Under review as a conference paper at ICLR 2026

A TALE OF LLMS AND INDUCED SMALL PROXIES:
SCALABLE AGENTS FOR KNOWLEDGE MINING

Anonymous authors
Paper under double-blind review

ABSTRACT

At the core of Deep Research is knowledge mining, the task of extracting structured
information from massive unstructured text in response to user instructions. Large
language models (LLMs) excel at interpreting such instructions but are prohibitively
expensive to deploy at scale, while traditional pipelines of classifiers and extractors
remain efficient yet brittle and unable to generalize to new tasks. We introduce
Falconelﬂ a collaborative framework that combines the agentic reasoning of LLMs
with lightweight proxy models for scalable knowledge mining. In Falconer, LLMs
act as planners, decomposing user instructions into executable pipelines, and as
annotators, generating supervision to train small proxies. The framework unifies
classification and extraction into two atomic operations, get_label and get_span,
enabling a single instruction-following model to replace multiple task-specific
components. To evaluate the consistency between proxy models incubated by
Falconer and annotations provided by humans and large models, we construct
new benchmarks covering both planning and end-to-end execution. Experiments
show that Falconer closely matches state-of-the-art LLMs in instruction-following
accuracy while reducing inference cost by up to 90% and accelerating large-scale
knowledge mining by more than 20x, offering an efficient and scalable foundation
for Deep Research.

1 INTRODUCTION

Knowledge mining tasks (Xu et al.; Boylan et al.; 2025} |Wang et al., 2025 [Ma et al., | 2024} |Walker
et al.| 2006a) require processing massive corpora, extracting structured information, and generating
annotations at scale (Ding et al.,[2021}; Tedeschi & Navigli, 2022} |Li et al.,[2023; Bogdanov et al.}
2024; Peng et al., 2024). Characterized by the need to faithfully follow user instructions, these tasks
often involve millions of records, such as parsing customer reviews, analyzing biomedical literature,
or summarizing large collections of technical documents. The sheer scale makes efficiency critical:
any system must deliver accurate results while handling high throughput at low cost. Large language
models (LLMs) provide strong instruction-following capabilities (OpenAll 2025} |Anthropic| 2025}
Comanici et al.,|2025)) and achieve high accuracy on such tasks (Agrawal et al.| 2022} Wang et al.,
2023b; | Xu et al. |2024a). However, using LLMs directly as the executors of knowledge mining
pipelines is computationally prohibitive. Each API call incurs substantial latency and cost, and
iterating over millions of records quickly becomes infeasible. Thus, while LLMs are powerful,
they are simultaneously too expensive and overqualified for large-scale knowledge mining. At the
other extreme, traditional knowledge mining systems rely on chaining classifiers and extractors
(e.g., named entity recognition models) to achieve efficiency. However, these systems lack the
instruction-following ability of LLMs, forcing developers to manually construct rigid, task-specific
pipelines. For instance, to carry out the instruction Extract all laptop prices from positive Amazon
reviews(Figure|[I)), one must hand-engineer a sequence of modules. First, a classifier must be trained
to determine whether a given review is a positive review about laptops. Next, an extractor must be
trained to identify and extract the price information from those filtered reviews.

'A falconer is one who trains and guides falcons in the hunt, and we adopt this name because our framework
similarly uses a central LLM to “train and direct” lightweight proxy models that swiftly pursue labels and spans
across massive corpora.

Under review as a conference paper at ICLR 2026

Planner Generator

1. Natural L i — i logic in codified modules applied to all instances.
User Synth Meta
. Code e eSS e —————

Instruction M | / def get_spans(texts: List[str], instruction: str) -> \

[def get_label(texts: List[str], instruction: str) > [List[List[str]]:
________ | Listbool:

c— ——— —— i | pue

| npue: |

| texts: a list of input strings (e.g., filtered positive I
reviews) |
| instruction: an extraction query, e.g., |

Ve A P 5
orpus
[Extract laptop prices from positive \| |5 Sample :
|

texts: a list of input strings (e.g., Amazon reviews) |

| Amazon reviews. instruction: a classification query

| | "Extract laptop prices."

| Analysis: First filter the positive laptop Output:

| "Is this a positive laptop review?
Output:

Annotate |
reviews, then extract the prices from | | E . A list of booleans, one per text, indicating I | For each text, a list of extracted spans
L inetur . -
|1‘he remaining texts. e Faidoner I \ True/False. } \ (entities/attributes). y;
ightvel
| | 4 metamosel < N ____
et_label S—— ==~
| LLM GPT-d0 Falconer Il. Use high-quality, task-specific supervision to train a lightweight proxy model
|| Planner P —_—— = — — — — — —
get_spans) - I bought a Dell XPS 13 last month and it's fantastic. The - I bought a Dell XPS 13 last month and it's fantastic.
A\ = | battery lasts all day and the price was $999. The battery lasts all day and the price was $999. |
- / - The HP Spectre | purchased for $1200 is worth every - The HP Spectre | purchased for $1200 is worth
—_—_——— - —— - I cent. It runs so smoothly that | couldn’t be happier. every cent. It runs so smoothly that | couldn’t be |
Low Latency High Accuracy) happier. »

Figure 1: Falconer decomposes the instruction Extract all laptop prices from positive Amazon
reviews into get_label and get_spans, generates supervision for training the competent proxy,
and executes these primitives efficiently with small-model inference. On the right, we show how
Falconer instantiates the subtasks: first classifying reviews as positive laptop reviews, then extracting
the corresponding price spans. This design enables Falconer to combine the instruction-following
ability of LLMs with the efficiency of small models.

To overcome this limitation, we replace hand-crafted pipelines with the agentic behavior of LLMs.
LLMs serve two complementary roles. As planners, they decompose natural language instructions
into structured subtasks (e.g. first classify whether a review is a positive laptop review, then extract
its price), removing the need for manual pipeline design. As annotators, they provide high-quality
supervision for training lightweight proxies, enabling small models to execute the subtasks efficiently
at scale. In Falconer, diverse SLMs are unified into two primitive operations: get_label(text,
instruction), which performs classification, and get_span(text, instruction), which extracts
relevant spans. These two functions act as the atomic building blocks for knowledge mining pipelines.
For example, to process the previous instruction, the pipeline first calls get_label ($review, ‘Is
this a positive laptop review?’) to filter reviews, and then applies get_span($review,
‘Extract the price’) to identify price mentions. More complex tasks, such as relation extraction
or multi-entity queries, can be similarly expressed as sequences of these two primitives.

