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ABSTRACT

The pretrain-finetune paradigm in modern computer vision facilitates the success
of self-supervised learning, which tends to achieve better transferability than su-
pervised learning. However, with the availability of massive labeled data, a natural
question emerges: how to train a better model with both self and full supervision
signals? In this paper, we propose Omni-suPErvised Representation leArning
with hierarchical supervisions (OPERA) as a solution. We provide a unified per-
spective of supervisions from labeled and unlabeled data and propose a unified
framework of fully supervised and self-supervised learning. We extract a set of
hierarchical proxy representations for each image and impose self and full su-
pervisions on the corresponding proxy representations. Extensive experiments on
both convolutional neural networks and vision transformers demonstrate the su-
periority of OPERA in image classification, segmentation, and object detection.1

1 INTRODUCTION

Learning good representations is a significant yet challenging task in deep learning (Chen & He,
2021; Zheng et al., 2021; He et al., 2020). Researchers have developed various ways to adapt to
different supervisions, such as fully supervised (Oh et al., 2018; Kim et al., 2020b; Wang et al., 2016;
Verma et al., 2019), self-supervised (Wang & Gupta, 2015; Ye & Shen, 2020; Grill et al., 2020; Chen
et al., 2020a), and semi-supervised learning (Xu et al., 2021; Zhang et al., 2021; Wang et al., 2022b).
They serve as fundamental procedures in various tasks including image classification (Deng et al.,
2019; Zhang et al., 2018; Yun et al., 2019), semantic segmentation (Grill et al., 2020; Strudel et al.,
2021), and object detection (He et al., 2017; Yang et al., 2019; Carion et al., 2020).
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Figure 1: The proposed OPERA outperforms both
fully supervised and self-supervised counterparts
on various downstream tasks.

Fully supervised learning (FSL) has always
been the default choice for representation learn-
ing, which learns from discriminating samples
with different ground-truth labels. However,
this dominance begins to fade with the rise
of the pretrain-finetune paradigm in modern
computer vision. Under such a paradigm, re-
searchers usually pretrain a network on a large
dataset first and then transfer it to downstream
tasks (He et al., 2021; Chu et al., 2021; He
et al., 2020; Chen & He, 2021). This advocates
transferability more than discriminativeness of
the learned representations. This preference
nurtures the recent success of self-supervised
learning (SSL) methods with contrastive objec-
tive (He et al., 2020; Xie et al., 2021; Grill et al.,
2020; Chen et al., 2020a; Wang & Qi, 2022).
They require two views (augmentations) of the same image to be consistent and distinct from other
images in the representation space. This instance-level supervision is said to obtain more general and
thus transferable representations (Ericsson et al., 2021; Islam et al., 2021). The ability to learn with-
out human-annotated labels also greatly popularizes self-supervised contrastive learning. Despite

1Code is provided in the supplementary material.
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Figure 2: Comparisons of different learning strategies. Fully supervised learning (a) and self-
supervised learning (b) constrain images at the class level and instance level, respectively. They
conflict with each other for different images from the same class. OPERA imposes hierarchical
supervisions on hierarchical spaces and uses a transformation to resolve the supervision conflicts.

its advantages, we want to explore whether combining self-supervised signals2 with fully supervised
signals further improves the transferability, given the already availability of massive annotated la-
bels (Russakovsky et al., 2015; Lin et al., 2014; Abu-El-Haija et al., 2016; Caesar et al., 2020).

We find that a simple combination of the self and full supervisions results in contradictory train-
ing signals. To address this, in this paper, we provide Omni-suPErvised Representation leArning
with hierarchical supervisions (OPERA) as a solution, as demonstrated in Figure 2. We unify full
and self supervisions in a similarity learning framework where they differ only by the definition of
positive and negative pairs. Instead of directly imposing supervisions on the representations, we
extract a hierarchy of proxy representations to receive the corresponding supervision signals. Ex-
tensive experiments are conducted with both convolutional neural networks (He et al., 2016) and
vision transformers (Dosovitskiy et al., 2020) as the backbone model. We pretrain the models using
OPERA on ImageNet-1K (Russakovsky et al., 2015) and then transfer them to various downstream
tasks to evaluate the transferability. We report image classification accuracy with both linear probe
and end-to-end finetuning on ImageNet-1K. We also conduct experiments when transferring the
pretrained model to other classification tasks, semantic segmentation, and object detection. Ex-
perimental results demonstrate consistent improvements over FSL and SSL on all the downstream
tasks, as shown in Figure 1. Additionally, we show that OPERA can outperform the counterpart
methods even with fewer pretraining epochs (e.g., fewer than 150 epochs), demonstrating good data
efficiency.

2 RELATED WORK

Fully Supervised Representation Learning. Fully supervised representation learning (FSL) uti-
lizes the ground-truth labels of data to learn a discriminative representation space. The general ob-
jective is to maximize the discrepancies of representations from different categories and minimize
those from the same class. The softmax loss is most widely used for fully supervised representation
learning (He et al., 2016; Liu et al., 2021; Deng et al., 2019; Wang et al., 2018). Various loss func-
tions are further developed in deep metric learning (Kim et al., 2020b; Wang et al., 2019; Hu et al.,
2014; Movshovitz-Attias et al., 2017; Teh et al., 2020), but are doubtful to achieve better perfor-
mance for general representation learning (Musgrave et al., 2020; Boudiaf et al., 2020; Zhai & Wu,
2018). As fully supervised objectives entail strong constraints, the learned representations are usu-
ally more suitable for the specialized classification task and thus lag behind on transferability (Zhao
et al., 2020; Ericsson et al., 2021; Islam et al., 2021). To alleviate this, many works devise various
data augmentation methods to expand the training distribution (Zhang et al., 2018; Kim et al., 2020a;

2We mainly focus on self-supervised contrastive learning. In the rest of the paper, we use self-supervised
learning to refer to self-supervised contrastive learning unless otherize specified for simplicity.
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Chen et al., 2022; Venkataramanan et al., 2022). Recent works also explore adding more layers after
the representation to avoid direct supervision (Vo & Hays, 2019; Wang et al., 2022c). Differently,
we focus on effectively combining full supervision with self-supervision to improve transferability.

