Theorem [theorem]Lemma [theorem]Proposition [theorem]Remark [theorem]Corollary [theorem]Definition

# Robust Fitted-Q-Evaluation and Iteration under Sequentially Exogenous Unobserved Confounders

BRUNS-SMITH@BERKELEY.EDU

**David Bruns-Smith** Department of EECS University of California Berkeley, CA

#### Angela Zhou

Department of Data Sciences and Operations University of Southern California ZHOUA@USC.EDU

## Abstract

Offline reinforcement learning is important in domains such as medicine, economics, and e-commerce where online experimentation is costly, dangerous or unethical, and where the true model is unknown. We study robust policy evaluation and policy optimization in the presence of sequentially-exogenous unobserved confounders under a sensitivity model. We propose and analyze orthogonalized robust fitted-Q-iteration that uses closed-form solutions of the robust Bellman operator to derive a loss minimization problem for the robust Q function, and adds a bias-correction to quantile estimation. Our algorithm enjoys the computational ease of fitted-Q-iteration and statistical improvements (reduced dependence on quantile estimation error) from orthogonalization. We provide sample complexity bounds, insights, and show effectiveness both in simulations and on real-world longitudinal healthcare data of treating sepsis. In particular, our model of sequential unobserved confounders yields an online Markov decision process, rather than partially observed Markov decision process: we illustrate how this can enable warm-starting optimistic reinforcement learning algorithms with valid robust bounds from observational data.

We consider a finite-horizon Markov Decision Process on the full-information state space comprised of a tuple  $\mathcal{M} = (\mathcal{S} \times \mathcal{U}, \mathcal{A}, R, P, \chi, T)$ . (We consider the infinite horizon in the appendix). We let the state spaces  $\mathcal{S}, \mathcal{U}$  be continuous, and to start assume the action space  $\mathcal{A}$  is finite. The Markov decision process dynamics proceed from  $t = 0, \ldots, T - 1$ for a finite horizon of length T. (Although we focus on presenting the finite-horizon case, method and results extend readily to the discounted infinite-horizon case.) Let  $\Delta(X)$  denote probability measures on a set X. The set of time t transition functions P is defined with elements  $P_t : \mathcal{S} \times \mathcal{U} \times \mathcal{A} \to \Delta(\mathcal{S} \times \mathcal{U})$ ; R denotes the set of time t reward maps with  $R_t : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$ ; the initial state distribution is  $\chi \in \Delta(\mathcal{S} \times \mathcal{U})$ . A policy,  $\pi$ , is a set of maps  $\pi_t : \mathcal{S} \times \mathcal{U} \to \Delta(\mathcal{A})$ , where  $\pi_t(a \mid s, u)$  describes the probability of taking actions given states and unobserved confounders. Given the initial state distribution, the Markov Decision Process dynamics under policy  $\pi$  induce the random variables, for all t,  $A_t \sim \pi_t(\cdot \mid S_t, U_t), S_{t+1}, U_{t+1} \sim P_t(\cdot \mid S_t, U_t, A_t)$ . When another type of norm is not indicated, we let  $||f|| := \mathbb{E}[f^2]^{1/2}$  indicate the 2-norm. We consider a <u>confounded offline</u> setting: data is collected via an arbitrary behavior policy  $\pi^b$  that potentially depends on  $U_t$ , but in the resulting data set, the  $\mathcal{U}$  part of the state space is unobserved.

As in standard offline RL, we study policy evaluation and optimization for target policies  $\pi^e$  using data collected under  $\pi^b$ . We will use  $P_{\pi}$  and  $\mathbb{E}_{\pi}$  to denote the joint probabilities (and expectations thereof) of the random variables  $S_t, U_t, A_t, \forall t$  in the underlying MDP running policy  $\pi$ . For the special case of the behavior policy  $\pi^b$ , we will write  $P_{\text{obs}}$ ,  $\mathbb{E}_{\text{obs}}$  to emphasize the distribution of variables in the observational dataset.

Our objects of interest will be the observed state Q function and value function for the target policy  $\pi^e$ :

$$Q_t^{\pi^e}(s,a) \coloneqq \mathbb{E}_{\pi^e}[\sum_{j=t}^{T-1} R(S_j, A_j, S_{j+1}) | S_t = s, A_t = a]$$
(1)  
$$V_t^{\pi^e}(s) \coloneqq \mathbb{E}_{\pi^e}[Q_t^{\pi^e}(S_t, A_t) | S_t = s].$$

We would like to find a policy  $\pi^e$  that is a function of the observed state alone, maximizing  $V_t^{\pi^e}$ . With unobserved confounders, we cannot directly evaluate the true expectations above due to biased estimation.