Methods Pipeline Design I;z:{:ﬁ::?gn Executor Modeling Paradigm Efficiency Curpuss-clz:/:lbl”}“l:zk»level
Traditional Pipeline Manual chaining X Separate classifiers + Extractors Schema-based High X
Direct LLM Executor (OpenAl!2024} None (end-to-end) Large LLM API Generative Low X

RoBERTa Baseline (Liu et al.; 2019} Manual schema-based X Multiple RoBERTa models Discriminative Medium X
MetalE (Peng et al.| 2024 Synthetic schema Partial ~ Distilled proxy model Hybrid Medium

Cuckoo (Peng et al.{2025) Instruction-tuned IE Single lightweight proxy Extraction + Classification ~ High

Falconer (Ours) LLM planner + Annotator Unified competent proxy Planner + Proxy High

Table 1: A comparison of Falconer with traditional pipelines, direct LLM executors, and lightweight
baselines. Falconer uniquely combines LLM planning and annotation with a unified competent proxy,
achieving both instruction-following flexibility and efficiency at corpus scale.

This design incubates and integrates all pipeline components in a unified manner, rather than engi-
neering them separately. Whereas traditional systems required distinct models for each step. For
instance, executing the previous instruction, a traditional pipeline needs at least two models: first a
classifier (e.g., RoOBERTa (Liu et al.|2019)) to detect positive laptop reviews, and a span extractor
to identify price mentions. Such components demand separate training and maintenance, which
increases cost and compounds errors across the pipeline. Moreover, these models cannot directly in-
terpret instructions: labels such as “positive review” or “price” must be predefined. Instead, Falconer
leverages Cuckoo (Peng et al., 2025), a high-capacity instruction-following proxy trained under
the NTE paradigm. Cuckoo unifies classification and extraction within a single lightweight model,
abstracted as get_label(text, instruction) and get_span(text, instruction). Crucially, it
is instruction-aware: it can directly follow prompts such as Is this a positive laptop review? or Extract
the price, without relying on fixed label sets or schema-specific engineering. This allows Falconer to
replace brittle, hand-crafted pipelines with a single adaptive model that retains both the efficiency of
small models and the flexibility of LLM-style instruction following.

Due to the absence of instruction-following benchmarks for knowledge mining, we design new
evaluations that test both planning ability and end-to-end performance. These benchmarks assess the
consistency of Falconer proxies with annotations from humans and large models. Results reveal that

Under review as a conference paper at ICLR 2026

while LLMs excel as planners, their scalability is inherently limited. By contrast, Falconer achieves
end-to-end performance that closely tracks state-of-the-art LL.Ms, establishing it as an efficient and
practical alternative to purely LLM-based knowledge mining pipelines.

In summary, our main contributions are threefold:

* We propose Falconer, a framework where LLMs serve as planners and annotators, decomposing
natural language instructions into pipelines and generating supervision for lightweight proxies.

* We introduce an instruction-following proxy that unifies classification and extraction into two
atomic operations (get_label, get_span), enabling a single small model to replace multiple
task-specific components.

* We construct new instruction-following benchmarks for knowledge mining, evaluating both
planning and end-to-end execution. Experiments show that Falconer closely tracks state-of-the-art
LLMs while cutting inference cost by up to 90% and accelerating large-scale processing by over
20x.

2 RELATED WORKS

Information Extraction Information extraction (IE) is one of the most fundamental applications in
knowledge mining. IE systems take the user’s requirement (e.g., defined by a label text, a question,
or an instruction) and extract spans of several tokens from input texts. IE encompasses a wide
range of task formulations with different level of difficulties, which varies from simple structure
entity and relation extraction such as named entity recognition (Sang & De Meulder, [2003)), relation
extraction (Carreras & Marquez, 2005) , and event extraction (Walker et al.,|2006b), to more difficult
tasks such as abstratc entity extraction (Pontiki et al.,|2016; |Xu et al., 2020).

LLM Agents Recent work leverages the advanced reasoning and comprehension abilities of large
language models (LLMs) to tackle diverse downstream tasks (Besta et al.,[2024; Yao et al.| 2023aj;
Shinn et al., |2023). For complex scenarios, LLMs have been framed as autonomous agents that
interact with environments (Chen et al., 2023} |Yao et al., [2023b; Lu et al|2023), employ external
tools (Wu et al., [2024; [Zong et al., [2024; Peng et al., [2023; |Durante et al., [2024), and accumulate
experiential knowledge (Fu et al.l 2024; Zhao et al.,[2024)). A representative example is ReAct (Yao
et al.| [2023b), which tightly integrates reasoning and action by alternating between intermediate
reasoning and external operations such as information retrieval.

LLM Agents for Retrieval LLM agents have been applied to Information Retrieval (IR) through
pretraining, reranking, and prompting (Zhuang et al.l 2023} |Shen et al., [2023} [Wang et al.| 2023al).
As retrievers directly impact downstream tasks such as retrieval-augmented generation (Lewis
et al.,[2020) and knowledge-intensive QA, domain-specific agents like EHRAgent (Shi et al., 2024)
have been developed to incorporate structured tool-use planning process and an interactive coding
mechanism. Nevertheless, existing approaches largely depend on heuristic prompts or few-shot
examples, providing limited guidance for effective retrieval strategies and tool-assisted actions.

3 FALCONER

Our framework is mainly composed of 3 components: planner, generator and a compact proxy
metamodel that nonetheless exhibits robust performance across diverse tasks. An overview of the
framework is provided in Our framework takes a task prompt and output specification, uses
a planner to generate execution code, and then leverages the generator and metamodel to produce a
fine-tuned model for execution. This yields a fully automated pipeline where users simply provide
text and obtain high-quality outputs, achieving a twenty-fold speedup and a 90% cost reduction
compared with GPT-40, while maintaining strong performance.

