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Abstract

We address the problem of scaling the generation of
plans in real-time to control the behaviors of sev-
eral millions of Non-Player Characters (NPCs) in
video-games and virtual worlds. Search-based ac-
tion planning, introduced in the game FE.AR. in
2005, has an exponential time complexity manag-
ing at most several tens of NPCs per frame. A close
study of the plans generated in first-person shoot-
ers shows that: (1) states are vectors of enumer-
ated values, (2) both initial and final states can be
totally defined, (3) operators are both post-unique
and unary, (4) plans are totally ordered, and (5)
operators occur only once in plans. (1) to (3) sat-
isfy the Simplified Action Structure (SAS) polyno-
mial time planning framework but neither (4) nor
(5): we thus present two new restrictions to the
SAS planning framework and a new linear-time al-
gorithm which dramatically outperforms previous
SAS planners and indeed allow us to consider the
management of millions of NPCs per frame.

1 Introduction and Motivation

FE.AR., a first-person shooter (FPS) released in 2005, was
the first video game to use planning to generate character be-
haviors in real time [Orkin, 2005; Orkin, 2006]. The success
of FEE.A.R. [Ocampo, 2007] was such that it led to a wide
diffusion of the use of planning in FPSes [Hillburn, 2013;
Humphreys, 2013; Straatman et al., 2013; van der Sterren,
2013]; this diffusion was notably facilitated by the publica-
tion the following year of a development kit (SDK) that con-
tained the planner code [Monolith Productions, 2006]. Today,
not only is the success of FE.A.R. still recognized [Horti,
2017], but the biggest productions, reaching millions of
players, do not hesitate to use planning and to make it
known [Higley, 2015; Conway, 2015; Girard, 20211, and this
despite the real time constraints which are more and more de-
manding.

In 2005, a game engine was running at about 30 frames
per second, that is 33 ms for the whole game logic: among
graphics, physics and gameplay mechanics, this leaves less
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than a millisecond for the planner to generate plans for the
few characters that called the planner [van der Leeuw, 20091,
ten years later, the move to 60 frames per second has only led
to the reduction of the available processing budget for plan-
ning. And today, to satisfy the processing budget allocated to
the planner, studios explicitly limit the number of calls to at
most a few dozen [Champandard et al., 2009; Higley, 2015;
Girard, 2021] despite the increase in hardware performance.
Furthermore, the game situations are designed in such a way
that the number of characters is also limited, thus reducing
the number of calls to the planner. However, the dynamics
of the video game market pushes productions to simulate in-
creasingly large universes with, for the moment, tens of thou-
sands of characters in sight [Hollister, 2021] and tomorrow
millions of them. The results of [Cardon and Jacopin, 2020]
suggest that GPUs are a potential solution for such universes
in cloud gaming; but what about PCs or game consoles for
which GPUs are dedicated to graphics?

The time complexity of planning problems depends on the
one hand on language restrictions for representing the plan-
ning problem [Bylander, 1991] and on the other hand on
which part of the input is fixed [Erol ef al., 1995]. From the
F.E.A.R. SDK code, we can observe that states are vectors of
discrete values and that at certain times, such as fights or rou-
tine tasks, the actions are fixed and only the initial and final
states are part of the input of the planning problem. Further-
more, the vast majority of the actions are unary [Domshlak
and Brafman, 2002], i.e., they change the value for only one
state variable. Finally, the actions are post-unique by type (at-
tack, defense, deletion, ...), i.e. one type of actions is the only
one to modify a given state variable; this makes it possible
to insert in the plan a generic defense operator, for example,
and to delay the choice of the type of defense at the time of
the plan execution. Answers to a questionnaire filled up by
several game Al developers validate that our approach is still
up to date: the modeling of planning problems in commercial
games is such that SAS with unary and post-unique actions
corresponds to the strong NP-Hard SAS-PU class of prob-
lems [Béckstrom and Nebel, 1995].

