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Abstract

In this work, we analyze methods for solving the Schrödinger Bridge problem from
the perspective of alternating KL divergence minimization. While existing methods
such as Iterative Proportional or Iterative Markovian Fitting require exact updates
due to the fact that each step optimizes a different objective, we propose a joint
optimization of a single KL divergence objective which is motivated using tools
from information geometry. As in the variational EM algorithm, this allows for
inexact or stochastic gradient updates to decrease a unified objective. We highlight
connections with related bridge matching, flow matching, and few-step generative
modeling approaches, where various parameterizations of the coupling distributions
are contextualized from the perspective of marginal-preserving inference.

1 Introduction

Optimal mass transport problems have a rich history [15, 31] and find wide-ranging applications
throughout machine learning, ranging from generative modeling [33, 23] to predicting the evolution
of biological cells in single-cell RNA sequencing [30]. Fundamentally, we are interested in learning a
transport map or dynamical process to transform samples from an initial distribution to samples from a
final, target distribution. Entropic regularization of the transport problem introduces stochasticity into
these mappings, and also leads to computational benefits using the famous Sinkhorn algorithm [8].
While scaling these transport methods to high dimensional, continuous spaces remains a challenge,
recent successful approaches in score-based generative modeling [33, 12] have been shown to be
related to the dynamical entropy-regularized problem known as Schrödinger Bridge (SB) [9, 19, 5].

In this work, we interpret the Sinkhorn, or Iterative Proportional Fitting (IMF), algorithm for static
entropy-regularized OT [8, 3, 17] and the recent Iterative Markovian Fitting (IMF) algorithm for
the dynamical Schrödinger Bridge problem [32, 27] from the perspective of information geometry.
While it is clear that each of these approaches perform alternating KL divergence projections onto
sets satisfying desirable properties [3, 32], the asymmetry of the KL divergence raises the question of
which order of arguments should be used for each projection [6, 7]. Furthermore, both IPF and IMF
involve minimization over the same argument of the divergence in each iteration, which means that a
different objective is optimized at each step and exact iterations are required to ensure convergence.

We address these questions by characterizing the solution to the Schrödinger Bridge problem as the
intersection of four sets of measures (Prop. 2.2), and highlighting the properties of these sets which
are relevant for KL divergence projection (Sec. 3). Motivated by this analysis, we propose a novel
alternating projection algorithm in Sec. 4 which, in contrast to IPF and IMF, minimizes a unified
KL divergence objective across iterations. This provides justification for the inexact, variational
updates which are inevitably necessary in practice [26]. Our analysis sheds new light on recent bridge-
and flow-matching approaches, which update couplings of the initial and final distributions and learn
a vector field parameterizing the dynamical transport (Sec. 5), and clarifies the need for expressive,
marginal-preserving parameterizations of the couplings which are amenable to joint optimization.
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2 Background

Entropic OT and Schrödinger Bridge We begin by introducing the entropy-regularized optimal
transport (OT) problem between two given measures with finite second moment µ0, νT ∈ P2(Rd).
The OT problem minimizes the cost over couplings Q0,T ∈ Π(µ0, νT ) := {Q0,T |Q0 = µ0,QT =
νT }, or joint measures with the desired endpoint marginals,

W KL
c,ϵ(µ0, νT ) = inf

Q0,T∈Π(µ0,νT )

∫
c(x0, xT ) dQ0,T − ϵH[Q0,T ] = inf

Q0,T∈Π(µ0,νT )

ϵ DKL[Q0,T : e−
1
ϵ
c(x0,xT )]

(eOT)

whereH[Q0,T ] is the Shannon entropy of the coupling.

Closely related is the Schrödinger Bridge (SB) problem, which seeks a stochastic process Q0:T that
matches the given endpoint marginals (µ0, νT ) while minimizing the KL divergence with a reference
Brownian diffusion process Qref

0:T [4, 5, 19],

SB(µ0, νT ) = inf
Q0:T∈Π(µ0,νT )

DKL[Q0:T : Qref
0:T ] = inf

Q0:T∈Π(µ0,νT )

∫
log

dQ0:T

dQref
0:T

dQ0:T (SB)

where Q0:T and Qref
0:T are measures on the space of continuous paths C : [0, T ] → Rd and our

naming of Q0:T ,Qref
0:T is inspired by later connections with variational inference. In what follows,

we consider xT ∼ νT as the data distribution and x0 ∼ µ0 as, for example, a noise distribution.

Equivalence of eOT and SB Assume a reference Qref
0:T which induces an endpoint coupling

Qref
0,T := e−

1
ϵ c(x0,xT ) ([18] Sec. 3), as is natural for the Euclidean cost and Qref

0:T as pure Brownian
motion (see Ex. 2.3 below). In this case, we can relate the solutions to the dynamical Eq. (SB) and
static Eq. (eOT) problems by decomposing the path space KL divergence using disintegration,

SBc,ϵ(µ0, νT ) = inf
Q0:T∈Π(µ0,νT )

DKL

[
Q0,T : e−

1
ϵ
c(x0,xT )

]
+ EQ0,T

[
DKL[Q◦|0,T : Qref

◦|0,T ]
]

(1)

where Qref
◦|0,T (·|x0, xT ) denotes the conditional path measure on t ∈ (0, T ) given the endpoints. Note

that the constraint Q0,T ∈ Π(µ0, νT ) depends only on the endpoint coupling Q0,T , which means
we can bring the second term to zero in the optimal solution if Q∗

◦|0,T = Qref
◦|0,T . Since only the

optimization over Q0,T remains in Eq. (1), we conclude that the optimal couplings in Eq. (eOT) and
Eq. (SB) coincide, with W KL

c,ϵ(µ0, νT ) = ϵ SBc,ϵ(µ0, νT ).

Characterizing the Solution of Schrödinger Bridge Problem To refer to the optimality condition
Q∗

◦|0,T = Qref
◦|0,T , we recall the definition of the reciprocal class of a reference path measure [20, 32].

A member of the reciprocal class may also be described as a ‘mixture of bridges’ as in [24, 32, 27].

Definition 2.1 (Reciprocal Class). The reciprocal class of a reference process Qref
0:T is the set of

measuresR(Qref
◦|0,T ) = {Π0:T | Π0:T = Π0,TQref

◦|0,T }, where Qref
◦|0,T is the ‘bridge’ process obtained

by conditioning Qref
0:T on its endpoint values X0 = x0, XT = xT .

Along with the reciprocal class, we will consider the set of Markov path measuresM. We defer
detailed definitions of reciprocal and Markov path measures to App. A.

The focal point of the current work is the following proposition, which states that, under mild
conditions [19], the unique solution Q∗

0:T to the SB problem with a Markov reference process
Qref

0:T ∈M can be characterized as a path measure in the intersection of four sets.
Proposition 2.2 ([20] Thm. 3.2, [19] Thm. 2.12). Under suitable conditions, if there exists

Q0:T ∈ M ∩ R(Qref
◦|0,T ) ∩ Π(µ0, ·) ∩Π(·, νT ), (2)

which is a Markov path measure in the reciprocal class of Qref
0:T , with endpoint marginals (µ0, νT ),

then Q0:T uniquely solves the Schrödinger Bridge problem Eq. (SB) with reference Qref
0:T .

SB Solution with Brownian Diffusion as Reference Qref
0:T We proceed to consider each property

in Prop. 2.2 for the class of reference path measures given as the law of a Brownian diffusion with
initial Qref

0 = µ0, which will be our focus for the remainder of this work.

