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Abstract

Offline reinforcement learning is important in domains such as medicine, economics, and
e-commerce where online experimentation is costly, dangerous or unethical, and where the
true model is unknown. We study robust policy evaluation and policy optimization in
the presence of sequentially-exogenous unobserved confounders under a sensitivity model.
We propose and analyze orthogonalized robust fitted-Q-iteration that uses closed-form solu-
tions of the robust Bellman operator to derive a loss minimization problem for the robust Q
function, and adds a bias-correction to quantile estimation. Our algorithm enjoys the com-
putational ease of fitted-Q-iteration and statistical improvements (reduced dependence on
quantile estimation error) from orthogonalization. We provide sample complexity bounds,
insights, and show effectiveness both in simulations and on real-world longitudinal health-
care data of treating sepsis. In particular, our model of sequential unobserved confounders
yields an online Markov decision process, rather than partially observed Markov decision
process: we illustrate how this can enable warm-starting optimistic reinforcement learning
algorithms with valid robust bounds from observational data.

We consider a finite-horizon Markov Decision Process on the full-information state space
comprised of a tuple M = (S × U ,A, R, P, χ, T ). (We consider the infinite horizon in the
appendix). We let the state spaces S,U be continuous, and to start assume the action
space A is finite. The Markov decision process dynamics proceed from t = 0, . . . , T − 1
for a finite horizon of length T . (Although we focus on presenting the finite-horizon case,
method and results extend readily to the discounted infinite-horizon case.) Let ∆(X) denote
probability measures on a set X. The set of time t transition functions P is defined with
elements Pt : S × U × A → ∆(S × U); R denotes the set of time t reward maps with
Rt : S × A × S → R; the initial state distribution is χ ∈ ∆(S × U). A policy, π, is a
set of maps πt : S × U → ∆(A), where πt(a | s, u) describes the probability of taking
actions given states and unobserved confounders. Given the initial state distribution, the
Markov Decision Process dynamics under policy π induce the random variables, for all t,
At ∼ πt(· | St, Ut), St+1, Ut+1 ∼ Pt(· | St, Ut, At). When another type of norm is not
indicated, we let ∥f∥ := E[f2]1/2 indicate the 2-norm.
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We consider a confounded offline setting: data is collected via an arbitrary behavior
policy πb that potentially depends on Ut, but in the resulting data set, the U part of the
state space is unobserved.

As in standard offline RL, we study policy evaluation and optimization for target policies
πe using data collected under πb. We will use Pπ and Eπ to denote the joint probabilities
(and expectations thereof) of the random variables St, Ut, At, ∀t in the underlying MDP
running policy π. For the special case of the behavior policy πb, we will write Pobs, Eobs to
emphasize the distribution of variables in the observational dataset.

Our objects of interest will be the observed state Q function and value function for the
target policy πe:

Qπe

t (s, a) := Eπe [
∑T−1

j=t R(Sj , Aj , Sj+1)|St = s,At = a] (1)

V πe

t (s) := Eπe [Qπe

t (St, At)|St = s].

We would like to find a policy πe that is a function of the observed state alone, maximizing
V πe

t . With unobserved confounders, we cannot directly evaluate the true expectations above
due to biased estimation.

Assumption 1 (Memoryless unobserved confounders). The unobserved state Ut+1 is inde-
pendent of St, Ut, At.

With memoryless unobserved confounders, observed-state policy evaluation and opti-
mization in the full POMDP reduce to an MDP problem if only we knew the true marignal
transitions. Define the marginal transition probabilities: Pt(st+1|st, at) :=

∫
U Pt(ut|st)Pt(st+1|st, at, ut)dut.

Then we have the following proposition:

Proposition 1 (Marginal MDP). Given Assumption 1, for any policy πe that is a func-
tion of St alone, the distribution of St, At, ∀t in the full-information MDP running πe is
equivalent to the distribution of St, At, ∀t in the marginal MDP, (S,A, R, P, χ, T ). That is,
S0 ∼ χ, At ∼ πe(· | St), St+1 ∼ Pt(·|St, At).

The key takeaway is that if we knew the true marginal transition probabilities, Pt(St+1|St, At),
then we could apply standard RL algorithms for evaluation or optimization. We have
observed-state Q and value functions in the marginal MDP:

Qπe

t (s, a) = EPt [Rt +Qπe

t+1(St+1, π
e
t+1)|St = s,At = a], V πe

t (s) = EA∼πe
t (s)

[Qπe

t (s,A)]

Offline RL and Unobserved Confounding

Proposition 2 (Confounding for Regression). Let f : S × A × S → R be any function.
Given ??, ∀s, a,

EPt

[
f(St, At, St+1)|St = s,At = a

]
= Eobs

[
πb
t (At|St)

πb
t (At|St, Ut)

f(St, At, St+1)

∣∣∣∣∣St = s,At = a

]
.

This proposition shows that regression of f on states and actions using data collected
according to πb is a biased estimator.