Accessing the in-game planning data analyzed in [Jacopin,
2014], we observe that plans in first-person shooters have two
domain-specific features: (1) they are totally ordered, (2) they
have only one occurrence of a given type of action: e.g., only
one action for threatening, reloading, taking cover, dodg-



ing, etc. Therefore, in the next section we present two new
SAS restrictions matching “Totally ordered” (T) and “Type
set isomorphism” (T;) which we combine into T;; we fur-
ther present a linear time complexity algorithm for the SAS-
PUT, problem classes. In the following section, we report
and discuss tests to illustrate the linear-time properties of our
algorithm which is able to generate enough plans for millions
of characters while satisfying the processing budget that the
game engine allocates to the planner at each frame.

2 SAS-PUT,; Planning in Linear Time

2.1 Background

We use notations from [Bickstrom, 1992a] throughout this
paper. The Simplified Action Structure (SAS) and its Ex-
tended (SAS™) version represent states with a set M of m
variables each of which can take at most n discrete values
or be undefined; we note D,, the set of values of state vari-
able v. Three sets of state variables are used to represent the
conditions of an action: (1) postconditions (post) define new
values for some state variables, (2) preconditions (pre) re-
quires specific values for all the state variables which values
are modified in the postconditions, and (3) prevail conditions
(prv) requires specific values for some state variables which
are not preconditions and therefore are not postconditions ei-
ther. An action is applicable in a state iff its preconditions are
consistent with their values in that state; applying an action in
a state changes the values of all the state variables of its post-
conditions while prevail conditions remain unchanged. SAS
differs from SAS™ by adding two restrictions which are rele-
vant to our application domain: an action can only change a
state variable from one defined value to another defined value
(86), and no initial or goal state variable can be undefined
(S7).

A plan is a sequence of actions such that any state resulting
from applying an action of the sequence is consistent with the
next action in the sequence; a plan solves the planning prob-
lem made of the initial and goal states (sg,s«) and a set of
action types iff (1) any action in the plan is a distinct instance
of an action type of the planning problem, (2) the first ac-
tion is applicable in sg, (3) and applying the last action of the
sequence results in s,. We introduce a first new restriction
which requires that the number of distinct action instances of
the same type occurring in a plan is at most k£ € N (Tg).

Three additional restrictions are relevant to our framework:
(Post-uniqueness) no two distinct action types can change the
same state variable to the same value (P), (Unaryness) each
action type changes the value of exactly one state variable
(U), and (Single-valuedness) the defined value of any prevail
condition required by any two distinct action types must be
the same (S).

As a consequence of both Theorem 4.4 [Bickstrom,
1992a, p. 761, which states that any minimal plan solution of
a SAST-PUS problem instance contains at most two actions
of each type, and our new restriction (T}), any SAST-PUS
problem instance is also an SAST-PUST, problem instance.

We eventually require as a second new restriction that plans
are totally ordered set of distinct action instances (T), and as
they correspond to our application domain, we seek to solve

SAS-PUTT; problem instances which we note SAS-PUT].
We observe that the problem which consists in repeatedly
switching on a series of lights in a tunnel [Bickstrom, 1992a,
pp. 16-17] and then switching off these lights, belongs to
the SAS-PUST problem class which is a subset of the SAS-
PUT problem class; to our knowledge, these problem classes
are not new but no specific need had required to spell out the
restrictions (Ty) and (T) that lead to them. The tunnel prob-
lem is none other than the MultiPrv_2_Cycle problem in sec-
tion 3.

2.2 Planning confined to topological sorting

SAST-PUS [Bickstrom, 1992b] is a tractable class of SAST
planning problems for which the best algorithm [Béckstrom,
1992a, pp. 84-90], which we henceforth note P, runs in
O(m?n) (cf. Theorem 4.11 [Bickstrom, 1992a, p. 89]). In a
first phase, P iterates over each of the m goal state variables
to build chains of at most n actions towards the initial state
thanks to the restriction (P). In a second phase, P orders cou-
ples of O(mn) actions instances occurring in distinct chains
thanks to restriction (S) to produce a partially ordered set of
actions instances; to achieve this second phase, P first iter-
ates over O(mmn) actions and then over O(m) variables . In
a third and final phase, if the partially ordered set of action
instances contains no cycle then it is returned as a solution.