Self-supervised Representation Learning. Self-supervised representation learning (SSL) attracts
increasing attention in recent years due to its ability to learn meaningful representation without
human-annotated labels. The main idea is to train the model to perform a carefully designed label-
free pretext task. Early self-supervised learning methods devised various pretext tasks including
image restoration (Vincent et al., 2008; Zhang et al., 2016; Pathak et al., 2016), prediction of image
rotation (Gidaris et al., 2018), and solving jigsaw puzzles (Noroozi & Favaro, 2016). They achieve
fair performance but still cannot equal fully supervised learning until the arise of self-supervised
contrastive learning (He et al., 2020; Chen et al., 2020a; Grill et al., 2020). The pretext task of
contrastive learning is instance discrimination, i.e., to identify different views (augmentations) of
the same image from those of other images. Contrastive learning methods (Chen & He, 2021;
Xie et al., 2021; Wang et al., 2022a; Xie et al., 2020; Liu et al., 2020; Chen et al., 2021a; Hou
et al., 2021; Liang et al., 2021) demonstrate even better transferability than fully supervised learning.
This superiority is said to result from their focus on learning lower-level and thus more general
features (Zhao et al., 2020; Ericsson et al., 2021; Islam et al., 2021). Very recently, masked image
modeling (MIM) (He et al., 2021; Zhou et al., 2021; Xie et al., 2022) emerges as a strong competitor
to contrastive learning, which trains the model to correctly predict the masked parts of the input
image. In this paper, we mainly focus on contrastive learning in self-supervised learning. Our
framework can be extended to other pretext tasks by inserting a new task space in our hierarchy.

Omni-supervised Representation Learning: It is worth mentioning that some existing studies
have attempted to combine FSL and SSL (Radosavovic et al., 2018; Nayman et al., 2022; Wei et al.,
2022). Radosavovic et al. (2018) first trained an FSL model and then performed knowledge distil-
lation on unlabeled data. Wei et al. (2022) adopted an SSL pretrained model to generate instance
labels and compute an overall similarity to train a new model. Nayman et al. (2022) proposed to
finetune an SSL pretrained model using ground-truth labels in a controlled manner to enhance its
transferability. Nevertheless, they do not consider the hierarchical relations between the self and full
supervision. Also, they perform SSL and FSL sequentially in separate stages. Differently, OPERA
unifies them in a universal perspective and imposes the supervisions on different levels of the repre-
sentations. Our framework can be trained in an end-to-end manner efficiently with fewer epochs.

3 PROPOSED APPROACH

In this section, we first present a unified perspective of self-supervised learning (SSL) and fully su-
pervised learning (FSL) under a similarity learning framework. We then propose OPERA to impose
hierarchical supervisions on the corresponding hierarchical representations for better transferability.
Lastly, we elaborate on the instantiation of the proposed OPERA framework.

3.1 UNIFIED FRAMEWORK OF SIMILARITY LEARNING

Given an image space X ⊂ RH×W×C , deep representation learning trains a deep neural network as
the map to their a representation space Y ⊂ RD×1. Fully supervised learning and self-supervised
learning are two mainstream representation learning approaches in modern deep learning. FSL
utilizes the human-annotated labels as explicit supervision to train a discriminative classifier. Dif-
ferently, SSL trains models without ground-truth labels. The widely used contrastive learning (e.g.,
MoCo-v3 (Chen et al., 2021b)) obtains meaningful representations by maximizing the similarity
between random augmentations of the same image.

Generally, FSL and SSL differ in both the supervision form and optimization objective. To integrate
them, we first provide a unified similarity learning framework to include both training objectives:

J(Y,P,L) =
∑

y∈Y,p∈P,l∈L

[−wp · I(ly, lp) · s(y,p) + wn · (1− I(ly, lp)) · s(y,p)], (1)

where wp ≥ 0 and wn ≥ 0 denote the coefficients of positive and negative pairs, ly and lp are the
labels of the samples, and s(y,p) defines the pairwise similarity between y and p. I(a, b) is an
indicator function which outputs 1 if a = b and 0 otherwise. L is the label space, and P can be the
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Figure 3: An illustration of the proposed OPERA framework. We impose perform SSL and FSL
on the corresponding proxy representations, respectively. OPERA combines both supervisions to
balance instance-level and class-level information for the backbone in an end-to-end manner.

same as Y , a transformation of Y , or a learnable class prototype space. For example, to obtain the
softmax objective widely employed in FSL (He et al., 2016; Touvron et al., 2021), we can set:

wp = 1, wn =
exp(s(y,p))∑

lp′ ̸=ly
exp(s(y,p′))

, (2)

where s(y,p) = y · p, and p to be the row vector in the classifier matrix W. For the infoNCE loss
used in contrastive learning (Van den Oord et al., 2018; He et al., 2020; Khosla et al., 2020), we set:

wp =
1

τ

∑
ll
p′ ̸=y

exp(s(y,p′)/τ)

exp(s(y,p)/τ) +
∑

lp′ ̸=ly
exp(s(y,p′)/τ)

, wn =
1

τ

exp(s(y,p)/τ)

exp(s(y,p)/τ) +
∑

lp′ ̸=ly
exp(s(y,p′)/τ)

(3)
where τ is the temperature hyper-parameter. We refer to Wang et al. (2019) for more details.

Under the unified training objective Eq. (1), the main difference between FSL and SSL lies in the
definition of the label space Lfull and Lself . For the labels lfull ∈ Lfull in FSL, lfulli = lfullj only
if they are from the same ground-truth category. For the labels lself ∈ Lself in SSL, lselfi = lselfj
only if they are the augmented views of the same image.

3.2 HIERARCHICAL SUPERVISIONS ON HIERARCHICAL REPRESENTATIONS

With the same formulation of the training objective, a naive way to combine the two training signals
is to simply add them:

Jnaive(Y,P,L) =
∑

y∈Y,p∈P,l∈L

[−wself
p · I(lselfy , lselfp ) · s(y,p) + wself

n · (1− I(lselfy , lselfp )) · s(y,p)

−wfull
p · I(lfully , lfullp ) · s(y,p) + wfull

n · (1− I(lfully , lfullp )) · s(y,p)].
(4)

For y and p from the same class, i.e., I(lselfy , lselfp ) = 0 and I(lfully , lfullp ) = 1, the training loss is:

Jnaive(y,p, l) = (wself
n − wfull

p ) · s(y,p). (5)

This indicates the two training signals are contradictory and may neutralize each other. This is par-
ticularly harmful if we adopt similar loss functions for fully supervised and self-supervised learning,
i.e., wself

n ≈ wfull
p , and thus Jnaive(y,p, l) ≈ 0.