Qref
0:T : dxt = b(xt, t)dt+ σtdBt, x0 ∼ µ0. (3)
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Any reference process of this form satisfies the Markov property Qref
0:T ∈M. For given (x0, xT ), the

corresponding bridge process Qref
◦|0,T is obtained via Doob’s h-transform [10, 14] as the law of

Qref
◦|0,T : dxt|0,T =

(
bt(xt|0,T , t) + σ2

t∇xt logQref
T |t(xT |xt|0,T )

)
dt+ σtdBt (4)

We will denote the h-transform term as ẋt|T (xt|0,T , t) = ẋt|T = σ2
t∇xt logQref

T |t(xT |xt|0,T ).

Example 2.3 ([32] Eq. 3-4). For the Qref
0:T as a σ-Brownian motion (with no drift bt = 0 and σt = σ

in Eq. (3)), the bridge Qref
◦|0,T is the law of a simple linear interpolation of x0, xT plus noise

Qref
◦|0,T : dxt|0,T =

xT − xt|0,T

T − t
dt+ σdBt (5)

where ẋt|T = 1
T−t (xT−xt|0,T ) =

1
T (xT−x0) is the time-derivative of the linear interpolation. Note

that Qref
0,T = e−

1
2Tσ2 ∥xT−x0∥2

, which corresponds to Eq. (eOT) with Euclidean cost and ϵ = 2Tσ2.

Using Prop. 2.2 (or the reasoning below Eq. (1)), the optimal solution to the dynamical SB problem
can be constructed as a member of the reciprocal class Q∗

0:T = Q∗
0,TQref

◦|0,T ∈ R(Q
ref
◦|0,T ) with the

reference bridge in Eq. (4) and the optimal coupling solving Eq. (eOT). Finally, to illustrate the
Markov property, it can be shown that Q∗

0:T ∈M may also be expressed as the law of a Brownian
diffusion. In the forward direction, we have [14]

Q∗
0:T : dxt =

(
b(xt, t) + v∗(xt, t)

)
dt+ σtdBt, x0 ∼ µ0,

where v∗(xt, t) = EQ∗
T |t

[ẋt|T ] = σ2
t EQ∗

T |t

[
∇xt

logQ∗
T |t(xT |xt)

]
.

(6)

Inspecting Eq. (6), note that the optimal v∗(xt, t) depends explicitly on the optimal path measure
Q∗

0:T via the conditional Q∗
T |t. For the computational methods described later, this will motivate

either alternating optimizations ( Sec. 3.2, [32, 27]) or separate parameterizations ( Sec. 4, ours) of (i)
the reciprocal path measure Q0:T = Q0,TQref

◦|0,T induced by a coupling Q0,T , and (ii) the Markov
path measure induced by a learned v(xt, t).

3 Alternating Projection Algorithms for Solving Schrödinger Bridge
In this section, we view methods for solving the SB problem from the perspective of alternating
KL divergence projection [3, 32] onto sets of measures satisfying the optimality properties in Prop. 2.2.
Our eventual goal is to propose and analyse a new alternating projection scheme in Sec. 4.

We first recall two notions of KL divergence projection from information geometry ([7, 2] 1.6,2.8).

Definition 3.1 (e-Projection). The e-projection
of a reference P(i) onto a set S is defined

Qe = projeS(P
(i)) = argmin

Q∈S
DKL[Q : P(i)].

Definition 3.2 (m-Projection). The m-projection
of a reference Q(i) onto a set S is defined

Pm = projmS (Q(i)) = argmin
P∈S

DKL[Q(i) : P].

To distinguish the projections, note that e-projection optimizes over the first argument (under which
expectations are taken), while the m-projection optimizes over the second argument (as in maximum
likelihood). Due to the asymmetry of the KL divergence, these projections have fundamentally
different properties. Thm. 1, 3, and 4 of [7] establish conditions for the existence and uniqueness of
each projection.1

Theorem 3.3 ([7]). If SC is convex, in other
words if Qa,Qb ∈ SC implies that (1− α)Qa +
αQb ∈ SC, then the e-projection of P(i) onto SC
is unique and satisfies a Pythagorean relation for
any Q ∈ SC,

DKL[Q : P(i)] = DKL[Q : Qe] +DKL[Qe : P(i)].

Theorem 3.4 ([7]). If SLC is log-convex, in other
words if Pa,Pb ∈ SLC implies that exp{(1 −
α) logPa + α logPb − logZα} ∈ SLC, then the
m-projection of Q(i) onto SLC is unique and satis-
fies a Pythagorean relation for any P ∈ SLC,

DKL[Q(i) : P] = DKL[Q(i) : Pm] +DKL[Pm : P].

1As written, the Pythagorean relations in Thm. 3.3-3.4 also require SC or SLC to satisfy a notion of closure
with respect to a KL divergence in the appropriate direction. Uniqueness holds without these conditions [7].
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Unique SB Solution

Markov

Figure 1: Alternating Projection Algorithms. Colors indicate exact e- or m- projections underlying
IPF (both e, •), IMF (both m, •), and ours (e-m, ◦,◦, dashed) with example initial Q(0)

0,T ∈ Π(µ0, νT )

and P(0)
0,T = e−

1
ϵ c(x0,xT ). Note that the reciprocal classR(Qref

◦|0,T ) is both log-convex and convex.

Note that we use subscripts SC or SLC to emphasize the convex or log-convex properties of a set. We
next highlight the properties of the set of Markov, reciprocal, and marginal-constrained path measures
which are relevant to the KL projections above. See App. A for proofs.
Proposition 3.5. The set of measures with a given marginal Π(µ0, ·) or Π(·, νT ) is convex.

Proposition 3.6. The set of Markov path measuresMLC is log-convex.

Proposition 3.7. The reciprocal classR(Qref
◦|0,T ) is both convex (RC) and log-convex (RLC).

While Shi et al. [32] note that the set of Markov path measures is not convex, we emphasize the
log-convex property ofMLC andRLC and interpret the IMF algorithm of [32, 27] using alternating
m-projections. Our proposed approach in Sec. 4 will leverage the convexity ofR(Qref

◦|0,T ) to instead
perform the e-projection onto the reciprocal class. Finally, we interpret IPF as performing alternating
e-projections onto the sets Π(µ0, ·), Π(·, νT ). We illustrate these projections geometrically in Fig. 1.

In what follows, our notation is chosen carefully such that we always denote the first argument of the
KL divergence using Q and second argument using P.

3.1 Iterative Proportional Fitting
The classical Iterative Proportional Fitting (IPF) or Sinkhorn algorithm [11, 6, 29, 8, 3, 17] performs
iterative ‘half-bridge’ updates P(n+1)

0,T ∈ Π(µ0, ·) and P(n+2) ∈ Π(·, νT ) to satisfy the marginal
constraints, where we reset n← n+ 2 after each even iteration

P(n+1)
0,T ← argmin

Q0,T∈Π(·,νT )

DKL[Q0,T : P(n)
0,T ] P(n+2)

0,T ← argmin
Q0,T∈Π(µ0,·)

DKL[Q0,T : P(n+1)
0,T ] (IPF)

Using Def. 3.1 and Thm. 3.3, we interpret IPF as performing alternating e-projections onto the
convex sets defined by marginal constraints Π(µ0, ·) or Π(·, νT ) (Prop. 3.5). The Pythagorean
relation in Thm. 3.3 can be used to establish monotonicity of the KL divergence to the optimum
DKL[Q∗

0,T : P(n)
0,T ] (see App. C.2, [6, 29]), while [29] prove convergence of IPF to the solution of

Eq. (eOT). However, note that exact, alternating iterates are required for IPF, since P(n+1)
0:T is found

using an optimization in the first argument, and then used in the second argument to find P(n+2)
0:T .