Since the unobserved factor
πb
t (At|St)

πb
t (At|St,Ut)

can be arbitrarily large without further assump-

tions, to make progress we follow the sensitivity analysis literature in causal inference.
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Assumption 2 (Marginal Sensitivity Model). There exists Λ such that ∀t, s ∈ S, u ∈ U , a ∈
A,

Λ−1 ≤
(

πb
t (a|s,u)

1−πb
t (a|s,u)

)
/
(

πb
t (a|s)

1−πb
t (a|s)

)
≤ Λ. (2)

The parameter Λ for this commonly-used sensitivity model in causal inference (Tan,
2012) has to be chosen with domain knowledge. Now consider any function f : S×A×S →
R. We can express the target expectation EPt [Yt|St, At] as a weighted regression under the
behavior policy with bounded weights. Define the random variable

W πb

t :=
πb
t (At|St)

πb
t (At|St, Ut)

, where EPt [Yt|St, At] = Eobs[W
πb

t Yt|St, At] (3)

it satisfies the bounds

αt(S,A) ≤ W πb

t ≤ βt(S,A), ∀s′ (4)

αt(S,A) := πb
t (At|St) + Λ−1(1− πb

t (At|St)), βt(S,A) := πb
t (At|St) + Λ(1− πb

t (At|St)).

For each weight Wt that satisfies these constraints, there is a corresponding transition
probability in the set:

P̄t(· | s, a) ∈ Ps,a
t :=

{
P̄t(· | s, a) : αt(s, a) ≤ P̄ (st+1|s,a)

Pobs(st+1|s,a) ≤ βt(s, a), ∀st+1;
∫
P̄t(st+1 | s, a)dst+1 = 1

}
Define the set Pt of transition probabilities for all s, a to be the product set over the Ps,a

t .
Then under Assumptions 1 and 2, the true marginal transition probabilities belong to Pt.
While point estimation is not possible, we can find the worst-case values of Qπe

t and V πe

t over
transition probabilities in the uncertainty set, P̄t ∈ Pt — a Robust Markov Decision Process
(RMDP) problem (Iyengar, 2005). Importantly, the set Pt is s, a-rectangular, and so we can
use the results in Iyengar (2005) to define robust Bellman operators and a corresponding
robust Bellman equation. Denote the robust Q and value functions Q̄πe

t and V̄ πe

t and define
the following operators:

Definition 1 (Robust Bellman Operators). For any function g : S ×A → R,

(T̄ πe

t g)(s, a) := inf
P̄t∈Pt

EP̄t
[Rt + g(St+1, π

e
t+1)|St = s,At = a], (5)

(T̄ ∗
t g)(s, a) := inf

P̄t∈Pt

EP̄t
[Rt +max

A′
{g(St+1, A

′)}|St = s,At = a]. (6)

Proposition 3 (Robust Bellman Equation). Let |A| = 2 and let Assumptions 1 and 2 hold.
Then applying the results in Iyengar (2005), gives

Q̄πe

t (s, a) = T̄ πe

t Q̄πe

t+1(s, a), V̄ πe

t (s) = EA∼πe
t (s)

[Q̄πe

t (s,A)],

Q̄∗
t (s, a) = T̄ ∗

t Q̄
∗
t+1(s, a), V̄ ∗

t (s) = EA∼π̄∗
t (s)

[Q̄∗
t (s,A)],

where Q̄∗
t and V̄ ∗

t are the optimal robust Q and value function achieved by the policy π̄∗.
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Algorithm 1 Confounding-Robust Fitted-Q-Iteration

1: Estimate the marginal behavior policy πb
t (a|s). Compute {αt(S

(i)
t , A

(i)
t )}ni=1 as in ??.

Initialize Q̂T = 0.
2: for t = T − 1, . . . , 1 do

3: Compute the nominal outcomes {Y (i)
t (Q̂t+1)}ni=1 as in ??.

4: For a ∈ A, fit Ẑ1−τ
t the (1− τ)th conditional quantile of the outcomes Y

(i)
t .

5: Compute pseudooutcomes {Ỹ (i)
t (Ẑ1−τ

t , Q̂t+1)}ni=1 as in ??.

6: For a ∈ A, fit Q̂t via least-squares regression of Ỹ
(i)
t against (S

(i)
t , A

(i)
t ).

7: Compute π∗
t (s) ∈ argmaxa Q̂t(s, a).

8: end for

Method Nominal (non-robust) FQI (Ernst et al., 2006; Le et al., 2019; Duan et al.,
2021) successively forms approximations Q̂t at each time step by minimizing the Bellman
error. In our robust version of FQI, we instead approximate the robust Bellman operator
with function approximation.

Proposition 4. Let Q be a real-valued function over states and actions, and define Yt(Q)
the Bellman target. The robust Q(s, a) function solves the following optimization problem:

(T̄ ∗
t Q)(s, a) = min

Wt

{
Eobs [WtYt(Q)|St = s,At = a] :

Eobs [Wt|St = s,At = a] = 1, αt(S,A) ≤ Wt ≤ βt(S,A), a.e.
}
.