Existing methods (Nayman et al., 2022; Wei et al., 2022; Wang et al., 2022c) address this by sub-
sequently imposing the two training signals. They tend to first obtain a self-supervised pretrained
model and then use the full supervision to tune it. Differently, we propose a more efficient way to
adaptively balance the two weights so that we can simultaneously employ them:

Jadap(y,p, l) = (wself
n · α− wfull

p · β) · s(y,p), (6)

where α and β are modulation factors that can be dependent on y and p for more flexibility. How-
ever, it remains challenging to design the specific formulation of α and β.
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Considering that the two label spaces are entangled and demonstrate a hierarchical structure:

I(lselfy , lselfp ) = 1 =⇒ I(lfully , lfullp ) = 1, (7)

i.e., the two augmented views of the same image must share the same category label, we trans-
form the image representation into proxy representations in an instance space and a class space to
construct a hierarchical structure. Formally, we apply two transformations Y sequentially:

Yself = g(Y), Yfull = h(Yself ), (8)

where g(·) and h(·) denote the mapping functions. We extract the class representations following the
instance representations since full supervision encodes higher-level features than self-supervision.

We then impose the self and full supervision on the instance space and class space, respectively, to
formulate the overall training objective for the proposed OPERA:

JO(Y,P,L) = Jself (Yself ,Pself ,Lself ) + Jfull(Yfull,Pfull,Lfull). (9)

We will show in the next subsection that this objective naturally implies Eq. (6), which implicitly
and adaptively balances the self and full supervisions in the representation space.

3.3 OMNI-SUPERVISED REPRESENTATION LEARNING

To effectively combine the self and full supervision to learn representations, OPERA further ex-
tracts a set of proxy representations hierarchically to receive the corresponding training signal, as
illustrated in Figure 3. Despite its simplicity and efficiency, it is not clear how it achieves balances
between the two supervision signals and how it resolves the contradiction demonstrated in Eq. (5).

To thoroughly understand the effect of Eq. (9) on the image representations, we project it back on
the representation space Y and obtain an equivalent training objective in Y .
Proposition 1. Assume using linear projection as the transformation between representation spaces,
i.e., g(y) = Wgy and h(y) = Why, where Wg and Wh are learnable parameters. Optimizing
Eq. (9) is equivalent to optimizing the following objective on the original representation space Y:

J(Y,P,L) =
∑

y∈Y,p∈P,l∈L

[I(lselfy , lselfp ) · I(lfully , lfullp ) · (−wself
p α(Wg)− wfull

p β(Wg,Wh)) · s(y,p)

+(1− I(lselfy , lselfp )) · I(lfully , lfullp ) · (wself
n α(Wg)− wfull

p β(Wg,Wh)) · s(y,p)

+(1− I(lselfy , lselfp )) · (1− I(lfully , lfullp )) · (wself
n α(Wg) + wfull

n β(Wg,Wh)) · s(y,p)],

(10)

where α(Wg) and β(Wg,Wh) are scalars related to the transformation parameters.

We give detailed proof in Appendix A.
Remark. Proposition 1 only considers the case without activation functions. We conjecture that the
mappings g(·) and h(·) only influence the form of β(·, ·) without altering the final conclusion.

Proposition 1 induces two corollaries as proved in Appendix B and Appendix C.
Corollary 1. The loss weight w on a pair of samples (y,p) satisfies:

w(lselfy = lselfp , lfully = lfullp ) ≤ w(lselfy ̸= lselfp , lfully = lfullp ) ≤ w(lselfy ̸= lselfp , lfully ̸= lfullp ). (11)

Corollary 2. We resolve the contradictory in Eq. (5) by adaptively adjusting the loss weight by

wself
n · α(Wg)− wfull

p · β(Wg,Wh). (12)

Corollary 1 ensures that the learned representations are consistent with how humans perceive the
similarities of images, i.e., the similarities between different images of the same class should be
larger than those between images of different classes but smaller than those between the views of
the same images. Corollary 2 demonstrates the ability of OPERA to adaptively balance the training
signals of self and full supervisions.

OPERA can be trained in an end-to-end manner using both self and full supervisions. We extract
proxy representations in hierarchical spaces to receive the corresponding training signals. For infer-
ence, we discard the proxy representations and directly add the task head on the image representation
space Y . We give an example of an instantiation of OPERA in Appendix D.
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Table 1: Top-1 and top-5 accuracies (%) under the linear classification protocol on ImageNet.
Method Batch Size Pretraining Finetuning Backbone Top-1 Acc Top-5 Acc

MoCo-v1 256 200 100 R50 60.6 -
MoCo-v2 256 200 100 R50 67.5 -
MoCo-v2 256 800 100 R50 71.1 -
SimCLR 4096 100 1000 R50 69.3 89.0
SimSiam 256 800 100 R50 71.3 -
BYOL 4096 1000 80 R50 74.3 91.6

MoCo-v3† 1024 300 90 R50 70.5 90.0
OPERA 1024 300 90 R50 74.8 91.9
MoCo-v3† 1024 300 90 DeiT-S 71.2 90.3
OPERA 1024 300 90 DeiT-S 73.7 91.3

Table 2: Top-1 and top-5 accuracies (%) under the end-to-end finetuning protocol on ImageNet.
Method Batch Size Pretraining Finetuning Backbone Top-1 Acc Top-5 Acc

Supervised 1024 - 300 DeiT-S 79.8 95.0
Supervised 1024 - 300 DeiT-B 81.8 95.6
DINO† 1024 300 300 DeiT-B 82.8 96.3

MoCo-v3† 1024 300 100 DeiT-S 78.8 94.6
OPERA 1024 300 100 DeiT-S 80.0 95.1
MoCo-v3† 1024 300 150 DeiT-S 79.1 94.6
OPERA 1024 300 150 DeiT-S 80.4 95.3
MoCo-v3† 1024 300 200 DeiT-S 80.0 95.2
OPERA 1024 300 200 DeiT-S 80.8 95.5
MoCo-v3† 1024 300 150 DeiT-B 82.1 95.9
OPERA 1024 300 150 DeiT-B 82.6 96.2
MoCo-v3† 2048 300 150 DeiT-B 82.7 96.3
OPERA 2048 300 150 DeiT-B 83.1 96.4
MoCo-v3† 4096 300 150 DeiT-B 83.0 96.3
OPERA 4096 300 150 DeiT-B 83.5 96.5

4 EXPERIMENTS

In this section, we conducted extensive experiments to evaluate the performance of the proposed
OPERA framework. We pretrained the network using OPERA on the ImageNet-1K (Russakovsky
et al., 2015) (IN) dataset and then evaluated its performance on different tasks. We also provide
in-depth ablation studies to analyze the effectiveness of OPERA. All experiments were conducted
with the PyTorch (Paszke et al., 2019) library using RTX 3090 GPUs.

