

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING-TIME ENCODING SHAPES UNLEARNING IN LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

As large language models (LLMs) are increasingly deployed in the real world, the ability to “unlearn”, or remove specific pieces of knowledge post hoc, has become essential for a variety of reasons ranging from privacy regulations to correcting outdated or harmful content. Prior work has proposed unlearning benchmarks and algorithms, and has typically assumed that the training process and the target model are fixed. In this work, we empirically investigate how learning-time encoding in knowledge encoding impact the effectiveness of unlearning factual knowledge. We conduct two studies: (i) examining how paraphrased descriptions influence unlearning performance, and (ii) analyzing unlearning when multiple facts are embedded within the same training text chunk. Our empirical study reveals two important implications: a new perspective for interpreting unlearning performance and practical strategies for improving LLM unlearning.

1 INTRODUCTION

Large Language Models (LLMs) acquire vast amounts of factual knowledge through large-scale pretraining as well as subsequent fine-tuning. As they are increasingly deployed in real applications, there is an increasing need for “unlearning” certain information in an efficient post-hoc way (Bourtoule et al., 2021; Liu et al., 2025) from pre-trained or the fine-tuned models. This need arises for several reasons. One is compliance with privacy regulations such as the GDPR’s “Right to be Forgotten” (gdp, 2016) – for example, when a user requests that personal data used during training be removed. Other use cases include addressing copyright violations (Eldan & Russinovich, 2023; Dou et al., 2024; Vyas et al., 2023), removing unsafe or harmful content (such as instructions for building weapons) (Yao et al., 2024b; Li et al., 2024), and removing personal and sensitive information (Jang et al., 2022; Wu et al., 2023; Barrett et al., 2023). These diverse scenarios often align with slightly different objectives for the unlearning process.

One common goal of unlearning in LLMs is to make specific factual knowledge non-extractable, which means that prevent the model from generating it in response to relevant prompts (Jang et al., 2022; Si et al., 2023; Guo et al., 2024; Tian et al., 2024; Choi et al., 2024; Yuan et al., 2025; Wu et al., 2024; Patil et al.), and at the same time retain the remaining knowledge. Prior work has primarily focused on benchmarks (Maini et al.; Shi et al., 2024; Yao et al., 2024a; Jin et al., 2024) and developing algorithms (Ilharco et al., 2022; Si et al., 2023; Zhang et al.; Yu et al., 2023; Wu et al., 2023; Jia et al., 2025; Eldan & Russinovich, 2023; Patil et al.), and typically assume that both the trained model and the unlearning targets are fixed. The central goal in these studies is to improve the effectiveness of the unlearning method itself.

However, a crucial factor is often overlooked: the way a model is trained – including how knowledge is encoded in the training data – may significantly influence how challenging it is to later unlearn that knowledge. Existing work has only partially addressed this dimension: Zhao et al. (2024) examine training-related factors for data unlearning, which differs from knowledge unlearning in LLMs, while Krishnan et al. (2025) focus narrowly on the frequency of target knowledge in the training set. To our knowledge, no prior work has systematically studied how training-time knowledge encoding shapes the unlearning process in LLMs. In this paper, we take a step toward filling this gap by addressing the fundamental question:

How does learning-time knowledge encoding affect knowledge unlearning in LLMs?

To ensure fair comparison, we investigate this question through controlled experiments. For this purpose, we extend two existing unlearning datasets – Eval-DU (Wu et al., 2024) and TOFU (Maini et al.) – resulting in *Eval-DU+* and *TOFU+*. Both datasets involve synthetic biographies of fictional characters that are highly unlikely to occur in the pre-training corpus; this allows us to control the knowledge space and the exact textual encodings observed by the LLM during training. We fine-tune two LLMs (Llama2-7B and Gemma2-2B) on identical sets of factual knowledge, varying only the knowledge textual encoding. After fine-tuning, we attempt to unlearn specific pieces of knowledge and analyze the differences in the unlearning across different types of encoding. Notably, our study focuses on unlearning from fine-tuned models, a common scenario where sensitive content or private user data could be introduced¹.

Using the constructed testbed, we first empirically study the effect of paraphrased texts on knowledge unlearning. Two seemingly conflicting intuitions motivate this study. On the one hand, training on multiple paraphrased descriptions of a knowledge piece may strengthen its memorization, thereby making the piece harder to erase. On the other hand, prior work (Allen-Zhu & Li, 2024) suggests that paraphrased training data encourage models to internalize knowledge in a more structured manner, which could in turn make unlearning easier—particularly when the unlearning request is phrased differently from the original training text. Thus, it remains unclear whether augmenting knowledge with paraphrased encodings in the training corpus ultimately helps or hinders unlearning. Our empirical results reveal two key findings:

1. Unlearning is more difficult when the knowledge pieces targeted for unlearning (forget set) were encoded with multiple paraphrases in the training data. Conversely, unlearning is more efficient when the knowledge pieces not targeted for unlearning (retain set) were paraphrased during training.
2. When both the forget and retain sets were represented with multiple paraphrased descriptions, overall unlearning effectiveness improves.

Second, we aim to empirically investigate unlearning when training units are multi-fact text chunks. This setting reflects more realistic cases: in natural corpora, knowledge is rarely presented in isolation but embedded within longer passages—such as Wikipedia paragraphs—that intertwine multiple facts. In practice, unlearning requests may apply only to a subset of the facts in a chunk, while the rest must be preserved. Our empirical study yields three key findings:

1. Unlearning individual knowledge pieces becomes significantly difficult when forget and retain facts are entangled within the same chunk.
2. Unlearning is relatively more effective when the forget set aligns with chunk boundaries in the training data.
3. Unlearning individual facts is easier when they are at least isolated from retain knowledge within the same chunk (e.g., expressed in separate sentences).

Finally, we discuss two implications from our empirical findings. First, our empirical study provides a new angle to interpret the unlearning performance. Some applicable scenarios are *surprising algorithmic failures*, *variance across benchmarks*, and *variance across models*. Second, our empirical results suggest two potential strategies to improve the post-hoc efficiency of unlearning for large language models: *paraphrasing*, that is using multiple paraphrased descriptions of knowledge during fine-tuning, and *separating*, that is structuring the training data to avoid text entanglement along potential unlearn and retain splits in the future unlearning.

2 PROBLEM SET-UP

Intuitively, the behavior of unlearning, as an inversion of learning, should be shaped by learning-time choices such as learning algorithms (k-nearest neighbour or parametric learning) or model

¹We also include experiments with causal language modeling, same as the pre-training objective, and multiple LLM architectures, which may offer indirect evidence toward generalization to pretrained models. However, due to the lack of visibility into pretraining data of the existing publicly pre-trained models and limited computational resources for pretraining from scratch on a sufficiently large controlled corpus, we leave formal validation of this generalization to future work.

108 architectures (linear models or deep models). Prior work (Allen-Zhu & Li, 2024; Allen-Zhu & Li)
 109 suggests that in the context of large language model (LLM), the knowledge encodings used in the
 110 training data are one of the most important factors in LLM knowledge acquisition. This, raises a
 111 natural question: *How does the behavior of unlearning a piece of knowledge k vary depending on*
 112 *how k was encoded during training?* In this paper, we investigate two concrete study settings to
 113 address this question.

114

115 2.1 SETTING I: THE EFFECT OF TEXT PARAPHRASING ON UNLEARNING

116

117 **Target paraphrasing and unlearning difficulty.** Prior work (Zhao et al., 2024) claims that a deeper
 118 memorization of training data might make unlearning harder. By extending this claim to the context
 119 of knowledge memorization in LLM, we hypothesize that when the knowledge is encoded in the
 120 training corpus through multiple paraphrased descriptions, this knowledge piece is harder to be erased
 121 – an unlearning algorithm must suppress all of them, which increases the difficulty compared to
 122 removing a single unique description.

123

124 To empirically validate this hypothesis, we propose the following testing framework and state the
 125 problem after. Given a knowledge piece k we consider two modes of encoding it: 1) as a single text:
 126 $\{t_0^k\}$ and 2) as three different paraphrased texts: $\{t_1^k, t_2^k, t_3^k\}$. For a fixed knowledge space K and
 127 a subset $K_{ul} \subset K$ targeted by an unlearning algorithm, this gives rise to three modes of training
 128 datasets D_{train} , based on the encoding mode used on the forget set K_{ul} and on the retain set $K \setminus K_{ul}$:

129

- 130 1. **FT-Single:** all knowledge pieces are encoded with single texts or $D_{train} = \bigcup_{k \in K} \{t_0^k\}$
- 131 2. **FT-Unlearn-Mul:** forget knowledge pieces are encoded with multiple texts while retain
 132 knowledge pieces only with single texts or: $D_{train} = \bigcup_{k \in K_{ul}} \{t_1^k, t_2^k, t_3^k\} \cup \bigcup_{k \in K \setminus K_{ul}} \{t_0^k\}$
- 133 3. **FT-Retain-Mul:** forget knowledge pieces are encoded with single texts while retain knowl-
 134 edge pieces only with multiple texts (conversely to FT-Mix) or: $D_{train} = \bigcup_{k \in K_{ul}} \{t_0^k\} \cup$
 $\bigcup_{k \in K \setminus K_{ul}} \{t_1^k, t_2^k, t_3^k\}$

135

136 **Problem 1** *Among the three models trained on three modes of training data FT-Single,*
 137 *FT-Unlearn-Mul and FT-Retain-Mul respectively, for which training data mode is unlearn-
 138 ing the forget set K_{ul} the most difficult?*

139

140 If the intuition holds, we expect the relative difficulty to follow the order: $\text{FT-Unlearn-Mul} >$
 $\text{FT-Single} > \text{FT-Retain-Mul}$

141

142 **Training corpus paraphrasing and unlearning effectiveness.** Prior studies (Allen-Zhu & Li) have
 143 shown that paraphrasing training data can lead LLMs to internalize knowledge in a more structured
 144 manner and the knowledge is more extractable through different formats of prompts. A plausible
 145 implication is that such structured representations also make it easier for unlearning algorithms to
 146 target and remove specific knowledge: if the model has organized a concept systematically, then
 147 unlearning could proceed more directly and effectively.

148

149 To test this hypothesis, we compare two training regimes: **FT-Single**, where each knowledge
 150 piece is encoded by a single text, and **FT-Mul**, where each knowledge piece is encoded by three
 151 paraphrased texts ($D_{train} = \bigcup_{k \in K} \{t_1^k, t_2^k, t_3^k\}$). We then ask:

152

153 **Problem 2** *Between models trained on FT-Single and FT-Mul, which presents a greater chal-
 154 lenge for unlearning the forget set K_{ul} .*

155

156 If the intuition is correct, unlearning should be more effective for the model trained on **FT-Mul**, since
 157 its structured knowledge representations may allow the algorithm to target K_{ul} more systematically.
 158 *Importantly, this question is not resolved by Problem 1:* paraphrasing only the forget set might
 159 increase difficulty, and paraphrasing only the retain set might reduce it. When both are paraphrased,
 160 these effects may offset one another, leaving the net impact uncertain.

161

162 2.2 SETTING II: THE UNLEARNING FROM TEXT CHUNKS

163

164 In natural datasets, knowledge is rarely presented in isolation; instead, it is embedded within longer
 165 passages that intertwine multiple facts. For example, a biography of a public figure may simultane-

162	Examples of Eval-DU+ Dataset	Examples of TOFU+ Dataset
163	The textual description for knowledge k: Reid Perry has Richard Perry as his father.	The textual description for knowledge k: Q: Who is this celebrated LGBTQ+ author from Santiago, Chile known for their true crime genre work? A: The author in question is Jaime Vasquez, an esteemed LGBTQ+ writer who hails from Santiago, Chile and specializes in the true crime genre.
164		
165	The paraphrased description for knowledge k: The father of Reid Perry is Richard Perry.	The paraphrased description for knowledge k: Q: Could you tell me about the celebrated LGBTQ+ author from Santiago, Chile who excels in the true crime genre? A: Jaime Vasquez is the celebrated author recognized within the LGBTQ+ community and beyond for their exceptional work in true crime, hailing from Santiago, Chile
166		
167	The text trunk that describes multiple knowledge pieces including k: Richard Perry, born in 1956 in Maryland, works as an airline pilot. He is married to Parker Ross and is the father of Reid, Reed, Raymond, and Quentin Perry. Richard's parents are...	The text trunk that describes multiple knowledge pieces including k: Q: Who is Jaime Vasquez, and what is notable about his contributions to literature? A: Jaime Vasquez is a celebrated LGBTQ+ author from Santiago, Chile, born on February 25, 1958. With a father ... he channels his passion for storytelling into the true crime genre. His award-winning books, including ...
168		
169		
170		
171		
172		
173		
174		

Figure 1: Examples of different textual descriptions in two datasets Eval-DU+ and TOFU+.

ously describe personal details and professional accomplishments. Such entanglement introduces interactions between the structure of the data and the unlearning task. In this work, we aim to investigate how unlearning behaves under these different forms of interaction.