**Assumption 1** (Memoryless unobserved confounders). The unobserved state  $U_{t+1}$  is independent of  $S_t, U_t, A_t$ .

With memoryless unobserved confounders, observed-state policy evaluation and optimization in the full POMDP reduce to an MDP problem if only we knew the true marignal transitions. Define the marginal transition probabilities:  $P_t(s_{t+1}|s_t, a_t) \coloneqq \int_{\mathcal{U}} P_t(u_t|s_t) P_t(s_{t+1}|s_t, a_t, u_t) du_t$ . Then we have the following proposition:

**Proposition 1** (Marginal MDP). Given Assumption 1, for any policy  $\pi^e$  that is a function of  $S_t$  alone, the distribution of  $S_t, A_t, \forall t$  in the full-information MDP running  $\pi^e$  is equivalent to the distribution of  $S_t, A_t, \forall t$  in the <u>marginal</u> MDP,  $(S, A, R, P, \chi, T)$ . That is,  $S_0 \sim \chi, A_t \sim \pi^e(\cdot | S_t), S_{t+1} \sim P_t(\cdot | S_t, A_t)$ .

The key takeaway is that if we knew the true marginal transition probabilities,  $P_t(S_{t+1}|S_t, A_t)$ , then we could apply standard RL algorithms for evaluation or optimization. We have observed-state Q and value functions in the marginal MDP:

$$Q_t^{\pi^e}(s,a) = \mathbb{E}_{P_t}[R_t + Q_{t+1}^{\pi^e}(S_{t+1}, \pi_{t+1}^e) | S_t = s, A_t = a], \quad V_t^{\pi^e}(s) = \mathbb{E}_{A \sim \pi_t^e(s)}[Q_t^{\pi^e}(s,A)]$$

Offline RL and Unobserved Confounding

**Proposition 2** (Confounding for Regression). Let  $f : S \times A \times S \rightarrow \mathbb{R}$  be any function. Given ??,  $\forall s, a$ ,

$$\mathbb{E}_{P_t} \left[ f(S_t, A_t, S_{t+1}) | S_t = s, A_t = a \right] = \mathbb{E}_{obs} \left[ \frac{\pi_t^b(A_t | S_t)}{\pi_t^b(A_t | S_t, U_t)} f(S_t, A_t, S_{t+1}) \middle| S_t = s, A_t = a \right].$$

This proposition shows that regression of f on states and actions using data collected according to  $\pi^b$  is a biased estimator.

Since the unobserved factor  $\frac{\pi_t^b(A_t|S_t)}{\pi_t^b(A_t|S_t,U_t)}$  can be arbitrarily large without further assumptions, to make progress we follow the sensitivity analysis literature in causal inference.

**Assumption 2** (Marginal Sensitivity Model). There exists  $\Lambda$  such that  $\forall t, s \in S, u \in \mathcal{U}, a \in \mathcal{A}$ ,

$$\Lambda^{-1} \le \left(\frac{\pi_t^b(a|s,u)}{1-\pi_t^b(a|s,u)}\right) / \left(\frac{\pi_t^b(a|s)}{1-\pi_t^b(a|s)}\right) \le \Lambda.$$
(2)

The parameter  $\Lambda$  for this commonly-used sensitivity model in causal inference (Tan, 2012) has to be chosen with domain knowledge. Now consider any function  $f : S \times A \times S \rightarrow \mathbb{R}$ . We can express the target expectation  $\mathbb{E}_{P_t}[Y_t|S_t, A_t]$  as a weighted regression under the behavior policy with bounded weights. Define the random variable

$$W_t^{\pi^b} \coloneqq \frac{\pi_t^b(A_t|S_t)}{\pi_t^b(A_t|S_t, U_t)}, \qquad \text{where } \mathbb{E}_{P_t}[Y_t|S_t, A_t] = \mathbb{E}_{\text{obs}}[W_t^{\pi^b}Y_t|S_t, A_t]$$
(3)

it satisfies the bounds

$$\alpha_t(S,A) \le W_t^{\pi^b} \le \beta_t(S,A), \forall s'$$

$$\alpha_t(S,A) \coloneqq \pi_t^b(A_t|S_t) + \Lambda^{-1}(1 - \pi_t^b(A_t|S_t)), \quad \beta_t(S,A) \coloneqq \pi_t^b(A_t|S_t) + \Lambda(1 - \pi_t^b(A_t|S_t)).$$
(4)