Our algorithm, which we henceforth note P, follows the
three phases of P while simplifying the time complexity of
the second phase. The key point of P to achieve linear time
complexity is to represent the partially ordered set of action
instances through A eighboring actions according to the or-
dering constraints implied by both restrictions (P) and (U).
In fact, enough action ordering can be achieved dynamically
thanks to A eighboring actions thus making topological sort-
ing [Cormen et al., 2009] the dominant phase of IP.

We now turn to give details on how P works to solve SAS-
PUT; problem instances in linear time. The restrictions (P)
and (U) allow an action a to be identified by the pair (v;, p),
where p is the postcondition of @ on v;: v; € M,p € D,,
st. post(a)[v;] = p. Using an array with (action) index i x
n + p, we can retrieve an action instance a?, in O(1) time
while planning. With these indexes we initialize two lists of
neighbor actions when calling P : Nye(a,) = {af | v; =
v; A q = pre(ab,)} which is a singleton due to the restriction
(P), and Nppo(af, ) = {af [ v; # vi A q = pro(af,)[v;]}.
which will allow P to only work with defined pre- and prevail
conditions thus reducing time complexity.

Actions also have 2-index array which is initially empty,
called Next, that is dynamically set such that Va} Vay, €
Next(a? ), p = pre(ay,); Next(al,) has at most 2 values
thanks to restriction (T1). Next(a},) returns the action in-
stance ordered after al. in the chain for state variable v; thus
allowing to ordering action instances in O(1) time in phase
2. When there are 2 action instances after af. then Next(a?),)
has 2 values (hence the 2-index array); this happens when a
given value of a state variable occurs both as a precondition
of several action instances and in the initial state. The actions
of Horse Breeder NPC of the Western problem described in
the next section may generate such a case during planning.



Procedure 1 BuildChain(v;, s, g, D, Ep, A)

Input: v; € M, s,g € D,,; D, the set of yellow action
instances; Ep, the set of orderings of yellow action instances;
A, the entire set of action instances.
Parameters: z,y, two values of D,,,.
Qutput: Each action instance a of the chain is yellow, added
to D and (Nyre(a), a) added to Ep.

Lax+—0y«0

2: ifay ¢ A then fail

3: end if
4: Color(ay,) < yellow; D < DU {ad, }; y < pre(ad,)
5 Ep+ EpU {(a?{,i,ag_)}
. ;
7
8

: Next(ay,) « Next(agis U{ad,}
: while y # s do /
: ifay ¢ Athen fail

9:  endif

10:  if Color(a,) = yellow then fail
11:  endif

12:  Color(ay,) < yellow; D <~ D U {a¥, }
13: x4 y;y  pre(al)

14: Ep < EpU{(ay,,a; )}

15:  Next(ay,) < Next(ag) U {a,

16: end while ’

Finally, each action instance has 4 different colors: (white)
the initial color when [P is called, (yellow) the action is useful
to solve the problem, (blue) the action is being topologically
sorted, (green) the action is topologically sorted and inserted
in the solution plan.

When solving SAS-PUT; problem instances, P considers
the yellow actions and their pre- and prevail conditions as a
graph G = (D, Ep), with D as a list of yellow actions and
Ep as their ordering; G is built during both phases 1 and
2, while phase 3 consists of ordering GG to provide a totally
ordered action plan.

P backwardly builds a sequence of action instances chang-
ing the value of v; from sy to s, (cf. Procedure 1 Build-
Chain). Each action instance in the sequence shall be colored
in yellow and then added to D while only the directed edges
between their pre-neighbor and themselves are added to Ep.
At the end of phase 2, all the action instances of D have their
prevail conditions satisfied, either by sy or by another action
instance in D, and Ep has all the directed edges required for
the topological sort (phase 3) to provide a totally ordered ac-
tion plan.

Not taking single-valuedness into account, P has to deal
with situations where prevail conditions are both satisfied in
the initial and the goal states but values in between are now
possibly required by the prevail conditions of other action in-
stances. We thus use a boolean matrix, called Flag (cf. Pro-
cedure 3), in order to decide which edges to add in such situ-
ations.

