
Published as a conference paper at ICLR 2023

BAYES RISK CTC: CONTROLLABLE CTC ALIGNMENT
IN SEQUENCE-TO-SEQUENCE TASKS

Jinchuan Tian, Jianwei Yu∗, Chao Weng, Dong Yu
Tencent AI LAB
{tyriontian, tomasyu, cweng, dyu}@tencent.com

Brian Yan & Shinji Watanabe∗
Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
{byan, swatanab}@andrew.cmu.edu

ABSTRACT

Sequence-to-Sequence (seq2seq) tasks transcribe the input sequence to a target
sequence. The Connectionist Temporal Classification (CTC) criterion is widely
used in multiple seq2seq tasks. Besides predicting the target sequence, a side
product of CTC is to predict the alignment, which is the most probable input-long
sequence that specifies a hard aligning relationship between the input and target
units. As there are multiple potential aligning sequences (called paths) that are
equally considered in CTC formulation, the choice of which path will be most
probable and become the predicted alignment is always uncertain. In addition, it
is usually observed that the alignment predicted by vanilla CTC will drift com-
pared with its reference and rarely provides practical functionalities. Thus, the
motivation of this work is to make the CTC alignment prediction controllable and
thus equip CTC with extra functionalities. The Bayes risk CTC (BRCTC) crite-
rion is then proposed in this work, in which a customizable Bayes risk function
is adopted to enforce the desired characteristics of the predicted alignment. With
the risk function, the BRCTC is a general framework to adopt some customizable
preference over the paths in order to concentrate the posterior into a particular
subset of the paths. In applications, we explore one particular preference which
yields models with the down-sampling ability and reduced inference costs. By us-
ing BRCTC with another preference for early emissions, we obtain an improved
performance-latency trade-off for online models. Experimentally, the proposed
BRCTC, along with a trimming approach, enables us to reduce the inference cost
of offline models by up to 47% without performance degradation; BRCTC also
cuts down the overall latency of online systems to an unseen level1.

1 INTRODUCTION

H

I

(a) CTC paths

C
T

C
 P

o
st

e
ri

o
r

Reference Alignm ent

Input Index→
0

1

(b) Vanilla CTC Posterior

C
T

C
 P

o
st

e
ri

o
r

Reference Alignm ent

Input Index→
0

1

(c) BRCTC Posterior (ours)
Figure 1: (a) An intuitive explanation of CTC paths. ∅ is the blank symbol. Each path suggests a
hard alignment between the input and target. (b) Posterior of an offline vanilla CTC ASR system.
Different colors mean different units. The predicted alignment drifts away from its reference2 but the
predicted non-blank token sequence is correct. (c) Posterior of a BRCTC ASR system that adopts
the method in section 3.3. All non-blank spikes are squeezed to the earlier time stamps.

Sequence-to-Sequence (seq2seq) tasks have attracted broad interest and achieved great progress in
multiple applications in the past few decades. Connectionist Temporal Classification (CTC) (Graves
et al., 2006) is a fundamental criterion for seq2seq tasks. The CTC criterion was initially proposed

1Code release: https://github.com/espnet/espnet. * means corresponding authors.
2Reference alignment is obtained by a deep neural network-hidden Markov model (DNN-HMM) system.

1

Published as a conference paper at ICLR 2023

for automatic speech recognition (ASR) but its usage has been extended to many other tasks like
machine translation (MT) (Qian et al., 2021; Gu & Kong, 2020; Huang et al., 2022), speech transla-
tion (ST) (Yan et al., 2022; Chuang et al., 2021; Liu et al., 2020), sign language translation (Wang
et al., 2018; Guo et al., 2019; Camgoz et al., 2020), optical character recognition (OCR) (Graves
& Schmidhuber, 2008), lip reading (Assael et al., 2017), hand gesture detection (Molchanov et al.,
2016) and even robot control (Shiarlis et al., 2018). Research on CTC is of wide interest, as many
advanced systems for seq2seq tasks are based on CTC (Yao et al., 2021), its extensions (Graves,
2012; Sak et al., 2017; Higuchi et al., 2020; Qian et al., 2021) and its hybrid with attention-based
architectures (Watanabe et al., 2017; Yan et al., 2022).

In CTC, each input unit is explicitly aligned to either a target unit or a blank symbol. During
training, all of these potential aligning sequences (called paths) are enumerated and their posteriors
are summed and maximized, which is equivalent to maximizing the posterior of the target sequence.
Fig.1.a gives an explanation of the paths in CTC. Besides predicting the target sequence, another
functionality of CTC is to predict the input-target alignment. Unlike the attention-based methods
(Chan et al., 2016; Vaswani et al., 2017) that softly predict the aligning relationship by attention
weights, CTC predicts a hard alignment. Usually, there is a path whose posterior is dominantly larger
than the others (Zeyer et al., 2021), so this dominant path is considered the predicted hard alignment
between the input and the target sequences. In CTC implementation, unit-level classification over
all possible target units is conducted for each input unit to obtain the posterior of each path. Fig.1.b
demonstrates the dominant posterior of the predicted alignment by plotting the unit-level posteriors.