While we write the projections in Eq. (IPF) using couplings for the static problem, recent work [9, 37]
proposes to solve SB problems using path-space versions of IPF. For example, the forward (P(n)f

0:T )
and backward (P(n+1)b

0:T ) iterates may be SDEs parameterized by drifts vθf (xt, t) and vθb(xt, t).
From a dynamical perspective, path-space IPF converges to the optimal SB solution, a Markov path
measure in the reciprocal classR(Qref

◦|0,T ) with endpoint marginals µ0, νT [9, Prop 5].
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3.2 Iterative Markovian Fitting

Iterative Markovian Fitting (IMF) [24, 32, 27] (see Alg. 1) iteratively enforces the Markov Q(n+1)
0:T ∈

MLC and reciprocal Q(n+2)
0:T ∈ R(Qref

◦|0,T ) := RLC properties using KL divergence projections of
path measures

Q(n+1)
0:T ← argmin

P∈MLC

DKL[Q(n)
0:T : P0:T ] Q(n+2)

0:T ← argmin
P∈RLC

DKL[Q(n+1)
0:T : P0:T ]. (IMF)

Using Def. 3.2, Thm. 3.4, and the log-convexity ofMLC andRLC from Prop. 3.6-3.7, we interpret
IMF as performing alternating m-projections. Again, the Pythagorean relation in Thm. 3.4 can
be used to establish monotonicity in KL divergence to the optimum DKL[Q(n)

0,T : Q∗
0,T ] (App. C.2,

[32, 27]). We again note the need for exact iterates due to optimization over the same argument of
the KL divergence in each step.

We next review the Markov and reciprocal m-projections of IMF in detail. In particular, when
initializing with Q(0)

0:T ∈ Π(µ0, νT ), we will see that each exact projection in Eq. (IMF) preserves
the endpoint marginals. This suggests that exact IMF iterates will converge to the optimal Q∗

0:T ∈
M∩R(Qref

◦|0,T ) ∩Π(µ0, νT ) with the desired properties in Prop. 2.2 (see [27] Thm. 2 for proof).

Markov m-Projection Inspired by the form of the SB solution in Eq. (6), the KL divergence
minimization over Markov processes in Eq. (IMF) can be parameterized using a (learned) vector
field vθ(xt, t). Using the Girsanov theorem on Eq. (IMF) and assuming Q(n+1)

0 = µ0, the Markov
m-projection can be implemented via the solution to the following optimization problem,

v∗(n+1)(xt, t) = EQ(n)

T |t

[
ẋt|T

]
= argmin

vθ

∫ T

0

EQ(n)
t

[
1

2σ2
t

EQ(n)

T |t

[∥∥ẋt|T − vθ(xt|0,T , t)
∥∥2]] dt (7)

which matches Eq. (6) for a possibly suboptimal Q(n)
0:T .

The Markov projection Q(n+1)
0:T = projmMLC

(Q(n)
0:T ) is now given as the law of

Q(n+1)
0:T : dxt =

(
b(xt, t) + v∗(n+1)(xt, t)

)
dt+ σtdBt, x0 ∼ µ0, (8)

which can be shown to preserve all marginals of Q(n)
0:T [27, Thm. 1], in particular Q(n+1)

0:T ∈ Π(µ0, νT )

if Q(n)
0:T ∈ Π(µ0, νT ). However, Q(n+1)

0:T ̸∈ R(Qref
◦|0,T ) may not have the correct bridges and we thus

require further projection.

Reciprocal m-Projection via SDE Simulation The reciprocal m-projection is given by Q(n+2)
0:T =

Q(n+1)
0,T Qref

◦|0,T = projmRLC
(Q(n+1)

0:T ), which can be seen by noting that the only degree of freedom for
optimization over the reciprocal class P0:T ∈ R(Qref

◦|0,T ) is the coupling P0,T and that the expectation

in the KL divergence is under fixed Q(n+1)
0:T [32, 27].

The exact reciprocal m-projection can thus be performed by simulating the Markov process in
Eq. (11) to obtain couplings Q(n+2)

0,T ← Q(n+1)
0,T . In the deterministic limit σ → 0, the corresponding

ODE simulation recovers to the rectification step for updating the couplings in Rectified Flow
[23, 22]. While the exact projection clearly preserves the endpoint marginals, Q(n+2)

0,T ∈ Π(µ0, νT ) if

Q(n+1)
0,T ∈ Π(µ0, νT ), the interpolating bridge process changes the intermediate marginals [23, 22].

4 Bridge Matching via Expectation Maximization
In this section, we propose an alternating projection approach to the SB problem which minimizes a
single KL divergence objective DKL[Q0:T : P0:T ] by updating Q(n)

0:T and P(n+1)
0:T in the same argument

across iterations. We analyze the exact iterates and demonstrate their convergence in Sec. 4.1. In
notable contrast to the need for exact iterates in IMF and IPF, the benefit of our approach is that
minimization of a unified objective provides principled justification for inexact updates or partial
descent steps, as in the variational Expectation Maximization (EM) algorithm [26] (Sec. 4.2).
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Algorithm 1 Iterative Markovian Fitting [32]

input: reference bridge process Qref
◦|0,T

input: initial coupling Q(0)
0,T ∈ Π(µ, ν)

initialize: Q(0)
0:T = Q(0)

0,TQref
◦|0,T

while not converged do
Markov m-Projection (Flow Matching):

SAMPLE( Q(n)
0,TQref

◦|0,T ) (see Alg. 3)

v
∗(n+1)
t ← argmin

vt

EQ(n)
t,T

[
∥ẋt|T − vt∥2

]
= EQ(n)

T |t
[ẋt|T ]

Q(n+1)
0:T ← Law[SDE(bt, v

∗(n+1)
t , σt)]

= argmin
P∈MLC

DKL[Q(n)
0:T : P0:T ]

Reciprocal m-Projection (Rectification):

Q(n+2)
0:T ← Q(n+1)

0,T Qref
◦|0,T

= argmin
P∈RLC

DKL[Q(n+1)
0:T : P0:T ]

n← n+ 2

end while
return: Q(n)

0:T ∈MLC ∩RLC ∩Π(µ0, νT )

Algorithm 2 Exact Bridge Matching em

input: reference bridge process Qref
◦|0,T

input: initial coupling Q(0)
0,T ∈ Π(µ, ν)

initialize: Q(0)
0:T = Q(0)

0,TQref
◦|0,T , n = 0

while not converged do
Markov m-Projection (Flow Matching):

P(n+1)
0:T ← argmin

P∈MLC

DKL[Q(n)
0:T : P0:T ]

Reciprocal e-Projection:

Q(n+2)
0:T ← argmin

Q∈RC

DKL[Q0:T : P(n+1)
0:T ]

initialize i = 0, P(0)n+2

0:T = Q(n+2)
0:T

while not converged do

e-Projection onto Π(·, νT ):

P(i+1)n+2

0:T ← argmin
P∈Π(·,νT )

DKL[Q0:T : P(i)n+2

0:T ]

e-Projection onto Π(µ0, ·):

P(i+2)n+2

0:T ← argmin
P∈Π(µ0,·)

DKL[Q0:T : P(i+1)n+2

0:T ]

i← i+ 2
end while

n← n+ 2, Q(n)
0:T ← P(i)n+2

0:T

end while
return: Q(n)

0:T ∈MLC ∩RC ∩Π(µ0, νT )

Our approach is motivated by the properties of the sets of Markov, reciprocal, and marginal-
constrained path measures in Prop. 3.5-3.7. While the Markov m-projection is natural due to
Prop. 3.6 and the success of previous work minimizing the regression loss in Eq. (7) [21, 23],
Prop. 3.7 suggests that either order of the arguments might be used for the reciprocal projection onto
R(Qref

◦|0,T ), since it is both convex and log-convex. We treat R(Qref
◦|0,T ) = RC as a convex set and

perform the e-projection ontoRC ∩Π(µ0, νT ), which is convex as the intersection of the convex sets.