3.1 PRELIMINARIES
INSTRUCTION-FOLLOWING PROXY MODEL: CUCKOO

The Next Token Prediction (NTP) paradigm equips LLMs with broad semantic knowledge and
impressive instruction-following ability but lacks explicit token-level supervision for information

Under review as a conference paper at ICLR 2026

extraction (IE). To simultaneously attain robust instruction-following capabilities and fine-grained
token-level supervision, Cuckoo (Peng et al., 2025) proposes the Next Tokens Extraction (NTE)
paradigm, which automatically converts repeated spans in raw corpora into BIO-labeled data, turning
unannotated text into large-scale IE supervision. Cuckoo leverages both pre-training and post-training
resources from LLMs to build powerful NTE-based information extraction models:

* Pre-training: Conducted on large-scale C4 (CommonCrawl) dataset (Raffel et al.,|2020). NTE
automatically generates BIO labels for repeated spans, enabling the model to learn general-purpose
extraction abilities without manual annotation.

* Post-training: Conducted on Tiilu 3 (Lambert et al., 2024)), a diverse and high-quality publicly
available dataset. Unlike pre-training, only NTE labels relevant to user instructions are retained,
equipping the model with strong instruction-following capabilities.

Under the few-shot setting, Cuckoo and its variant achieve stronger performance than existing
pretrained IE models. We adopt Super Rainbow CuckO(ﬂ , a variant further trained on additional
datasets, as our metamodel due to its superior extraction, QA, and classification abilities, as well as
its strong instruction-following capability for versatile downstream tasks.

3.2 CUCKOO FOR TEXT CLASSIFICATION

The original Cuckoo model is speciliazed in Basic IE (Information Extraction) tasks such as entity
extraction and relation extraction, Query-based IE and Instruction-Following IE (Peng et al., 2025)).
Leveraging Cuckoo’s instruction-following capability, we could further extend its applicability to text
classification tasks through the design of tailored prompt templates. Specifically, text classification
can be reformulated as a natural language inference (NLI) problem, where the goal is to determine the
relationship between a given sentence and a candidate label—namely, whether the sentence entails the
label. To this end, we construct an instruction-based prompt template for classification and fine-tune
the Super Rainbow Cuckoo model on the datasets introduced in Laurer et al.| (2023)), yielding the
metamodel employed in our experiments. Further details of fine-tuning are provided in

3.3 PLANNING

The planner is the core of Falconer, translating natural language requirements into executable pipelines
by codifying instructions into atomic operations and explicit control flows. For a knowledge mining
objective, it decomposes the input into subtasks (e.g., classification, span extraction), each bound to a
tool interface such as get_label or get_span. These are then assembled into a deterministic control
flow, ensuring explicit execution without reliance on implicit reasoning. Sample code is shown in

Appendix

Crucially, the planner does not merely synthesize runnable code but codifies the logical dependencies
among subtasks. For example, in a multi-entity extraction scenario, Retrieve all talks about both
health and brain, then extract their lecturers, the planner constructs a sequential program where the
input texts are first filtered using two classification heads for “health” and “brain,” then conditionally
passed into a span extractor to identify lecturer names. This approach integrates boolean logic,
ordered execution, and parameterized prompt templates into a unified representation, ensuring that
downstream behavior is both interpretable and reusable across tasks.

By explicitly codifying instructions into executable task pipelines, Falconer achieves two key benefits.
First, the structured representation allows the planner to generalize across diverse task formulations,
including multi-label classification and multi-entity extraction. Second, codification improves trans-
parency: every decision taken by the system can be traced back to a deterministic plan, bridging the
gap between user intent and model actions.

Table 2|compares the planning abilities of different models. We observe that GPT-4.1 achieves high
accuracy across diverse tasks, making it a strong candidate for our planner. However, performance
drops on complex tasks, which we define as multi-step tasks that require intermediate execution results
rather than a single fixed string (e.g., first extracting a lecturer’s name, then identifying that lecturer’s
profession). To further probe model limits, we include a set of miscellaneous tasks specifically

Zhttps://huggingface.co/KomeijiForce/Cuckoo-C4-Super-Rainbow

https://huggingface.co/KomeijiForce/Cuckoo-C4-Super-Rainbow

Under review as a conference paper at ICLR 2026

designed to stress-test state-of-the-art LLMs under such challenging scenarios. While models struggle
in these cases, their accuracy improves substantially with in-context learning (ICL), underscoring both
the difficulty of complex tasks and the effectiveness of our framework in decomposing knowledge
mining objectives into well-structured subtasks.

Method Basic Query-Based Multi-Entity Misc. Misc. w/ In-Context Learning
Falconer w/ GPT-4.1 0.96 1.00 1.00 0.21 0.96
Falconer w/ GPT-40 0.63 0.78 1.00 0.19 0.84
Falconer w/ Claude 3.7 Sonet ~ 0.78 0.80 0.98 0.19 0.92
Falconer w/ GPT-40-mini 0.50 0.19 0.30 0.00 0.42

Table 2: Planning correctness score with different LLM as Planner

3.4 GENERATOR

One major challenges in adapting a lightweight metamodel to diverse knowledge mining tasks lies in
acquiring high-quality, task-specific supervision without incurring prohibitive costs. In Falconer, we
address this challenge by introducing a generator, a component designed to bridge the gap between
raw corpus data and the specialized capabilities required by the metamodel. Unlike synthetic data
fully produced by large language models, which often diverges from the target distribution, the
generator leverages the underlying structure of knowledge mining scenarios to produce realistic and
task-aligned supervision.

The generator operates in three stages. First, around five percent of the entire corpus is sampled to
capture the authentic distribution of the domain, which is detailed in Appendix [C} Second, a powerful
large language model (e.g., GPT-4.1) annotates these samples according to the planner’s codified
task descriptions, covering subtasks such as entity extraction, classification, and relation detection.
Importantly, the generator enriches naturally occurring data with high-quality labels rather than
fabricating artificial inputs, ensuring statistical fidelity to the corpus. Finally, the annotated samples
are used to fine-tune the metamodel, enabling it to acquire task-specific knowledge while maintaining
its efficiency advantages over large models. A summary of performance gains is provided in Table 3]

In subsequent experiments, this approach demonstrates high efficiency, achieving performance
comparable to or even surpassing state-of-the-art large language models while using only 5% of
the original corpus. Crucially, the generator’s success hinges on access to high-quality supervision,
which can be readily extended to alternative sources such as carefully curated human annotations.