Since predicting any path will yield the correct target sequence, the vanilla CTC is designed to treat
all paths equally. However, this equality for paths will result in uncertainty about which path will be
selected as the predicted alignment. Also, both our experiments (see Appendix K) and literature (Sak
et al., 2015) show that there is a disagreement between the predicted alignment and its reference (see
Fig.1.b), which limits its usage in real applications. Thus, the motivation of this work is to control
the CTC alignment prediction, making it certain and functional. Specifically, instead of pursuing
the accuracy of alignment prediction, e.g., for CTC segmentation (Kürzinger et al., 2020), this work
intentionally selects the path with customizable characteristics as the predicted alignment.

This paper proposes a novel Bayes risk CTC (BRCTC) criterion to make CTC alignment prediction
controllable. To express our preference for the paths with the desired characteristics, a Bayes risk
function is adopted to weigh all paths during training. To be more detailed, the forward-backward
algorithm of the original CTC is revised into a divide-and-conquer manner: the paths are firstly
divided into several exclusive groups according to a customizable property, and the path groups
with more preferred property will receive larger risk values during training. Same as the vanilla
CTC, BRCTC can preserve the models’ transcription ability, as it considers the posterior of all paths
during training. However, the alignment prediction from BRCTC will additionally obtain the desired
characteristics due to the adoption of the risk function. Note the designs of how the paths are grouped
and what risk value is assigned to each path group are customizable, so the exact functionalities can
be tailor-made according to specific applications, such as offline and online scenarios.

In applications, the BRCTC provides novel solutions to two key problems of seq2seq tasks. For
offline systems, BRCTC can help to down-sample the intermediate hidden representations so that
the mismatch between the input and target lengths is alleviated and the inference cost is significantly
reduced. For online systems like streaming ASR, BRCTC provides a better trade-off between tran-
scription quality and latency. Besides ASR, the proposed BRCTC criterion can also be generalized
to other seq2seq tasks like MT and ST. Experimentally, BRCTC can cooperate with a trimming
approach to achieve up to 47% inference cost reduction for offline systems without degradation in
transcription performance; it can also build online systems with extremely low overall latency that
can hardly be achieved by vanilla CTC.

Our main contributions are listed as follows: (1) Bayes risk CTC (BRCTC), an extension of CTC, is
proposed as a customizable approach to achieve controllable CTC alignment prediction. To the best
of our knowledge, this is among the first works which achieve alignment control for CTC-based
models without external information. (2) With various intentional designs of the risk functions,
BRCTC can significantly reduce the inference cost (by up to 47% relative) and overall latency (to
302ms, up to 30% relative) for offline and online models respectively. (3) Strong experimental
evidence is provided in this work to show that high-quality CTC target predictions can be obtained
from CTC / BRCTC posteriors which do not necessarily encode accurate alignment prediction.

2

Published as a conference paper at ICLR 2023

2 REVIEW ON CONNECTIONIST TEMPORAL CLASSIFICATION (CTC)
Seq2seq tasks are to transcribe the input sequence x = [x1, ...,xT] to the target sequence l =
[l1, ..., lU], where any xt is a vector (e.g., features or token embeddings) while any token lu belongs
to a known vocabulary L. T and U are the lengths of input and target respectively. Unless other
specified, our discussion is temporarily restricted to ASR. Generalizing the concept of CTC to MT
and ST tasks needs more discussion, which is presented in section 5.

2.1 TRAINING PROCESS AND ALIGNMENT PREDICTION

CTC (Graves et al., 2006) is a widely used criterion in seq2seq tasks. Following the Bayesian
decision theory, CTC tries to maximize the posterior P (l|x) during training. Instead of maximizing
it directly, CTC maximizes the summed probability of all paths (see Fig.1.a). Note ∅ as the blank
symbol and extend the vocabulary L′ = L ∪ {∅}. Any symbol sequence π = [π1, ..., πT] ∈ L′T is
a path if B(π) = l, where B is a deterministic mapping that removes all ∅ and repetitive tokens but
preserves the repetitive tokens separated by ∅ (e.g., B(∅aa∅abb) = aab). Thus, to maximize the
posterior P (l|x) is equivalent to maximizing the summed posterior of all paths:

P (l|x) =
∑

π∈B−1(l)

p(π|x) (1)

where B−1(l) is the set of all paths. Next, to compute the posterior p(π|x) of each path π, unit-level
posterior over L′ is computed for each input unit, which yields the CTC posterior y = [y1, ...,yT].
Here each element yt is a distribution over L′ at step t and ytπt is the posterior for element πt. So
the path posterior is formulated as:

p(π|x) =
T∏
t=1

p(πt|π1:t−1,x) ≈
T∏
t=1

p(πt|x) =
T∏
t=1

ytπt (2)

where the context π1:t−1 is discarded in the approximation concerning the conditional independence
assumption of CTC.

As demonstrated in Fig.1.a, any path represents an aligning relationship between the input se-
quence l and the target sequence x. Commonly, the CTC posterior is peaky (Zeyer et al.,
2021) and the posterior of one certain path is dominantly larger than all others. To this end,
the path with the highest posterior is usually considered the predicted alignment during training:
ali(l,x) = argmaxπ∈B−1(l)p(π|x).

2.2 FORWARD-BACKWARD ALGORITHM

Since the number of possible paths in B−1(l) will grow exponentially with T and U increasing,
directly enumerating all paths and their corresponding posteriors is impractical. As an alternative,
the forward-backward algorithm enables the training objective of CTC to be computed efficiently.