Theorem 1. P is correct and complete.

Proof. (Sketch) If the goal state is different from the initial
state, there must exist actions that solve the problem instance;
IP shall find these actions thanks to their indexes or yields a
failure otherwise. According to the above details PP builds G

Procedure 2 DFSTopo(a}) , D, Ep, so, P)
Input: af , a yellow action instance of index v; and postcon-
dition p € D,,;; sop € S, the initial state; P, the solution plan.
Output: af is colored green after all its neighbors have been
considered; it is then enqueued at the tail of P.

1: Color(ab ) < blue

2: foraf € Ep(al,) do

32 if af ¢ Npre(ab,) V pre(al) #

af), # Last(Next(af )) then

4 if Color(af, ) = blue then fail {Cycle detected.}

5: end if

6: if Color(af, ) = yellow then

7

8

So[’Ui] vV

DFSTopo(agg ,D,Ep, s0,P)
end if

9: endif

10: end for

11: Color(ab,) +— green; P <— P+ {ab };

during both phase 1 and phase 2, ordering (demoting) an ac-
tion instance after others ((Nyrc(a), a) and (af , al))) edges)
or ordering (promoting) an action instance before another
((ah, Next(af,) edges) [Chapman, 1987] to remove threats
on pre- and prevail conditions. Consequently, the depth-first
search topological sort shall return a totally ordered plan with
no threat on all these conditions making the successive ap-
plication of the totally ordered actions instances eventually
result in the goal state of the problem. O

Theorem 2. P has a worst case time complexity of O(|.A| +
|EAl).

Proof. Let Naemo(a},) = {af, |vi # vinal, & Npro(ah,)A
Jay,, € Npre(a},) U Npro(ag,)} which stores indexes of
all action instances whose prevail condition for state vari-
able v; is threatened by af ; therefore, af is ordered af-
ter all actions in Nyemo(aZ, ). We have Eq = {(b,a)|a €
AND € Npre(a) U Npryp(a) U Ngemo(a)} with Ny, in-
dexes allowing P to only navigate through the defined pre-
vail conditions of the action instances of D. The phase 1
has at most |.A4] = O(mn) steps: m steps via the for loop
(1.2) times n steps via the BuildChain procedure. Due to re-
striction (T1), D cannot be greater than A, so the for loop in
3.10 requires at most |A| = O(mn) steps. The two for loops
in 3.10 and in 3.11 therefore require | A| + |E,,,| steps with
Epry = {(b,a)la € ANb € Npypo(a)}. The phase 3 topologi-
cally sorts the yellow actions of the graph G in O(|D|+|Ep|);
in the worst case this is equivalent to O(|A| + |E 4|) which
in turns dominates the whole and eventually proves the linear
time complexity of . O

Theorem 3. P requires at most O(m?n) space.

Proof. A SAS-PUT; action takes O(m) space: the pre- and
postcondition can be reduced to one variable each, plus a vari-
able for the index of the state variable affected, and the set
Npre is a singleton due to restrictions (P) and (U); the pre-
vail conditions, on the contrary, are lists of m elements, and
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Figure 1: P and P runtimes are linear in the number of values (n)
per state variable (m) although the MultiPrv_n problem is designed
to generate O(m?) orders between mn actions.

the set ./\/'pm, has at most m elements. The matrix of action
instances, which stores action indexes, takes O(mn) space.
Finally, P creates a graph G = (D, Ep) which takes at most
(m?n) space: |D| < |A| < mn due to the restriction (T1)
and each action instance can have at most 2(m — 1) neigh-
bors: at most (m — 1) neighbors via Ny, + at most (m — 1)
neighbors via Ngemo. O

3 Benchmarking P vs P

We here describe the three problems that the we use in this
paper to illustrate the details of the time complexities of both
P and P. In the Figures 1,2, and 3, green squares, resp. red
disks, represent problem instances solved by P, resp. P.
Tests were performed on the following configuration: AMD
Ryzen 2700X (8-Core) CPU (3.7GHz), 32Gb of RAM and
Windows 10 (64 bits); both planners are written in C++14
with default settings for Microsoft Visual Studio 2019. The
supplementary materials of this paper contain all the files
that are necessary to compile and run the tests, including the
project file.