Individual fact unlearning within chunks. In practice, the unlearning incentive may apply to only one knowledge item within a paragraph, while the remaining items should be preserved. For instance, in a biography, personal details (e.g., birth date, address) may need to be unlearned, while professional achievements should remain intact. When such information is expressed in the same textual context—often with overlapping wording and intertwined descriptions (see example in Figure 1)—removing only the sensitive portion could be exceptionally challenging.

To study this setting, we introduce a new training mode, FT-Mul-Chunk. The training corpus consists of paraphrased paragraphs: $D_{train} = \bigcup_{i=1}^I \{p_1^i, p_2^i, p_3^i\}$, where each set $\{p_1^i, p_2^i, p_3^i\}$ contains paraphrases of the same paragraph. Each paragraph p_j^i encodes a set of knowledge pieces $K_i \subset K$, with the full knowledge space partitioned as $K = \bigcup_{i=1}^I K_i$. We define the unlearning target $K_{ul}^{ind} \subset K$ such that each paragraph K_i contributes only one or a few knowledge items to this target set. We ask the following problem:

Problem 3 *Given a model trained under FT-Mul-Chunk, how difficult is it to unlearn the target subset K_{ul}^{ind} , where each element is entangled within a larger paragraph that also encodes retain knowledge?*

Chunk-aligned unlearning. A realistic scenario is when all knowledge pieces contained in a text chunk must be removed together—for example, an individual may request the deletion of their entire personal record from a model. Under the FT-Mul-Chunk training mode, we define the unlearning target as $K_{ul}^{align} = \bigcup_{i \in I_{ul}} K_i$, i.e., the union of entire paragraph-level knowledge sets. Intuitively, since the forget set and retain set do not co-occur within the same text chunk p_j^i , the trade-off between unlearning and retention may be easier to preserve.

Problem 4 *Is unlearning the target K_{ul}^{align} easier than unlearning the more granular target K_{ul}^{ind} ?*

Isolated unlearning within chunks. If unlearning becomes easier when forget and retain knowledge appear in different chunks, a natural follow-up is whether *intra-chunk isolation*, where each knowledge piece is described in a separate sentence, further facilitates unlearning.

To test this, we define an additional training mode, FT-Mul-Chunk-Iso. Here the corpus is $D_{train} = \bigcup_{i=1}^I \{p_1^i, p_2^i, p_3^i\}$ where each paragraph p_j^i encodes knowledge set K_i such that each knowledge piece is written in its own sentence; here is an example

Parker Ross is the wife of Richard Perry. As a child, Reed Perry belongs to Richard Perry. Poppy Perry is Richard Perry's aunt...

p_2^i, p_3^i are paraphrased versions at the sentence level (still keeping the intra-isolation). As in Problem 3, the unlearning target is K_{ul}^{ind} .

216 **Problem 5** Does unlearning the target K_{ul}^{ind} become less challenging when the model is trained
 217 under *FT-Mul-Chunk-Isō* compared to *FT-Mul-Chunk*?
 218

219
 220 2.3 RATIONALE FOR FOCUSING ON FINE-TUNING.
 221

222 Our study focuses on unlearning from fine-tuned models, an important use-case in which sensitive
 223 or private user data is often introduced during customization for downstream tasks. It also allows
 224 precise control over the knowledge space. While the study targets fine-tuning, we include causal
 225 language modeling (the same training objective as pre-training) and multiple LLM architectures,
 226 which may offer indirect evidence toward generalization to pretrained models. A formal investigation
 227 of the novel unlearning problem proposed in this work within the pre-training setting remains an
 228 important direction. However, we leave this to future work due to limited transparency in data of the
 229 existing pre-trained models and the high computational cost of pretraining a model from scratch on a
 230 sufficiently large and controlled corpus.
 231

232 3 EXPERIMENTAL SET-UP
 233

234 **Unlearning set-up.** We experiment with two representative unlearning algorithms that are also
 235 evaluated in previous benchmarks (Maini et al.; Shi et al., 2024; Wu et al., 2024):
 236

237 1) **gradient ascent (GA)** (Jang et al., 2022) which removes knowledge by ascending the loss on the
 238 unlearning dataset. The strength of unlearning is controlled by the number of ascending steps t .
 239

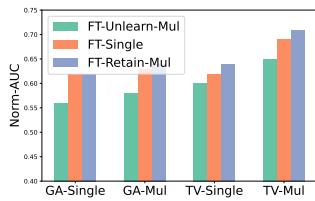
240 2) **task vector (TV)** (Ilharco et al., 2022; Zhang et al., 2023) computes the parameter difference
 241 vector between the original model θ_{original} and a model θ_{overfit} trained to overfit the unlearning data.
 242 The final model is then defined as $\theta_{\text{unlearn}} = \theta_{\text{original}} - \alpha(\theta_{\text{overfit}} - \theta_{\text{original}})$, where the scaling
 243 factor α controls the strength of unlearning.
 244

245 In the unlearning dataset, we include 1 or 3 unseen during training textual descriptions for unlearning
 246 each knowledge piece k in the forget set. We denote the choices of two unlearning algorithms and
 247 two unlearning texts as **GA-Single**, **GA-Mul**, **TV-Single** and **TV-Mul** respectively.
 248

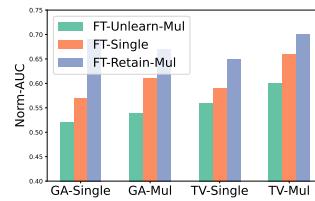
249 **Evaluation.** Similarly to existing unlearning benchmarks (Maini et al.; Shi et al., 2024; Wu et al.,
 250 2024), we evaluate the unlearning effectiveness through the trade-off between forgetting the target
 251 knowledge and retaining the non-target (retain) knowledge. To evaluate the degree to which a model
 252 “knows” a knowledge space K we compute the average probability of correctly completing the unseen
 253 (during fine-tuning and unlearning) description of the knowledge pieces in K . In Appendix E, we
 254 provide more details alongside evaluation via completing the descriptions used during fine-tuning
 255 and via average QA accuracy.
 256

257 To quantify the unlearn-retain trade-off, we vary the parameter controlling the trade-off (e.g. t in
 258 GA and α in TV). For each parameter value we obtain a model checkpoint, whose unlearn and
 259 retain scores we compute. These scores are plotted to form a trade-off curve, where curves closer
 260 to the top-left indicate a more favorable trade-off. We then compute normalized area-under-curve
 261 **Norm-AUC** (\uparrow) (to account for different initial scores) for these curves. Please check the details of
 262 metrics in Appendix E as well as the full curves of the experiments in Appendix F.
 263

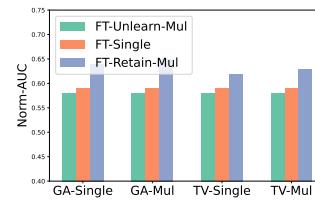
264 **Datasets construction.** In order to systematically study how learning-time knowledge encodings
 265 affect unlearning, we augment two existing unlearning datasets — **Eval-DU** (Wu et al., 2024) and
 266 **TOFU** (Maini et al.) — to form **Eval-DU+** and **TOFU+**. We reuse their knowledge spaces: **Eval-DU**
 267 consists of 862 biographical or family relationships facts involving 100 fictitious individuals where
 268 each fact is a knowledge piece and **TOFU** contains 200 fictitious authors with 20 QA pairs per
 269 author where each QA defines a knowledge piece. We then augment both datasets by: (1) multiple
 270 paraphrased descriptions for each individual knowledge piece, and (2) multiple paraphrased text
 271 chunks for each designed partition of the knowledge set. Figure 1 shows the data examples in
 272 **Eval-DU+** and **TOFU+**. **Eval-DU+ and TOFU+ allow the experiments across these two knowledge**
 273 **spaces and two text formats (narrative texts and QAs)**, which serves a robust testbed for analyzing
 274 how learning-time knowledge encodings influence the unlearning. For more details about the dataset
 275 construction and the unlearn-retain split, please check the details in Appendix D.
 276



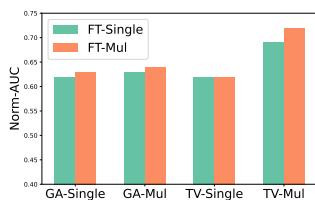
(a) Llama2-7B, Eval-DU+



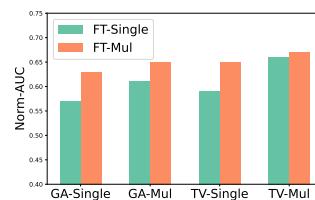
(b) Gemma2-2B, Eval-DU+



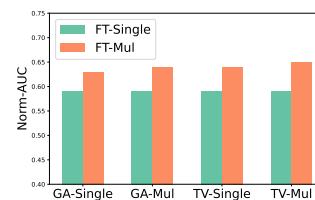
(c) Llama2-7B, TOFU+



(a) Llama2-7B, Eval-DU+



(b) Gemma2-2B, Eval-DU+



(c) Llama2-7B, TOFU+

Figure 3: Empirical study for Problem 2: FT-Single vs FT-Mul.

Models and fine-tuning. Our experiments involve two large language models: Llama2-7B (Touvron et al., 2023), and Gemma2-2B (Team et al., 2024). We evaluate three combinations of models and datasets: (Llama2-7B, Eval-DU+), (Gemma2-2B, Eval-DU+), and (Llama2-7B, TOFU+). We expect our findings to remain consistent across two datasets and multiple model families, supporting broader generalization to unseen models and datasets.

Fine-tuning procedures all start from the public pre-trained models. For Eval-DU+, we perform fine-tuning with Causal Language-Modeling (same objective as the pre-training (Radford et al., 2018)), which minimizes the next-token prediction loss over all tokens in each training example. In contrast, as TOFU+ is structured in a QA format, we adopt supervised fine-tuning (Radford et al., 2018; Ouyang et al., 2022): each QA pair is placed in a predefined QA template, and the objective is to minimize the loss only over the answer tokens. We use the Adam optimizer for all fine-tuning experiments and update all model parameters during fine-tuning. Please check more implementation details as well as the fine-tuning results in Appendix F.

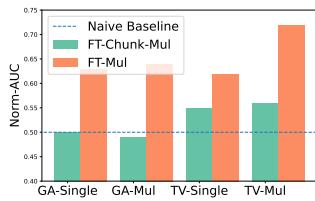
4 EXPERIMENT RESULTS

In this section, we empirically investigate the problems defined in Section 2. Since our focus is on how textual knowledge encodings in the training data affect downstream unlearning, each study follows the same procedure: we train LLMs under selected training modes (defined in Section 2), apply a fixed unlearning algorithm to the resulting models, and then evaluate unlearning performance. Experiments are conducted across two knowledge spaces (Eval-DU+ and TOFU+), two pre-trained LLMs (Llama2-7B, and Gemma2-2B), and two unlearning algorithms (GA and TV). We visualize the results in this section and present the original numbers in Table 8 in the appendix.

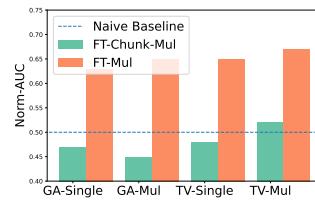
4.1 EMPIRICAL STUDY I: THE EFFECT OF TEXT PARAPHRASING ON UNLEARNING

In this section, we empirically study how paraphrased descriptions in the training dataset affect the difficulty of unlearning (Problem 1 and Problem 2).

