al., 2023b) provides fine-grained, segment-
level factuality annotations for LLM-generated responses. For each segment, human annotators
provide a factuality label (correct/incorrect), identify the error type if incorrect, and list reference
links supporting the judgment. It covers diverse domains including world knowledge, science, math,
and reasoning.

o FACTOR: This benchmark (Muhlgay et al., 2024) automatically transforms a given factual corpus
(e.g., Wikipedia, news articles) into a set of evaluation instances. Each instance consists of a context,
a factually correct completion, and several plausible but factually incorrect variations (generated
based on different error types like entity substitution, negation, and numerical errors). It evaluates
an LM by measuring whether it assigns a higher likelihood (probability) to the factually correct
completion compared to all the incorrect alternatives in a generation setting (Muhlgay et al., 2024).

o DefAn: A large dataset ( 75k prompts) across eight domains (including Sports, Census data, No-
bel Prize) designed to elicit definitive, concise factual answers (Rahman et al., 2024). It evalu-
ates three aspects: Factual Contradiction Hallucination (FCH rate - % of responses with incorrect
facts), Prompt Misalignment Hallucination (PMH rate - % of responses deviating from prompt in-
structions/format), and Response Consistency (RC - consistency of claims across 15 paraphrased
prompts) (Rahman et al., 2024).

o UMWP (Unanswerable Math Word Problem): This benchmark (Sun et al., 2024a) evaluates hal-
lucination in the context of mathematical reasoning. It consists of math word problems that are
intentionally designed to be unanswerable (e.g., due to missing information). It tests whether LLMs
correctly identify these problems as unanswerable or if they hallucinate by attempting to provide a
numerical solution.

o Code Hallucination Benchmarks (HalluCode, CodeHalu, Collu-Bench): These benchmarks (Liu
et al., 2024a) are specifically designed for the code domain. They often include taxonomies of
code-specific hallucinations (e.g., intent conflicting, context inconsistency, dead code, knowledge
conflicting (Liu et al., 2024a); mapping, naming, resource, logic hallucinations (Tian et al., 2025)).
They evaluate an LLM’s ability to generate correct code and/or recognize hallucinations in gener-
ated code snippets. Collu-Bench, for instance, focuses on predicting hallucination locations based
on generation log probabilities and execution feedback (Jiang et al., 2024).

o Multimodal Hallucination Benchmarks (AMBER, POPE, MME, HQHBench, ODE, etc.): These
benchmarks evaluate hallucinations in MLLMs, where the generated text might conflict with the
provided visual (or other modality) input (Bai et al., 2025b).

— AMBER (Bai et al., 2025b; Wang et al., 2024b) is notable for being an LLM-free benchmark.
It uses carefully annotated images and an automated pipeline to evaluate MLLM hallucinations
across both generative and discriminative tasks, covering existence (object presence), attribute
(object properties), and relation (spatial/contact relations between objects) hallucinations with-
out relying on another LLM for judgment (Wang et al., 2024b). While other benchmarks like
ODE (Tu et al., 2024) propose a dynamic, open-set protocol to generate novel evaluation samples
and mitigate data contamination.

e Evaluating Hallucination under Stress: While the benchmarks listed above are primarily designed to
elicit or detect hallucinations, they form the basis for evaluating factuality robustness under stress.
This can be achieved by:

— Applying stress conditions (e.g., adding noise, using OOD contexts, applying adversarial pertur-
bations) to the prompts or inputs of these benchmarks (e.g., stressing Truthful QA or HaluEval
inputs).

33



Published in Transactions on Machine Learning Research (11/2025)

— Measuring the change in hallucination rates using appropriate metrics ( under standard condi-
tions versus stress conditions). Benchmarks like UMWP or DefAn inherently contain challenging
conditions designed to probe these factuality limits.