We thus propose to perform alternating e- and m-projections as follows,

P(n+1)
0:T ← argmin

P∈MLC

DKL[Q(n)
0:T : P0:T ] Q(n+2)

0:T ← argmin
Q∈ RC ∩ Π(µ0,νT )

DKL[Q0:T : P(n+1)
0:T ]. (em)

Crucially, each step of Eq. (em) optimizes the unified objective DKL[Q0:T : P0:T ], since Q(n)
0:T and

P(n+1)
0:T always appear in first and second argument, respectively. Furthermore, our projections

consider all four of the sets characterizing the optimal SB solution in Prop. 2.2.

4.1 Exact em Procedure
We next analyze the exact projections in Eq. (em), with a particular focus on the e-projection onto
R(Qref

◦|0,T ) ∩ Π(µ0, νT ). We describe an algorithm for computing exact iterates in Alg. 2, before
presenting a variational approach in Sec. 4.2.

Reciprocal e-Projection with Marginal Constraints Ignoring the Π(µ0, νT ) constraint for the mo-
ment, note that the KL divergencpe in the reciprocal e-projection in Eq. (em) involves an expectation
under Q0:T = Q0,TQref

◦|0,T ∈ R(Q
ref
◦|0,T ). Compared to the reciprocal m-projection in Eq. (IMF), this
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changes the exact projection such that projeRC
(P(n+1)

0:T ) no longer preserves the endpoint marginals of
P(n+1)
0,T (see App. B.1). Thus, we must impose the marginal constraints in Eq. (em) in order to solve

SB with fixed Π(µ0, νT ).

This leads to the following form for the exact e-projection Qe(R∩Π)
0:T = projeRC∩Π(µ0,νT )(P

(n+1)
0:T ).

Proposition 4.1 (Marginal-Constrained Reciprocal e-Projection). The e-projection of a path measure
P(n+1)
0:T onto the convex setR(Qref

◦|0,T )∩Π(µ0, νT ) is of the form Qe(R∩Π)
0:T = Qe(R∩Π)

0,T Qref
◦|0,T , where

dQe(R∩Π)
0,T

dP(n+1)
0,T

= exp
{
−DKL

[
Qref

◦|0,T : P(n+1)
◦|0,T

]
− ϕ0 − ϕT

}
. (9)

The projection in Eq. (9) matches the solution of the static regularized OT problem [19], with a
cost c(x0, xT ) = DKL[Qref

◦|0,T : P(n+1)
◦|0,T ] that depends on P(n+1)

0:T ∈ MLC and regularization with

DKL[Q0,T : P(n+1)
0,T ] instead of the entropy in Eq. (eOT) (see App. C.1). For given endpoints (x0, xT ),

the cost measures the mismatch between the target bridge Qref
◦|0,T and the bridge P(n+1)

◦|0,T induced by
the current Markov path measure (as in Eq. (4)). Our updates reach a fixed point if the support of
P(n+1)
0,T concentrates on (x0, xT ) with the correct bridges P(n+1)

◦|0,T = Qref
◦|0,T .

Exact em Algorithm In Alg. 2, we describe an algorithm to calculate the projections in Eq. (em).
While the Markov m-projection is the same as in IMF (Sec. 3.2), the e-projection is more in-
volved due to the set intersection R(Qref

◦|0,T ) ∩ Π(µ0, νT ). We propose to first perform the recip-

rocal e-projection Qe(R)
0:T = projeRC

(P(n+1)
0:T ) onto R(Qref

◦|0,T ) only (see Prop. B.1). Motivated by
the interpretation of Prop. 4.1 as the solution to a static regularized OT problem, we next per-
form alternating IPF e-projections starting from an initial reference measure P(0)n+2

0,T = Qe(R)
0:T ∝

P(n+1)
0,T exp{−DKL[Qref

◦|0,T : P(n+1)
◦|0,T ]}. These IPF iterations converge to the correct potentials ϕ0, ϕT

in Eq. (9) [29], and remain within the reciprocal class since only the couplings are updated.

We show the convergence of this procedure in the following proposition (see App. C for proof).
Proposition 4.2. The exact alternating projection algorithm in Eq. (em) (in particular, Alg. 2)
converges to Q(∞)

0:T ∈ R(Q
ref
◦|0,T ) ∩Π(µ0, νT ) and P(∞)

0:T ∈MLC. If Q(∞)
0:T or P(∞)

0:T is a fixed point of

the procedure, then it is equal to the optimal SB solution, Q(∞)
0:T = P(∞)

0:T = Q∗
0:T .

Nevertheless, we note two issues which make it impractical to perform the exact e-projection in
Prop. 4.1. First, even if we could calculate the cost DKL[Qref

◦|0,T : P(n+1)
◦|0,T ], the IPF iterations to

compute the e-projection in each step are as difficult as the original problem Eq. (eOT). Further, the
Doob h-transform with a nonlinear drift v(n+1)(xt, t) is intractable in general, so we do not expect to
be able to calculate the bridge P(n+1)

◦|0,T or KL divergence cost.

4.2 Variational Bridge Matching
Despite the intractability of the exact updates, the fact that our alternating projections in Eq. (em) min-
imize a unified KL divergence objective suggests maintaining separate (parametric) representations
of a reciprocal path measure Qϕ(n)

0:T = Qϕ(n)
0,T Qref

◦|0,T and Markov process Pθ(n+1)
0:T (via v

(n+1)
θ (xt, t)).

As in the variational EM algorithm, we may perform partial descent steps which serve to decrease
DKL[Q0:T : P0:T ]. In particular, the m-step performs learning of a Markovian diffusion model, while
the e-step performs inference of a (marginal-constrained) coupling and reciprocal path measure.

Using the Girsanov theorem as in [24, 32], the KL divergence minimization in Eq. (em) becomes

min
Qϕ

0:T∈R(Qref
0:T )

min
Pθ
0:T∈MLC

DKL[Qϕ
0:T : Pθ

0:T ] (10)

= min
Qϕ

0,T

min
vθ
t ,Pθ

0

∫ T

0

EQϕ
t

[
1

2σ2
t

EQϕ
T |t

[∥∥ẋt|T − vθ(xt|0,T , t)
∥∥2]] dt+ EνT

[
DKL[Qϕ

0|T : Pθ
0]
]

7



In particular, we assume Qϕ
T = νT and apply the Girsanov theorem between the forward bridge

process in Eq. (4) (with initial x0 ∼ Qϕ
0|T ) and the Markov process Pθ

0:T given by

Pθ
0:T : dxt =

(
b(xt, t) + vθ(xt, t)

)
dt+ σtdBt, x0 ∼ Pθ

0. (11)

where the optimal vθ(xt, t) for a given Qϕ
0:T is given by Eq. (7). Note, the KL divergence term at

t = 0 in Eq. (10) is between the initial measures of the two forward processes, whereas the final
endpoint term in the limit as t→ T is ignored, as in [24] Sec. 4, [32].
Remark 4.3 (Marginal Preservation). While we write a possible optimization over Pθ

0 in Eq. (10)
(as in [24]), note that its optimum occurs at Pθ

0 = Qϕ
0 for a given Qϕ

0:T . Fixing Qϕ
T = νT , we thus

require Qϕ
0 =

∫
Qϕ

0|T dνT = Pθ
0 = µ0 in order for Eq. (10) to solve the SB problem for (µ0, νT ).

This suggests the need to design clever parameterizations of couplings Qϕ
0:T ∈ Π(µ0, νT ) which

preserve the desired marginals. We discuss approaches from previous work in Sec. 5

Finally, as in Neal and Hinton [26], we consider joint optimization of the KL divergence objective in
Eq. (11) using, for example, gradient descent with learning rates ηθ, ηϕ

θ ← θ − ηθ∇θDKL[Qϕ
0:T : Pθ

0:T ] ϕ← ϕ− ηϕ∇ϕDKL[Qϕ
0:T : Pθ

0:T ].

where we might also choose to alternate between Kθ gradient steps of θ for fixed ϕ, and Kϕ gradient
steps of ϕ for fixed θ. Again, our unified objective provides justification for these inexact, partial e
and m steps, in contrast to IPF and IMF whose convergence relies on exact iterates.