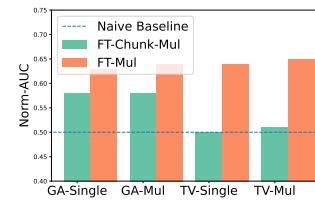
Empirical study for Problem 1. To test whether having multiple paraphrased descriptions of the same knowledge piece makes it harder to remove, we compare unlearning performance across three training modes: FT-Single, FT-Unlearn-Mul, and FT-Retain-Mul. Figure 2 reports the results. We find that models trained with FT-Unlearn-Mul exhibit consistently worse unlearning performance compared to FT-Single, while models trained with FT-Retain-Mul perform consistently better. From these results, we can now answer Problem 1: **unlearning is most difficult under the FT-Unlearn-Mul regime.** The results suggest that difficulty depends on where paraphrasing occurs: 1. when knowledge pieces in the forget set K_{ul} were presented with multiple paraphrased versions during, unlearning becomes harder; conversely, when knowledge pieces in



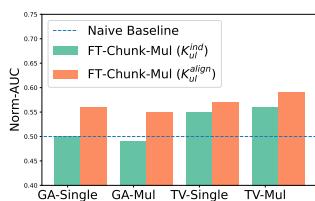
(a) Llama2-7B, Eval-DU+



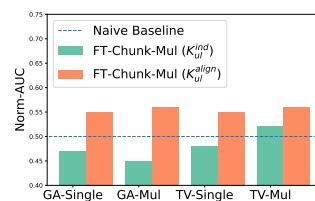
(b) Gemma2-2B, Eval-DU+



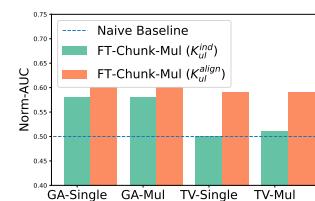
(c) Llama2-7B, TOFU+



(a) Llama2-7B, Eval-DU+



(b) Gemma2-2B, Eval-DU+



(c) Llama2-7B, TOFU+

Figure 5: Empirical study for Problem 4: FT-Mul-Chunk (K_{ul}^{align}) vs FT-Mul-Chunk (K_{ul}^{ind}).

the retain set are paraphrased, unlearning is more effective, since the model can better preserve non-targeted knowledge while removing the target set.

Empirical study for Problem 2. We next study whether paraphrasing the entire training corpus makes downstream unlearning more effective. To this end, we compare FT-Single against FT-Mul, where every knowledge piece is encoded with multiple paraphrases. Figure 3 presents the results. Models trained with FT-Mul consistently achieve better unlearning performance than those trained with FT-Single. We can therefore answer Problem 2: **models trained on paraphrased corpora (FT-Mul) exhibit more effective unlearning.** This provides empirical suggesting that the hypothesis that training on paraphrased descriptions encourages LLMs to internalize knowledge in a more structured manner (Allen-Zhu & Li, 2024), which benefits the subsequent unlearning process.

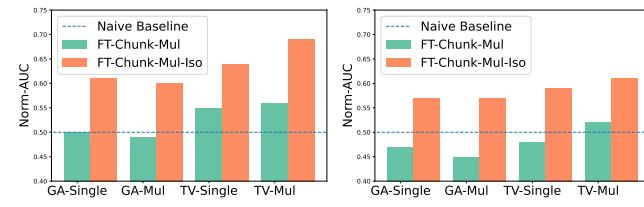
Takeaway. Together, these results highlight that paraphrasing influences unlearning: paraphrasing the forget set makes unlearning harder and symmetrically paraphrasing the retain set makes it easier, and more interestingly, paraphrasing the entire corpus improves overall unlearning effectiveness.

4.2 EMPIRICAL STUDY II: THE UNLEARNING FROM TEXT CHUNKS

In this section, we examine the task of unlearning knowledge embedded within larger text chunks (Problem 3, Problem 4, and Problem 5).

Empirical study of Problem 3. We first evaluate the challenge of unlearning individual facts when their descriptions are entangled with other knowledge within larger chunks. To this end, we train models under the FT-Mul-Chunk regime and measure unlearning performance. As shown in Figure 4, we find that, except for the case of GA with Llama2-7B on TOFU+, unlearning is almost entirely ineffective. A Norm-AUC value near 0.5 indicates that the unlearning algorithm removes both target and retained knowledge at similar rates. This stands in sharp contrast to the results when each training sample encodes a single knowledge piece such as FT-Mul, where AUC values are generally around or above 0.6, despite using the same knowledge space K and unlearning split K_{ul} .

We can now answer Problem 3: **unlearning individual facts from text chunks is exceptionally challenging.** We hypothesize that this difficulty arises because the learning dynamics of target and retain knowledge are strongly correlated due to the entangled wording, making them hard to separate. Supporting evidence comes from Allen-Zhu & Li (2024), who show that when models are trained with paraphrased paragraphs about a set of knowledge pieces, for example a paragraph of biography, then a single entity embedding (e.g., a person’s name in the ‘biography’ example) can internally encode all associated facts. More supporting evidence is provided in Zhao et al. (2024), which also claims that unlearning is harder when the retain and forget sets are more entangled. The entanglement of the textual description in our case is a specification in the LLM data.

378
379
380
381
382
383
384
385
386(a) Lamma2-7B, Eval-DU+ (b) Gemma2-2B, Eval-DU+
Figure 6: Empirical study for Problem 5: FT-Mul-Chunk vs FT-Mul-Chunk-ISO.

Empirical study of Problem 4. Next, we examine unlearning when the forget set aligns with chunk boundaries. Specifically, we target K_{ul}^{align} , where entire chunks are to be removed. Figure 5 shows that unlearning performance on K_{ul}^{align} is consistently better than on the more granular K_{ul}^{ind} . We can now answer Problem 4: **unlearning chunk-aligned targets (K_{ul}^{align}) is more effective than unlearning granular targets (K_{ul}^{ind})**. The likely explanation is similar to Problem 3: when forget and retain knowledge are less correlated (i.e., they do not co-occur within the same chunk), the unlearn–retain trade-off is easier to maintain.

Empirical study of Problem 5. Finally, we study whether unlearning becomes easier when individual facts are isolated inside a chunk. We train models with FT–Mul–Chunk–ISO, where each knowledge piece is expressed in a separate sentence. As shown in Figure 6, we observe that unlearning individual targets K_{ul}^{ind} is substantially more effective under FT–Mul–Chunk–ISO compared to FT–Mul–Chunk. We can now answer Problem 5: **unlearning from FT–Mul–Chunk–ISO is more effective than from FT–Mul–Chunk when targeting same individual facts**. This reinforces our earlier hypothesis: isolating knowledge reduces correlation between forget and retain sets within the same chunk, making the unlearn–retain trade-off easier to preserve.

Takeaway. Across all three problems, our results show that text chunk structure plays a decisive role in unlearning: when forget and retain knowledge are entangled within the same passage, unlearning individual facts is extremely difficult; aligning the forget set with chunk boundaries makes unlearning more effective; and further isolating individual facts within chunks provides the greatest gains.

5 DISCUSSION

We discuss several implications of our empirical findings. First, our results provide a new perspective on interpreting unlearning performance that is orthogonal to algorithmic choices. In particular, they help explain discrepancies that arise in specific scenarios, such as the following:

- Surprising algorithmic failures.** If we find the unlearning algorithms all fail – $AUC \approx 0.5$. Our results suggest this may not be due to algorithm weakness alone, but to the fact that the forget and retain sets are entangled in the same training text chunk.
- Variance across benchmarks.** Suppose an unlearning algorithm performs better on one than the other. Without our lens, one might conclude that the second benchmark is just “harder.” With our results, we can explain why some benchmark is harder from the aspects of training data and the unlearn split. This shifts interpretation from “algorithmic deficiency” to “dataset structure effect.”
- Variance across models.** Suppose we evaluate the same unlearning algorithm across different pre-trained models on a shared benchmark. One might observe that the algorithm performs better on one model than the other. Our work sheds light on this discrepancy: it can arise from differences in the models’ pre-training corpora, even when both corpora might cover the same knowledge space.

Second, our findings point to potential learning-time strategies for improving the post-hoc efficiency of unlearning in large language models.

- Paraphrasing.** Introducing multiple paraphrased descriptions of knowledge during fine-tuning appears to lead to more structured internal representations, which in turn make later unlearning more effective as well. Notably, Allen-Zhu & Li (2024) suggest that paraphrasing training data

432 facilitates knowledge extraction; our work complements this by proposing that paraphrasing
 433 also enhances unlearning effectiveness.
 434

435 **2. Separating.** Structuring training data so that knowledge likely to be subject to future unlearning
 436 requests is disentangled from retain knowledge². This design reduces the correlation between
 437 forget and retain sets and enables a cleaner unlearn–retain trade-off.

438 More broadly, these results highlight that unlearning is not solely a problem of algorithm design, but
 439 also of representation and data curation. Future work could explore how to deliberately structure or
 440 augment training corpora to make future unlearning easier, and whether similar principles hold in
 441 multimodal or cross-lingual settings.
 442

443 6 RELATED WORK

444 **Machine unlearning and training data.** The most relevant research to ours is Zhao et al. (2024),
 445 which study machine unlearning at the data level and show that forget sets with higher memorization
 446 or stronger entanglement with the retain set are more difficult to unlearn. While these observations
 447 resonate with our findings at a high level, our work focuses on knowledge unlearning in the context
 448 of LLMs. In particular, we analyze in detail how different training corpus designs influence memo-
 449 rization of knowledge and how specific textual descriptions create varying degrees of entanglement
 450 between forget and retain sets. Fan et al. (2024) study worst-case forget sets in the context of data
 451 unlearning, while our work focuses on knowledge unlearning in large language models. Moreover,
 452 rather than analyzing only which forget set is chosen, we investigate how the format of the overall
 453 training corpus, including paraphrasing and chunk structure, affects the difficulty of unlearning. In
 454 parallel, Krishnan et al. (2025) examine how the frequency of a knowledge piece in the training
 455 corpus affects unlearning difficulty³. Our work considers this factor as well (Problem 1), but extends
 456 beyond their scope by studying frequency effects not only in the forget set, but also in the retain set
 457 and across the entire training corpus.
 458

459 For more related work about algorithms and evaluations in machine unlearning for LLMs, we discuss
 460 them in details in Appendix C
 461

462 7 CONCLUSION AND FUTURE WORK

463 **Conclusion.** In summary, this work takes an initial step toward understanding how learning-time
 464 knowledge encoding influences post-hoc unlearning in large language models. Through controlled ex-
 465 periments, we show that how the training text paraphrasing can influence forgetting and retention and
 466 how chunk structure determines whether individual facts can be removed effectively. Together, these
 467 findings offer a new perspective for interpreting unlearning outcomes across models, benchmarks,
 468 and algorithms, and suggest practical strategies to improve the post-hoc efficiency of unlearning.
 469

470 **Limitations and future work.** Although this paper focuses on the role of training data choices in
 471 unlearning, several other learning-time factors may also influence unlearning effectiveness. These
 472 include the model architecture (e.g., full-parameter tuning LoRA (Hu et al., 2022)) and the learning
 473 algorithm (e.g., supervised fine-tuning vs. reinforcement learning (Rafailov et al., 2023; Lu et al.,
 474 2022)). A promising direction for future work is to systematically investigate how such factors impact
 475 the behavior and difficulty of unlearning. Due to limited computational resources, our experiments
 476 are restricted to LLMs that undergo fine-tuning. While we believe the findings presented in this paper
 477 may generalize to the pretraining stage and to unlearning from pretrained models directly, validating
 478 this hypothesis remains an important avenue for future research when more resources are available.
 479

480
 481 ²This may seem paradoxical: if the unlearning target is known in advance, why not remove it before training?
 482 However, unlearning requests often arise after deployment, particularly when training data is collected from
 483 public sources. For instance, some celebrities may not want LLMs to retain family-related information from
 484 their Wikipedia pages, while others may prefer that it be preserved. Such preferences are difficult to anticipate at
 485 training time.