For each weight  $W_t$  that satisfies these constraints, there is a corresponding transition probability in the set:

$$\bar{P}_t(\cdot \mid s, a) \in \mathcal{P}_t^{s, a} \coloneqq \left\{ \bar{P}_t(\cdot \mid s, a) \colon \alpha_t(s, a) \le \frac{\bar{P}(s_{t+1} \mid s, a)}{P_{obs}(s_{t+1} \mid s, a)} \le \beta_t(s, a), \forall s_{t+1}; \ \int \bar{P}_t(s_{t+1} \mid s, a) ds_{t+1} = 1 \right\}$$

Define the set  $\mathcal{P}_t$  of transition probabilities for all s, a to be the product set over the  $\mathcal{P}_t^{s,a}$ . Then under Assumptions 1 and 2, the true marginal transition probabilities belong to  $\mathcal{P}_t$ . While point estimation is not possible, we can find the worst-case values of  $Q_t^{\pi^e}$  and  $V_t^{\pi^e}$  over transition probabilities in the uncertainty set,  $\bar{P}_t \in \mathcal{P}_t$  — a Robust Markov Decision Process (RMDP) problem (Iyengar, 2005). Importantly, the set  $\mathcal{P}_t$  is s, a-rectangular, and so we can use the results in Iyengar (2005) to define robust Bellman operators and a corresponding robust Bellman equation. Denote the robust Q and value functions  $\bar{Q}_t^{\pi^e}$  and  $\bar{V}_t^{\pi^e}$  and define the following operators:

**Definition 1** (Robust Bellman Operators). For any function  $g: S \times A \to \mathbb{R}$ ,

$$(\bar{\mathcal{T}}_t^{\pi^e}g)(s,a) \coloneqq \inf_{\bar{P}_t \in \mathcal{P}_t} \mathbb{E}_{\bar{P}_t}[R_t + g(S_{t+1}, \pi^e_{t+1}) | S_t = s, A_t = a],$$
(5)

$$(\bar{\mathcal{T}}_{t}^{*}g)(s,a) \coloneqq \inf_{\bar{P}_{t}\in\mathcal{P}_{t}} \mathbb{E}_{\bar{P}_{t}}[R_{t} + \max_{A'}\{g(S_{t+1},A')\}|S_{t} = s, A_{t} = a].$$
(6)

**Proposition 3** (Robust Bellman Equation). Let  $|\mathcal{A}| = 2$  and let Assumptions 1 and 2 hold. Then applying the results in Iyengar (2005), gives

$$\bar{Q}_t^{\pi^e}(s,a) = \bar{\mathcal{T}}_t^{\pi^e} \bar{Q}_{t+1}^{\pi^e}(s,a), \quad \bar{V}_t^{\pi^e}(s) = \mathbb{E}_{A \sim \pi_t^e(s)}[\bar{Q}_t^{\pi^e}(s,A)], \\ \bar{Q}_t^*(s,a) = \bar{\mathcal{T}}_t^* \bar{Q}_{t+1}^*(s,a), \quad \bar{V}_t^*(s) = \mathbb{E}_{A \sim \bar{\pi}_t^*(s)}[\bar{Q}_t^*(s,A)],$$

where  $\bar{Q}_t^*$  and  $\bar{V}_t^*$  are the optimal robust Q and value function achieved by the policy  $\bar{\pi}^*$ .

Algorithm 1 Confounding-Robust Fitted-Q-Iteration

- Estimate the marginal behavior policy π<sup>b</sup><sub>t</sub>(a|s). Compute {α<sub>t</sub>(S<sup>(i)</sup><sub>t</sub>, A<sup>(i)</sup><sub>t</sub>)}<sup>n</sup><sub>i=1</sub> as in ??. Initialize Q
   <sub>T</sub> = 0.
   for t = T − 1,...,1 do
   Compute the nominal outcomes {Y<sup>(i)</sup><sub>t</sub>(Q
   <sub>t+1</sub>)}<sup>n</sup><sub>i=1</sub> as in ??.
- 4: For  $a \in \mathcal{A}$ , fit  $\hat{Z}_t^{1-\tau}$  the  $(1-\tau)$ th conditional quantile of the outcomes  $Y_t^{(i)}$ .
- 5: Compute pseudooutcomes  $\{\tilde{Y}_t^{(i)}(\hat{Z}_t^{1-\tau}, \hat{\overline{Q}}_{t+1})\}_{i=1}^n$  as in ??.
- 6: For  $a \in \mathcal{A}$ , fit  $\hat{\overline{Q}}_t$  via least-squares regression of  $\tilde{Y}_t^{(i)}$  against  $(S_t^{(i)}, A_t^{(i)})$ .
- 7: Compute  $\pi_t^*(s) \in \arg \max_a \hat{\overline{Q}}_t(s, a)$ .