The first step of the forward-backward algorithm is to extend the label sequence l = [l1, ..., lU] into
an extended sequence l′ = [∅, l1, ...,∅, lU ,∅] by inserting a ∅ between every two non-blank tokens
as well as the start and the end of the sequence so that |l′| = 2U + 13. Then, define the forward
variable α(t, v), (1 ≤ t ≤ T, 1 ≤ v ≤ 2U + 1) as the summed posterior of all path prefix π1:t
that are aligned with the prefix of the expanded sequence l′1:v; symmetrically, define the backward
variable β(t, v), (1 ≤ t ≤ T, 1 ≤ v ≤ 2U + 1) as the summed posterior of all path suffix πt:T that
are aligned with the suffix of the expanded sequence l′v:2U+1:

α(t, v) =
∑

π:B(π1:t)=B(l′1:v)

πt=l′v

t∏
t′=1

yt
′

πt′
, β(t, v) =

∑
π:B(πt:T)=B(l′v:2U+1)

πt=l
′
v

T∏
t′=t

yt
′

πt′
(3)

With any fixed t and v, the summed probability of all paths whose t-th elements πt is exactly l′v
can be represented by the forward and backward variables as below, which is also termed as the
occupation probability: ∑

π∈B−1(l)

πt=l′v

p(π|x) =
∑

π∈B−1(l)

πt=l′v

T∏
t′=1

yt
′

πt′
=
α(t, v) · β(t, v)

ytl′v
(4)

3| · | is the length function.

3

Published as a conference paper at ICLR 2023

In addition, for any constant 1 ≤ t ≤ T , the choices of πt for any possible path π ∈ B−1(l) are
restricted to the elements in l′ and these choices are exclusive4. Thus, enumerating all index v with
Eq.4 will consider all possible paths and then the training objective of CTC can be written as:

P (l|x) =
∑

π∈B−1(l)

p(π|x) =
2U+1∑
v=1

∑
π∈B−1(l)

πt=l′v

p(π|x) =
2U+1∑
v=1

α(t, v) · β(t, v)
ytl′v

(5)

The computation of the α(t, v) and β(t, v) is recursive and the CTC gradients can also be computed
in close form using the forward and backward variables. Details are presented in Appendix A.

3 BAYES RISK CTC
In this part, a general formulation of the proposed Bayes risk CTC (BRCTC) criterion is presented
in section 3.1. Examples about how paths can be grouped to fit the forward-backward process are
presented in section 3.2. Finally, we demonstrate how the proposed BRCTC with customizable risk
designs can be used to tackle two different practical problems in section 3.3 and section 3.4.

3.1 GENERAL FORMULATION

CTC prediction has two functionalities: predicting the target sequence l and predicting the hard
alignment ali(l,x) between the input and the target sequences. The former is implemented by dis-
criminating all paths π ∈ B−1(l) from the sequence set L′T since feeding each path into B will
yield the target l. In vanilla CTC, however, no constraint is posed to the latter since Eq.1 treats all
paths equally and the choice of the dominant path, a.k.a. the alignment, is left unpredictable. To
make the alignment prediction controllable is exactly to break this equality and intentionally select
the desired paths among B−1(l). To this end, a Bayes risk function r(π) is adopted to enforce the
characteristics of the desired paths. The modified CTC objective can be written as:

Jbrctc(l,x) =
∑

π∈B−1(l)

[p(π|x) · r(π)] (6)

The revised objective is termed Bayes risk CTC (BRCTC) due to the adoption of the Bayes risk
function. Note when r(π) = 1, BRCTC becomes equivalent to vanilla CTC. Since BRCTC is
still maximizing the posteriors of the paths in B−1(l), ideally it will preserve the models’ target
prediction performance.

Directly applying the risk function to each path is still prohibitive as enumerating all possible paths
is computationally impractical. To this end, the forward-backward algorithm in the vanilla CTC
is inherited to efficiently compute the BRCTC objective. Inheriting the forward-backward process
will lead the design of the risk function to a divide-and-conquer paradigm. Under this paradigm,
designing the risk function is equivalent to specifying two things: 1) how the paths are divided
into groups and 2) what risk values are assigned to each path group. Here the only requirement
to achieve compatibility between BRCTC and the forward-backward process is that the summed
posterior within any group can be fully represented by the forward-backward variables. Formally,
the desired characteristics are about some specific properties of these paths (e.g., the largest index of
all non-blank elements within the path). Assume f(π) is the concerned property of path π, then all
paths that satisfy f(π) = τ can form a group, where τ is a possible value of the concerned property.
Then, all paths in the same path group will receive the same risk value. Note rg(τ) as a function
of τ , which is the shared risk value within the group as a replacement of r(π). Thus, the BRCTC
objective is to enumerate all path groups with the corresponding risk value rg(τ) like below. A more
detailed explanation is provided in Appendix B.

Jbrctc(l,x) =
∑
τ

∑
π∈B−1(l)
f(π)=τ

[p(π|x)·r(π)] =
∑
τ

∑
π∈B−1(l)
f(π)=τ

[p(π|x)·rg(τ)] =
∑
τ

[rg(τ)·
∑

π∈B−1(l)
f(π)=τ

p(π|x)]

(7)

3.2 EXAMPLES ABOUT HOW PATHS ARE GROUPED

Here we provide two examples of how the paths are grouped to be compatible with the forward-
backward process. The first example is in Eq.4, in which paths can be grouped by their choices of
t-th element πt. So the occupation probability is also the summed posterior of a path group, which
can be naturally represented by the forward and backward variables.