³Our work is independently conducted and concurrent with Krishnan et al. (2025)

486 REPRODUCIBILITY STATEMENT
487488 We provide detailed dataset construction and implementation information in Appendix D and Ap-
489 pendix E. In addition, at the beginning of the Appendix, we include an anonymous link that enables
490 reproduction of our main experimental results.
491492 REFERENCES
493494 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016. <https://eur-lex.europa.eu/eli/reg/2016/679/oj>, April 2016. Official Journal of the
495 European Union, L 119, pp. 1–88.
496497 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation.
498 In *The Thirteenth International Conference on Learning Representations*.
499500 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
501 extraction. In *International Conference on Machine Learning*, pp. 1067–1077. PMLR, 2024.
502503 George-Octavian Barbulescu and Peter Triantafillou. To each (textual sequence) its own: Improving
504 memorized-data unlearning in large language models. *arXiv preprint arXiv:2405.03097*, 2024.
505506 Clark Barrett, Brad Boyd, Elie Bursztein, Nicholas Carlini, Brad Chen, Jihye Choi, Amrita Roy
507 Chowdhury, Mihai Christodorescu, Anupam Datta, Soheil Feizi, et al. Identifying and mitigating
508 the security risks of generative ai. *Foundations and Trends® in Privacy and Security*, 6(1):1–52,
509 2023.
510511 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
512 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
513 volume 34, pp. 7432–7439, 2020.
514515 Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
516 Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *2021 IEEE symposium
on security and privacy (SP)*, pp. 141–159. IEEE, 2021.
517518 Jan Bronec and Jindřich Helcl. Atyaephyra at semeval-2025 task 4: Low-rank npo. *arXiv preprint
arXiv:2503.13690*, 2025.
519520 Minseok Choi, Daniel Rim, Dohyun Lee, and Jaegul Choo. Snap: Unlearning selective knowledge in
521 large language models with negative instructions. *arXiv preprint arXiv:2406.12329*, 2024.
522523 Guangyao Dou, Zheyuan Liu, Qing Lyu, Kaize Ding, and Eric Wong. Avoiding copyright infringement
524 via large language model unlearning. *arXiv preprint arXiv:2406.10952*, 2024.
525526 Ronen Eldan and Mark Russinovich. Who's harry potter? approximate unlearning in llms. *arXiv
preprint arXiv:2310.02238*, 2023.
527528 Chongyu Fan, Jiancheng Liu, Alfred Hero, and Sijia Liu. Challenging forgets: Unveiling the worst-
529 case forget sets in machine unlearning. In *European Conference on Computer Vision*, pp. 278–297.
530 Springer, 2024.
531532 Phillip Guo, Aaquib Syed, Abhay Sheshadri, Aidan Ewart, and Gintare Karolina Dziugaite. Mechanistic
533 unlearning: Robust knowledge unlearning and editing via mechanistic localization. *arXiv
preprint arXiv:2410.12949*, 2024.
534535 Estrid He, Tabinda Sarwar, Ibrahim Khalil, Xun Yi, and Ke Wang. Deep contrastive unlearning for
536 language models. *arXiv preprint arXiv:2503.14900*, 2025.
537538 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
539 Steinhardt. Measuring massive multitask language understanding. In *International Conference on
Learning Representations*, 2021. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.
540

540 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 541 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
 542

543 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
 544 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *arXiv preprint*
 545 *arXiv:2212.04089*, 2022.

546 Yoichi Ishibashi and Hidetoshi Shimodaira. Knowledge sanitization of large language models. *arXiv*
 547 *preprint arXiv:2309.11852*, 2023.
 548

549 Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
 550 Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. *arXiv*
 551 *preprint arXiv:2210.01504*, 2022.

552 Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana Kompella, Sijia Liu, and Shiyu Chang.
 553 Reversing the forget-retain objectives: An efficient llm unlearning framework from logit difference.
 554 *Advances in Neural Information Processing Systems*, 37:12581–12611, 2024.

555 Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer,
 556 Bhavya Kailkhura, and Sijia Liu. Soul: Unlocking the power of second-order optimization for llm
 557 unlearning. *arXiv preprint arXiv:2404.18239*, 2024.

559 Jinghan Jia, Jiancheng Liu, Yihua Zhang, Parikshit Ram, Nathalie Baracaldo, and Sijia Liu. Wa-
 560 gle: Strategic weight attribution for effective and modular unlearning in large language models.
 561 *Advances in Neural Information Processing Systems*, 37:55620–55646, 2025.

562 Zhuoran Jin, Pengfei Cao, Chenhao Wang, Zhitao He, Hongbang Yuan, Jiachun Li, Yubo Chen, Kang
 563 Liu, and Jun Zhao. RWKU: Benchmarking real-world knowledge unlearning for large language
 564 models. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and*
 565 *Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=w0mtZ5FgMH>.

566

567 Aravind Krishnan, Siva Reddy, and Marius Mosbach. Not all data are unlearned equally. In *Second*
 568 *Conference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=Kd971ffFTu>.

569

570 Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale ReADING
 571 comprehension dataset from examinations. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel
 572 (eds.), *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*,
 573 pp. 785–794, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.
 574 doi: 10.18653/v1/D17-1082. URL <https://aclanthology.org/D17-1082/>.

575

576 Yicheng Lang, Kehan Guo, Yue Huang, Yujun Zhou, Haomin Zhuang, Tianyu Yang, Yao Su, and
 577 Xiangliang Zhang. Beyond single-value metrics: Evaluating and enhancing llm unlearning with
 578 cognitive diagnosis. *arXiv preprint arXiv:2502.13996*, 2025.

579

580 Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li,
 581 Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark: Measuring
 582 and reducing malicious use with unlearning. *arXiv preprint arXiv:2403.03218*, 2024.

583

584 Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning. In *Conference on*
 585 *Lifelong Learning Agents*, pp. 243–254. PMLR, 2022.

586

587 Chris Liu, Yaxuan Wang, Jeffrey Flanigan, and Yang Liu. Large language model unlearning via
 588 embedding-corrupted prompts. *Advances in Neural Information Processing Systems*, 37:118198–
 589 118266, 2024a.

590

591 Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang Yao,
 592 Chris Yuhao Liu, Xiaojun Xu, Hang Li, et al. Rethinking machine unlearning for large language
 593 models. *Nature Machine Intelligence*, pp. 1–14, 2025.

594

595 Yujian Liu, Yang Zhang, Tommi Jaakkola, and Shiyu Chang. Revisiting who’s harry potter: Towards
 596 targeted unlearning from a causal intervention perspective. *arXiv preprint arXiv:2407.16997*,
 597 2024b.

594 Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Am-
 595 manabrolu, and Yejin Choi. Quark: Controllable text generation with reinforced unlearning.
 596 *Advances in neural information processing systems*, 35:27591–27609, 2022.

597

598 Aengus Lynch, Phillip Guo, Aidan Ewart, Stephen Casper, and Dylan Hadfield-Menell. Eight
 599 methods to evaluate robust unlearning in llms. *arXiv preprint arXiv:2402.16835*, 2024.

600 Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J Zico Kolter. Tofu: A
 601 task of fictitious unlearning for llms. In *First Conference on Language Modeling*.

602

603 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 604 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022.

605

606 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 607 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 608 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 609 27744, 2022.

610

611 Vaidehi Patil, Peter Hase, and Mohit Bansal. Can sensitive information be deleted from llms?
 612 objectives for defending against extraction attacks. In *The Twelfth International Conference on
 Learning Representations*.

613

614 Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models
 615 as few shot unlearners. *arXiv preprint arXiv:2310.07579*, 2023.

616

617 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
 618 understanding by generative pre-training. 2018.

619

620 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 621 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 in Neural Information Processing Systems*, 36:53728–53741, 2023.

622

623 Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
 624 Liu, Luke Zettlemoyer, Noah A Smith, and Chiyuan Zhang. Muse: Machine unlearning six-way
 625 evaluation for language models. *arXiv preprint arXiv:2407.06460*, 2024.

626

627 Nianwen Si, Hao Zhang, Heyu Chang, Wenlin Zhang, Dan Qu, and Weiqiang Zhang. Knowledge
 628 unlearning for llms: Tasks, methods, and challenges. *arXiv preprint arXiv:2311.15766*, 2023.

629

630 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
 631 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
 632 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*,
 2024.

633

634 Pratiksha Thaker, Shengyuan Hu, Neil Kale, Yash Maurya, Zhiwei Steven Wu, and Virginia
 635 Smith. Position: Llm unlearning benchmarks are weak measures of progress. *arXiv preprint
 arXiv:2410.02879*, 2024a.

636

637 Pratiksha Thaker, Yash Maurya, Shengyuan Hu, Zhiwei Steven Wu, and Virginia Smith. Guardrail
 638 baselines for unlearning in llms. *arXiv preprint arXiv:2403.03329*, 2024b.

639

640 Bozhong Tian, Xiaozhuan Liang, Siyuan Cheng, Qingbin Liu, Mengru Wang, Dianbo Sui, Xi Chen,
 641 Huajun Chen, and Ningyu Zhang. To forget or not? towards practical knowledge unlearning for
 642 large language models. In *Findings of the Association for Computational Linguistics: EMNLP
 2024*, pp. 1524–1537, 2024.

643

644 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 645 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 646 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

647

Nikhil Vyas, Sham M Kakade, and Boaz Barak. On provable copyright protection for generative
 648 models. In *International conference on machine learning*, pp. 35277–35299. PMLR, 2023.

648 Qizhou Wang, Bo Han, Puning Yang, Jianing Zhu, Tongliang Liu, and Masashi Sugiyama. Unlearning
 649 with control: Assessing real-world utility for large language model unlearning. *arXiv preprint*
 650 *arXiv:2406.09179*, 2024a.

651 Wenyu Wang, Mengqi Zhang, Xiaotian Ye, Zhaochun Ren, Zhumin Chen, and Pengjie Ren. Uipe:
 652 Enhancing llm unlearning by removing knowledge related to forgetting targets. *arXiv preprint*
 653 *arXiv:2503.04693*, 2025.

654 Yu Wang, Ruihan Wu, Zexue He, Xiusi Chen, and Julian McAuley. Large scale knowledge washing.
 655 *arXiv preprint arXiv:2405.16720*, 2024b.

656 Ruihan Wu, Chhavi Yadav, Russ Salakhutdinov, and Kamalika Chaudhuri. Evaluating deep unlearning
 657 in large language models. *arXiv preprint arXiv:2410.15153*, 2024.

658 Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi Xiong.
 659 Depn: Detecting and editing privacy neurons in pretrained language models. In *Proceedings of the*
 660 *2023 Conference on Empirical Methods in Natural Language Processing*, pp. 2875–2886, 2023.

661 Zhaopan Xu, Pengfei Zhou, Weidong Tang, Jiaxin Ai, Wangbo Zhao, Xiaojiang Peng, Kai Wang,
 662 Yang You, Wenqi Shao, Hongxun Yao, et al. Pebench: A fictitious dataset to benchmark machine
 663 unlearning for multimodal large language models. *arXiv preprint arXiv:2503.12545*, 2025.

664 Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zehzhou Cheng, and Xiang Yue. Machine
 665 unlearning of pre-trained large language models. *arXiv preprint arXiv:2402.15159*, 2024a.

666 Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. *Advances in Neural*
 667 *Information Processing Systems*, 37:105425–105475, 2024b.

668 Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, and Heng Ji. Unlearning bias in language
 669 models by partitioning gradients. In *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 6032–6048, 2023.

670 Hongbang Yuan, Zhuoran Jin, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Towards robust
 671 knowledge unlearning: An adversarial framework for assessing and improving unlearning robust-
 672 ness in large language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 673 volume 39, pp. 25769–25777, 2025.

674 Jinghan Zhang, Junteng Liu, Junxian He, et al. Composing parameter-efficient modules with
 675 arithmetic operation. *Advances in Neural Information Processing Systems*, 36:12589–12610, 2023.

676 Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic
 677 collapse to effective unlearning. In *First Conference on Language Modeling*.

678 Kairan Zhao, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, and Peter Tri-
 679 antafillou. What makes unlearning hard and what to do about it. *Advances in Neural Information*
 680 *Processing Systems*, 37:12293–12333, 2024.