5 Discussion
While the Markov m-step is well understood in the literature, our em perspective sheds light on
how to perform the reciprocal e-step such that inexact, variational updates are justified. Our exact
projection in Prop. 4.1 differs from the SDE simulation used in IMF, and thus suggests searching for
expressive, marginal-preserving parameterizations of the reciprocal couplings to approximate Eq. (9).
We discuss existing parameterizations [35, 28, 16] and other related work

Markov m-Step and Path Straightness The family of flow matching [21, 1, 28, 35, 34] and
rectified flow [23, 22, 25] methods learn a vector field vθ using a regression loss similar to Eq. (10),

v∗(n+1)(xt, t) = EQ(n)

T |t

[
ẋt|T

]
= argmin

vθ

∫ T

0

EQ(n)
t,T

[∥∥ẋt|T − vθ(xt|0,T , t)
∥∥2]dt, (12)

which matches the KL divergence minimization in Eq. (7) up to the 1/σ2
t weighting factor.

We can view the Markov m-projection or flow-matching objective as associating the optimal value in
Eq. (12) to a given coupling Q(n)

0,T . In particular, the optimal value at v∗(xt, t) = EQ(n)

T |t
[ẋt|T ] corre-

sponds to the conditional variance of ẋt|T under the reciprocal path measure Q(n)
0,T = Q(n)

0,TQref
◦|0,T ,

VarQ(n)
0:T

[
ẋt|T

]
=

∫ T

0

EQ(n)
t,T

[∥∥ẋt|T − EQ(n)

T |t
[ẋt|T ]

∥∥2]dt. (13)

This quantity has been interpreted to measure the ‘straightness’ of bridge paths induced by a coupling
Q(n)

0,T (lower is straighter) [23, 22, 28, 16], and obtaining straighter paths has been the motivation for
various related work described below.

Relation to Rectified Flow Rectified flow [23, 22] may be viewed as the deterministic limit of
the IMF algorithm as σt → 0, although reasoning using the KL divergence and Girsanov theorem
does not appear to translate directly to the deterministic case. As in IMF, couplings are updated by
simulating an ODE from either endpoint marginal, and vθ(xt, t) is updated using the regression loss
to the bridge vector fields in Eq. (12). Exact iterations of this procedure have been shown to reduce
the conditional variance in Eq. (13) and yield straighter paths [23]. Liu et al. [23, 25] demonstrate
impressive results for one-step generative modeling and distillation.
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Relation to Flow Matching Initial work on flow matching [21, 1] uses fixed, independent couplings
Qϕ

0,T = µ0 ⊗ νT to construct a reciprocal process Q0:T , and learns a vector field vθ using Eq. (12).
However, to straighten the paths in Eq. (13) and approach the solution to a dynamical OT problem,
[28, 35, 34] use (regularized) OT solvers to obtain couplings on mini-batches of data. From our
perspective, this defines a particular inference procedure for the reciprocal coupling Q0,T . However,
marginal preservation and convergence to the OT or SB solution can only be guaranteed in the limit
as the minibatch size n→∞ [28].

Relation to Lee et al. [16] Lee et al. [16] propose a similar joint optimization of the KL divergence
in Eq. (10), with fixed Pθ

0 = µ0 = N (0, I) and couplings Qϕ
0,T = νTQϕ

0|T parameterized by an

encoder Qϕ
0|T which maps from empirical data xT ∼ νT to noise. However, this coupling distribution

may not preserve the correct initial marginal Qϕ
0 ̸= µ0 (see Remark 4.3). Lee et al. [16] thus add

additional regularization by DKL[Qϕ(n)
0 : µ0] with weight β ≫ 1, which translates to reweighting the

term β EνT
DKL[Qϕ

0|T : Pθ
0] in Eq. (10). The method in [16] is motivated by optimizing the forward

process in diffusion models to obtain straighter paths as in Eq. (13), and does not make explicit
connections with the SB problem. While the joint optimization is similar to our proposed variational
bridge matching, exact marginal preservation remains a challenge using this approach.

Previous EM Approaches Similarly to our proposed interpretation in the stochastic case, Liu [22]
Sec. 5.4 views (deterministic) rectified flow as a majorization-minimization algorithm, of which the
EM algorithm is the most famous example [13]. Liu et al. [24] discuss an analogy with EM, but
ignore inference in the e-step and only optimize the model parameters.

Vargas and Nüsken [36] also propose an EM-style optimization for solving a general class of
divergence minimization problems involving forward and backward SDEs. Compared to their
approach, we restrict attention to reciprocal projections for reference processes with tractable bridges
[24, 32, 27], which simplifies the learning process in the first argument since we only optimize over
the coupling Qϕ

0,T . In particular, we avoid backpropagation through sampling dynamics and the need
for Hamilton-Jacobi regularizers, which [36] argue play a similar role to the reciprocal projection.

6 Conclusion

In this work, we have understood alternating projection methods for solving Schrödinger Bridge
problems from the perspective of information geometry. Motivated the properties of the sets of
Markov and reciprocal path measures, we proposed a new projection approach which yields a single
KL divergence objective and allows for inexact updates in the style of variational EM. The perspective
sheds light on methods from previous work, and suggests searching for expressive parameterizations
of marginal-preserving coupling distributions to solve Schrödinger Bridge problems.
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A Markov and Reciprocal Path Measures

In this section, we review definitions of Markov and reciprocal path measures, and demonstrate their
properties of convexity or log-convexity.
Definition A.1 (Markov Path Measure (Léonard et al. [20] Thm. 1.2)). For times 0 ≤ s < t ≤ 1 and
events A(0,s) in σ-algebra generated by {Xr : 0 ≤ r < s} and B(t,1) in the σ-algebra generated by
{Xr : t < r ≤ 1}, then

Pr[A(0,s) ∩B(t,1)|Xs, Xt] = Pr[A(0,s)|Xs] Pr[B(t,1)|Xt] (14)

Proposition 3.6. The set of Markov path measuresMLC is log-convex.

Proof. For Qa,Qb ∈ EM , consider Qeα := exp{(1− α) logQa + α logQb − logZα}. We would
like to show that this is Markov.

Qeα [A(0,s) ∩B(t,1)|Xs, Xt] (15)
= exp{(1− α) logQa[A(0,s) ∩B(t,1)|Xs, Xt] + α logQb[A(0,s) ∩B(t,1)|Xs, Xt]− logZα} (16)

= exp{(1− α) logQa[A(0,s)|Xs] + α logQb[A(0,s)|Xs] + (1− α) logQa[B(t,1)|Xt] (17)
+ α logQb[B(t,1)|Xt]− logZα}

=
1

Zα
Qeα [A(0,s)|Xs]Qeα [B(t,1)|Xt] (18)

which satisfies Eq. (14) as desired.

Definition A.2 (Reciprocal Path Measure). For times 0 ≤ s < t ≤ 1 and events A(s,t)c in σ-algebra
generated by {Xr : 0 ≤ r < s} ∪ {Xr : t < r ≤ 1} and B(s,t) in the σ-algebra generated by
{Xr : s < r < t}, then

Pr[A(s,t)c ∩B(s,t)|Xs, Xt] = Pr[A(s,t)c |Xs, Xt] Pr[B(s,t)|Xs, Xt]. (19)

Note that reciprocal path measures are not Markov in general, but Markov path measures are reciprocal
[20]. Nevertheless, a Markov P0:T ∈M will not be in the reciprocal class for a given reference Qref

0:T

if it does not have the desired bridges P◦|0,T ̸= Qref
◦|0,T .