The diversity of these hallucination benchmarks highlights the complexity of the phenomenon. Some test the
generation of truthful content (TruthfulQA, FACTOR, DefAn), while others test the recognition of flawed
content (HaluEval, HalluCode recognition tasks). They cover different domains (general knowledge, dia-
logue, code, math, multimodal) and rely on different evaluation paradigms (reference-based, reference-free,
likelihood-based, classification-based). A comprehensive assessment of an LLM’s factuality and hallucina-
tion tendencies requires leveraging multiple benchmarks that cover these different facets (Liu et al., 2024a).
Furthermore, the field is actively evolving to address in traditional static benchmarks. There is a noticeable
trend towards developing benchmarks that are dynamic (generating test cases on-the-fly to prevent con-
tamination, e.g., ODE, DyVal) (Tu et al., 2024), LLM-free (avoiding reliance on potentially unreliable LLM
judges, e.g., AMBER) (Wang et al., 2024b). These advancements aim to improve the reliability and validity
of LLM robustness evaluations.

6 Challenges and Future Work

The field has made notable progress in identifying and characterizing robustness challenges in LLMs. While
awareness of these vulnerabilities is now widespread, and numerous mitigation strategies and evaluation
frameworks have emerged, even state-of-the-art LLMs demonstrate brittleness across critical dimensions.
Robustness does not consistently correlate with model scale as larger models are not inherently more robust,
and scaling trends often show weak or inconsistent patterns (Zhou et al., 2024d; Yang et al., 2024d). Safety-
aligned models remain susceptible to sophisticated jailbreaking attempts, while performance may deteriorate
sharply with minor distribution shifts or input perturbations (Qi et al., 2025; Oh & Demberg, 2025; Yuan
et al., 2023). Ultimately, achieving comprehensive and reliable robustness persists as a fundamental challenge
for the field.

6.1 Major Challenges and Limitations

Several key challenges that hinder progress towards truly robust LLMs are:

1. Scalability of Defences: Many promising defence mechanisms, particularly those involving adversarial
example generation during training (AT) or complex inference-time checks, are computationally
expensive and may not scale efficiently to trillion-parameter models (Lee et al., 2024b; Howe et al.,
2025). Ensuring robustness improvements keep pace with model scaling is crucial but not guaranteed.

2. Robustness-Utility Trade-offs: Aggressively optimizing for robustness can often negatively impact
the model’s general capabilities or performance on clean, standard tasks (Lin et al., 2024b; Lee
et al., 2024b). The alignment tax associated with RLHF is a prime example of it. Finding the
right balance and developing methods that improve robustness without sacrificing utility is a critical
ongoing challenge.

3. Evaluation Gaps: Current evaluation methodologies have limitations. There is a need for more com-
prehensive benchmarks covering a wider range of robustness dimensions simultaneously, including
more subtle and complex failure modes (e.g., sophisticated shortcuts). Evaluating the robustness of
generative capabilities remains particularly difficult compared to classification tasks (Ailem et al.,
2024). Ensuring benchmarks are realistic, efficient, and resistant to “teaching to the test” is also
vital.

4. Theoretical Understanding: Our theoretical understanding of why LLMs exhibit certain robustness
failures like shortcut learning, understanding how model architecture (e.g., attention mechanisms,
MoE) influences robustness and vulnerabilities or the alignment tax and why certain defences work
is still developing (Ye et al., 2024). Deeper theoretical insights could guide the development of more
principled and effective mitigation strategies.
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5. Real-world Deployment: Translating robustness improvements observed on static benchmarks into
reliable performance in dynamic, open-world environments with continuous distribution shifts and
novel, unforeseen threats remains a significant hurdle. Bridging this gap is essential for trustworthy
deployment.

6. Robust Evaluation Methodologies: A critical need exists for more reliable, comprehensive, and
standardized benchmarks and evaluation protocols. This includes developing robust LLM judges,
methods for verifying judge outputs, and metrics that capture real-world failure modes more effec-
tively.

6.2 Future Research Directions

Addressing these challenges points towards several promising avenues for future research:

1. Causal and Invariant Learning: Moving beyond correlational learning towards models that under-
stand underlying causal relationships or learn representations that are inherently invariant to changes
in domain or distribution (Ye et al., 2024). This could lead to more fundamentally robust models
less reliant on spurious cues.