681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 **A ORGANIZATION OF THE APPENDIX**
703704 The organization of this appendix is as below:
705

706 1. In Section B, we discuss the usage of LLMs in this work.
 707 2. In Section C, we discuss some additional related work in the direction of LLM unlearning.
 708 3. In Section D, we present the details of constructing benchmark datasets Eval-DU+ and
 709 TOFU+, including the detailed statistics of paraphrasing, the templates for generating
 710 the synthetic texts, and an illustration of calculating the knowledge score *prbability* in
 711 Eval-DU+.
 712 4. In Section E, we will present the implementation details in our experiments, including the
 713 compute resources used in the epxeriments, the details of model fine-tuning, and the details
 714 of the unlearning.
 715 5. In Section F, we will present additional experimental results, including the performance
 716 of fine-tuned models on LLM general benchmarks, the full unlearning results, and the full
 717 plots of trade-off curves used for calculating the Norm-AUC.
 718

719 Our code for reproducing the results is anonymously released at https://anonymous.4open.science/r/knowledge_encoding_for_llm_unlearning-62BB/README.md.
 720

722 **B THE USE OF LLMs**
723

724 We employ large language models (LLMs) primarily to improve the grammar and clarity of our
 725 writing. In addition, the synthetic datasets used in our controlled experiments are constructed by
 726 prompting LLMs. All research ideas, directions, and decisions, however, are independently conceived
 727 and carried out by the authors.
 728

729 **C ADDITIONAL RELATED WORK**
730

731 **Machine unlearning for LLMs: algorithms.** Recently, machine unlearning for LLMS has emerged
 732 as an important area of research Liu et al. (2025); Si et al. (2023). In this work, we focus on GA Jang
 733 et al. (2022); Barbulescu & Triantafillou (2024) and TV (task vector) Ilharco et al. (2022) methods.
 734 Other notable approaches include: NPO Zhang et al.; Bronec & Helcl (2025) which utilizes the DPO
 735 objective Rafailov et al. (2023) treating the unlearn data as negative preference data, WHP uses a
 736 linear combination of the distributions induced by initial and a reinforced model as an unlearn model
 737 Eldan & Russinovich (2023); Liu et al. (2024b), UWC calibrates the post-unlearning parameters with
 738 the initial parameters to better preserve the model’s utility Wang et al. (2024a), GRU uses both the
 739 unlearning and retention gradients at each update step Wang et al. (2024a). Regularizers are often
 740 employed to better preserve the model’s utility. For example: augmenting the unlearning objective
 741 with the retention gradient (GDR) Maini et al.; Zhang et al.; Liu et al. (2022) and regularizing with
 742 the KL divergence on the retention set (KLR) Maini et al.; Zhang et al.. Non-training based methods
 743 include: localization-informed unlearning Li et al. (2024); Meng et al. (2022); Wu et al. (2023) which
 744 localize the components of the LLM related to the forget data and black-box in-context unlearning
 745 Pawelczyk et al. (2023). Other recent promising approaches are Jia et al. (2024); Liu et al. (2024a); Ji
 746 et al. (2024); Wang et al. (2024b); Ishibashi & Shimodaira (2023); Thaker et al. (2024b); Wang et al.
 747 (2025); He et al. (2025).

748 **Machine unlearning for LLMs: evaluations.** Evaluating the effectiveness machine unlearning
 749 method poses another challenge. As an example, Eldan & Russinovich (2023) uses completion
 750 and question-answer probability-based scores, while Lynch et al. (2024) proposes comparing the
 751 unlearned model and a model retrained on the retention data. UNCD uses Cognitive Diagnosis
 752 Modeling for fine-grained evaluation Lang et al. (2025). Besides TOFU (Maini et al.) and Eval-
 753 DU (Wu et al. (2024)), several other benchmarks have been proposed to assess the effectiveness of
 754 unlearning in LLMs such as: WMDP - a dataset consisting of hazardous knowledge in multiple-choice
 755 format Li et al. (2024) and RWKU for zero-shot konwledge unlearning Jin et al. (2024), MUSE
 proposes a comprehensive benchmark evaluating six desirable properties from the perspectives of
 both data owners and model deployers Shi et al. (2024), and PEBench for multimodal LLMs Xu et al.

756 (2025). Finally, Thaker et al. (2024a) discusses the limitations of existing benchmarks. Beyond this it
 757 shows that entanglement of retain and unlearn data in test prompts decreases the evaluation score of
 758 an unlearned model.

765 D DETAILS OF CONSTRUCTING BENCHMARK DATASETS

770 **Detailed statistics of paraphrasing.** We present the statistics of the paraphrasing and how they
 771 are used for training, unlearning and evaluation in both datasets Eval-DU+ and TOFU+:

778 Dataset	# paraphrasing for each k			# paraphrasing of text chunks
	779 Training	779 Unlearning	779 Evaluation	
780 Eval-DU+	3	3	3	782 3
781 TOFU+	3	3	1	782 3

783
 784 **Templates for the prompt when generating the texts through ChatGPT-4o.** Here are the
 785 templates of how we generate the paraphrased descriptions for each knowledge piece given the initial
 786 texts provided by each original dataset and the paraphrased text chunks for each group of knowledge.
 787
 788
 789
 790
 791
 792
 793

794 **Templates of generating the paraphrased descriptions for each knowledge piece**

795 **Eval-DU+**

800 Could you help rephrase the sentence {Initial Text} while
 801 keeping the word {Objective Word}? Please give me 8
 802 variations.
 803

804 **TOFU+**

805 Could you help rephrase both the question and the answer
 806 below? Question: {Initial Question}
 807 Answer: {Initial Answer}
 808 Please give me 7 variations and list them as a sequence of
 809 QAs, formatted by 1., 2., ..., 7.

810
811

Templates of generating the paraphrased text chunks for each knowledge group

812

Eval-DU+

813

Here are the family information and biographic information for {Person Name}. Could you summarize all information in one paragraph and give me 5 versions of them by shuffling the order of these information:

817

{Text Description of the 1st Knowledge Piece}

818

...

819

Please list the versions by 1., 2., ...

820

TOFU+

821

Could you help summarize all information in the following 20 question-answering into one question-answer pair?

823

1.

824

Question: {1st Question}

825

Answer: {1st Answer}

826

...

827

Please give me 3 variations and do not miss any information.

828

Please response in the format

829

Variation 1:

830

Question 1:...

831

Answer 1:...

832

...

833

After collecting the responses from ChatGPT-4o, we did some text extractions in order to get a organized list of target paraphrased texts.

836

837

Calculating knowledge scores in Eval-DU+ and TOFU+. In TOFU+, where x_k is a QA pair, we adopt the “Probability” metric from the original TOFU benchmark: given a question embedded in a prompt template, the score is the likelihood the LLM assigns to generating the reference answer. In Eval-DU+, each x_k is a narrative sentence. Notice that each knowledge piece has the structure tuple of (s, r, o). We are able to identify the keywords for s, r, or o in a given text description. For example, here is a text description for (*Richard Perry*, *father*, *Reid Perry*) and we highlight the corresponding keywords.

844

845

Reid Perry has *Richard Perry* as his *father*.

846

847

Then, we can calculate the likelihood of the keyword appearing the last in this sentence, which is *father*, for a given LLM which modelizes the likelihood function π_θ .

849

850

851

The definition of the text chunk in Eval-DU+ and TOFU+. The knowledge space of Eval-DU+ is partitioned by the subjects (person) in the factual tuple. The knowledge space of TOFU+ is partitioned by the fictitious authors. We then synthetically generate the text chunk for each partition the details are presented in the above paragraph.

855

856

Unlearn–retain split in Eval-DU+ and TOFU+. In Eval-DU+, we construct the unlearn set K_{ul} (and the corresponding K_{ul}^{ind}) by randomly selecting 100 out of 862 knowledge pieces, with the remaining pieces forming the retain set. For the setting of chunk-aligned unlearning, K_{ul}^{align} is defined as all facts associated with 10 randomly chosen fictitious people.

860

861

In TOFU+, the retain set consists of 400 QAs randomly sampled from the first 198 authors. To construct K_{ul} (and K_{ul}^{ind}), we randomly select 40 QAs from the same pool of authors. For K_{ul}^{align} , we adopt the original unlearn–retain split of the TOFU dataset, which contains 40 knowledge pieces associated with 2 out of the 200 authors.

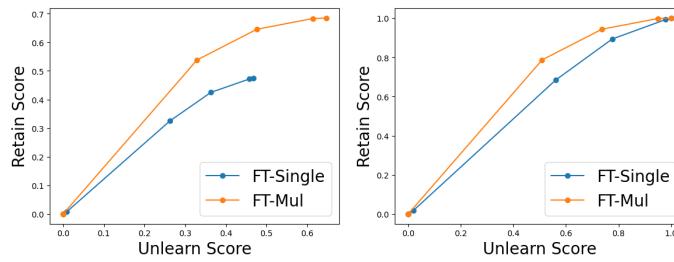


Figure 7: Illustrations for Norm-AUC. Left: Raw (unnormalized) trade-off curves. Right: Normalized curves used to compute Norm-AUC. All plots show the unlearning with GA. The dataset is Eval-DU+ and the target Llama2-7B models are fine-tuned with either FT-Single or FT-Mul.

E ADDITIONAL DETAILS IN EXPERIMENTS

Compute resources in the experiment. All experiments are conducted by NVIDIA RTX 6000 Ada GPU. Each run of the fine-tuning and the unlearning is run on two GPUs. The fine-tuning will take 6-12 hours, and each run of the unlearning process as well as the evaluation will take will take 4-8 hours; the time varies on different models.

Quantitative metrics for evaluating the trade-off: Norm-AUC and AUC. To evaluate the unlearn-retain trade-off for an unlearning method, we vary the parameter controlling the trade-off (e.g. t in GA and α in TV) across a list of pre-defined values. For each parameter value we obtain a model checkpoint, whose unlearn and retain scores we compute. These scores are plotted to form a trade-off curve (Figure 7), where curves closer to the top-left indicate a more favorable trade-off.

When comparing different fine-tuning strategies under a fixed unlearning configuration (i.e., using the same unlearning data and algorithm), the trade-off curves may start at different points due to the different fine-tuned models. For instance, models fine-tuned with FT-Mul typically achieve higher initial knowledge scores. To account for this we define the **Norm-AUC** (\uparrow). This metric first normalizes all knowledge scores by their value in the original fine-tuned model and then computes the area under the normalized curve (Figure 7, middle). A higher Norm-AUC indicates a more efficient unlearning and a Norm-AUC of 0.5 implies that unlearn and retain scores are decreasing at the same rate.

Fine-tuning details. The batch sizes are 16 for all models fine-tuned on Eval-DU+ and 32 for the model fine-tuned on TOFU+. In addition, we pick the learning rate $\eta \in \{2 \cdot 10^{-5}, 10^{-5}, 2 \cdot 10^{-6}\}$ and the number of epochs $N \in \{1, \dots, 8\}$ to ensure a good fit on the fine-tuning set while having a good test performance. The final selection of the two parameters are presented in Table 1.

Table 1: Hyperparameter values of the fine-tuning on different models and datasets: the learning rate η and the number of epochs N

	Llama2-7B, Eval-DU+		Gemma2-2B, Eval-DU+		Llama2-7B, TOFU+	
	η	N	η	N	η	N
FT-Single	10^{-5}	5	10^{-5}	8	10^{-5}	5
FT-Unlearn-Mul	10^{-5}	5	10^{-5}	8	10^{-5}	5
FT-Retain-Mul	10^{-5}	5	10^{-5}	8	10^{-5}	5
FT-Mul	10^{-5}	5	10^{-5}	8	10^{-5}	5
FT-Mul-Chunk	10^{-5}	4	10^{-5}	8	10^{-5}	4
FT-Mul-Chunk-ISO	10^{-5}	4	10^{-5}	8	10^{-5}	4

Unlearning details. We present the hyperparameter details for ach unlearning algorithm: gradient ascent (GA) has a list of step numbers t to control the trade-off and the learning rate η_{ga} (the batch sizes are fixed as 8 for Eval-DU+ and 16 for TOFU+), task vector (TV) has a list of scaling parameter values α to control the trade-off, as well as the number of epoch T_{tv} and the learning rate η_{tv} to

918 train the reinforced model (the batch sizes are fixed as 16 for Eval-DU+ and 32 for TOFU+). The
 919 values are picked to best present the trade-off. Their values given different fine-tuning data choices
 920 are presented as below:

922 Table 2: Hyperparameter values of GA-Single.
 923

	Llama2-7B, Eval-DU+		Gemma2-2B, Eval-DU+		Llama2-7B, TOFU+	
	List of t	η_{ga}	List of t	η_{ga}	List of t	η_{ga}
FT-Single	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}
FT-Mul	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}
FT-Unlearn-Mul	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}
FT-Retain-Mul	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}
FT-Mul-Chunk	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	10^{-6}
FT-Mul-Chunk-ISO	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	10^{-6}