4Here we should assume the blank symbols in l′ are different from each other to avoid confusion.

4

Published as a conference paper at ICLR 2023

D
ec
od
er

En
co
de
r

BR
C
TC

Tr
im
m
in
g

Text
(a) Offline

down-sampling

A …A … ……

Model (CL)

A

DCL

DL

…A

Event Start
Prediction End

(b) Online model
inference

Vanilla CTC

BRCTC

Ref. Ali.

Em it Earlier

Input Index →

(c) BRCTC achieves earlier
emissions than vanilla CTC

Figure 2: (a) Down-sampling process using BRCTC criterion. h is trimmed before being fed into
the decoder. (b) Inference process of the online model and its three exclusive sources of latency.
DCL: data collecting latency. CL: computational latency. DL: drift latency. (c) Posteriors of online
vanilla CTC / BRCTC systems and the reference alignments.

Secondly, a more complicated but useful example is to group the paths according to the ending point
of a certain non-blank token. Since any path is an aligning relationship between the input and target
sequences, it is common to ask when the prediction of a given non-blank token lu = l′2u is finished
within this path. Formally, with the known constant u, the concerned property of π can be defined
as τ = fu(π) = argmaxt s.t. πt = lu = l′2u

5. If so, the summed probability of each path group
can be formulated by the forward and backward variables as below. A detailed explanation for this
formulation is provided in Appendix C.∑
π∈B−1(l)
fu(π)=τ

p(π|x) = α(τ, 2u) · β̂(τ, 2u)
yτπτ

, s.t. β̂(τ, 2u) =
{
β(τ, 2u)− β(τ + 1, 2u) · yτπτ , if τ < T

β(τ, 2u), Otherwise

}
(8)

Combine Eq.7, 8, for any constant u, path groups with different τ and the corresponding risk values
rg(τ) are enumerated as below. This strategy of grouping paths is adopted in section 3.3 and 3.4.

Jbrctc(l,x) =

T∑
τ=1

rg(τ) ·
α(τ, 2u) · β̂(τ, 2u)

yτπτ
(9)

3.3 APPLICATION: DOWN-SAMPLE

A key problem for a series of offline seq2seq tasks (like ASR, ST) is that the input sequence is much
longer than the output sequence, a.k.a., |x| � |l|(Gaido et al., 2021). If an encoder is used to process
x into the encoder hidden output h, this can partially be interpreted as |h| � |l|. For the mainstream
encoder-decoder architectures in seq2seq tasks, the inference cost of the decoder is highly correlated
with |h|. Thus, the over-length of h leads to redundancy in the inference computation. The proposed
BRCTC is capable of reducing the length of the h to save inference costs. The workflow is shown
in Fig.2.a. The non-blank spikes of CTC posterior y are pushed to the earlier time-stamps using
BRCTC, then the posterior y is adopted as a reference to trim the h into the shorter h′.

Pushing all non-blank spikes to the early input units (like in Fig.1.a) requires the predicted alignment
to finish its prediction of lU as early as possible. Consider the latter situation in section 3.2 and set
u = U , the concerned property τ is the input index where all non-blank elements have completed
in the paths. Subsequently, paths with smaller τ are more preferred so the risk values should be
larger. We adopt rg(τ) = e−λ·τ/T as the risk function in this application, where λ is an adjustable
hyper-parameter called risk factor. Finally, the training objective is updated as:

Jbrctc(l,x) =

T∑
τ=1

e−λ·τ/T · α(τ, 2U) · β̂(τ, 2U)

yτπτ
(10)

Provided the continuous and highly confident blank predictions in y like in Fig.1.c, it is reasonable
to assume the corresponding elements in h contain nearly no useful semantics and can be trimmed6.
Formally, h is trimmed to h′ = [h1, ...,hm+D], where m is the maximum value of t s.t. ∀ t′ >
t,yt

′

∅ > 99%; D = 5 is a small integer to keep a safety margin for the trimming. The trimmed
hidden output h′ is fed into downstream architectures as a replacement of h.

5There might be some repetitions in l, but we still consider all tokens in l are different for simplicity. The
correlation between any non-blank πt and lu is clear so this notation will not lead to confusion.

6Usually, transforming h into y only adopts a simple linear classifier and the softmax function.

5

Published as a conference paper at ICLR 2023

3.4 APPLICATION: PERFORMANCE-LATENCY TRADE-OFF

Another problem for online seq2seq systems (e.g., streaming ASR) is the trade-off between the
transcription performance and the system latency. For online systems with constrained context,
better transcription quality requires more context, which, however, will result in longer latency.
Assume the input sequence is fed into the system chunk-by-chunk (Shi et al., 2021), this paper
defines the total latency as the sum of three exclusive sources as shown in Fig.2.b: Data collecting
latency (DCL): the time to wait before the input signal forms a chunk. This depends on the model
design. Computational latency (CL): the time consumed by model inference. Only this latency
depends on the hardware performance. Drift latency (DL): the difference between the input indexes
when an event starts and when its prediction ends7. This is learned during the model training. The
formal definition of the latency sources and further explanation are in Appendix F.