Proposition 3.7. The reciprocal classR(Qref
◦|0,T ) is both convex (RC) and log-convex (RLC).

Proof. Clearly, the set of reciprocal measures is m-affine, since for Qa
0:T ,Qb

0:T ∈ R(Qref
0:T ), then

Qm(α)
0:T = (1− α)Qa

0:T + αQb
0:T = (1− α)Qref

◦|0,TQ
a
0,T + αQref

◦|0,TQ
b
0,T (20)

= Qref
◦|0,T

(
(1− α)Qa

0,T + αQb
0,T

)
∈ R(Qref

0:T ) (21)

Consider the e-affine property. For Qa
0:T ,Qb

0:T ∈ R(Qref
0:T ), then

Qe(α)
0:T =

1

Zα
(Qa

0:T )
1−α(Qb

0:T )
α =

1

Zα

(
Qref

◦|0,TQ
a
0,T

)1−α (
Qref

◦|0,TR
b
0,T

)α

(22)

= Qref
◦|0,T

1

Zα
(Qa

0,T )
1−α(Q0,T )

α (23)

= Qref
◦|0,TQ

e(α)
0,T ∈ R(Q

ref
◦|0,T ),

as desired.

Sampling from Reciprocal Measure For completeness, we provide Alg. 3 describing how to sample
from a reciprocal measure Q0:T = Q0,TQref

◦|0,T ∈ R(Q
ref
0:T ) via ancestral sampling.

B Reciprocal e- and m-Projections

In this section, we calculate both the e- and m-projections on the reciprocal classR(Qref
◦|0,T ). ?? is

novel, while Prop. B.2 recovers the projection from Shi et al. [32].
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Algorithm 3 SAMPLE( Q0,TQref
◦|0,T )

Sample
{
(x

(k)
0 , x

(k)
T )

}K

k=1
∼ Q0,T

Simulate
{
x
(k)
t|0,T

}K

k=1
using Qref

◦|0,T

Compute
{
ẋt|T (x

(k)
t|0,T )

(k)
}K

k=1
using Qref

◦|0,T , (x(k)
0 , x

(k)
T , x

(k)
t|0,T )

return:
{
(x

(k)
0 , x

(k)
T , x

(k)
t|0,T , ẋ

(k)
t|T )

}K

k=1

B.1 Reciprocal e-Projection (Ours)

We first state the result for the reciprocal e-projection Qe(RC)
0:T = projeRC

(P(n+1)
0:T ), without the

endpoint marginal constraints.

Proposition B.1 (Reciprocal e-Projection). The e-projection Qe(R)
0,T = projeR(Qref)(P

(n+1)
0:T ) of a path

measure P(n+1)
0:T onto the reciprocal classR(Qref) satisfies

dQe(R)
0,T

dPθ(n+1)
0,T

=
1

Z
exp

{
−DKL

[
Qref

◦|0,T : P(n+1)

◦|0,T

]}
(24)

where the proof follows similar derivations as in the proof of Prop. 4.1 below. Notably, this projection
does not preserve the endpoint marginals of Pθ(n+1)

0,T , since the KL divergence in the exponential is a
function of x0, xT . Thus, as in the main text, we must consider further constraining the projection to
match the marginals Q0:T ∈ R(Qref

◦|0,T ) ∩Π(µ0, νT ) in order to solve the SB problem.

Proposition 4.1 (Marginal-Constrained Reciprocal e-Projection). The e-projection of a path measure
P(n+1)
0:T onto the convex setR(Qref

◦|0,T )∩Π(µ0, νT ) is of the form Qe(R∩Π)
0:T = Qe(R∩Π)

0,T Qref
◦|0,T , where

dQe(R∩Π)
0,T

dP(n+1)
0,T

= exp
{
−DKL

[
Qref

◦|0,T : P(n+1)
◦|0,T

]
− ϕ0 − ϕT

}
. (9)

Proof. Consider the KL divergence minimization defining the e-projection of a path measure P(n+1)
0:T

onto the convex setRC ∩Π(µ0, νT ), whereRC := R(Qref
◦|0,T ).

Qe(R∩Π)
0:T := projeRC∩Π(µ0,νT )(P

(n+1)
0:T ) = argmin

Q∈RC∩Π(µ0,νT )

DKL[Q0:T : P(n+1)
0:T ]

Introducing Lagrange multipliers ϕ0(x0) and ϕT (xT ) to enforce the endpoint constraints and taking
the variation with respect to Q0,T , we have

0 =

∫
dQref

◦|0,T log
dQref

◦|0,TQ0,T

dP(n+1)
0:T

+

∫
�

�
�dQ0,T

dQ0,T
dQref

◦|0,T + ϕ0 + ϕT

which, ignoring the constant, implies

dQe
0,T = dP(n+1)

0,T exp

−
∫

dQref
◦|0,T log

dQref
◦|0,T

dP(n+1)
◦|0,T

− ϕ0 − ϕT

 (25)

= dP(n+1)
0,T exp

{
−DKL[Qref

◦|0,T : P(n+1)
◦|0,T ]− ϕ0 − ϕT

}
(26)

Note that normalization is automatically enforced if µ0, νT are normalized.

Pythagorean Relation: We now confirm that the Pythagorean relation holds for some (other) Q0:T ∈
RC ∩ Π(µ0, νT ) with Q0:T = Qref

◦|0,TQ0,T . Writing Qe(R∩Π)
0:T = projeRC:=R(Qref

◦|0,T )(P
(n+1)
0:T ) =
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Qe(R∩Π)
0,T Qref

◦|0,T (with Qe
0,T as in Eq. (26)), we have

DKL[Q0:T : projeRC∩Π(µ0,νT )(P
(n+1)
0:T )] +DKL[proj

e
RC∩Π(µ0,νT )(P

(n+1)
0:T ) : P(n+1)

0:T ]

=

∫
dQref

◦|0,TQ0,T

(
log����dQref

◦|0,T + logQ0,T − log����dQref
◦|0,T − log P(n+1)

0,T +DKL[Qref
◦|0,T : P(n+1)

◦|0,T ] + log ϕ0 + log ϕT

)
+

∫
dQe(R∩Π)

0:T

(
logQref

◦|0,T + log���P(n+1)
0,T −DKL[Qref

◦|0,T : P(n+1)

◦|0,T ]− log ϕ0 − log ϕT − log
����
dP(n+1)

0,T dP(n+1)

◦|0,T

)
=

∫
dQref

◦|0,TQ0,T

(
log

dQ0,T

dP(n+1)
0,T

)
+

∫
dQe(R∩Π)

0,T

∫
dQref

◦|0,T

(
log

dQref
◦|0,T

dP(n+1)

◦|0,T

)

=

∫
dQref

◦|0,TQ0,T

(
log

dQref
◦|0,TQ0,T

dP(n+1)

◦|0,T P(n+1)
0,T

)
= DKL[Q0:T : P(n+1)

0:T ]

as desired.

B.2 Reciprocal m-Projection (IMF)

We repeat the derivation of the m-projection on the reciprocal class and its Pythagorean relation from
[32, 27, 24].

Proposition B.2 (m-Projection onto Reciprocal Class). The m-projection of a (Markov) P(n+1)
0:T on

the reciprocal classR(Qref
◦|0,T ) is given by projmRLC

(P(n+1)
0:T ) = Qref

◦|0,TP
(n+1)
0,T .