931 Table 3: Hyperparameter values of GA-Mul.
 932

	Llama2-7B, Eval-DU+		Gemma2-2B, Eval-DU+		Llama2-7B, TOFU+	
	List of t	η_{ga}	List of t	η_{ga}	List of t	η_{ga}
FT-Single	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}
FT-Mul	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}
FT-Unlearn-Mul	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}
FT-Retain-Mul	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}
FT-Mul-Chunk	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	10^{-6}
FT-Mul-Chunk-ISO	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	3×10^{-6}	{0, 5, 10, ..., 75}	10^{-6}

933 Table 4: Hyperparameter values of TV-Single.
 934

	Llama2-7B, Eval-DU+			Gemma2-2B, Eval-DU+			Llama2-7B, TOFU+		
	List of α	N_{tv}	η_{tv}	List of α	N_{tv}	η_{tv}	List of α	N_{tv}	η_{tv}
FT-Single	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}
FT-Mul	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}
FT-Unlearn-Mul	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}
FT-Retain-Mul	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}
FT-Mul-Chunk	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}
FT-Mul-Chunk-ISO	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0, 20.0, 30.0, 50.0}	400	10^{-5}

941 Table 5: Hyperparameter values of TV-Mul.
 942

	Llama2-7B, Eval-DU+			Gemma2-2B, Eval-DU+			Llama2-7B, TOFU+		
	List of α	N_{tv}	η_{tv}	List of α	N_{tv}	η_{tv}	List of α	N_{tv}	η_{tv}
FT-Single	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}
FT-Unlearn-Mul	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}
FT-Retain-Mul	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}
FT-Mul-Chunk	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0, 20.0, 30.0, 50.0}	400	10^{-5}
FT-Mul-Chunk-ISO	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0}	20	10^{-5}	{0, 0.2, 0.5, 1.0, 5.0, 10.0, 20.0, 30.0, 50.0}	400	10^{-5}

950

F ADDITIONAL RESULTS

 951

952 **Performance of fine-tuned models.** We first ensure that each model achieves a near-perfect fit on
 953 its fine-tuning data – Table 6 shows the probabilities among fine-tuning set or the unseen test set.
 954 We additionally evaluate general utility on three standard LLM benchmarks: *MMLU* (Hendrycks
 955 et al., 2021) for multi-domain language understanding, *PIQA* (Bisk et al., 2020) for commonsense
 956 reasoning, and *RACE* (Lai et al., 2017) for reading comprehension. The results are presented in
 957 Table 7. We observe that fine-tuning does not significantly degrade performance on these general
 958 tasks, confirming that the models retain broad capabilities.

959 **Full tables of all unlearning results.** We summarize all unlearning results in Table 8 for completeness
 960 and easier comparison and results reproducing for the future work.

961 **Full plots of trade-off curves.** For completion, we attach the full trade-off curves for calculating
 962 Norm-AUC.

972 Table 6: Average knowledge scores among finetuning set (FT Probs.) or unseen test set (Test Probs.).
973

	Llama2-7B, Eval-DU+		Gemma2-2B, Eval-DU+		Llama2-7B, TOFU+	
	FT Probs.	Test Probs.	FT Probs.	Test Probs.	FT Probs.	Test Probs.
FT-Single	0.95	0.47	0.97	0.39	0.99	0.12
FT-Mul	0.92	0.68	0.95	0.61	0.99	0.16

980 Table 7: Pretrained and finetuned LLMs on three general utility benchmarks.
981

LLM & Dataset Metric	Llama2-7B on Eval-DU+			Gemma2-2B on Eval-DU+			Llama2-7B on TOFU+		
	MMLU	PIQA	RACE	MMLU	PIQA	RACE	MMLU	PIQA	RACE
Pre-train	0.400	0.778	0.396	0.496	0.791	0.373	0.400	0.778	0.396
FT-Single	0.383	0.775	0.398	0.496	0.798	0.380	0.335	0.758	0.398
FT-Mul	0.368	0.782	0.392	0.486	0.792	0.365	0.332	0.773	0.402

982 Table 8: This summarize the Norm-AUC of all unlearning results at differnet setting of unlearning
983 across two datasets and two models.
984

Model, Dataset	FT Choices	Gradient Ascent		Task Vector	
		GA-Single	GA-Mul	TV-Single	TV-Mul
Llama2-7B, Eval-DU+	FT-Single	0.62	0.63	0.62	0.69
	FT-Unlearn-Mul	0.56	0.58	0.60	0.65
	FT-Retain-Mul	0.62	0.64	0.64	0.71
	FT-Mul	0.63	0.64	0.62	0.72
	FT-Chunk-Mul	0.50	0.49	0.55	0.56
	FT-Chunk-Mul (align)	0.56	0.55	0.57	0.59
Gemma2-2B, Eval-DU+	FT-Single	0.57	0.61	0.59	0.66
	FT-Unlearn-Mul	0.52	0.54	0.56	0.60
	FT-Retain-Mul	0.69	0.67	0.65	0.70
	FT-Mul	0.63	0.65	0.65	0.67
	FT-Chunk-Mul	0.47	0.45	0.48	0.52
	FT-Chunk-Mul (align)	0.55	0.56	0.55	0.56
Llama2-7B, TOFU+	FT-Single	0.59	0.59	0.59	0.59
	FT-Unlearn-Mul	0.58	0.58	0.58	0.58
	FT-Retain-Mul	0.64	0.65	0.62	0.63
	FT-Mul	0.63	0.64	0.64	0.65
	FT-Chunk-Mul	0.58	0.58	0.50	0.51
	FT-Chunk-Mul (align)	0.60	0.60	0.59	0.59

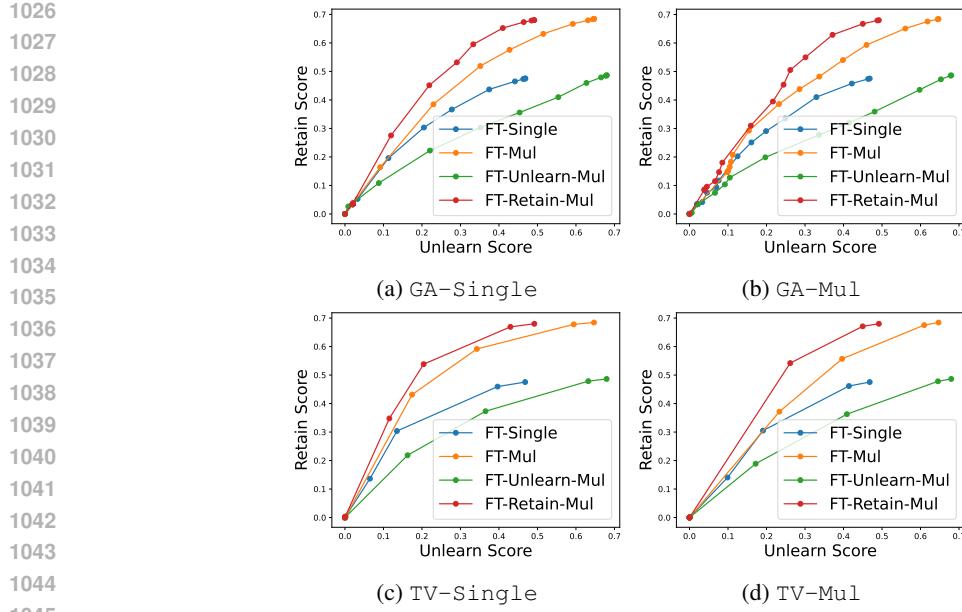
1014 For the results in Section 4.1, the extraction trade-off plots for (Llama2-7B, Eval-DU+), and (Llama2-
1015 7B, TOFU+) are in Figure 8, 9, 10 respectively;
10161017 For the results in Section 4.2, the extraction trade-off plots for (Llama2-7B, Eval-DU+), and (Llama2-
1018 7B, TOFU+) are in Figure 11, 12, 13 respectively.
10191020

G ADDITIONAL EXPERIMENTAL RESULTS

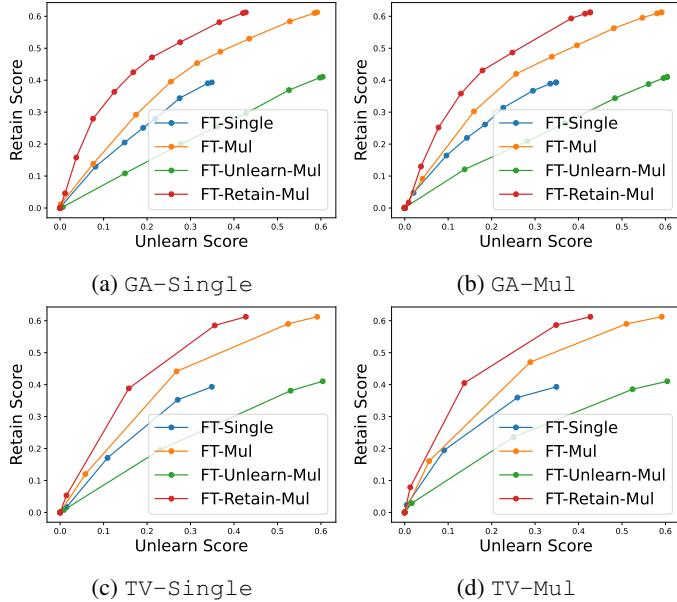
10211022

G.1 EXPERIMENTS WITH THE LATEST MODEL

10231024 We additionally conducted all of our designed experiments using a recent model from a different
1025 open-source family, **Qwen3-4B**, evaluated on two datasets. The results for Problem 1, Problem 2,
Problem 3, Problem 4, and Problem 5 are shown in Figure 14, Figure 15, Figure 16, Figure 17, and
1026



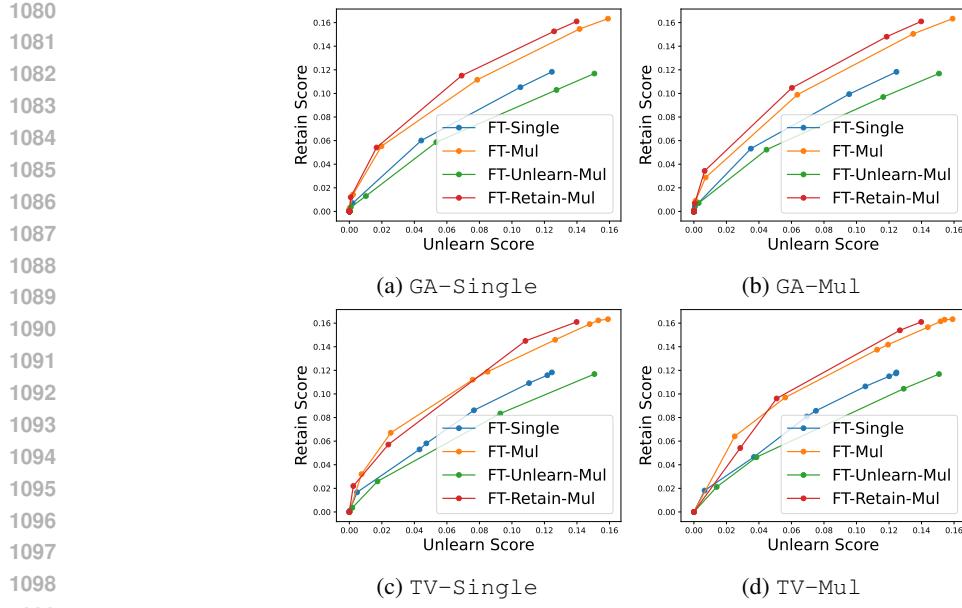
1046 Figure 8: Vanilla trade-off curves for three choices of unlearning data and two unlearning algorithms
 1047 on **Eval-DU+** and **Llama2-7B**, when comparing FT-Mul and FT-Single



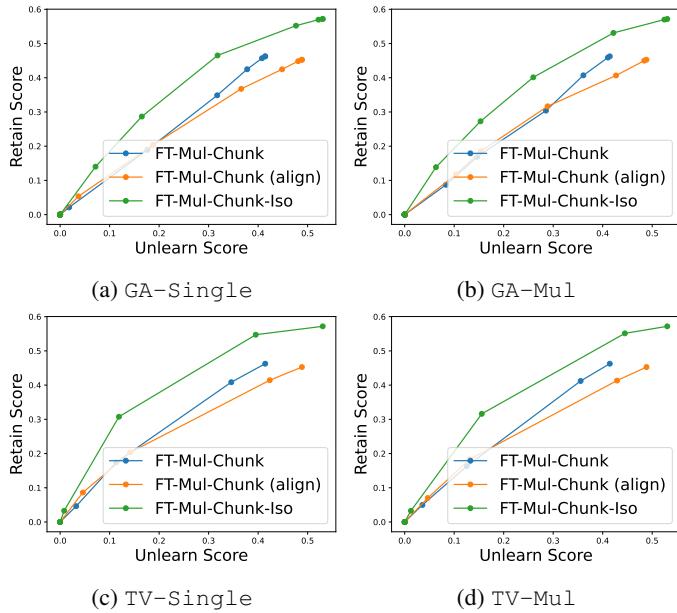
1071 Figure 9: Vanilla trade-off curves for three choices of unlearning data and two unlearning algorithms
 1072 on **Eval-DU+** and **Gemma2-2B**, when comparing FT-Mul and FT-Single