3.5 METAMODEL: LIGHTWEIGHT YET CAPABLE PROXY

In Falconer, the metamodel serves as the central execution engine, acting as a lightweight proxy for
large language models in downstream knowledge mining tasks. Instead of relying on general-purpose
LLMs for every request, we adopt Cuckoo (Peng et al.,[2025)), which has similar parameters as |Liu
et al.[(2019), to strikes a balance between parameter efficiency and capability, enabling Falconer to
achieve the best of both worlds: near-LLM performance with dramatically reduced inference cost.

Moreover, Falconer’s modular architecture leverages Cuckoo not as a monolithic generalist, but
as a specialized executor within a planner-driven pipeline. The planner codifies user intents into
explicit, interpretable subtasks; the metamodel then executes these subtasks with high efficiency. This
separation enables Falconer to exploit the SLM-first paradigm advocated by recent research (Belcak
et al., [2025).

Empirically, this design achieves substantial gains in both efficiency and scalability. Cuckoo re-
quires up to 20x fewer FLOPs and 1000x less memory than GPT-class models, while maintaining
competitive accuracy on instruction-following and span-extraction benchmarks relevant to knowl-
edge mining. This efficiency enables Falconer to operate cost-effectively across massive corpora,
supporting real-time inference even in resource-constrained environments.

4 EXPERIMENTS

We evaluate Falconer on a broad spectrum of knowledge mining tasks to demonstrate that a lightweight
metamodel, when coupled with our planner—generator—executor framework, can achieve performance

Under review as a conference paper at ICLR 2026

comparable to state-of-the-art LLMs while being significantly more efficient. Our experiments are
designed to answer two central questions:

» whether these metamodels maintain high alignment with human annotations on labeled datasets
and

* whether Falconer can generate metamodels that faithfully approximate the behavior of large
models(its annotator) on unlabeled corpora

All experiments reported in this section were conducted using a metamodel fine-tuned on 5% of the

original corpus annotated by an LLM, unless otherwise specified. Model performance is evaluated
using the word-level F1 score.

4.1 LABELED DATASET

Biology Fabrication Twitter Wiki Vehicle
Metamodel Dataset 64 Samples 512 Samples GPT-40 Effect of Sample Size on Model Score
Cuckoo Fabrication 0.20 0.32 0.38 08
RoBERTa-Large Fabrication 0.00 0.00 0.38
Cuckoo Biology 0.42 0.45 0.27 0.6
RoBERTa-Large Biology 0.00 0.41 0.27 "
Cuckoo Twitter 0.19 0.43 0.35 o4
RoBERTa-Large Twitter 0.00 0.38 0.35 u*—'_ :
Cuckoo Wiki 0.03 0.68 0.53
RoBERTa-Large Wiki 0.00 0.60 0.53 02
Cuckoo Vehicle 0.42 0.75 0.76
RoBERTa-Large Vehicle 0.00 0.66 0.76 0.0

0 500 1000 1500 2000
Sample Size

Table 3: Results on NER Datasets with Ground

Truth labels Figure 2: Model Performance under different

sample size

This set of experiments is primarily intended to assess the consistency between the metamodel and
human annotations, as well as to benchmark the performance of the metamodel against that of
contemporary large language models. Furthermore, we utilized several widely adopted Named Entity
Recognition (NER) datasets, including FabNER, Broad Twitter, BC2GM, AnatEM, WikiNER, and
FindVehicle. These datasets were combined to construct a new benchmark, which was subsequently
employed to assess the metamodel’s performance across diverse groups of tasks. For particularly large
datasets, such as WikiNER, we randomly sampled a subset to the mixed dataset. Meanwhile, to more
explicitly illustrate the adaptability of the metamodel to downstream tasks, we present experimental
results obtained by fine-tuning the metamodel with varying amounts of training data, ranging from
64 to 2048 samples. It is worth noting that even the largest setting of 2048 samples corresponds to
only 5% of the original corpus. The main results are shown in Table[3|and detailed results are plotted
in Figure 2]

From the experimental results, we observe a consistent improvement in test performance as the sample
size increases. Notably, the model fine-tuned with 2048 samples outperforms GPT-40 across all
task categories, providing strong evidence of its substantial adaptability to knowledge mining tasks.
Meanwhile, the rate of performance gains is closely tied to the quality of annotations generated by the
large model. When the annotations are of high quality, the metamodel tends to achieve performance
saturation more rapidly, as illustrated by the experiments on WikiNER. Conversely, in tasks where
the large model produces suboptimal annotations, the performance of the metamodel improves more
gradually, thereby reflecting the core principle of co-evolution between the metamodel and large
models (Peng et al.,[2025]).

4.2 UNLABELED DATASET EVALUATION

To evaluate the effectiveness of Falconer in generating reliable proxy metamodels, we measure the
consistency scores between the metamodel and GPT-40 across three large-scale unlabeled corpora,
TED Talk Summary, Steam Game Description, and Text Message. We design a diverse set of
knowledge mining tasks spanning three categories: basic tasks involving entity recognition and

Under review as a conference paper at ICLR 2026

Basic Task Query-based Task Multi-entity Task

Model Dataset Task1 Task2 Task3 Average Taskl Task2 Average Taskl Task2 Task3 Average
= Cuckoo TED 0.489 0.654 0.514 0.552 0.383 0.371 0.377 0.395 0.607 0.497 0.500
< Cuckoo Steam Game 0.501 0.683 0.535 0.573 0.374 0.350 0.362 0.451 0.524 0.468 0.481
& Cuckoo Text Message ~ 0.584 0.694 0.585 0.621 0.418 0.392 0.405 0.564 0.583 0.530 0.559

Cuckoo TED 0.658 0.758 0.683 0.699 0.532 0.557 0.545 0.644 0.692 0.661 0.666
2 Roberta-Large TED 0.552 0.587 0.553 0.564 0.446 0.511 0.479 0.517 0.566 0.531 0.538
< Cuckoo Steam Game 0.672 0.783 0.675 0.710 0.569 0.587 0.578 0.673 0.719 0.684 0.692
= Roberta-Large Steam Game 0509 0525 0517 0.517 0.434 0452 0.443 0.588 0.383 0.564 0.512
& Cuckoo Text Message 0.703 0.806 0.731 0.747 0.590 0.614 0.602 0.709 0.726 0.734 0.723

Roberta-Large ~ Text Message ~ 0.553 0.621 0.590 0.588 0.496 0518 0.507 0.548 0570 0.574 0.564

Table 4: Results from various proposed tasks on 3 datasets with subtasks

simple classification, query-based tasks requiring sentence-level semantic understanding, and multi-
label/multi-entity tasks that demand compositional reasoning. Please refer to the complete list of
tasks provided in Appendix

Basic Task This category benchmarks the fundamental capacity of models to discern labels, entities,
and relations. We construct a suite of tasks that closely approximate real-world knowledge mining
settings, exemplified by sample 1 and 2 in Appendix [D] The task set spans elementary classification,
entity and relation extraction, as well as composite formulations integrating both. For pairwise
relation extraction tasks, we further stipulate that one entity participating in the relation is pre-
specified, thereby isolating the model’s ability to infer the remaining relational structure. As shown
in Table Eﬂ, the tasks categorized as Basic Task demonstrate that, after fine-tuning, the metamodel
consistently achieves high agreement with the large model.