2. Compositional Robustness: Investigating how models behave under combinations of different per-
turbations (e.g., noisy input + OOD context + adversarial prompt) and developing methods to
ensure robustness in such complex scenarios.

3. Hybrid Approach: Exploring hybrid approaches that combine multiple processing steps, as well
as investigating methods to optimize their computational efficiency, are promising directions for
advancing the field and ensuring the safe and reliable deployment of LLMs in a wide range of
real-world applications.

4. Efficient Robust Training and Alignment: Developing more scalable adversarial training methods
(e.g., improving continuous AT), more efficient robust optimization techniques, and alignment meth-
ods (like RLHF variants) that explicitly minimize the alignment tax or are inherently more robust
to reward model imperfections (e.g., reward-robust RLHF) (Yan et al., 2024b).

5. Adaptive and Automated Evaluation: The field must prioritize evaluating evaluation methods them-
selves, specifically, by assessing the reliability, validity, and biases inherent in existing benchmarks
and automated metrics. Furthermore, there is a critical need to develop dynamic evaluation plat-
forms and automated red-teaming methods capable of continuously probing models for weaknesses,
adapting to emerging attack strategies, and delivering realistic, ongoing assessments of robustness.

6. Improving Benchmarks: To advance benchmarking practices, future efforts should prioritize compre-
hensive benchmarks that cover a broader range of tasks, domains, languages, modalities (e.g., text,
images, or audio), and robustness challenges. These benchmarks should dynamically generate test
cases during evaluation to prevent data leakage and rigorously assess adaptability. Equally critical
is ensuring benchmarks mirror real-world conditions, such as natural distribution shifts, complex
user interactions, and multifaceted failure modes, rather than relying on simplistic, artificial pertur-
bations. Finally, rigorous validation is needed to confirm that benchmarks accurately measure the
capabilities they claim to evaluate, avoiding misaligned or inflated performance metrics.

7. Robustness in Multimodal and Agentic Systems: Extending robustness research to the unique chal-
lenges of MLLMs and emerging LLM-based agent systems, considering factors like tool use, memory,
and interaction with environments (Jiang et al., 2025; Yu et al., 2025).

8. Interpretability for Robustness: Leveraging interpretability techniques to better understand why
models fail in specific robustness scenarios (e.g., identifying responsible components (Yang et al.,
2025b) or internal representations of truth/lies (Biirger et al., 2024)) and using these insights to
design targeted interventions or more robust architectures like a reconstruction attack (Stacey et al.,
2024; 2022).
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In conclusion, while LLMs have demonstrated transformative capabilities, ensuring their robustness remains
critical for safe and responsible real-world adoption. Though the field has advanced significantly in diagnosing
vulnerabilities and proposing mitigation strategies, fundamental challenges persist. Future progress will
depend on four key priorities: (1) deepening theoretical insights into causality and invariance, (2) developing
efficient and robust training frameworks that scale with model size, (3) creating adaptive evaluation systems
that address evolving failure modes, and (4) extending robustness principles to emerging paradigms like
MLLMs and autonomous Al agents. Addressing these challenges systematically will be essential to transition
from promising prototypes to trustworthy, reliably deployable Al systems.

7 Conclusion

The field of robust LLMs has moved rapidly from adapting existing ML techniques to developing LLM-
specific strategies that address unique challenges like instruction following, alignment, and scalability. In
light of these developments, this survey offers a comprehensive overview of LargeLanguage Mode{LLMY}
robustness, a critical factor in ensuring their trustworthiness and reliable deployment. We define LLM
robustness as a multi-faceted concept that encompasses resilience to adversarial attacks, generalization to
out-of-distribution data, stability under prompt variations, tolerance to noisy inputs, and output consistency.
Our analysis highlights that non-robustness arises from systemic issues spanning the entire LLM lifecycle.
We then categorize methods to mitigate these vulnerabilities into four groups based on their deployment
stage. Furthermore, we evaluate widely used metrics and benchmarks that have been employed to assess
LLM performance across diverse dimensions in recent research. Finally, we outline key challenges for future
work, with the goal of advancing LLM reliability and enabling their safe, real-world application.
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