1073
1074
1075
1076
1077
1078
1079

Figure 18, respectively. Across all settings, the results with Qwen3-4B remain consistent with all observations of other models in the main paper used to answer the five problems. **These additional results further strengthen the evidence that our conclusions generalize robustly to a broader range of models.**



1100 Figure 10: Vanilla **extraction** trade-off curves for three choices of unlearning data and two unlearning
 1101 algorithms on **TOFU+** and **Llama2-7B**, when comparing FT-Mul and FT-Single

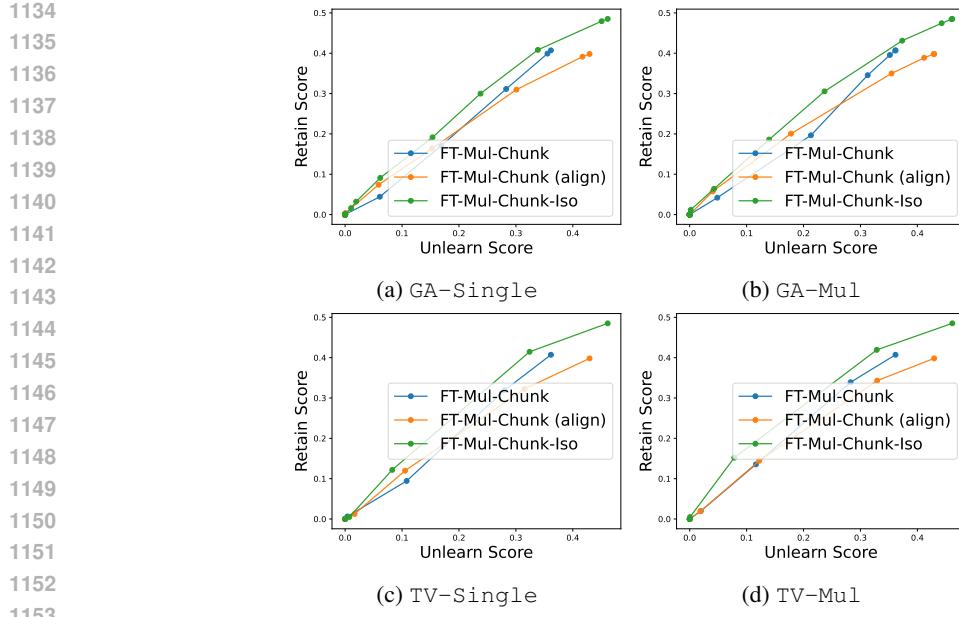


1123 Figure 11: Vanilla trade-off curves for three choices of unlearning data and two unlearning algorithms
 1124 on **Eval-DU+** and **Llama2-7B**, when the model is fine-tuned from any text chunks.

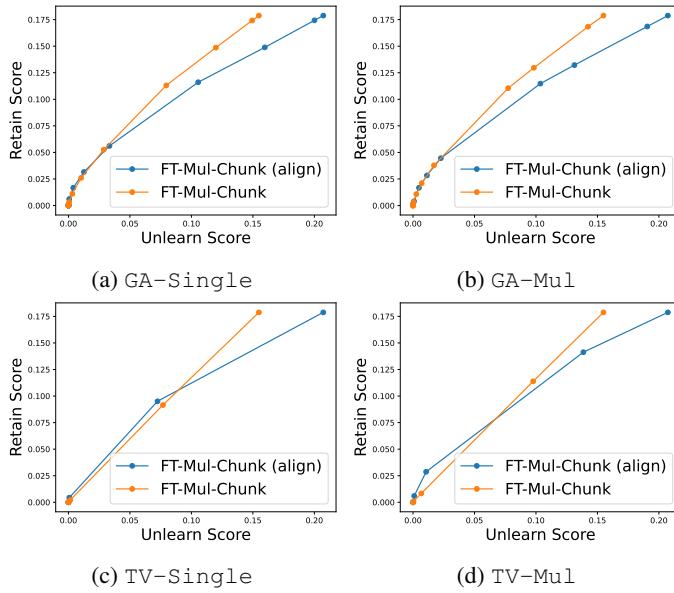
G.2 EVALUATE WITH RETAIN-AWARE UNLEARNING METHODS

1125
1126
1127 We additionally evaluate our framework using another retain-aware unlearning method, **Gradient
 1128 Difference**. This method performs unlearning by ascending the loss on the forget dataset while
 1129 simultaneously descending the loss on the retain dataset. The retain dataset here consists of all textual
 1130 descriptions associated with the retain knowledge.

1131
1132 The results for Problem 1, Problem 2, Problem 3, Problem 4, and Problem 5 are shown in Figure
 1133 19, Figure 20, Figure 21, Figure 22, and Figure 23, respectively. Across all settings, the results from



1154 Figure 12: Vanilla **extraction** trade-off curves for three choices of unlearning data and two unlearning
 1155 algorithms on **Eval-DU+** and **Gemma2-2b**, when the model is fine-tuned from any text chunks.

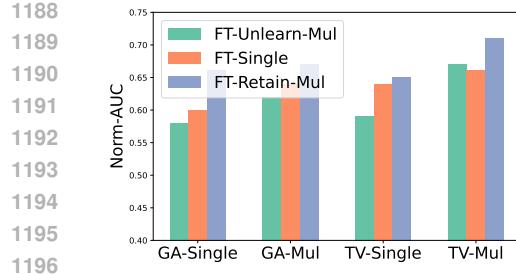


1176 Figure 13: Vanilla trade-off curves for three choices of unlearning data and two unlearning algorithms
 1177 on **TOFU+** and **Llama2-7B**, when the model is fine-tuned from any text chunks.

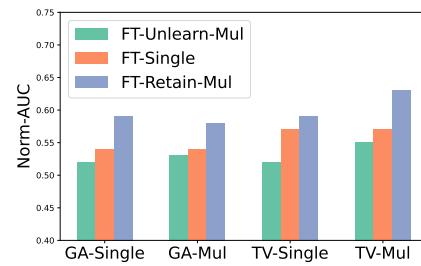
1180 Gradient Difference remain consistent with all observations of other unlearning methods in the main
 1181 paper used to answer the five problems. **These additional results further demonstrate that that**
 1182 **our conclusions are applied to a range of unlearning methods.**

G.3 EVALUATE WITH ONE NEW METRIC

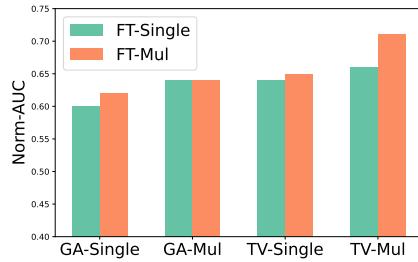
1184 We additionally evaluate all unlearning methods using an alternative metric, **Retain@Unlearn τ** ,
 1185 which measures the retain score at the point where the unlearn score has been suppressed to a small
 1186 target level τ . This metric complements AUC-based evaluations by providing an absolute, threshold-



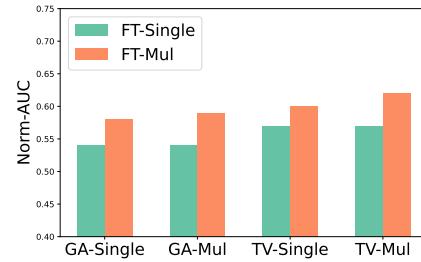
(a) Qwen3-4B, Eval-DU+



(b) Qwen3-4B, TOFU+

Figure 14: Empirical study for Problem 1 on **Qwen3-4B** across two datasets: FT-Single vs FT-Unlearn-Mul vs FT-Retain-Mul.

(a) Qwen3-4B, Eval-DU+



(b) Qwen3-4B, TOFU+

Figure 15: Empirical study for Problem 2 on **Qwen3-4B** across two datasets: FT-Single vs FT-Mul.

based view of the unlearning-retaining trade-off. The results for Problem 1, Problem 2, Problem 3, Problem 4, and Problem 5 are presented in Figure 24, Figure 25, Figure 26, Figure 27, and Figure 28, respectively. Across all experiments, the results under **Retain@Unlearn τ** are consistent with our original findings, further validating all observations used to answer the five problems.

Table 9: This summarize the Norm-AUC of all unlearning results at different setting of unlearning across two datasets and **Qwen3-4B**.

Model, Dataset	FT Choices	Gradient Ascent		Task Vector	
		GA-Single	GA-Mul	TV-Single	TV-Mul
Qwen3-4B, Eval-DU+	FT-Single	0.60	0.64	0.64	0.66
	FT-Unlearn-Mul	0.58	0.62	0.59	0.67
	FT-Retain-Mul	0.66	0.67	0.65	0.71
	FT-Mul	0.62	0.64	0.65	0.71
	FT-Chunk-Mul	0.54	0.54	0.54	0.58
	FT-Chunk-Mul (align)	0.57	0.57	0.58	0.60
Qwen3-4B, TOFU+	FT-Single	0.54	0.54	0.57	0.57
	FT-Unlearn-Mul	0.52	0.53	0.52	0.55
	FT-Retain-Mul	0.59	0.58	0.59	0.63
	FT-Mul	0.58	0.59	0.60	0.62
	FT-Chunk-Mul	0.46	0.46	0.47	0.47
	FT-Chunk-Mul (align)	0.52	0.52	0.53	0.54

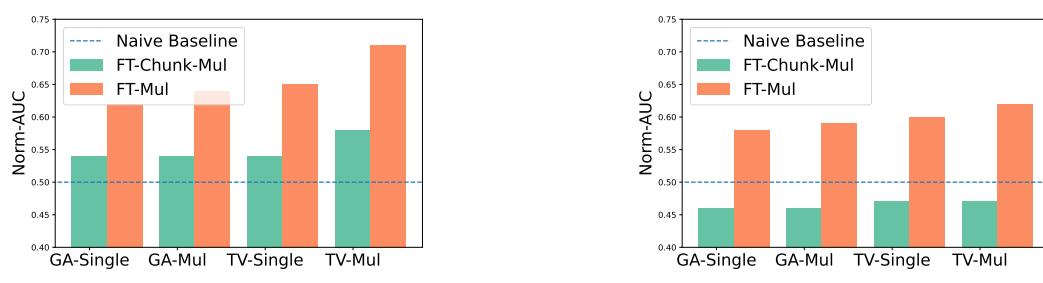


Figure 16: Empirical study for Problem 3 on **Qwen3-4B** across two datasets: FT-Mul-Chunk vs FT-Mul.

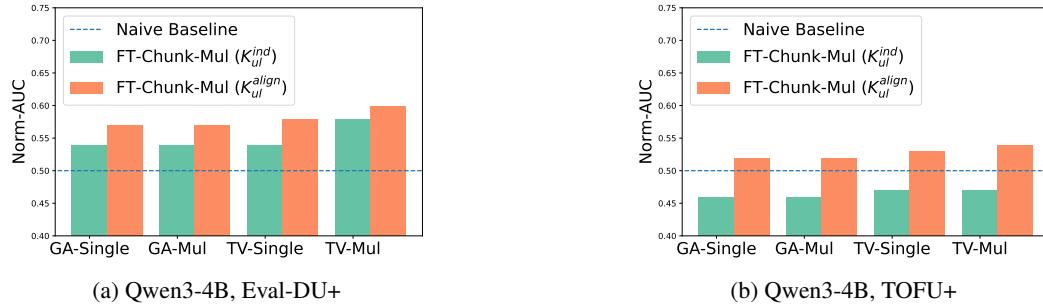


Figure 17: Empirical study for Problem 4 on **Qwen3-4B** across two datasets: FT-Mul-Chunk (K_{ul}^{align}) vs FT-Mul-Chunk (K_{ul}^{ind}).