Query-Based Task This category of tasks focuses on assessing the model’s ability to capture more
complex sentence-level semantics, as exemplified by sample 3 and 4 in Appendix [D} Illustrated in
Table 4] the corresponding tasks are represented by Query-based Task. With appropriate fine-tuning,
the metamodel demonstrates competitive performance on complex tasks. It is worth noting that the
untuned metamodel exhibits the weakest performance in this category; however, fine-tuning yields
substantial improvements. For instance, given the task prompt “retrieve all texts that are primarily
about medicine, and extract what the lecturer will talk about”, the initial metamodel achieves an F1
score of only 0.23 when compared against GPT-4o0 as the reference. After fine-tuning with only a
small fraction of the annotated corpus, its F1 score increases to 0.56. These results highlight the
model’s strong capacity to adapt effectively to downstream tasks.

Multi-entity Task This category of tasks extends metamodel evaluation to multi-label and multi-
entity scenarios (sample 5 in Appendix [D)). Prior work highlights the limitations of large language
models in multi-label classification (Ma et al., 2025 | Xu et al., [2024b)). In contrast, our framework
employs the planner to decompose such tasks into sequential subtasks, whose outputs are aggregated
to form the final result. For instance, the query “retrieve all speeches concerning both health and
the brain” is decomposed into two classification subtasks—health-related and brain-related—whose
results are combined via Boolean logic. This structured decomposition enables logically consistent
and accurate performance in multi-label classification and multi-entity extraction.

The experimental results for Multi-entity Task, as reported in Table [4] indicate that the adapted
metamodel demonstrates strong proficiency in handling multi-entity tasks, achieving performance
that is competitive with, and in some cases surpasses, results obtained through multi-turn prompting
augmented with human annotations.

5 ANALYSIS

5.1 CONTINUAL INTEGRATION ANALYSIS

In Table 3| fine-tuning was restarted from a fresh base model for each task. In practice, however, con-
tinual learning is equally important, as models are expected to sustain performance across sequential
tasks while retaining competence from earlier ones. To evaluate this ability, we reformulated the setup
into a sequence of five tasks, where each task used the model fine-tuned on its predecessor as the base.

Under review as a conference paper at ICLR 2026

We report the results in Figure[3] averaging over subtasks when applicable. The figure demonstrates
the metamodel’s performance under sequential fine-tuning and evaluation on consecutive tasks.

mmm Single Task mmm Consecutive Tasks B Single Task ~ mmm Consecutive Tasks

0.8

0.7

0.6

Biology Fabrication Twitter Wiki Vehicle Steam Games TextMessage
Task Task

Figure 3: Performance on labeled dataset of Single Task w/ new metamodel and Consecutive Task w/
metamodel from previous task. Performance on unlabeled dataset of Single Task w/ new metamodel
and Consecutive Task w/ metamodel from previous task

We observe that models undergoing multiple rounds of fine-tuning on sequential tasks maintain
capabilities comparable to those fine-tuned directly from the base model. Overall, our evaluation
highlights the metamodel’s continual integration ability, demonstrating its effectiveness in sustaining
high performance across a broad spectrum of real-world tasks. Moreover, the results validate that
the proposed framework substantially alleviates the deployment overhead associated with adapting
models to diverse tasks.

5.2 EFFICIENCY ANALYSIS

Single Double w/ Classification pretraining w/o Classification pretraining

00 Biology Wiki TED TextMessage 0.0 Biology Wiki TED TextMessage

Task Task

Figure 4: Performance of different number of metamodel for different task type. Performance of
different pretraining strategy

In this section, we further highlight the efficiency and performance advantages of our framework.
While prior experiments benchmarked RoBERTa-large against multiple baselines, its lack of inher-
ent instruction-following ability required training two task-specific variants for classification and
extraction. By contrast, our framework enables the incubation of a single metamodel that leverages
instruction-following to generalize across heterogeneous tasks. To validate this, we additionally
trained two separate metamodels—one for classification and one for extraction—on the same bench-
marks. As shown in left panel of Figure] their performance is nearly indistinguishable from that
of a unified model, underscoring that a single metamodel can achieve state-of-the-art performance
across task types while significantly reducing deployment overhead.

Meanwhile, to further substantiate the metamodel’s capacity for continual generalization across
novel tasks, we additionally evaluate its performance without pretraining on the classification dataset
(detailed in Section [3.2). This comparison highlights the model’s adaptability, demonstrating its
ability to rapidly generalize to unseen tasks through a combination of pretraining and fine-tuning.
As shown in right panel of Figure[d] we fine-tune the model on datasets of equal size and train for
the same number of epochs to ensure a controlled setting. The results indicate that the pretrained

Under review as a conference paper at ICLR 2026

metamodel achieves significantly faster convergence when adapted to new tasks, underscoring its
strong generalization and adaptability in continual learning scenarios.

5.3 CASE STUDY: ARISING ABILITIES OF MODEL

Task: Extract all gene names in the give text

In the course of Hepatitis A HBs - and HBe - antigen as well as HBc (IgM and IgG) -, HBs
- and HBe - antibodies can be detected .

Answers:

GPT-40:[’None’] Untuned model:[’None’] Tuned model:[’HBs’, "HBe’, "HBc¢’]

Table [3|reveals the model’s strong performance across tasks, with notable patterns emerging. On
Biology tasks, GPT-40 achieves an average F1 of 0.27—barely matching the metamodel’s zero-shot
performance—highlighting the low quality of GPT-40 annotations. Intriguingly, fine-tuning the
metamodel on these noisy labels still yields substantial gains. Manual analysis attributes 74% of this
improvement to the phenomenon illustrated in which we term arising abilities.