The proposed BRCTC can guide the model to emit non-blank spikes at early input indexes (see
Fig.2.c) so that the drift latency (DL) can be reduced. As a benefit, it provides a better overall
performance-latency trade-off than the vanilla CTC systems (more discussion is in section 4.3).
Formally, if a non-blank token lu is required to be emitted earlier, the concerned property τ is
exactly the ending point of its prediction within the path. Thus, a tailor-made training objective for
the token lu is:

J ′brctc(l,x, u) =

T∑
τ=1

e−λ·(τ−τ
′)/T ·α(τ, 2u) · β̂(τ, 2u)

yτπτ
, s.t. τ ′ = argmax

τ

α(τ, 2u) · β̂(τ, 2u)
yτπτ

(11)

The design of the group risk function rg(τ) is still the exponential decay function but with an extra
bias τ ′. Without this bias, the absolute values of J ′brctc(l,x, u) will be unbalanced for different token
lu.8 To guide every token lu to emit earlier requires the considerations of all u. So the global training
objective to maximize is then transformed into:

Jbrctc(l,x) =
1

U
·
U∑
u=1

log J ′brctc(l,x, u) (12)
4 EXPERIMENTS
Our experiments are mainly designed to examine the two applications of the proposed BRCTC
criterion. The experimental setup is introduced in section 4.1. The BRCTC down-sampling method
and performance-latency trade-off are validated in section 4.2 and section 4.3 respectively. BRCTC
is generalized to MT and ST in section 4.4. Visualization and its analysis are in section 4.5.
4.1 EXPERIMENT SETUP

Datasets: Experiments are mainly conducted for ASR, but MT and ST are also included. For ASR,
the experiments are on Aishell-1 (Bu et al., 2017), Aishell-2 (Du et al., 2018), Wenetspeech (Zhang
et al., 2022) and Librispeech (Panayotov et al., 2015). The volumes of these datasets range from
178 hours to 10k hours. Librispeech is in English and the others are in Mandarin. For MT and ST,
IWSLT14 (Cettolo et al., 2012) and MuST-C-v2 En-De (Di Gangi et al., 2019) are adopted.
Models: For all tasks, Hybrid CTC/Attention model (Watanabe et al., 2017; Yan et al., 2022) is
evaluated. For offline ASR, Transducer (Graves, 2012) plus CTC architecture is also evaluated.
Training and Decoding: For training, a two-stage method is proposed for the offline down-
sampling application and vanilla CTC is directly replaced by BRCTC in the online systems. For
offline decoding, default algorithms with decoder recurrence (Watanabe et al., 2017; Graves, 2012;
Yan et al., 2022) are used to demonstrate the reduction of inference cost; for online decoding, CTC
greedy search is adopted to better measure the transcription performance and latency. Our BRCTC
implementation depends on the differentiable finite-state transducer9 (Hannun et al., 2020).
Evaluation Metrics: To compare the transcription performance, CER (for Mandarin) and WER (for
English) are reported for ASR task; detokenized case-sensitive BLEU (Post, 2018) is reported for
MT and ST tasks. To compare the computational cost of offline models, the real-time factor (RTF),
the down-sampling factor (DSF, a.k.a., |h′|/|h|) and its oracle (a.k.a., |l|/|h|) are reported. To ana-
lyze the latency, time is measured for hardware-independent latency while the RTF is the indicator
of hardware latency. Implementation details are in appendix D and E for reproducibility.

7See Fig.2.c, this latency is only computed with the input unit indexes, not on the real-world timeline.
8Usually, the path groups with τ being equal or close to τ ′ make most of the contributions in Eq.11. For

different u, the τ ′, along with the risk values for these major path groups, is different. So different τ ′ leads to
unbalance in the absolute values of J ′

brctc(l,x, u). As a remedy, taking τ ′ as a bias ensures that the path group
with maximum posterior always receives the risk of 1.0 regardless of u.

9Our implementation is based on K2 toolkit: https://github.com/k2-fsa/k2

6

Published as a conference paper at ICLR 2023

Aishell-1 Aishell-2 Wenetspeech Librispeech
0

10

20

C
E

R
/W

E
R

%

Vanilla CTC

BRCTC

(a) CER / WER (↓%)
Aishell-1 Aishell-2 Wenetspeech Librispeech

0%

40%

100%

Trimmed DSF Oracle

(b) DSF (↓) & Oracle
2 Beam Size 15

0.0

0.5

R
T

F

Vanilla CTC BRCTC

(c) RTF (↓) vs. Beam Size
Figure 3: Transducer performance on various ASR tasks w/o BRCTC down-sampling.