4.1 EXPERIMENTAL SETUP

Datasets. We pretrain our model on the training set of ImageNet-1K (Russakovsky et al., 2015)
containing 1,200,000 samples of 1,000 categories. We then evaluate the linear probe and end-to-
end finetuning performance on the validation set consisting of 50,000 images. For transferring to
other classification tasks, we adopt CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky
et al., 2009), Oxford Flowers-102 (Nilsback & Zisserman, 2008), and Oxford-IIIT-Pets (Parkhi et al.,
2012). For other downstream tasks, we use ADE20K (Zhou et al., 2019) for semantic segmentation
and COCO (Lin et al., 2014) for object detection and instance segmentation.

Implementation Details. We mainly applied our OPERA to MoCo-v3 (Chen et al., 2021b). We
added an extra MLP block after the predictor of the online network, which is composed of two
fully-connected layers with a batch normalization layer and a ReLU layer. The hidden dimension
of the MLP block was set to 256 while the output dimension was 1, 000. We trained ResNet50 (He
et al., 2016) (R50) and DeiTs (Touvron et al., 2021) (DeiT-S and DeiT-B) as our backbone with
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Table 3: Top-1 accuracy (%) of the transfer learning on other classification datasets.
Method Pretraining Finetuning Backbone CIFAR-10 CIFAR-100 Flowers-102 Pets

Supervised† 300 100 R50 97.6 85.5 95.6 92.2
MoCo-v3† 300 100 R50 97.8 86.0 93.7 90.0
OPERA 300 100 R50 98.2 86.8 95.6 92.7
Supervised† 300 100 DeiT-S 98.4 86.9 95.4 93.0
MoCo-v3† 300 100 DeiT-S 97.9 86.6 90.3 90.1
OPERA 300 100 DeiT-S 98.6 89.0 95.5 93.3

Table 4: Experimental results of semantic segmentation on ADE20K (160k schedule).
Method Pretraining Backbone Batch Size mIoU mAcc aAcc

Supervised 300 R50 1024 36.1 45.4 77.5
MoCo-v3† 300 R50 1024 37.0 47.0 77.6
OPERA 300 R50 1024 37.9 48.1 77.9
OPERA 300 R50 4096 38.4 48.5 78.1
Supervised 300 DeiT-S 1024 42.9 53.9 80.3
MoCo-v3† 300 DeiT-S 1024 42.3 53.5 80.6
OPERA 300 DeiT-S 1024 43.6 54.4 80.9
OPERA 300 DeiT-S 4096 43.8 54.6 80.9
Supervised 300 DeiT-B 1024 45.4 56.5 81.4
MoCo-v3† 300 DeiT-B 1024 44.4 55.1 81.5
OPERA 300 DeiT-B 1024 45.2 55.9 81.9
MoCo-v3† 300 DeiT-B 2048 45.2 55.5 81.9
OPERA 300 DeiT-B 2048 45.9 56.7 82.0
MoCo-v3† 300 DeiT-B 4096 46.1 56.7 82.1
OPERA 300 DeiT-B 4096 46.6 57.2 82.1

a batch size of 1024, 2048, and 4096. We adopted LARS (You et al., 2017) as the optimizer for
R50 and AdamW (Loshchilov & Hutter, 2018) for DeiT. We set the other settings the same as the
original MoCo-v3 for fair comparisons. In the following experiments, † denotes our reproduced
results with the same settings. The bold number highlights the improvement of OPERA compared
with the associated method, and the red number indicates the best performance.

4.2 MAIN RESULTS

Linear Probe Evaluation on ImageNet. We evaluated OPERA using the linear probe protocol,
where we trained a classifier on top of the frozen representation. We also compared OPERA with
existing SSL methods including MoCo-v1 (He et al., 2020), MoCo-v2 (Chen et al., 2020b), Sim-
CLR (Chen et al., 2020a), SimSiam (Chen & He, 2021), and BYOL (Grill et al., 2020), as shown in
Table 1. We achieved 74.8% and 73.7% top-1 accuracy using R50 and DeiT-S, respectively. This
demonstrates the discriminative ability of the learned representations using OPERA.

End-to-end Finetuning on Imagenet. Having pretrained, we finetuned the backbone on the train-
ing set of ImageNet. We provide the results in Table 2 with diverse batch sizes and end-to-end
finetuning epochs. We see that OPERA consistently achieves better performance under the same
setting compared with the MoCo-v3 baseline and DINO (Caron et al., 2021).

Transfer to Other Classification Tasks. We transferred the pretrained network to other classi-
fication tasks including CIFAR-10, CIFAR-100, Oxford Flowers-102, and Oxford-IIIT-Pets. We
fixed the finetuning epochs to 100 following Chen et al. (2021b) and reported the top-1 accuracy in
Table 3. We observe that OPERA obtains better results on four datasets with both R50 and DeiT-
S. Though MoCo-v3 does not show consistent improvement compared to supervised training on
these tasks, our OPERA demonstrates clear superiority. The results demonstrate that OPERA learns
generic representations from ImageNet which can widely transfer to smaller classification datasets.

Transfer to Semantic Segmentation. We also transferred the OPERA-pretrained network to se-
mantic segmentation on ADE20K, which aims at classifying each pixel of an image. We adopted
the MMSegmentaion (Contributors, 2020) codebase to conduct the experiments under the same
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Table 5: Experimental results of object detection and instance segmentation on the COCO dataset.
(Mask R-CNN, R50-FPN, 1 × schedule)

Method Pretraining Batch Size APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Rand. Init. - 1024 31.0 49.5 33.2 28.5 46.8 30.4
Supervised 300 1024 38.2 58.8 41.4 34.7 55.7 37.2
MoCo-v3† 300 1024 38.9 58.8 42.4 35.2 56.0 37.7
OPERA 300 1024 39.2 59.2 42.6 35.9 56.2 38.1
OPERA 300 4096 39.3 59.3 42.9 36.0 56.4 38.1

Table 6: Experimental results of object detection and instance segmentation on the COCO dataset
(Mask R-CNN, R50-FPN, 2 × schedule).

Method Pretraining Backbone APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Rand. Init. - 1024 36.7 56.7 40.0 33.7 53.8 35.9
Supervised 300 1024 39.2 59.6 42.8 35.4 56.4 37.9
MoCo-v3† 300 1024 40.3 60.0 44.3 36.5 57.4 39.0
OPERA 300 1024 41.2 60.7 45.0 36.9 57.7 39.5
OPERA 300 4096 41.5 61.2 45.5 37.3 58.2 39.9

setting. Specifically, we equipped R50 with FCN (Shelhamer et al., 2017) and DeiTs with UPer-
Net (Xiao et al., 2018). We used a learning schedule of 160k. We provided the experimental results
in Table 4. We observe consistent improvements over both supervised learning and MoCo-v3 with
both R50 and DeiTs. Particularly, MoCo-v3 performs worse than the supervised model with DeiT-S
(-0.6 mIoU) while OPERA still outperforms supervised learning with a large margin (+0.9 mIoU).