MultiPrv_n is designed to check that the runtime of both
planners is linear in (n) (cf. Figure 1); it generates O(m?)
orders between mn actions with 0 < p < n; Yv; € M, we
have:

s pre(ab,) = p — 1 and post(al),) = p,

 pro(al) )[v;] = 1,fori < j <m,

* pro(al). )[v;] = u, for 1 < j <.
[Béckstrom, 1992a] reports a Lisp implementation of P with
runtimes superlinear in (n), on the contrary to theoretical re-
sults (cf. Theorem 4.10, p. 89); because, among other things,
Lisp did not provide control over memory management, it
was suspected to alter the practical results. We implemented
both P and P in C++ with no specific optimization but we
indeed had to carefully manage memory to achieve runtimes
linear in (n) for both P and IP.

MultiPrv_2_Cycle is a specific case of MultiPrv_n such that
0 < p < m = 2: an action type can set each state variable
to their smallest value, thus introducing a cycle in these val-
ues; it is nothing more than the tunnel problem we presented

Solution length (number of actions in the plan)
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Figure 2: When the number of orderings is linear (resp. quadractic)
in the number of state variables () then [P runtimes are linear (resp.
quadratic) in the number of state variables (m) which illustrates the
O(JA| + |E4]) time complexity, whereas P runtimes are always
quadratic in the number of state variables (m) despite the differ-
ences in the number of orderings between MultiPrv_2_Cycle and
OnePrv_5.

in section 2.1. As it generates O(m?) orders between 2m
actions, we can easily scale this problem to show that worst
case the runtime of [P is quadratic in the number of variables
m (cf. Figure 2).

OnePrv_5is designed to show that the runtime of P can
be linear in the number of variables (m) while that of P is
quadratic (cf. Figure 2) despite the O(m) number of action
orderings to process. OnePrv_5 generates O(m) orders be-
tween 4m actions with 0 < p < n = 5; Vu; € M, we have:

s pre(al).) = p — 1 and post(al, ) = p,
o pro(a )[vip1] = [(n = 5)/2] = 2, with v; # vy,
* pro(ap,)[vs] = u, Yo; € M\ {vig1}.

’ A ‘ Pre ‘ Post ‘ Prevail ‘ Description ‘

ad | vo=1|v9o=0 | (u,0,u) | Storeahaystack
ay, | vo=0 | vo=1 | (u,0,u) | Take a haystack

aZ | vo=1|wvo=2 | (u,0,u) | Fill the horse feeder
ad | vp=1|v; =0 | (0,u,u) | Drop the bucket

ay, | v1 =0 | vy =1 | (0,u,u) | Pick up the bucket
ay, | v2=0 | va=1| (u,1,u) | Fill with water

a2, | v2=1 | va =2 | (u,1,u) | Fill the horse trough

Table 1: Actions for the Horse Breeder NPC whose goal is to feed
horses: s, = (2,0, 2) where vo represents a HayStack with D, =
{stored(0), inHands(1), inFeeder(2)}, v represents a Bucket
with D,,, = {onFloor(0), inHands(1)}, and vy represents Water
with Dy, = {inFountain(0), inBucket(1), inTrough(2)}.
These actions are both post-unique (P) and unary (U); however, pre-
vail conditions for the state variable v; requires 2 values (v1 = 0
and v; = 1) which violates the single-valuedness restriction (S).