As shown in[5.3] we define arising abilities as the model’s capacity to correct its outputs even when
provided with inaccurate annotation guidance from contemporary LLMs. Similar phenomena
have been observed in prior studies (Shao et al.} [2025} [Ye et al.| 2025)), which report that models
can self-correct under random or deliberately misleading guidance. These works attribute this
capability to the elicitation of the model’s extensive pretrained knowledge, aligning with our analytical
interpretation. To further validate this hypothesis, we conducted a series of controlled experiments,
detailed below.

oreeone? orecmere? Models F1 score
Roberta-Large (degraded data) 0.24
; Roberta-Large (original data) 0.40
e [l e oo Cuckoo (degraded data) 0.41
Cuckoo (original data) 0.42
Annotator (GPT-40) 0.27
(a) Annotated span are marked as Bold (b) Results of different models on Biology Task

The metamodel’s pretraining on IE tasks Peng et al.| (2025)), which encode entities with positional
information, appears to endow it with a strong sensitivity to token structure. We hypothesize that
this enables the model to spontaneously extract entities at corresponding positions when faced with
new entities sharing similar positional patterns. To test this, we degraded GPT-annotated data by
randomizing span start positions while preserving span endings (Figure [5a), retaining primarily
positional cues. Fine-tuning on this degraded data yielded performance nearly identical to training
on the original annotations, whereas RoBERTa-large suffered a substantial drop (Table[5b)). These
results suggest that the model’s arising ability is driven almost entirely by positional supervision,
revealing a striking capability arising from its pretraining knowledge.

6 CONCLUSION

This paper proposes a framework for the automated execution of knowledge mining tasks, which
decomposes each task into several subtasks and employs a unified model to perform them. Conse-
quently, users only need to provide a task prompt and specify the output format to effortlessly execute
a wide range of knowledge mining tasks, while benefiting from performance surpassing that of even
the most power modern large language models, as well as 90% inference costs decrease and 20x
inference speed increase.

REFERENCES

Monica Agrawal, Stefan Hegselmann, Hunter Lang, Yoon Kim, and David A. Sontag. Large language
models are few-shot clinical information extractors. In Yoav Goldberg, Zornitsa Kozareva, and

Under review as a conference paper at ICLR 2026

Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp. 1998—
2022. Association for Computational Linguistics, 2022. doi: 10.18653/V1/2022.EMNLP-MAIN.
130. URL https://doi.org/10.18653/v1/2022.emnlp-main.130.

Anthropic. Claude 3.7 sonnet and claude code, 2025. URL https://www.anthropic.com/news/
claude-3-7-sonnet.

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan, Yingyan Ce-
line Lin, and Pavlo Molchanov. Small language models are the future of agentic ai. arXiv preprint
arXiv:2506.02153, 2025.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 17682—17690, 2024.

Sergei Bogdanov, Alexandre Constantin, Timothée Bernard, Benoit Crabbé, and Etienne Bernard.
Nuner: Entity recognition encoder pre-training via llm-annotated data. In Yaser Al-Onaizan, Mohit
Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2024, Miami, FL, USA, November 12-16, 2024, pp.
11829-11841. Association for Computational Linguistics, 2024. URL https://aclanthology.
org/2024.emnlp-main. 660,

Jack Boylan, Chris Hokamp, and Demian Gholipour Ghalandari. Glirel-generalist model for zero-shot
relation extraction. arXiv preprint arXiv:2501.03172, 2025.

Xavier Carreras and Lluis Marquez. Introduction to the conll-2005 shared task: Semantic role
labeling. In Proceedings of the ninth conference on computational natural language learning
(CoNLL-2005), pp. 152-164, 2005.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arxiv preprint arXiv: 2507.06261, 2025.

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang, Xu Han, Pengjun Xie, Haitao Zheng, and
Zhiyuan Liu. Few-nerd: A few-shot named entity recognition dataset. In Chengqing Zong,
Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pp. 3198-3213. Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.
ACL-LONG.248. URL https://doi.org/10.18653/v1/2021.acl-1long.248.

Zane Durante, Qiuyuan Huang, Naoki Wake, Ran Gong, Jae Sung Park, Bidipta Sarkar, Rohan
Taori, Yusuke Noda, Demetri Terzopoulos, Yejin Choi, et al. Agent ai: Surveying the horizons of
multimodal interaction. arXiv preprint arXiv:2401.03568, 2024.

Yao Fu, Dong-Ki Kim, Jaeckyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. Autoguide: Automated generation and selection of context-aware guidelines for
large language model agents. arXiv preprint arXiv:2403.08978, 2024.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Moritz Laurer, Wouter van Atteveldt, Andreu Casas, and Kasper Welbers. Building efficient universal
classifiers with natural language inference. arXiv preprint arXiv:2312.17543, 2023.

10

https://doi.org/10.18653/v1/2022.emnlp-main.130
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://aclanthology.org/2024.emnlp-main.660
https://aclanthology.org/2024.emnlp-main.660
https://doi.org/10.18653/v1/2021.acl-long.248

Under review as a conference paper at ICLR 2026

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:

9459-9474, 2020.

Yongqi Li, Yu Yu, and Tieyun Qian. Type-aware decomposed framework for few-shot named entity
recognition. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association
for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pp. 8911-8927.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023. FINDINGS-EMNLP.598.
URL https://doi.org/10.18653/v1/2023.findings-emnlp.598.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models.
Advances in Neural Information Processing Systems, 36:43447-43478, 2023.

Marcus Ma, Georgios Chochlakis, Niyantha Maruthu Pandiyan, Jesse Thomason, and Shrikanth
Narayanan. Large language models do multi-label classification differently. arXiv preprint
arXiv:2505.17510, 2025.

Mingyu Derek Ma, Xiaoxuan Wang, Po-Nien Kung, P Jeffrey Brantingham, Nanyun Peng, and Wei
Wang. Star: boosting low-resource information extraction by structure-to-text data generation
with large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 1875118759, 2024.

OpenAl. Introducing gpt-4o0 image generation. https://openai.com/index/
introducing-4o0-image-generation/, 2024. Accessed: 2025-08-25.