8: end for

Method Nominal (non-robust) FQI (Ernst et al., 2006; Le et al., 2019; Duan et al., 2021) successively forms approximations  $\hat{Q}_t$  at each time step by minimizing the Bellman error. In our robust version of FQI, we instead approximate the robust Bellman operator with function approximation.

**Proposition 4.** Let Q be a real-valued function over states and actions, and define  $Y_t(Q)$  the Bellman target. The robust Q(s, a) function solves the following optimization problem:

$$(\bar{\mathcal{T}}_{t}^{*}Q)(s,a) = \min_{W_{t}} \{ \mathbb{E}_{obs} \left[ W_{t}Y_{t}(Q) | S_{t} = s, A_{t} = a \right] :$$
$$\mathbb{E}_{obs} \left[ W_{t} | S_{t} = s, A_{t} = a \right] = 1, \ \alpha_{t}(S,A) \le W_{t} \le \beta_{t}(S,A), a.e. \}.$$

The closed-form state-action conditional solution to ?? is written in terms of a superquantile (also called conditional expected shortfall, or covariate-conditional CVaR). The conditional expected shortfall is the conditional expectation of exceedances of a random variable beyond its conditional quantile. Define  $\tau := \Lambda/(1+\Lambda)$ . For any function  $Q: S \times A \to \mathbb{R}$ , we define the observational  $(1 - \tau)$ -level conditional quantile of the Bellman target:

$$Z_t^{1-\tau}(Y_t(Q) \mid s, a) \coloneqq \inf_{z} \{ z \colon P_{\text{obs}}(Y_t(Q) \ge z \mid S_t = s, A_t = a) \le 1 - \tau \}.$$

We use the following shorthands when clear from context:  $Z_{t,a}^{1-\tau} \coloneqq Z_t^{1-\tau}(Y_t(Q) \mid s, a), \alpha_t \coloneqq \alpha_t(S, A), \beta_t \coloneqq \beta_t(S, A).$ 

**Proposition 5.** The solution to the robust Bellman operator is:

$$(\bar{\mathcal{T}}_t^*Q)(s,a) = \mathbb{E}_{obs}[\alpha_t Y_t(Q) + \frac{1-\alpha_t}{1-\tau} Y_t(Q) \mathbb{I}\left[Y_t(Q) \le Z_{t,a}^{1-\tau}\right] | S_t = s, A_t = a].$$
(7)

To avoid transferring biased first-stage estimation error of  $Z_t^{1-\tau}$  to the Q-function, we apply an orthogonalization of Olma (2021) to obtain our regression target for robust FQE:

$$\tilde{Y}_t(Z,Q) \coloneqq \alpha_t Y_t(Q) + \frac{1-\alpha_t}{1-\tau} \left( Y_t(Q) \mathbb{I}\left[ Y_t(Q) \le Z_t^{1-\tau} \right] - Z \cdot \left\{ \mathbb{I}\left[ Y_t(Q) \le Z \right] - (1-\tau) \right\} \right)$$
(8)

When the quantile functions are consistent, the orthogonalized pseudo-outcome enjoys quadratic, not linear on the first-stage estimation error in the quantile functions. We describe in more detail in the next section on guarantees. The orthogonalized time-t target

of estimation is:

$$\hat{\overline{Q}}_t \in \arg\min_{q_t} \mathbb{E}_{n,t}[(\tilde{Y}_t(\hat{Z}_t^{1-\tau}, \hat{\overline{Q}}_{t+1}) - q_t(S_t, A_t))^2].$$
(9)

#### Guarantees

**Proposition 6** (CVaR estimation error). For  $a \in \mathcal{A}, t \in [T-1]$ , if the conditional quantile estimation is  $o_p(n^{-\frac{1}{4}})$  consistent, i.e.  $\|\hat{Z}_t^{1-\tau} - Z_t^{1-\tau}\|_{\infty} = o_p(n^{-\frac{1}{4}}), \mathbb{E}[\|\hat{Z}_t^{1-\tau} - Z_t^{1-\tau}\|_2] = o_p(n^{-\frac{1}{4}}), \text{ then}$ 

$$\|\widehat{\overline{Q}}_t(S,a) - \overline{Q}_t(S,a)\| \le \|\widetilde{\overline{Q}}_t(S,a) - \overline{Q}_t(S,a)\| + o_p(n^{-\frac{1}{2}}).$$