Transfer to Object Detection and Instance Segmentation. We further evaluated the transferabil-
ity of OPERA to object detection and instance segmentation on COCO. We performed finetuning
and evaluation on COCOtrain2017 and COCOval2017, respectively, using the MMDetection (Chen
et al., 2019) codebase. We adopted Mask R-CNN (He et al., 2017) with R50-FPN as the detection
model. We reported the performance using the 1 × schedule (12 epochs) and 2 × schedule (24
epochs) in Tables 5 and 6, respectively. We observe that both OPERA and MoCo-v3 demonstrate
remarkable advantages compared with random initialization as well as supervised learning on both
object detection and instance segmentation. Additionally, OPERA further improves MoCo-v3 by a
relatively large margin on both training schedules, indicating that OPERA can generalize well on
detection and instance segmentation datasets.

4.3 ABLATION STUDY

To further understand the proposed OPERA, we conducted various ablation studies to evaluate its
effectiveness. We mainly focus on end-to-end finetuning on ImageNet for representation discrimi-
nativeness and semantic segmentation on ADE20K for representation transferability evaluation. We
fixed the number of finetuning epochs to 100 for ImageNet and used a learning schedule of 160k
based on UPerNet (Xiao et al., 2018) on ADE20K.

Arrangements of Supervisions. As discussed in the paper, the arrangements of supervisions are
significant to the quality of the representation. We thus conducted experiments with different ar-
rangements of supervisions to analyze their effects, as illustrated in Figure 4. We maintained the
basic structure of contrastive learning and impose the fully-supervised training signal on three dif-
ferent positions. Note that Figure 4 only shows the online network of the framework. Specifically,
arrangement A obtains the class-level representation from the backbone and directly imposes the
fully-supervised learning signal. Differently, arrangement B simultaneously extracts the class-level
representation and the instance-level representation with an MLP structure from the projector. Ar-
rangement C denotes the proposed OPERA framework in our main experiments. The experimental
results are shown in the right of Figure 4. We observe that arrangement A achieves the highest
classification performance on ImageNet. This is because the full supervision is directly imposed
on the backbone feature, which extracts more class-level information during pretraining. However,
both arrangements A and B perform much worse on the downstream semantic segmentation task.
They ignore the underlying hierarchy of the supervisions and do not apply the stronger supervision
(full supervision) after the weaker supervision (self-supervision). The learned representation tends
to abandon more instance-level information but obtain more task-specific knowledge, which is not
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beneficial to the transfer learning tasks. Instead, our OPERA (arrangement C) achieves a better
balance of class-level and instance-level information learning.

Pretraining Epochs. We conducted experiments with different pretraining epochs on ImageNet and
provided corresponding results in Figure 5. We observe that both tasks perform better with longer
pretraining epochs. Particularly, the performance on semantic segmentation is more sensitive to the
number of pretraining epochs compared with ImageNet finetuning, indicating that it takes longer for
learning instance-level knowledge. Note that the finetuning accuracy reaches 78.7% with only 50
pretraining epochs, which demonstrates the efficiency of OPERA.

Layer Numbers of MLP. We evaluated OPERA with different numbers of fully-connected layers
in the final MLP block, as illustrated in Figure 6. We observe that the classification performance
generally decreases with more layers deployed. This demonstrates that the class-level supervision
is weakened after the MLP block so that the model extracts less class-level information with more
layers. For semantic segmentation, the mIoU improves (+0.5) when the layer number increases from
1 to 2, indicating that weaker class-level supervision boosts the transferability of the representation.
Still, the performance drops with more layers due to the less effect of the class-level supervision.

Embedding Dimensions. The embedding dimension in our framework measures the output size
of the online network projector. We tested the performance using a dimension of 128, 256, 512,
1024, 2048, and 4096 for the embedding and provide the results in Figure 7. We observe that the
ImageNet accuracy gradually increases before the embedding dimension reaches 512. In addition,
the model achieves the best segmentation performance when the dimension is 256. This indicates
that larger dimensions do not necessarily enhance the results because of the information redundancy.
Therefore, we adopted the embedding dimension of 256 in the main experiments for the best trade-
off between model performances and training efficiency.

Hidden Dimensions of MLP. The hidden dimension of MLP corresponds to the output size of the
first linear layer. We fixed the other settings and used a dimension of 128, 256, 512, 1024, 2048, and
4096 for comparison, as shown in Figure 8. We see that enlarging the hidden dimension would not
necessarily benefit the two tasks, indicating that OPERA is not sensitive to the hidden dimensions
of MLP. Therefore, we employ a dimension of 256 for the main experiments.

5 CONCLUSION

In this paper, we have presented an omni-supervised representation learning with hierarchical super-
visions (OPERA) framework to effectively combine fully-supervised and self-supervised contrastive
learning. We provide a unified perspective of both supervisions and impose the corresponding su-
pervisions on the hierarchical proxy representations in an end-to-end manner. We have conducted
extensive experiments on classification and other downstream tasks including semantic segmenta-
tion and object detection to evaluate the effectiveness of our framework. The experimental results
have demonstrated the superior classification and transferability of OPERA over both fully super-
vised learning and self-supervised contrastive learning. In the future, we will seek to integrate other
self-supervised signals such as masked image modeling to further improve the performance.
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A PROOF OF PROPOSITION 1

Proof. We consider the overall supervision on a pair of samples (y,p) in Eq. (9), which is as fol-
lows:

JO(y,p) = −I(lselfy , lselfp ) · wself
p · s(yself ,pself ) + (1− I(lselfy , lselfp )) · wself

n · s(yself ,pself )

− I(lfully , lfullp ) · wfull
p · s(yfull,pfull) + (1− I(lfully , lfullp )) · wfull

n · s(yfull,pfull)
(13)

We calculate the gradient of JO(y,p) towards y as follows:

∂JO(y,p)

∂y
= −I(lselfy , lselfp ) · wself

p ·W T
g γ(yself ,pself ) + (1− I(lselfy , lselfp )) · wself

n ·W T
g γ(yself ,pself )

−I(lfully , lfullp ) · wfull
p ·W T

g W T
h γ(yfull,pfull) + (1− I(lfully , lfullp )) · wfull

n ·W T
g W T

h γ(yfull,pfull)
(14)

where γ(y,pp) =
∂s(y,pp)

∂y . For simplicity and clarity, we define s(y,p) = yTp. Under such
circumstances, Eq. (14) can be formulated as follows:

∂JO(y,p)