Proof. Consider the projection onto RLC := R(Qref
◦|0,T ), the set of Q0:T ∈ RLC taking the form

Q0:T = Qref
◦|0,TQ0,T

Qm
0:T := projmRLC

(P(n+1)) = argmin
Q∈RLC

DKL[P(n+1)
0:T : Q0:T ] (27)

= argmin
Q∈RLC

DKL[P(n+1)
0,T : Q0,T ] + EP(n+1)

0,T

[
DKL[P(n+1)

◦|0,T : Qref
◦|0,T ]

]
(28)

Since Qref
◦|0,T and P(n+1)

◦|0,T are fixed, we ignore the second term and conclude that the m-projection is

Qm
0,T = P(n+1)

0,T Qm
0:T = P(n+1)

0,T Qref
◦|0,T = projmRLC

(P(n+1)). (29)

Pythagorean Relation: To confirm the Pythagorean relation holds, we would like to show

DKL[P(n+1)
0:T : Q0:T ] = DKL[P(n+1)

0:T : projmRLC
(P(n+1)

0:T )] +DKL[proj
m
RLC

(P(n+1)
0:T ) : Q0:T ]. (30)

For any (other) Q0:T ∈ RLC, we can write Q0:T = Q0,TQref
◦|0,T . Using Qm

0:T = P(n+1)
0,T Qref

◦|0,T ,

DKL[P(n+1)
0:T : projmRLC

(P(n+1)
0:T )] +DKL[proj

m
RLC

(P(n+1)
0:T ) : Q0:T ] (31)

=

∫
dP(n+1)

◦|0,T P(n+1)
0,T

log
dP(n+1)

◦|0,T P(n+1)
0,T

dQref
◦|0,TP

(n+1)
0,T

+

∫
dQref

◦|0,TP
(n+1)
0,T

log
dQref

◦|0,TP
(n+1)
0,T

dQref
◦|0,TQ0,T


= EP(n)

0,T

[
DKL[P(n+1)

◦|0,T : Qref
◦|0,T ]

]
+DKL[P(n+1)

0,T : Q0,T ] (32)

which we confirm is equal to

DKL[P(n+1)
0:T : Q0:T ] =

∫
dP(n+1)

◦|0,T P(n+1)
0,T

log
dP(n+1)

◦|0,T P(n+1)
0,T

dQref
◦|0,TQ0,T

 (33)

= EP(n)
0,T

[
DKL[P(n+1)

◦|0,T : Qref
◦|0,T ]

]
+DKL[P(n+1)

0,T : Q0,T ] (34)

Comparing Eq. (32) and Eq. (34), we have DKL[P(n+1)
0:T : Q0:T ] = DKL[P(n+1)

0:T : projmRLC
(P(n+1)

0:T )]+

DKL[proj
m
RLC

(P(n+1)
0:T ) : Q0:T ], as desired in Eq. (30).
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C Convergence Analysis

In App. C.1, we prove that the exact em iterates from Alg. 2 converge to the optimal SB solution. We
also recall the proofs of marginal convergence for IPF and IMF from [6] and [32] respectively, which
rely on the Pythagorean relations in Thm. 3.3-3.4.

C.1 Convergence of Exact em Iterations

We first recall the form of the optimal solution to the ‘static SB’ problem for general reference measure
R0,T [19], which recovers the entropic- or KL -regularized OT examples for R0,T = e−

1
ϵ c(x0,xT )

and R0,T = µ0 ⊗ νT e−
1
ϵ c(x0,xT ) (see Eq. (eOT)). Under suitable conditions detailed in Léonard

[19] Thm. 2.8 and 2.12, the form of the static SB solution has the form

Q∗
0,T = argmin

Q0,T∈Π(µ0,νT )

DKL [Q0,T : R0,T ] =⇒
dQ∗

0,T

dR0,T
= e−ϕ0(x0)−ϕT (xT ). (35)

Static IPF iterates may be parameterized explicitly in terms of ϕ0, ϕT (see, e.g. Léger [17]). We will
make use of the flexibility to choose the reference measure R0,T in the proof of Prop. 4.2 below.
Proposition 4.2. The exact alternating projection algorithm in Eq. (em) (in particular, Alg. 2)
converges to Q(∞)

0:T ∈ R(Q
ref
◦|0,T ) ∩Π(µ0, νT ) and P(∞)

0:T ∈MLC. If Q(∞)
0:T or P(∞)

0:T is a fixed point of

the procedure, then it is equal to the optimal SB solution, Q(∞)
0:T = P(∞)

0:T = Q∗
0:T .

Proof. We begin by showing that the e-projection ontoR(Qref
◦|0,T ) ∩Π(µ0, νT ),

Q(n+2)
0:T ← Qe(R∩Π)

0:T := argmin
Q∈ RC ∩ Π(µ0,νT )

DKL[Q0:T : P(n+1)
0:T ] (36)

can be obtained by using steps from Alg. 2. First, we perform the e-projection onto RC, Qe(R)
0:T =

projR(Qref
◦|0,T )(P

(n+1)
0:T ), and then perform iterative IPF updates of couplings Q(n+i)

0,T associated with

reciprocal class measures Q(n+i)
0:T = Q(n+i)

0,T Qref
◦|0,T ∈ R(Q

ref
◦|0,T ).

Consider the e-projection Qe(R)
0:T = projeR(Qref

◦|0,T )(P
(n+1)
0:T ),

Qe(R)
0:T := argmin

Q∈R(Qref
◦|0,T )

DKL[Q0:T : P(n+1)
0:T ] (37)

whose explicit form is given in Prop. 4.1. Consider the Pythagorean relation in Thm. 3.3, for arbitrary
Q0:T ∈ R(Qref

◦|0,T )

DKL[Q0:T : P(n+1)
0:T ] = DKL[Q0:T : Qe(R)

0:T ] +DKL[Qe(R)
0:T : P(n+1)

0:T ]. (38)

We are eventually interested in the e-projection Qe(R∩Π)
0:T of P(n+1)

0:T onto the intersectionR(Qref
◦|0,T )∩

Π(µ0, νT ) as in Eq. (36). Note that the KL divergence DKL[Q0:T : P(n+1)
0:T ] to be minimized appears

on the left-hand side of Eq. (38), withR(Qref
◦|0,T ) ∩Π(µ0, νT ) ⊂ R(Qref

◦|0,T ).

On the right side of Eq. (38), we further note that Qe(R)
0:T and P(n+1)

0:T are fixed, so that minimizing
DKL[Q0:T : P(n+1)

0:T ] with respect to Q0:T ∈ R(Qref
◦|0,T ) reduces to minimizing DKL[Q0:T : Qe(R)

0:T ].

Finally, the latter divergence DKL[Q0:T : Qe(R)
0:T ] = DKL[Q0,T : Qe(R)

0,T ] reduces to a KL divergence

over couplings since Q0,T ,Q
e(R)
0,T ∈ R(Qref

◦|0,T ).

Together, this reasoning suggests that solving for Qe(R∩Π)
0:T ∈ R(Qref

◦|0,T ) ∩ Π(µ0, νT ) in Eq. (36)
simply corresponds to finding

Qe(R∩Π)
0,T = argmin

Q0,T∈Π(µ0,νT )

DKL[Q0,T : Qe(R)
0,T ]. (39)
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where we have dropped the reciprocal condition since we may construct the path measure as
Qe(R∩Π)

0,T = Qe(R∩Π)
0,T Qref

◦|0,T .

Eq. (39) corresponds exactly to the static problem in Eq. (35) (c.f. Eq. (eOT)), where the reference
coupling measure in the second argument is now given by Qe(R)

0,T . Thus, we may use IPF iteration with

P(0) = Qe(R)
0,T as an inner loop to finally solve for Qe(R∩Π)

0,T ∈ R(Qref
◦|0,T ) ∩ Π(µ0, νT ). Since IPF

converges to the e-projection in Eq. (39) [6, 29], we conclude that Alg. 2 converges to the appropriate
projection in Eq. (em) or Eq. (36).