4.2 RESULTS ON BRCTC DOWN-SAMPLING FOR OFFLINE ASR SYSTEM

This part evaluates the effectiveness of BRCTC down-sampling method on the offline ASR task. Our
main results of the Transducer plus CTC model are plotted in Fig.3. The tendency for the Hybrid
CTC/Attention model is similar. The complete results are in Appendix G. Firstly, the transcription
performance of the Transducers plus CTC or BRCTC is reported in Fig.3.a. As suggested, with
datasets in varying volumes and different languages, adopting BRCTC does not result in notice-
able variance in the transcription quality. Secondly, Fig.3.b. demonstrates the effectiveness of the
down-sampling process. The encoder hidden output h is trimmed by at least 60% and the trimmed
h′ is roughly as 1.5∼2.5 times long as the l only10. So the length mismatch of input and output
sequences is significantly alleviated. Thirdly, since the inference cost of the decoder highly depends
on the length of h, replacing h by h′ will reduce the inference cost remarkably. For the label-
synchronous decoding of hybrid CTC/Attention (Watanabe et al., 2017), the computational cost of
each decoding step is reduced since the expense of attention computation will be smaller. For the
frame-synchronous decoding of Transducers (Graves, 2012), the inference cost is reduced since the
number of frames in decoding is reduced linearly along with |h|. As the inference cost of the decoder
is also sensitive to the beam size, we sweep the beam size from 2 to 15 on Librispeech test-other
set. As Fig.3.c. suggests, the relative inference cost reduction becomes larger with the beam size
growing.

4.3 RESULTS ON BRCTC PERFORMANCE-LATENCY TRADE-OFF FOR ONLINE ASR SYSTEM

This part evaluates the trade-off between the transcription performance and the latency w/o the
adoption of BRCTC on streaming ASR task. Our main observation is shown in Fig.4. Fig.4.a
reflects the trade-off between the DCL and DL. Firstly, the models designed with smaller DCL
will encounter larger DL since the models are not confident with the highly restricted context and
will wait for longer input before decisions. This DCL-DL relationship suggests the system with
extremely low overall latency is not feasible by only designing low DCL (a.k.a., small chunk size).
Secondly, the adoption of BRCTC achieves consistent DL reduction since it tries to push the spikes
of all non-blank tokens to be emitted earlier. Thirdly, the DL gap between vanilla CTC and BRCTC
increases along with DCL increasing, since a longer chunk provides a higher performance ceiling
for BRCTC11 while the DL for vanilla CTC is always larger than 0ms to explore all accessible
contexts. Fig.4.b reflects the trade-off between the DCL and CER. As expected, CTC / BRCTC
systems with smaller DCL degrade more in their transcription quality due to the more restricted
context. The adoption of BRCTC also results in CER degradation compared with its baseline, since
earlier emissions will also restrict the accessible context.

Summarizing Fig.4.a&b leads to Fig.4.c, in which the trade-off between all hardware-independent
latency (DCL + DL) and the transcription quality (CER) is demonstrated. The adoption of BRCTC
provides several benefits: 1) building the system with extremely low total latency (only 280ms, the
pink circle), which is not feasible for vanilla CTC due to the seesaw-like relationship between DCL
and DL. 2) Achieving both lower CER and smaller latency than vanilla CTC (the green circles).
Specifically, BRCTC provides an alternative solution for online applications: increasing DCL with
a larger chunk size and reducing DL using BRCTC to meet the latency budget and achieve a better
overall performance-latency trade-off.

The alternative solution of using a larger DCL (larger chunk size) also provides an extra benefit
from the perspective of hardware. As suggested by Chen et al. (2021) and also presented in Fig.4.d, a
larger chunk size can better explore the advantage of parallel computing and then achieve lower RTF.

10Note that x has been sub-sampled by 4 times when being encoded into h(Bérard et al., 2018). Then our
BRCTC down-sampling method is conducted on the h. The two down-sampling methods are used together.

11The DL can be negative due to the look-ahead mechanism of the model.

7

Published as a conference paper at ICLR 2023

0 DCL(m s) 640−
2

0
0

0
4

0
0

A
L(

m
s)

Vanilla CTC

BRCTC (ours)

(a) DCL vs. DL
0 DCL(ms) 640

8
1
2

C
E
R
(%
)

(b) DCL vs. CER
0 DCL+ DL(m s) 640

8
1

2
C

E
R

(%
)

Vanilla CTC

BRCTC (ours)

(c) DCL+DL vs. CER
0 DCL(ms) 6400

.0
0
.4

R
T
F

(d) DCL vs. RTF
Figure 4: Aishell-2 trade-off between transcription performance and latency w/o BRCTC.

This means the hardware may have more time being idle or switching among multiple processes
during serving. Using a larger chunk size will slightly increase CL, but our observation from Fig.4.c
still holds. Appendix H provides more detailed results.
4.4 GENERALIZING BRCTC TO ST
This part demonstrates that the proposed BRCTC can also be generalized to other seq2seq tasks
like ST. The ST results are in table 1. Consistent with our ASR experiments, adopting BRCTC
down-sampling in offline ST 1) achieves comparable transcription quality with the vanilla system;
2) reduces the length of h by 42% and accelerates the inference by 27%. The proposed BRCTC is
also generalized to MT task in Appendix I.