∂y
= −I(lselfy , lselfp ) · wself

p ·W T
g Wgp+ (1− I(lselfy , lselfp )) · wself

n ·W T
g Wgp

−I(lfully , lfullp ) · wfull
p ·W T

g W T
h WhWgp+ (1− I(lfully , lfullp )) · wfull

n ·W T
g W T

h WhWgp

(15)

Under such circumstances, the concrete form of Eq. (15) is determined by the label connection
between y and p. Specifically, when I(lselfy , lselfp ) ·I(lfully , lfullp ) = 1, denoting that y and p shares
the same self-supervised and fully supervised label, Eq. (15) degenerates to:

∂JO(y,p)

∂y
= W T

g (−wself
p I − wfull

p W T
h Wh)Wgp (16)

Similarly, when (1− I(lselfy , lselfp )) · I(lfully , lfullp ) = 1, Eq. (15) degenerates to:

∂JO(y,p)

∂y
= W T

g (wself
n I − wfull

p W T
h Wh)Wgp (17)

And when (1− I(lselfy , lselfp )) · (1− I(lfully , lfullp )) = 1, Eq. (15) degenerates to:

∂JO(y,p)

∂y
= W T

g (wself
n I + wfull

n W T
h Wh)Wgp (18)

Next, we consider that p is fixed during optimization (such as a prototype) and provide the change
of s(y,p) based on Eq. (17) for example:

∆sO(y,p) ∝ (
∂JO(y,p)

∂y
)T · p = pTW T

g (wself
n I − wfull

p W T
h Wh)Wgp

= wself
n (pself )Tpself − wfull

p (pfull)Tpfull

= wself
n α(Wg)− wfull

p β(Wg,Wh)

(19)

Therefore, we formulate the above equation considering all the possible relations between the label
of y and p as follows:

∆sO(y,p) ∝ I(lselfy , lselfp ) · I(lfully , lfullp ) · (−wself
p α(Wg)− wfull

p β(Wg,Wh))

+(1− I(lselfy , lselfp )) · I(lfully , lfullp ) · (wself
n α(Wg)− wfull

p β(Wg,Wh))

+(1− I(lselfy , lselfp )) · (1− I(lfully , lfullp )) · (wself
n β(Wg) + wfull

n α(Wg,Wh))

(20)

For Eq. (10), we similarly consider a pair of samples (y,p) and we can obtain the gradient of
J(y,p) towards s(y,p) as follows:

∂J(y,p)

∂s(y,p)
= I(lselfy , lselfp ) · I(lfully , lfullp ) · (−wself

p α(Wg)− wfull
p β(Wg,Wh))

+ (1− I(lselfy , lselfp )) · I(lfully , lfullp ) · (wself
n α(Wg)− wfull

p β(Wg,Wh))

+ (1− I(lselfy , lselfp )) · (1− I(lfully , lfullp )) · (wself
n β(Wg) + wfull

n α(Wg,Wh))

(21)
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The change of s(y,p) during optimization for Eq. (10) is proportional to to ∂J(y,p)
∂s(y,p) :

∆s(y,p) ∝ I(lselfy , lselfp ) · I(lfully , lfullp ) · (−wself
p α(Wg)− wfull

p β(Wg,Wh))

+ (1− I(lselfy , lselfp )) · I(lfully , lfullp ) · (wself
n α(Wg)− wfull

p β(Wg,Wh))

+ (1− I(lselfy , lselfp )) · (1− I(lfully , lfullp )) · (wself
n β(Wg) + wfull

n α(Wg,Wh))

(22)

Therefore, the optimization towards s(y,p) of Eq. (10) is equal to Eq. (9). In addition, this conclu-
sion is also applicable to the summation form of Eq. (10) and Eq. (9), which means that Eq. (10) is
an equivalent form of Eq. (9).

B PROOF OF COROLLARY 1

Proof. With the gradient of Eq. (10) in Eq. (21), we provide the loss weight on (y,p) as follows:

w(lselfy = lselfp , lfully = lfullp ) = −wself
p α(Wg)− wfull

p β(Wg,Wh) (23)

w(lselfy ̸= lselfp , lfully = lfullp ) = wself
n α(Wg)− wfull

p β(Wg,Wh) (24)

w(lselfy ̸= lselfp , lfully ̸= lfullp ) = wself
n α(Wg) + wfull

n β(Wg,Wh) (25)

Therefore, we can obtain the following two inequalities:

w(lselfy = lselfp , lfully = lfullp )− w(lselfy ̸= lselfp , lfully = lfullp )

= −wself
p α(Wg)− wself

n α(Wg) ≤ 0
(26)

w(lselfy ̸= lselfp , lfully = lfullp )− w(lselfy ̸= lselfp , lfully ̸= lfullp )

= wfull
p β(Wg,Wh)− wfull

n β(Wg,Wh) ≤ 0
(27)

We organize the above inequalities, which can be formulated as follows:

w(lselfy = lselfp , lfully = lfullp ) ≤ w(lselfy ̸= lselfp , lfully = lfullp ) ≤ w(lselfy ̸= lselfp , lfully ̸= lfullp ).
(28)

C PROOF OF COROLLARY 2

Proof. For contradictory situation where I(lselfy , lselfp ) = 0 and I(lfully , lfullp ) = 1, the loss weight
is as follows:

w(lselfy ̸= lselfp , lfully = lfullp ) = wself
n · α(Wg)− wfull

p · β(Wg,Wh) (29)

Therefore, the direction and intensity of optimization is determined by the values of alpha(Wg) and
β(Wg,Wh). For example, when wself

n ·α(Wg)−wfull
p ·β(Wg,Wh) < 0, the model increases the

similarity between y and p during optimization. Consequently, OPERA adaptively adjusts the loss
weight between each pair of samples to resolve the contradiction in Eq. (5).

D INSTANTIATION OF OPERA

We present the instantiation of the proposed omni-supervised representation learning with hierar-
chical supervisions. In the pretraining procedure, we extract hierarchical proxy representations for
each image xi in our model, denoted as {yself

i ,yfull
i }. We conduct self-supervised learning with

the instance-level label lselfi on the instance-level representation yself
i and the class-level label lfulli

is imposed on yfull
i . The overall objective of our framework follows Eq. (9) and OPERA can be

optimized in an end-to-end manner. During finetuning, the downstream task head is directly applied
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to the learned representations Y . The transfer learning includes image classification and other dense
prediction tasks such as semantic segmentation.