OpenAl. Gpt-5 system card. Blog, 2025.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang, Lars
Liden, Zhou Yu, Weizhu Chen, et al. Check your facts and try again: Improving large language
models with external knowledge and automated feedback. arXiv preprint arXiv:2302.12813, 2023.

Letian Peng, Zilong Wang, Feng Yao, Zihan Wang, and Jingbo Shang. Metaie: Distilling a meta
model from LLM for all kinds of information extraction tasks. CoRR, abs/2404.00457, 2024. doi:
10.48550/ARXIV.2404.00457. URL https://doi.org/10.48550/arXiv.2404.00457.

Letian Peng, Zilong Wang, Feng Yao, and Jingbo Shang. Cuckoo: An ie free rider hatched by massive
nutrition in 1lm’s nest. arXiv preprint arXiv:2502.11275, 2025.

Maria Pontiki, Dimitrios Galanis, Haris Papageorgiou, lon Androutsopoulos, Suresh Manandhar,
Mohammad Al-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin, Orphée De Clercq, et al.
Semeval-2016 task 5: Aspect based sentiment analysis. In International workshop on semantic
evaluation, pp. 19-30, 2016.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Erik F Sang and Fien De Meulder. Introduction to the conll-2003 shared task: Language-independent
named entity recognition. arXiv preprint ¢s/0306050, 2003.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training signals
in rlvr. arXiv preprint arXiv:2506.10947, 2025.

Tao Shen, Guodong Long, Xiubo Geng, Chongyang Tao, Tianyi Zhou, and Daxin Jiang. Large
language models are strong zero-shot retriever. arXiv preprint arXiv:2304.14233, 2023.

11

https://doi.org/10.18653/v1/2023.findings-emnlp.598
https://openai.com/index/introducing-4o-image-generation/
https://openai.com/index/introducing-4o-image-generation/
https://doi.org/10.48550/arXiv.2404.00457

Under review as a conference paper at ICLR 2026

Wengqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Jieyu Zhang, Hang Wu, Yuanda Zhu, Joyce Ho, Carl
Yang, and May D Wang. Ehragent: Code empowers large language models for few-shot complex
tabular reasoning on electronic health records. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language
Processing, volume 2024, pp. 22315, 2024.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL https://arxiv.
org/abs/2303.11366, 2023.

Simone Tedeschi and Roberto Navigli. Multinerd: A multilingual, multi-genre and fine-grained
dataset for named entity recognition (and disambiguation). In Marine Carpuat, Marie-Catherine
de Marneffe, and Ivdn Vladimir Meza Ruiz (eds.), Findings of the Association for Computational
Linguistics: NAACL 2022, Seattle, WA, United States, July 10-15, 2022, pp. 801-812. Association
for Computational Linguistics, 2022. doi: 10.18653/V1/2022 . FINDINGS-NAACL.60. URL
https://doi.org/10.18653/v1/2022.findings-naacl.60.

Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki Maeda. ACE 2005 Multilingual
Training Corpus. Web Download, 2006a. URL https://catalog.ldc.upenn.edu/LDC2006T06.
LDC Catalog No. LDC2006T06.

Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki Maeda. Ace 2005 multilingual
training corpus. (No Title), 2006b.

Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language models.
arXiv preprint arXiv:2303.07678, 2023a.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin
Wang. GPT-NER: named entity recognition via large language models. CoRR, abs/2304.10428,
2023b. doi: 10.48550/ARXIV.2304.10428. URL https://doi.org/10.48550/arXiv.2304,
10428,

Zilong Wang, Zifeng Wang, Long T. Le, Huaixiu Steven Zheng, Swaroop Mishra, Vincent Perot,
Yuwei Zhang, Anush Mattapalli, Ankur Taly, Jingbo Shang, Chen-Yu Lee, and Tomas Pfister.
Speculative RAG: Enhancing retrieval augmented generation through drafting. In Proceedings
of the International Conference on Learning Representations (ICLR), May 2025. URL https:
//openreview.net/forum?id=xgQfWbV6Ey. Poster.

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang, Michihiro Yasunaga, Kaidi Cao, Vassilis
Ioannidis, Karthik Subbian, Jure Leskovec, and James Y Zou. Avatar: Optimizing 1lm agents for
tool usage via contrastive reasoning. Advances in Neural Information Processing Systems, 37:
25981-26010, 2024.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng,
Yang Wang, and Enhong Chen. Large language models for generative information extraction: a
survey. Frontiers Comput. Sci., 18(6):186357, 2024a. doi: 10.1007/S11704-024-40555-Y. URL
https://doi.org/10.1007/s11704-024-40555-y.

Hanzi Xu, Renze Lou, Jiangshu Du, Vahid Mahzoon, Elmira Talebianaraki, Zhuoan Zhou, Elizabeth
Garrison, Slobodan Vucetic, and Wenpeng Yin. LIms’ classification performance is overclaimed.
arXiv preprint arXiv:2406.16203, 2024b.

Lu Xu, Hao Li, Wei Lu, and Lidong Bing. Position-aware tagging for aspect sentiment triplet
extraction. arXiv preprint arXiv:2010.02609, 2020.

Xiaolong Xu, Yibo Zhou, Haolong Xiang, Xiaoyong Li, Xuyun Zhang, Lianyong Qi, and Wanchun
Dou. Docks-rag: Optimizing document-level relation extraction through llm-enhanced hybrid
prompt tuning. In Forty-second International Conference on Machine Learning.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809-11822, 2023a.

12

https://doi.org/10.18653/v1/2022.findings-naacl.60
https://catalog.ldc.upenn.edu/LDC2006T06
https://doi.org/10.48550/arXiv.2304.10428
https://doi.org/10.48550/arXiv.2304.10428
https://openreview.net/forum?id=xgQfWbV6Ey
https://openreview.net/forum?id=xgQfWbV6Ey
https://doi.org/10.1007/s11704-024-40555-y

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629, 2023b.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: LIm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19632-19642, 2024.

Shengyao Zhuang, Bing Liu, Bevan Koopman, and Guido Zuccon. Open-source large language
models are strong zero-shot query likelihood models for document ranking. arXiv preprint
arXiv:2310.13243, 2023.

Chang Zong, Yuchen Yan, Weiming Lu, Jian Shao, Eliot Huang, Heng Chang, and Yueting Zhuang.
Triad: A framework leveraging a multi-role llm-based agent to solve knowledge base question
answering. arXiv preprint arXiv:2402.14320, 2024.