Transcription Quality (BLEU↑) Down-sampling Effectiveness
System COMMON HE DSF(↓) / Oracle RTF (↓)
Attention + Vanilla CTC (Yan et al., 2022) 29.3 28.5 - 0.51
Attention + BRCTC (ours) 29.1 28.7 0.58 / 0.25 0.37 (-27%)

Table 1: ST performance on MuST-C-V2 English-German dataset w/o BRCTC down-sampling

4.5 VISUALIZATION

Following Graves et al. (2006), Fig.5 compares the evolution of the CTC distributions and the their
gradient. At the beginning of training, the distribution is roughly unified and the gradient is smooth
along the time-axis. Note the gradient for all non-blank tokens is similar only except for the last
token (the green line and the red arrow): for the last token, the BRCTC gradient for a larger frame
index will be penalized in order to push the last token to the earlier indexes. After two epochs of
training, the gradient will localize. Although the models are not sure what the non-blank tokens ex-
actly are, the places where the non-blank tokens will spike are roughly determined. At this stage, the
BRCTC model has already known the spikes should all happen at the very left. After convergence,
the gradient is close to zero and the CTC distributions become peaky. For BRCTC, the spikes are
all concentrated on the left as expected. We also find the down-sampling process is implemented
mainly by the last two encoder layers. More visualization is provided in Appendix J.

5 DISCUSSION
Correlation between target prediction and alignment prediction: This work observes that target
predictions in high quality can be obtained from CTC posteriors which do not necessarily encode
accurate alignment prediction. Theoretically, as all paths in Eq.1 are treated equally in vanilla CTC
and the convergence of vanilla CTC can be achieved with any path being dominant, there are mul-
tiple solutions for the alignment prediction sub-task. Additionally, selecting each of these solutions
can hardly interfere with the transcription quality, since each of the paths will yield the correct target
prediction after the blank and repeat removal. Experimentally, our experiments suggest that vanilla
CTC systems with significantly drifted alignment prediction can still preserve the transcription qual-
ity (see Appendix K); experimental in section 4.2 further demonstrate that BRCTC achieves com-
petitive transcription results like vanilla CTC with extremely unreasonable alignment prediction.
Monotonic assumption, MT & ST tasks and rearranging ability: An underlying assumption of
CTC is the monotonic assumption, which requires that, if any xt and xt′ are mapped to two non-
blank tokens lu and lu′ respectively with t < t′, then there must have u < u′. Conventionally, this
assumption restricts CTC from being applied to seq2seq tasks whose alignment is not monotonic,
like MT and ST. However, this constraint can be softened by deploying self-attention encoder archi-
tectures which allow to implicitly reorder the semantics of h and make it roughly monotonic with
respect to l (Chuang et al., 2021). Besides, our method in section 3.3 can also be viewed as a pro-
cess to rearrange the semantics of h even though the relative order of non-blank spikes is kept. To

8

Published as a conference paper at ICLR 2023

0

1

F
la

t
S

ta
rt

Vanilla CTC Posterior

0

1
BRCTC Posterior

0.00

0.03
Vanilla CTC Gradient

0.00

0.03
BRCTC Gradient

0

1

2
 E

p
o

ch
s

0

1

0.00

0.03

0.00

0.03

0

1

2
0

 E
p

o
ch

s
0

1

0.00

0.03

0.00

0.03

Figure 5: Evolution of CTC distribution y and the corresponding gradients on logy. BRCTC with
the down-sampling method is used.

sum up, although this work mainly addresses the CTC training criterion, we believe the rearranging
ability of attention-based neural networks is a key factor in BRCTC’s functionality.

6 RELATED WORKS
The proposed BRCTC is an extension of CTC. There are several existing criteria and frameworks
that can be partially viewed as CTC extensions. To alleviate the conditional independence assump-
tion of CTC yields Transducer (Graves, 2012), RNA (Sak et al., 2017) and their path-modified ex-
tensions (Mahadeokar et al., 2021; Kuang et al., 2022; Shinohara & Watanabe, 2022; Yu et al., 2021;
Kim et al., 2021); to equip CTC with discriminative ability yields LF-MMI with CTC topology (Ha-
dian et al., 2018); to exploit the non-auto-regressive nature of CTC yields the non-auto-regressive
ASR (Higuchi et al., 2020) and MT (Qian et al., 2021) architectures; to explore various topologies
yields multiple CTC variants (Zhao & Bell, 2022; Laptev et al., 2022). To exploit partially labeled
and multi-labeled data yields STC (Pratap et al., 2022) and GTC (Moritz et al., 2021). None of the
works aforementioned try to control the alignment prediction of CTC. Some pioneer works can be
interpreted as preliminary attempts to control CTC alignment prediction. Ghorbani et al. (2018);
Kurata & Audhkhasi (2019) achieve aligned CTC posterior spikes among heterogeneous models by
learning the spike time-stamps of a teacher model. However, the spikes of the teacher model itself
cannot be controlled. Zeyer et al. (2020); Senior et al. (2015); Plantinga & Fosler-Lussier (2019) im-
prove CTC and Transducer models by injecting external alignment supervisions, but obtaining these
alignments consumes extra effort. By contrast, the proposed BRCTC is customizable for general
purposes in an end-to-end fashion and depends on neither teacher models nor additional informa-
tion. Previous literature has also discussed the basic properties of CTC from multiple perspectives,
like its peaky behavior (Zeyer et al., 2021), alignment drift (Sak et al., 2015) and the properties of
blank symbol (Zhao & Bell, 2022; Bluche et al., 2015). To our knowledge, The correlation between
the target prediction and alignment prediction has not been seriously discussed before this work.

7 LIMITATION
The proposed BRCTC has a known limitation. The gradient of BRCTC is obtained by the naive
chain rule (as the forward-backward process only adopts addition and multiplication operations,
this is feasible). Thus, the gradient computation needs to trace back the forward-backward process,
which then results in an increase in the training cost.