**Theorem 1** (Fitted Q Iteration guarantee). Suppose C-concentratability and  $\epsilon$  approximate Bellman completeness and let  $B_R$  be the bound on rewards. Recall that  $\mathcal{E}(\hat{Q}) = \frac{1}{T} \sum_{t=0}^{T-1} \left\| \hat{Q}_t - \overline{\mathcal{T}}_t^* \hat{Q}_{t+1} \right\|_{\mu_t}^2$ . Then, with probability > 1 -  $\delta$ , under assumption of a finite function class, we have that

$$\mathcal{E}(\hat{Q}) \le \epsilon_{\mathcal{Q},\mathcal{Z}} + \frac{56(T^2+1)B_R\log\{T|\mathcal{Q}||\mathcal{Z}|/\delta\}}{3n} + \sqrt{\frac{32(T^2+1)B_R\log\{T|\mathcal{Q}||\mathcal{Z}|\delta}{n}\epsilon_{\mathcal{Q},\mathcal{Z}}\}} + o_p(n^{-1})$$

while under an infinite function class with bracketing numbers, choosing the covering number approximation error  $\epsilon = O(n^{-1})$  such that  $\epsilon_{Q,Z} = O(n^{-1})$ , we have that

$$\mathcal{E}(\hat{Q}) \le \epsilon_{\mathcal{Q},\mathcal{Z}} + \frac{1}{T} \sum_{t=0}^{T-1} \left\{ \frac{56(T-t-1)^2 \log\{TN_{[j]} \left(2\epsilon L_t, \mathcal{L}_{q_t(z'),z}, \|\cdot\|\right)/\delta\}}{3n} \right\} + o_p(n^{-1}).$$

where  $L_t = KB_r(T - t - 1)\Lambda$  for an absolute constant K.

### 1. Experiments

See the appendix/full paper for details.



Figure 1: Histograms of initial state value functions over the observed initial states in the MIMIC-III dataset. From left to right, the nominal value; the robust value for  $\Lambda = 2$ ; and the robust value of the nominal optimal policy for  $\Lambda = 2$ .

**Extension: Warmstarting** We can use our robust valid bounds to warm-start online algorithms via valid robust bounds from observational data. See the appendix for details.

| Λ     | Algorithm      | $MSE(\bar{V}_0^*)$ | $\ell_2$ Parameter Error | % wrong action |
|-------|----------------|--------------------|--------------------------|----------------|
| 1     | FQI            | 0.2300             | 3.399                    | 28%            |
| 2     | Non-Orthogonal | 0.5496             | 4.057                    | 31%            |
|       | Orthogonal     | 0.5271             | 3.522                    | 28%            |
| 5.25  | Non-Orthogonal | 3.160              | 11.51                    | 43%            |
|       | Orthogonal     | 1.739              | 3.949                    | 31%            |
| 8.5   | Non-Orthogonal | 7.683              | 24.04                    | 45%            |
|       | Orthogonal     | 2.723              | 3.921                    | 31%            |
| 11.75 | Non-Orthogonal | 15.22              | 48.89                    | 47%            |
|       | Orthogonal     | 3.397              | 3.725                    | 31%            |
| 15    | Non-Orthogonal | 30.21              | 88.02                    | 48%            |
|       | Orthogonal     | 3.848              | 3.462                    | 30%            |

Table 1: Simulation results with d = 100 and n = 600, reporting the value function MSE, Q function parameter error, and the portion of the time a sub-optimal action is taken. The results compare non-orthogonal and orthogonal confounding robust FQI over five values of  $\Lambda$ .



Figure 2: Simulation results for online LSVI-UCB. Panel (a) plots the cumulative regret of LSVI-UCB without warm-starting, and with robust warm-starting. Panel (b) plots the cum. regret of LSVI-UCB where the offline data is naively treated as if had been collected online.

## References

- Yaqi Duan, Chi Jin, and Zhiyuan Li. Risk bounds and rademacher complexity in batch reinforcement learning. In <u>International Conference on Machine Learning</u>, pages 2892– 2902. PMLR, 2021.
- Damien Ernst, Guy-Bart Stan, Jorge Goncalves, and Louis Wehenkel. Clinical data based optimal sti strategies for hiv: a reinforcement learning approach. In <u>Proceedings of the</u> 45th IEEE Conference on Decision and Control, pages 667–672. IEEE, 2006.
- Garud N Iyengar. Robust dynamic programming. <u>Mathematics of Operations Research</u>, 30 (2):257–280, 2005.
- Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In International Conference on Machine Learning, pages 3703–3712. PMLR, 2019.
- Tomasz Olma. Nonparametric estimation of truncated conditional expectation functions. arXiv preprint arXiv:2109.06150, 2021.
- Zhiqiang Tan. A distributional approach for causal inference using propensity scores. Journal of the American Statistical Associatioon, 2012.