Our OPERA framework is compatible with a variety of existing contrastive learning methods. For
example, we apply OPERA to MoCo-v3 (Chen et al., 2021b) by instantiating Yself as the output of
the online predictor and the target predictor denoted as Yself

q and Yself
k , respectively. Additionally,

J(Yself ,Lself ) is the widely-used InfoNCE loss (Van den Oord et al., 2018). Furthermore, we
employ an extra MLP block that explicitly connects to the online predictor to obtain Yfull and fix
the output dimension to the class number of the pretrained dataset (e.g., 1,000 for ImageNet). We
then introduce full supervision on Yfull with the Softmax loss. The overall objective based on
MoCo-v3 is as follows:

Jm(Y,L) = 1

N

N∑
i=1

[−log
exp(yself

q,i · yself
k,i /τ)

exp(yq,i · yk,i/τ) +
∑

j ̸=i exp(yq,i · yk,j/τ)
− log

exp(yfull
i,li

)∑
j ̸=li

exp(yfull
i,j )

]

(30)
where yfull

i,j denotes the jth component of yfull
i . In addition, we also adopt the stop-gradient op-

eration and the momentum update to the target network following He et al. (2020). Therefore, the
proposed OPERA framework preserves the instance-level information in MoCo-v3 to prevent dam-
aging the transferability of the model. Furthermore, OPERA involves class-level knowledge with
the class-level full supervision, which further boosts the performance of the learned representations.

E IMPLEMENTATION DETAILS

We provide more implementation details of our experiments on linear evaluation, end-to-end fine-
tuning, semantic segmentation, and object detection.

E.1 LINEAR EVALUATION AND END-TO-END FINETUNING

We evaluated our method on linear evaluation and end-to-end finetuning on the ImageNet (Rus-
sakovsky et al., 2015) dataset. For linear evaluation, we used the SGD optimizer and fixed the batch
size to 1024. We set the learning rate to 0.1 for R50 (He et al., 2016) and 3.0 for DeiT-S (Tou-
vron et al., 2021). The weight decay was 0 and the momentum of the optimizer was 0.9 for both
architectures. Additionally, we conducted end-to-end finetuning with DeiTs and respectively set
the batch size to 1024, 2048, and 4096. We used the AdamW (Loshchilov & Hutter, 2018) opti-
mizer with an initial learning rate of 5e-4 and a weight decay of 0.05. We employed the cosine
annealing (Loshchilov & Hutter, 2016) learning schedule during training.

E.2 SEMANTIC SEGMENTATION

We transferred the pretrained models to the semantic segmentation task with R50 and DeiTs on the
ADE20K (Zhou et al., 2019) dataset. For R50, we used FCN (Shelhamer et al., 2017) as the basic
segmentation head. We applied the SGD (Robbins & Monro, 1985) optimizer with a learning rate
of 0.01, a momentum of 0.9, and a weight decay of 5e-4. For DeiTs, we adopted the UPerNet (Xiao
et al., 2018) as the basic decoder and FCN (Shelhamer et al., 2017) as the auxiliary head. The
optimizer, the momentum, and the weight decay are the same as R50. In addition, we trained the
models for 160k for both architectures.

E.3 OBJECT DETECTION

We conducted experiments on object detection and instance segmentation with R50 on the
COCO (Lin et al., 2014) dataset. We employed Mask R-CNN (He et al., 2017) with R50-FPN
as the backbone. We used the SGD (Robbins & Monro, 1985) optimizer with a learning rate of 0.02,
a momentum of 0.9, and a weight decay of 1e-4 for both 1 × and 2 × schedules.
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Table 7: Top-1 and top-5 accuracies (%) under the linear classification protocol on ImageNet.
Method Batch Size Pretraining Finetuning Backbone Top-1 Acc Top-5 Acc

MoCo-v1 256 200 100 R50 60.6 -
MoCo-v2 256 200 100 R50 67.5 -
MoCo-v2 256 800 100 R50 71.1 -
SimCLR 4096 100 1000 R50 69.3 89.0
SimSiam 256 800 100 R50 71.3 -
BYOL 4096 1000 80 R50 74.3 91.6

MoCo-v3† 1024 300 90 R50 70.5 90.0
OPERA 1024 150 90 R50 73.7 91.2
OPERA 1024 300 90 R50 74.8 91.9
MoCo-v3† 1024 300 90 DeiT-S 71.2 90.3
OPERA 1024 150 90 DeiT-S 72.7 90.7
OPERA 1024 300 90 DeiT-S 73.7 91.3

Table 8: Top-1 and top-5 accuracies (%) under the end-to-end finetuning protocol on ImageNet.
Method Batch Size Pretraining Finetuning Backbone Top-1 Acc Top-5 Acc

Supervised 1024 - 300 DeiT-S 79.8 95.0
Supervised 1024 - 300 DeiT-B 81.8 95.6
DINO† 1024 300 300 DeiT-B 82.8 96.3

MoCo-v3† 1024 300 100 DeiT-S 78.8 94.6
OPERA 1024 100 100 DeiT-S 78.8 94.7
OPERA 1024 150 100 DeiT-S 79.1 94.7
OPERA 1024 300 100 DeiT-S 80.0 95.1
MoCo-v3† 1024 300 150 DeiT-S 79.1 94.6
OPERA 1024 100 150 DeiT-S 79.8 94.9
OPERA 1024 150 150 DeiT-S 79.9 95.1
OPERA 1024 300 150 DeiT-S 80.4 95.3
MoCo-v3† 1024 300 200 DeiT-S 80.0 95.2
OPERA 1024 100 200 DeiT-S 80.3 95.3
OPERA 1024 300 200 DeiT-S 80.8 95.5
MoCo-v3† 1024 300 150 DeiT-B 82.1 95.9
OPERA 1024 150 150 DeiT-B 82.4 96.0
OPERA 1024 300 150 DeiT-B 82.6 96.2
MoCo-v3† 2048 300 150 DeiT-B 82.7 96.3
OPERA 2048 150 150 DeiT-B 82.8 96.3
OPERA 2048 300 150 DeiT-B 83.1 96.4
MoCo-v3† 4096 300 150 DeiT-B 83.0 96.3
OPERA 4096 150 150 DeiT-B 83.2 96.4
OPERA 4096 300 150 DeiT-B 83.5 96.5

F MORE EXPERIMENTAL RESULTS

We present more experimental results of our OPERA framework in this section including com-
parison experiments with diverse pretraining epochs, as shown in Table 7, Table 8, Table 9, Ta-
ble 10, Table 11, and Table 12. We observe that OPERA pretrained with fewer epochs (150 or 100)
still obtained consistent performance boosts compared with the MoCo-v3 baseline. For example,
in Table 8, OPERA based on DeiT-S pretrained for 100 epochs and finetuned on ImageNet for 150
epochs with the batch size of 1024 achieved 79.8% top-1 accuracy, which is 0.7% higher than the
baseline. Additionally, for semantic segmentation in Table 10, we can see that OPERA based on R50
pretrained for 150 epochs achieved 37.7 mIoU, which surpassed both the MoCo-v3 baseline and the
supervised counterpart. Therefore, the proposed OPERA framework improves the performances on
these vision tasks in an efficient training process, which further demonstrates the superiority of our
method.
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Table 9: Top-1 accuracy (%) of the transfer learning on other classification datasets.
Method Pretraining Finetuning Backbone CIFAR-10 CIFAR-100 Flowers-102 Pets