Western is designed to evaluate the scalability of both
P and P for our video-games application domain. It imple-
ments daily routines of NPCs [DefendTheHouse, 2018] in
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Figure 3: Solution plans for instances of the Western problem are 3
to 10-action long: the impact of the number of actions and the num-
ber of their orderings is negligible on the generation of each plan.
Consequently, both P and P runtimes are linear in the number of
NPCs. However, P builds each plan dramatically faster than P and
is thus able to scale up to generating plans for two millions NPCs in
less than 1 millisecond.

the western setting of the very successful [Take Two Inter-
active, 2021] commercial video-game Red Dead Redemption
2 [Rockstar Studios, 2018]. It is as close as possible to the
game and is of class SAS-PUT; which P cannot handle, with
m = 29, n = 5, |A| = 58, and 7 NPC classes with 9 spe-
cific goals. This domain is fully described in the supplemen-
tary materials of this paper; we only detail the Horse Breeder
NPC action types in Table 1 which are both post-unique (P)
and unary (U) but not single-valued (S). The Horse Breeder
is the only NPC that can cause the use of the 2 indexes for
Next as described in subsection 2.2. This situation occurs if
s«[vo] = 2, solvg] = 1, and the value vy = 0 is required by
other actions as a prevail condition while planning, which is
the case for a’ , for example. In this situation, BuildChain on

vy
vg during phase 1 will add a2 to Next(a;, ). During phase 2,

if a} isin D, the chain of actions from so[vo] to pro(ay )[vo]
will also add aj), to Next(a,, ). We designed a restricted SAS-
PUST; version of Western which both P and [P can handle,
with m = 19, n = 2, | A| = 37, and 5 NPC Classes with
6 specific goals. Figure 3 shows that P is twenty thousand
times faster than PP and can generate plans for about two mil-
lions NPCs in 1 millisecond: planning can be used to control
large cities in commercial video-games [Hollister, 2021].

4 Discussion

As we mentioned in subsection 2.1, P solves SAST-PUST,
problem instances as a consequence of Theorem 4.4 [Bick-
strom, 1992a, p. 76]. Consequently we could expect PP to be
about two times faster than P on specifically designed prob-
lems by avoiding to consider the insertion of two action in-
stances rather than one. P obviously does less work than P,
but what kind of work? Restriction (T) alone certainly does
not explain why PP is several orders of magnitude faster than
‘P. Figure 2 shows that P does not take advantage of the

linear growth of action orderings as it iterates over state vari-
ables and not over orderings of action instances as PP does.
In phase 2 of algorithm 3, P iterates from one prevail condi-
tion neighboring of a (yellow) action instance to another pre-
vail condition neighboring so that the topological sorting vis-
its only necessary orderings. This is key to explain the very
high runtime efficiency of P for all the problems we tested.
We eventually observed that the topological sorting of our
graphs is deterministic as it is for the planner in [Domshlak
and Brafman, 2002] which uses unary actions without single-
valuedness but with binary state variables'. Minor key ex-
planations are about allocating and filling data structures as
much in advance as possible; however, a rigorous memory
management only explains the regularity of the curves (both
P and P) in Figures 1, 2, and 3.

On the contrary to SAS™ restrictions, the restriction (T—1)
does not restrict the input of the planning algorithm but
its output. In video-gaming application domain such as
Western plans are less than 10-action long: it is quite simple
to check, even by hand, that a problem instance satisfies the
T—1 restriction; it is much more complex when plan contain
thousands of actions. In the state of this paper, the only solu-
tion is to run P as membership testing of the problem class.
‘P runtimes are fortunately not a hindrance for this purpose.

The restriction (T) also restricts the output of the planning
algorithm; however, searching for totally ordered plans is al-
ways possible. A plan is a solution to a planning problem
when its application transforms the initial state into the goal
state of the problem: each action is applied one by one to
successive situations and thus the application of a plan cor-
responds to a total order on its actions. Therefore, the re-
striction (T) can be applied to any SAS™ class of problems,
which include any SAS class of problems. It would make
sense to limit the use of the restriction (T) to classes of prob-
lems such as MultiPrv_2_Cycle in which all solutions are to-
tally ordered plans of actions. However, it also makes sense
to use the restriction (T) to specify that our goal is to generate
totally ordered plans of actions, as it is currently the case in
commercial video-games where NPCs perform one task after
another.

The processing budget is probably the only constraint
which would prevent a game engine from accessing the cur-
rent game state and thus reading the exact value of game state
variables. Consequently, totally defined initial and goal states
make a realistic restriction in our video-game application do-
main. Game engines impose an update rate for game state
variables, however, which may cause out of date values to be
part of planning problems. This rudimentary form of uncer-
tainty [Béckstrom, 1992a, p. 64] should definitively be part
of future works on scaling planning to manage large virtual
worlds.