Table 10: This table summarizes the Norm-AUC (\uparrow) of Gradient Difference at different setting of unlearning across two datasets and two models.

Model, Dataset	FT Choices	Gradient Difference	
		GD-Single	GD-Mul
Llama2-7B, Eval-DU+	FT-Single	0.636	0.645
	FT-Unlearn-Mul	0.582	0.611
	FT-Retain-Mul	0.643	0.656
	FT-Mul	0.639	0.646
	FT-Chunk-Mul	0.559	0.523
	FT-Chunk-Mul (align)	0.631	0.621
	FT-Chunk-Mul-Iso	0.622	0.648
Llama2-7B, TOFU+	FT-Single	0.584	0.588
	FT-Unlearn-Mul	0.577	0.581
	FT-Retain-Mul	0.633	0.656
	FT-Mul	0.636	0.644
	FT-Chunk-Mul	0.472	0.476
	FT-Chunk-Mul (align)	0.647	0.733

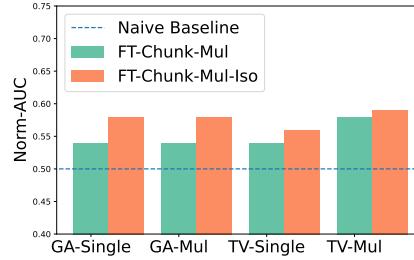
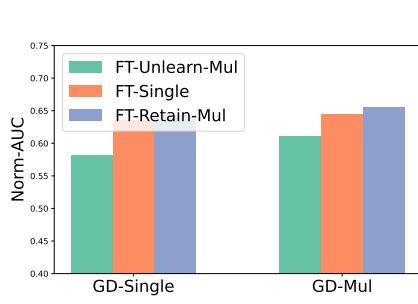
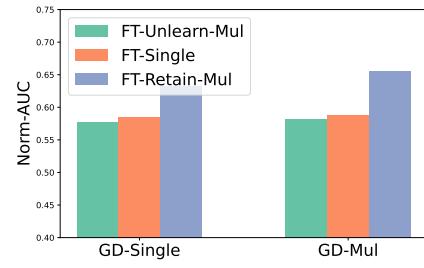


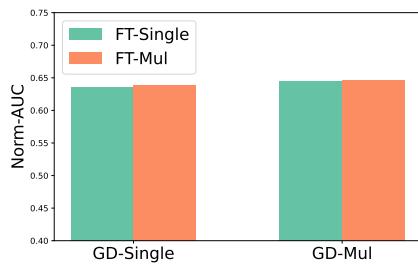
Figure 18: Empirical study for Problem 5 on **Qwen3-4B** across two datasets: FT-Mul-Chunk vs FT-Mul-Chunk-ISO.



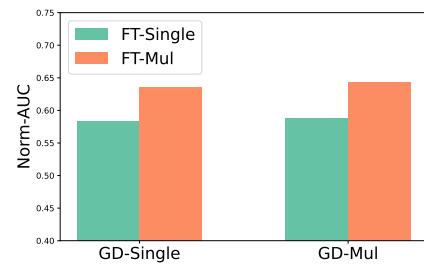
(a) Llama2-7B, Eval-DU+



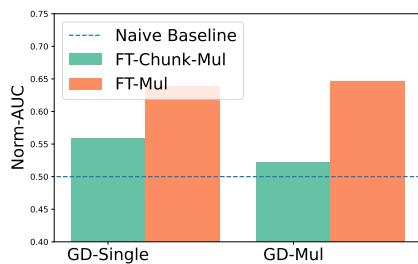
(b) Llama2-7B, TOFU+

Figure 19: Empirical study for Problem 1 by evaluating **Gradient Difference** (GD-Single, GD-Mul): FT-Single vs FT-Unlearn-Mul vs FT-Retain-Mul.

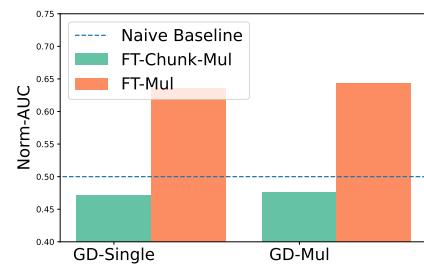
(a) Llama2-7B, Eval-DU+



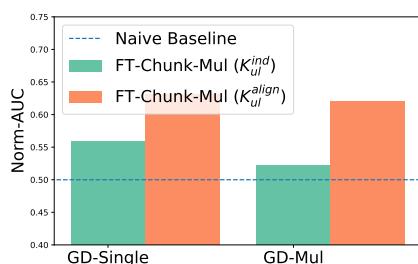
(b) Llama2-7B, TOFU+

Figure 20: Empirical study for Problem 2 by evaluating **Gradient Difference** (GD-Single, GD-Mul): FT-Single vs FT-Mul.

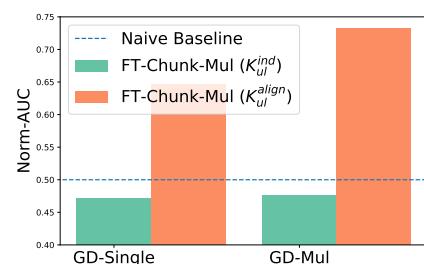
(a) Llama2-7B, Eval-DU+



(b) Llama2-7B, TOFU+

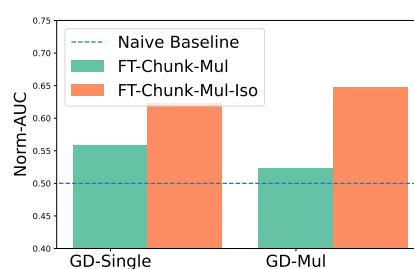
Figure 21: Empirical study for Problem 3 by evaluating **Gradient Difference** (GD-Single, GD-Mul): FT-Mul-Chunk vs FT-Mul.

(a) Llama2-7B, Eval-DU+

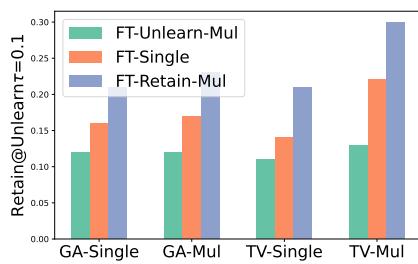


(b) Llama2-7B, TOFU+

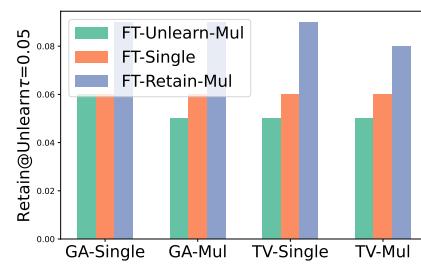
Figure 22: Empirical study for Problem 4 by evaluating **Gradient Difference** (GD-Single, GD-Mul): FT-Mul-Chunk (K_{ul}^{align}) vs FT-Mul-Chunk (K_{ul}^{ind}).



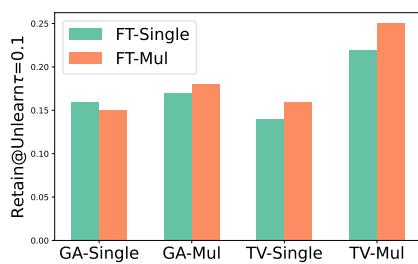
(a) Llama2-7B, Eval-DU+

Figure 23: Empirical study for Problem 5 by evaluating **Gradient Difference** (GD-Single, GD-Mul): FT-Mul-Chunk vs FT-Mul-Chunk-ISO.

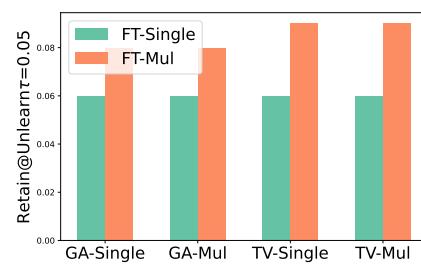
(a) Llama2-7B, Eval-DU+



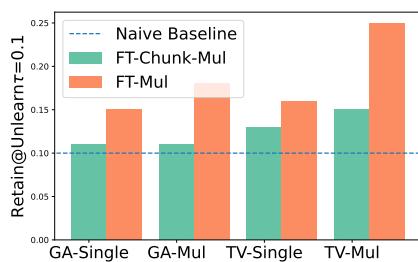
(b) Llama2-7B, TOFU+

Figure 24: Empirical study for Problem 1 evaluated by **new metric Retain@Unlearn τ** : FT-Single vs FT-Unlearn-Mul vs FT-Retain-Mul.

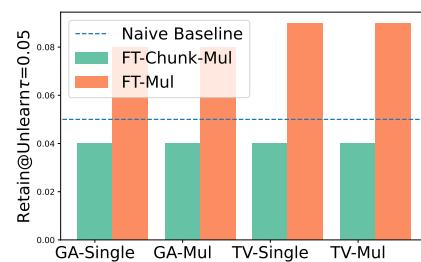
(a) Llama2-7B, Eval-DU+



(b) Llama2-7B, TOFU+

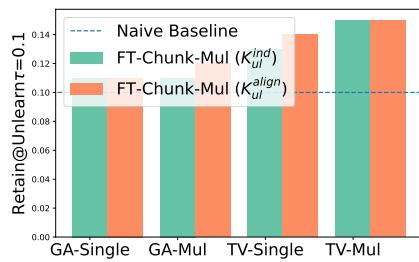
Figure 25: Empirical study for Problem 2 evaluated by **new metric Retain@Unlearn τ** : FT-Single vs FT-Mul.

(a) Llama2-7B, Eval-DU+

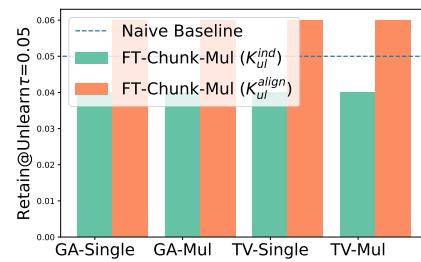


(b) Llama2-7B, TOFU+

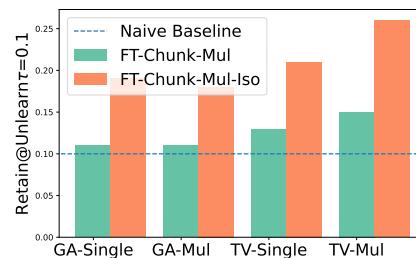
Figure 26: Empirical study for Problem 3 evaluated by **new metric Retain@Unlearn τ** : FT-Mul-Chunk vs FT-Mul.



(a) Llama2-7B, Eval-DU+



(b) Llama2-7B, TOFU+

Figure 27: Empirical study for Problem 4 evaluated by **new metric Retain@Unlearn τ** : FT-Mul-Chunk (K_{ul}^{align}) vs FT-Mul-Chunk (K_{ul}^{ind}).

(a) Llama2-7B, Eval-DU+

Figure 28: Empirical study for Problem 5 evaluated by **new metric Retain@Unlearn τ** : FT-Mul-Chunk vs FT-Mul-Chunk-ISO.Table 11: This summarize the Retain@Unlearn τ ($\tau = 0.1$ for Eval-DU+ and $\tau = 0.05$ for TOFU+) of all unlearning methods at different setting of training set across two datasets and Llama2-7B.

Model, Dataset	FT Choices	Gradient Ascent		Task Vector	
		GA-Single	GA-Mul	TV-Single	TV-Mul
Llama2-7B, Eval-DU+	FT-Single	0.16	0.17	0.14	0.22
	FT-Unlearn-Mul	0.12	0.12	0.11	0.13
	FT-Retain-Mul	0.21	0.23	0.21	0.30
	FT-Mul	0.15	0.18	0.16	0.25
	FT-Chunk-Mul	0.11	0.11	0.13	0.15
	FT-Chunk-Mul (align)	0.11	0.12	0.14	0.15
	FT-Chunk-Mul-Iso	0.19	0.18	0.21	0.26
Llama2-7B, TOFU+	FT-Single	0.06	0.06	0.06	0.06
	FT-Unlearn-Mul	0.06	0.05	0.05	0.05
	FT-Retain-Mul	0.09	0.09	0.09	0.08
	FT-Mul	0.08	0.08	0.09	0.09
	FT-Chunk-Mul	0.04	0.04	0.04	0.04
	FT-Chunk-Mul (align)	0.06	0.06	0.06	0.06