Supervised† 300 100 R50 97.6 85.5 95.6 92.2
MoCo-v3† 300 100 R50 97.8 86.0 93.7 90.0
OPERA 150 100 R50 97.9 86.3 93.9 91.1
OPERA 300 100 R50 98.2 86.8 95.6 92.7
Supervised† 300 100 DeiT-S 98.4 86.9 95.4 93.0
MoCo-v3† 300 100 DeiT-S 97.9 86.6 90.3 90.1
OPERA 150 100 DeiT-S 98.4 88.5 94.6 91.9
OPERA 300 100 DeiT-S 98.6 89.0 95.5 93.3

Table 10: Experimental results of semantic segmentation on ADE20K (160k schedule).
Method Pretraining Backbone Batch Size mIoU mAcc aAcc

Supervised 300 R50 1024 36.1 45.4 77.5
MoCo-v3† 300 R50 1024 37.0 47.0 77.6
OPERA 100 R50 1024 37.2 47.4 77.6
OPERA 150 R50 1024 37.7 47.9 77.7
OPERA 300 R50 1024 37.9 48.1 77.9
OPERA 150 R50 4096 38.1 47.9 78.0
OPERA 300 R50 4096 38.4 48.5 78.1
Supervised 300 DeiT-S 1024 42.9 53.9 80.3
MoCo-v3† 300 DeiT-S 1024 42.3 53.5 80.6
OPERA 100 DeiT-S 1024 42.4 53.0 80.4
OPERA 150 DeiT-S 1024 43.4 54.2 80.8
OPERA 300 DeiT-S 1024 43.6 54.4 80.9
OPERA 150 DeiT-S 4096 43.5 54.3 80.8
OPERA 300 DeiT-S 4096 43.8 54.6 80.9
Supervised 300 DeiT-B 1024 45.4 56.5 81.4
MoCo-v3† 300 DeiT-B 1024 44.4 55.1 81.5
OPERA 150 DeiT-B 1024 44.8 55.7 81.8
OPERA 300 DeiT-B 1024 45.2 55.9 81.9
MoCo-v3† 300 DeiT-B 2048 45.2 55.5 81.9
OPERA 150 DeiT-B 2048 45.6 56.4 82.0
OPERA 300 DeiT-B 2048 45.9 56.7 82.0
MoCo-v3† 300 DeiT-B 4096 46.1 56.7 82.1
OPERA 150 DeiT-B 4096 46.4 56.9 82.1
OPERA 300 DeiT-B 4096 46.6 57.2 82.1

G GENERALIZING TO MIM METHODS

Masked image modeling (MIM) methods mask part of the input images and extract the represen-
tations based on the masked images. These methods then predict the missing portion using the
obtained representations. For example, MAE (He et al., 2021) utilizes an autoencoder structure
where an encoder extracts the latent representations and a decoder reconstructs the whole image
with the representations. The experimental results between contrastive learning methods and MIM-
based methods are listed in Table 13. The MIM-based methods include BEiT (Bao et al., 2021),
MSN (Assran et al., 2022), MAE (He et al., 2021), iBOT (Zhou et al., 2021), and SimMIM (Xie
et al., 2022). We can see that MIM-based methods tend to pretrain the models for more epochs and
obtain better performances than contrastive learning approaches. However, our OPERA framework
achieves 83.5% top-1 accuracy and is comparable with MIM-based methods (higher than BEiT (Bao
et al., 2021) and MSN (Assran et al., 2022)), which demonstrates the effectiveness of the proposed
method. In addition, as we have mentioned before, our framework can be extended to masked image
modeling (MIM) methods by inserting a new task space in our hierarchy. Specifically, we maintain
the image reconstruction supervision in MIM models and transform the representations to a new
latent space where we adopt fully supervised learning with the ground truth labels. The practical
implementation of OPERA to MIM models serves as our future work.
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Table 11: Experimental results of object detection and instance segmentation on the COCO dataset.
(Mask R-CNN, R50-FPN, 1 × schedule)

Method Pretraining Batch Size APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Rand. Init. - 1024 31.0 49.5 33.2 28.5 46.8 30.4
Supervised 300 1024 38.2 58.8 41.4 34.7 55.7 37.2
MoCo-v3† 300 1024 38.9 58.8 42.4 35.2 56.0 37.7
OPERA 150 1024 38.9 58.9 42.1 35.3 55.8 37.8
OPERA 300 1024 39.2 59.2 42.6 35.9 56.2 38.1
OPERA 150 4096 39.1 59.1 42.7 35.6 56.2 38.0
OPERA 300 4096 39.3 59.3 42.9 36.0 56.4 38.1

Table 12: Experimental results of object detection and instance segmentation on the COCO dataset
(Mask R-CNN, R50-FPN, 2 × schedule).

Method Pretraining Backbone APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Rand. Init. - 1024 36.7 56.7 40.0 33.7 53.8 35.9
Supervised 300 1024 39.2 59.6 42.8 35.4 56.4 37.9
MoCo-v3† 300 1024 40.3 60.0 44.3 36.5 57.4 39.0
OPERA 150 1024 40.5 60.0 44.6 36.4 57.3 39.0
OPERA 300 1024 41.2 60.7 45.0 36.9 57.7 39.5
OPERA 150 4096 41.2 60.9 45.1 37.0 58.0 39.6
OPERA 300 4096 41.5 61.2 45.5 37.3 58.2 39.9

Table 13: Top-1 accuracy (%) under the end-to-end finetuning protocol on ImageNet based on MIM
methods.

Method Type Pretraining Backbone Top-1 Acc

BEiT Masked Image Modeling 800 ViT-B 83.2
MSN Masked Image Modeling 600 ViT-B 83.4
MAE Masked Image Modeling 1600 ViT-B 83.6
iBOT Masked Image Modeling 1600 ViT-B 83.8
SimMIM Masked Image Modeling 800 ViT-B 83.8

DINO† Contrastive Learning 300 ViT-B 82.8
MoCo-v3† Contrastive Learning 300 ViT-B 83.0
OPERA Contrastive Learning 300 ViT-B 83.5
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