Convergence: Finally, to show convergence, note that DKL[Q(n)
0:T : P(n+1)

0:T ] ≥ DKL[Q(n+2)
0:T :

P(n+1)
0:T ] ≥ DKL[Q(n+2)

0:T : P(n+3)
0:T ] and so on, since each exact iterate minimizes the same KL diver-

gence. Along with the nonnegativity of the KL divergence, this implies that the procedure converges
to Q(∞)

0:T ∈ R(Qref
◦|0,T ) ∩Π(µ0, νT ) and P(∞)

0:T ∈MLC.

If Q(∞)
0:T is a fixed point, then Q(∞)

0:T = P(∞)
0:T and Q(∞)

0:T ∈MLC∩R(Qref
◦|0,T )∩Π(µ0, νT ). By Prop. 2.2,

Q(∞)
0:T = Q∗

0:T uniquely solves the SB problem with reference Qref
0:T and endpoints (µ0, νT ).

We suspect it is possible to provide a rigorous proof that ifMLC ∩ [R(Qref
◦|0,T ) ∩Π(µ0, νT )] ̸= ∅, i.e.

if the unique SB solution exists, then limn→∞ Q(n)
0:T → Q∗

0:T and limn→∞ P(n+1)
0:T → Q∗

0:T .

C.2 Pythagorean Relations for Analysis of IPF and IMF

We recall the following results, which are derived from direct application of the Pythagorean relations.
However, additional reasoning is required to show convergence to the optimal solution, for example
limn→∞ DKL[Q∗

0,T : P(n)
0,T ] = 0 for IPF ([29] Sec. 3) and limn→∞ DKL[Q(n)

0:T : Q∗
0:T ] = 0 for IMF

([27] Thm. 2).

Proposition C.1. [Convergence of IPF Marginals] Consider initializing IPF with P(0)
0,T such that

DKL[Q∗
0,T : P(0)

0,T ] <∞. Then, IPF iterates satisfy limn→∞ DKL[P(n+1)
0,T : P(n)

0,T ] = 0 and converge

to the correct marginals, limn→∞ DKL[P(n)
0 : µ0] = 0 and limn→∞ DKL[P(n+1)

T : νT ] = 0.

Proof. Following [6] Thm. 3.2, [29] Prop 2.1, consider projecting P(0)
0,T onto the convex set Π(·, νT )

using P(1)
0,T = argmin

Q0,T∈Π(·,νT )

DKL[Q0,T : P(0)
0,T ]. We will use the Pythagorean relation for the e-

projection for any Q0,T ∈ Π(·, νT ). In particular, consider the optimal solution Q0,T = Q∗
0,T to the

EOT problem, with Q∗
0,T ∈ Π(µ0, νT ) and

DKL[Q∗
0,T : P(0)

0,T ] = DKL[Q∗
0,T : P(1)

0,T ] +DKL[P(1)
0,T : P(0)

0,T ]. (40)

Next, project P(1)
0,T ∈ Π(·, νT ) onto Π(µ0, ·) using P(2)

0,T = argmin
Q0,T∈Π(µ0,·)

DKL[Q0,T : P(1)
0,T ]. Using

the Pythagorean relation,

DKL[Q∗
0,T : P(1)

0,T ] = DKL[Q∗
0,T : P(2)

0,T ] +DKL[P(2)
0,T : P(1)

0,T ] (41)

which we can plug into Eq. (40). Continuing to apply these ite rations, we have

DKL[Q∗
0,T : P(0)

0,T ] = DKL[Q∗
0,T : P(n)

0,T ] +

n−1∑
i=0

DKL[P(i+1)
0,T : P(i)

0,T ] (42)

which implies
n−1∑
i=0

DKL[P(i+1)
0,T : P(i)

0,T ] ≤ DKL[Q∗
0,T : P(0)

0,T ] < ∞ by the nonnegativity of KL di-

vergence and the assumption on the initial P(0)
0,T . Since the sum can not grow to infinity, we have

limn→∞ DKL[P(n+1)
0,T : P(n)

0,T ] = 0 as desired.
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To show that limn→∞ DKL[P(n+1)
T : νT ] = 0, note that P(n)

0,T ∈ Π(·, νT ) for even iterations. We
use the fact that marginalization can only reduce the KL divergence and the limiting behavior of
limn→∞ DKL[P(n+1)

0,T : P(n)
0,T ] = 0 to conclude that

DKL[P(n+1)
T : νT ] ≤ DKL[P(n+1)

0,T : P(n)
0,T ] =⇒ lim

n→∞
DKL[P(n+1)

T : νT ] ≤ lim
n→∞

DKL[P(n+1)
0,T : P(n)

0,T ] = 0

which shows limn→∞ DKL[P(n+1)
T : νT ] = 0. Similar reasoning applies for convergence to µ0.

Proposition C.2. [Convergence of IMF Marginals] Consider initializing IMF with Q(0)
0:T ∈ Π(µ0, νT )

such that DKL[Q(0)
0:T : Q∗

0:T ] < ∞. Then, IMF iterates satisfy limn→∞ DKL[Q(n)
0:T : Q(n+1)

0:T ] = 0.
If DKL[Q(n)

0:T : Q∗
0:T ] = DKL[Q(n+1)

0:T : Q∗
0:T ] or DKL[Q(n)

0:T : Q(n+1)
0:T ] = 0, then Q(n)

0:T = Q(n+1)
0:T =

Q∗
0:T is the optimal SB solution (under the conditions of Prop. 2.2).

Proof. Following [27] Thm. 2, [32] Prop. 7, first consider projecting Q(0)
0:T onto the set of Markov

measures MLC using Q(1)
0:T = argmin

P0:T∈MLC

DKL[Q(0)
0:T : P0:T ]. For Q∗

0:T ∈ MLC, we use the

Pythagorean relation to write

DKL[Q(0)
0:T : Q∗

0:T ] = DKL[Q(0)
0:T : Q(1)

0:T ] +DKL[Q(1)
0:T : Q∗

0:T ]. (43)

Next, project Q(1)
0:T onto the reciprocal class RLC using Q(2)

0:T = argmin
P0:T∈RLC

DKL[Q(1)
0:T : P0:T ]. For

Q∗
0:T ∈ RLC, the Pythagorean relation implies

DKL[Q(1)
0:T : Q∗

0:T ] = DKL[Q(1)
0:T : Q(2)

0:T ] +DKL[Q(2)
0:T : Q∗

0:T ] (44)

Plugging back into Eq. (43) and iterating the above decomposition steps, we obtain

DKL[Q(0)
0:T : Q∗

0:T ] = DKL[Q(n)
0:T : Q∗

0:T ] +

n−1∑
i=0

DKL[Q(i)
0:T : Q(i+1)

0:T ] (45)

which implies
n−1∑
i=0

DKL[Q(i)
0:T : Q(i+1)

0:T ] ≤ DKL[Q(0)
0:T : Q∗

0:T ] < ∞ by the nonnegativity of

KL divergence and the assumption on the initial Q(0)
0:T . Since the sum can not grow to infinity, we

have limn→∞ DKL[Q(n)
0:T : Q(n+1)

0:T ] = 0 as desired.

Using the Pythagorean relation such as in Eq. (44), we can see that DKL[Q(n+1)
0:T : Q∗

0:T ] ≤
DKL[Q(n)

0:T : Q∗
0:T ] with equality iff DKL[Q(n)

0:T : Q(n+1)
0:T ] = 0. This implies that Q(n)

0:T = Q(n+1)
0:T ∈

MLC ∩RLC since Q(n)
0:T ∈MLC and Q(n+1)

0:T ∈ RLC. Since exact reciprocal and Markov projections
preserve the condition Q(0)

0:T ∈ Π(µ0, νT ) in later iterations ([27] Thm. 1), we have Q(n)
0:T ∈MLC ∩

RLC ∩Π(µ0, νT ), which is the optimal SB solution by Prop. 2.2.
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