The closed-form state-action conditional solution to ?? is written in terms of a su-
perquantile (also called conditional expected shortfall, or covariate-conditional CVaR). The
conditional expected shortfall is the conditional expectation of exceedances of a random vari-
able beyond its conditional quantile. Define τ := Λ/(1+Λ). For any function Q : S×A → R,
we define the observational (1− τ)-level conditional quantile of the Bellman target:

Z1−τ
t (Yt(Q) | s, a) := inf

z
{z : Pobs(Yt(Q) ≥ z | St = s,At = a) ≤ 1− τ}.

We use the following shorthands when clear from context: Z1−τ
t,a := Z1−τ

t (Yt(Q) | s, a), αt :=
αt(S,A), βt := βt(S,A).

Proposition 5. The solution to the robust Bellman operator is:

(T̄ ∗
t Q)(s, a) = Eobs[αtYt(Q) + 1−αt

1−τ Yt(Q)I
[
Yt(Q) ≤ Z1−τ

t,a

]
|St = s,At = a]. (7)

To avoid transferring biased first-stage estimation error of Z1−τ
t to the Q-function, we

apply an orthogonalization of Olma (2021) to obtain our regression target for robust FQE:

Ỹt(Z,Q) := αtYt(Q) + 1−αt
1−τ

(
Yt(Q)I

[
Yt(Q) ≤ Z1−τ

t

]
− Z · {I [Yt(Q) ≤ Z]− (1− τ)}

)
(8)

When the quantile functions are consistent, the orthogonalized pseudo-outcome enjoys
quadratic, not linear on the first-stage estimation error in the quantile functions. We de-
scribe in more detail in the next section on guarantees. The orthogonalized time-t target
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of estimation is:
Q̂t ∈ argmin

qt
En,t[(Ỹt(Ẑ

1−τ
t , Q̂t+1)− qt(St, At))

2]. (9)

Guarantees

Proposition 6 (CVaR estimation error). For a ∈ A, t ∈ [T − 1], if the conditional quantile

estimation is op(n
− 1

4 ) consistent, i.e. ∥Ẑ1−τ
t − Z1−τ

t ∥∞ = op(n
− 1

4 ), E[∥Ẑ1−τ
t − Z1−τ

t ∥2] =
op(n

− 1
4 ), then

∥Q̂t(S, a)−Qt(S, a)∥ ≤ ∥Q̃t(S, a)−Qt(S, a)∥+ op(n
− 1

2 ).

Theorem 1 (Fitted Q Iteration guarantee). Suppose C-concentratability and ϵapproximate

Bellman completeness and let BR be the bound on rewards. Recall that E(Q̂) = 1
T

∑T−1
t=0

∥∥∥Q̂t − T ⋆
t Q̂t+1

∥∥∥2
µt

.

Then, with probability > 1− δ, under assumption of a finite function class, we have that

E(Q̂) ≤ ϵQ,Z +
56(T 2 + 1)BR log{T |Q||Z|/δ}

3n
+

√
32(T 2 + 1)BR log{T |Q||Z|δ

n
ϵQ,Z}+ op(n

−1),

while under an infinite function class with bracketing numbers, choosing the covering
number approximation error ϵ = O(n−1) such that ϵQ,Z = O(n−1), we have that

E(Q̂) ≤ ϵQ,Z +
1

T

T−1∑
t=0

{
56(T − t− 1)2 log{TN[] (2ϵLt,Lqt(z′),z, ∥ · ∥)/δ}

3n

}
+ op(n

−1).

where Lt = KBr(T − t− 1)Λ for an absolute constant K.

1. Experiments

See the appendix/full paper for details.

(a) (b) (c)

Figure 1: Histograms of initial state value functions over the observed initial states in the
MIMIC-III dataset. From left to right, the nominal value; the robust value for
Λ = 2; and the robust value of the nominal optimal policy for Λ = 2.

Extension: Warmstarting We can use our robust valid bounds to warm-start online
algorithms via valid robust bounds from observational data. See the appendix for details.
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Λ Algorithm MSE(V̄ ∗
0 ) ℓ2 Parameter Error % wrong action

1 FQI 0.2300 3.399 28%

2
Non-Orthogonal 0.5496 4.057 31%

Orthogonal 0.5271 3.522 28%

5.25
Non-Orthogonal 3.160 11.51 43%

Orthogonal 1.739 3.949 31%

8.5
Non-Orthogonal 7.683 24.04 45%

Orthogonal 2.723 3.921 31%

11.75
Non-Orthogonal 15.22 48.89 47%

Orthogonal 3.397 3.725 31%

15
Non-Orthogonal 30.21 88.02 48%

Orthogonal 3.848 3.462 30%

Table 1: Simulation results with d = 100 and n = 600, reporting the value function MSE,
Q function parameter error, and the portion of the time a sub-optimal action is
taken. The results compare non-orthogonal and orthogonal confounding robust
FQI over five values of Λ.

(a) (b)

Figure 2: Simulation results for online LSVI-UCB. Panel (a) plots the cumulative regret
of LSVI-UCB without warm-starting, and with robust warm-starting. Panel (b)
plots the cum. regret of LSVI-UCB where the offline data is naively treated as if
had been collected online.
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