A more subtle use of undefined values has to do with re-
striction (S2) of the SASt framework which is relaxed in the
SAS framework (cf. Definition 3.2 [Béckstrom, 1992a, p.
52]). The restriction (S2) enables an action type to define a
state variable that was previously undefined: the postcondi-

lBinary variables are also one of the restriction (B) of the SAS™
planning framework (cf. Definition 3.9 [Bickstrom, 1992a, p. 62]).



tion of this action can define a state variable that is undefined
in the precondition. This is a rudimentary solution to deal
with the update rate of game state variables: we can design
an action type whose purpose is to make sure that a given
state variable has a value; when executing this action while
playing, the game engine waits until the next update of this
state variable. However, we have not investigating restriction
(S2) any further as our main objective is now to design P +
to solve SAST-PUT; problem instances.

5 Conclusion

Our objective was to generate totally ordered SAS-PU plans
so that no two action instances have the same action type for
millions of NPC in real-time. To this end, we made the fol-
lowing key contributions to the SAS framework:

¢ We defined two new restrictions: (1) the restriction (T)
which limits solutions to totally ordered plans, and (2)
the restriction (T;) which limits the number of action
instance to one in any solution; we noted 7; the combi-
nation of these two restrictions.

e We designed an algorithm, which we noted PP, to solve
SAS-PUT; problem instances, thus relaxing the single-
valuedness (S) restriction.

¢ We designed several SAS-PU7; problems to test various
features and in particular various time complexities as
our objective is planning in real-time; in particular, the
MultiPrv_X_Cycle generalizes the tunnel example. We
also designed a realistic Western domain with respect to
our video-gaming application domain.

* The worst case time complexity of our algorithm is lin-
ear in the number of action instances plus their order-
ings; the runtimes of our implementation of P for the
Western domain scales to two millions NPCs in about
one millisecond thus achieving our objective.

Future work will first take into account partial initial and final
states; then we wish to address SAST-PU75: is it possible to
design an algorithm as efficient as IP for this class of prob-
lems?

Procedure 3 P(M, A, s¢, $x)

Input: M; A; s, s.: totally defined initial and goal states.
Parameters: D, the set of yellow action instances; Ep, the
set of orderings of yellow action instances; Flag: m x m
boolean matrix with all entries set to false.
Output: P: a totally ordered action plan that link sg to s4;
yields a failure if the instance is not solvable.
LP—0;D+—0;Ep 0
2: for v; € M do {Phase 1}
if so[v;] # s« [v;] then
4 BuildChain(v;, so[vi], s«[vi], D, Ep,.A)
5 end if
6: end for
7
8

(O8]

. if D = () then return () {sg and s, are equal.}
: end if

9: for al. € D do {Phase 2}

10:  foraf, € Ny(ab,) do

11: if ¢ # s,[v;] then

12: if First(Next(af,)) = 0 then

13: BuildChain(vj;, g, so[v;], D, Ep, A)

14: end if

15: if pro(First(Next(af )))[v;] # p then

16: Ep < Ep U {(a, First(Next(af )))}

17: end if

18: end if

19: if ¢ # so[v;] then

20: if af ¢ A then fail

21: end if

22: if Color(af ) = white then

23: BuildChain(v;, so[v;], ¢, D, Ep, A)

24: end if

25: Ep + Ep U{(agj,a{,’i)}

26: Flag[v;|[v;] + true

27: else

28: if ~Flag[v;][v;] A pro(ad,)[vi] # p then

29: Ep «+— Ep U {(a,‘l]}j,a&)

30: else

31 if Flag[v;][v;] A pro(Last(Next(af, )))[vi] # p
then ‘

32: Ep + Ep U{(a}, Last(Next(a?,)))}

33: end if

34: end if

35: end if

36:  end for

37: end for

38: for a € D do {Phase 3}

39:  if Color(a) = yellow then
40: DFSTopo(a, D, Ep, so,P)
41:  endif

42: end for

43: return P
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