A CUCKOO FOR TEXT CLASSIFICATION

User:

Choices:

yes

no

Input Text Question: Based on above sentence, is the following sentence true or not ?
This text is about label

Assistant:

Answer:

We adopt the aforementioned template and leverage the token-level supervision provided by Cuckoo
to reformulate the classification task into a more general natural language inference (NLI) problem.
An illustrative example is provided below.

Text: I bought a Dell XPS 13 last month and it’s fantastic. The battery lasts all day and the price was $999.

Task: Is this a positive laptop review?

User Choice Yes No 1 Bought Question Based True or Not Positive Laptop Review

Al

Figure 6: Classification Pretraining

B SAMPLE PLANNING CODE

def GPT_pipeline(Input_Corpus):
labels = [’finance’]
label_results = get_label(Input_Corpus, labels)

finance_indices = [i for i, result in enumerate(label_results) if
result[0].lower() == ’yes’]

13

Under review as a conference paper at ICLR 2026

filtered_texts = [Input_Corpus[i] for i in finance_indices]

if not filtered_texts:
return []

instruction_spans = "Extract_the_lecturer_of_the_speak_in_the_given_
text."”

spans_results = get_spans(filtered_texts, instruction_spans)

output = []
for idx, orig_idx in enumerate(finance_indices):
output.append ({
"text’: Input_Corpus[orig_idx],
’spans’: spans_results[idx]
»

return output

C GENERATING FINE-TUNING SAMPLES

We leverage the metamodel’s inherent pretraining knowledge and adopt a heuristic approach to obtain
a relatively high-quality fine-tuning dataset. For classification tasks, the generation of fine-tuning
samples is illustrated in Algorithm [T] whereas for extraction tasks, we directly employ random
sampling.

Algorithm 1: Classification Training Set Generation

Input: Corpus C, label [, sample size N
Output: Training set 7
Initialize empty set 7 ;
foreach sample x € C do
| Compute score s(z,[) using metamodel;

Sort all samples in C by score s(x,1) in descending order;

Select top N samples {z], ..., z}} as positive set P;
Select bottom N samples {z7, ...,z } as negative set \;
Construct training set 7 = P UN/;

return 7 ;

D SAMPLE TASK

Sample Task

1. retrieve all speaks which is mainly about finance and extract its lecturer

2. extract all locations mentioned in the text

3. find all talks that address breaking gender stereotypes in modern society, and include all
countries mentioned

4. retrieve all speaks which is mainly about how mental health influences our daily lives and
extract all the institution name mentioned

5. retrieve all speaks which is mainly about both health and brain in the speak, then extract
their lecturer

14

Under review as a conference paper at ICLR 2026

E HUMAN PROPOSED TASK ON UNLABELED DATASETS

Tasks on TED description Dataset

1.retrieve all speaks which is mainly about finance and extract its lecturer

2.output all speaks which is mainly about mental health and extract its speakers

3.return all speaks which is mainly about environment and extract all the locations mentioned
in the text

4 retrieve talks whose main theme is artificial intelligence and list all professions mentioned
5.get all talks that center on medicine and identify all disease mentioned

6.collect all speaks which is mainly about finance

7.give out all speaks which is mainly about health

8.retrieve all speaks which is mainly about education

9.gather all speaks which is mainly about technology

10.output all speaks which is mainly about politics

11.Extract all locations mentioned

12.Extract all time mentioned

13.Extract all countries mentioned

14.Extract all website mentioned

15.Extract all person mentioned

16.retrieve all speaks which is mainly about how artificial intelligence could affect our lives
and its lecturer

17.gather talks that mainly discuss climate change and its global impact, and provide all
countries mentioned

18.retrieve all speaks which is mainly about how mental health influences our daily lives and
extract all the institution name mentioned

19.find talks that analyze the future of work in an automated world, and return the occupation
of the lecturer

20.get all talks that address breaking gender stereotypes in modern society, and include the
lecturer

21.retrieve all texts which is mainly about medicine, and extract what the lecturer will talk
about

22.retrieve all texts which are mainly about health, and extract all the disease and its
associated cause

23.find all texts which are mainly about literature, and extract all the awards of [PERSON]
24 find all texts which are mainly about science, and extract the profession of [PERSON]
25.output all texts which are mainly about history, and extract all the events and the time of
the events

26.retrieve all speaks which is mainly about both health and brain in the speak, then extract
their lecturer

27 retrieve all speaks which is mainly about both design and creativity in the speak, then
extract all artists mentioned

28.retrieve all speaks which is mainly about both medicine and surgery in the speak, then
extract all countries mentioned

29.retrieve all speaks which is mainly about artificial intelligence and ethics in the speak,
then extract all location mentioned

30.retrieve all speaks which is mainly about artificial intelligence and machine learning in the
speak, then extract the lecturer

31.gather all texts which is mainly about finance or artificial intelligence, and extract the
lecturer

32.get all texts which is mainly about education or biology, and extract all professions
33.return all texts which is mainly about philosophy or literature, and extract all person
mentioned

34.output all speaks which centers on literature or philosophy, then extract all the university
affiliation

35.retrieve all speaks which centers on music or visual arts, then extract the awards
36.retrieve all speaks which is mainly about health but is not about brain, then extract their
lecturer

15

Under review as a conference paper at ICLR 2026

37.retrieve all texts which is mainly about environment but is not about climate change, and
extract the locations

38.identify all talks mainly focusing on finance but not mentioning technology, then extract
all lecturer name metioned

39.find all speeches mainly about artificial intelligence but without any reference to machine
learning, then list all researchers mentioned

40 filter all talks centered on technological innovation but not mentioning blockchain, and
extract all numbers mentioned

16

	Introduction
	Related Works
	Falconer
	Preliminaries
	Cuckoo for Text Classification
	Planning
	Generator
	Metamodel: Lightweight Yet Capable Proxy

	Experiments
	Labeled Dataset
	Unlabeled Dataset Evaluation

	Analysis
	Continual Integration Analysis
	Efficiency Analysis
	Case Study: Arising Abilities of model

	Conclusion
	Cuckoo For Text classification
	Sample Planning Code
	Generating Fine-tuning Samples
	Sample Task
	Human Proposed Task on Unlabeled Datasets