8 CONCLUSION
This work is motivated by our experimental observation that a CTC system with drifted alignment
prediction still preserves competitive transcription ability, which inspires us the possibility of mak-
ing CTC alignment prediction controllable to serve the needs in various applications. An extension
of CTC called BRCTC is then proposed to select the predicted alignment among all possible paths
and the design of the risk function is left customizable to fulfill the task-specific needs of different
applications. For the offline model, the adoption of BRCTC leads to inference cost reduction since
the length of the intermediate hidden output can be down-sampled. For the online model, BRCTC
provides a better performance-latency trade-off. We verify the effectiveness of the proposed BRCTC
on multiple sequence-to-sequence tasks with various datasets, languages, and model architectures.

9 ACKNOWLEDGEMENT
This work used the Extreme Science and Engineering Discovery Environment (XSEDE) (Towns
et al., 2014), which is supported by National Science Foundation grant number ACI-1548562.
Specifically, it used the Bridges system (Nystrom et al., 2015), which is supported by NSF award
number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC).

9

Published as a conference paper at ICLR 2023

10 REPRODUCIBILITY STATEMENT

We are taking various measures to ensure the reproducibility of our experiments:

• Code is released as the complementary material of this submission.

• Details of all experiments are clarified in Appendix E.

REFERENCES

Yannis M Assael, Brendan Shillingford, Shimon Whiteson, and Nando de Freitas. Lipnet: End-to-
end sentence-level lipreading. GPU Technology Conference, 2017.

Théodore Bluche, Hermann Ney, Jérôme Louradour, and Christopher Kermorvant. Framewise and
ctc training of neural networks for handwriting recognition. In 2015 13th international conference
on document analysis and recognition (ICDAR), pp. 81–85. IEEE, 2015.

Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao Zheng. Aishell-1: An open-source mandarin
speech corpus and a speech recognition baseline. In 2017 20th Conference of the Oriental Chapter
of the International Coordinating Committee on Speech Databases and Speech I/O Systems and
Assessment (O-COCOSDA), pp. 1–5, 2017.

Alexandre Bérard, Laurent Besacier, Ali Can Kocabiyikoglu, and Olivier Pietquin. End-to-end
automatic speech translation of audiobooks. In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 6224–6228, 2018.

Necati Cihan Camgoz, Oscar Koller, Simon Hadfield, and Richard Bowden. Sign language trans-
formers: Joint end-to-end sign language recognition and translation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

Mauro Cettolo, Christian Girardi, and Marcello Federico. Wit3: Web inventory of transcribed and
translated talks. In Conference of european association for machine translation (EAMT), pp.
261–268, 2012.

William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend and spell: A neural
network for large vocabulary conversational speech recognition. In 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4960–4964, 2016.

Dongsheng Chen, Chaofan Tao, Lu Hou, Lifeng Shang, Xin Jiang, and Qun Liu. Litevl: Efficient
video-language learning with enhanced spatial-temporal modeling. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, 2022, pp.
7985–7997. Association for Computational Linguistics, 2022.

Xie Chen, Yu Wu, Zhenghao Wang, Shujie Liu, and Jinyu Li. Developing real-time streaming
transformer transducer for speech recognition on large-scale dataset. In ICASSP 2021 - 2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5904–
5908, 2021.

Xuxin Cheng, Qianqian Dong, Fengpeng Yue, Tom Ko, Mingxuan Wang, and Yuexian Zou. M3ST:
mix at three levels for speech translation. CoRR, abs/2212.03657, 2022.

Shun-Po Chuang, Yung-Sung Chuang, Chih-Chiang Chang, and Hung-yi Lee. Investigating the
reordering capability in CTC-based non-autoregressive end-to-end speech translation. In Findings
of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 1068–1077, Online,
August 2021. Association for Computational Linguistics.

Siddharth Dalmia, Dmytro Okhonko, Mike Lewis, Sergey Edunov, Shinji Watanabe, Florian Metze,
Luke Zettlemoyer, and Abdelrahman Mohamed. Legonn: Building modular encoder-decoder
models. arXiv preprint arXiv:2206.03318, 2022.

10

Published as a conference paper at ICLR 2023

Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli, Matteo Negri, and Marco Turchi. MuST-
C: a Multilingual Speech Translation Corpus. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 2012–2017, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics.

Jiayu Du, Xingyu Na, Xuechen Liu, and Hui Bu. Aishell-2: Transforming mandarin asr research
into industrial scale. arXiv preprint arXiv:1808.10583, 2018.

Marco Gaido, Mauro Cettolo, Matteo Negri, and Marco Turchi. CTC-based compression for direct
speech translation. In Proceedings of the 16th Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume, pp. 690–696. Association for Computational
Linguistics, April 2021.

Shahram Ghorbani, Ahmet E. Bulut, and John H.L. Hansen. Advancing multi-accented lstm-ctc
speech recognition using a domain specific student-teacher learning paradigm. In 2018 IEEE
Spoken Language Technology Workshop (SLT), pp. 29–35, 2018.

Alex Graves. Sequence transduction with recurrent neural networks. arXiv preprint
arXiv:1211.3711, 2012.

Alex Graves and Jürgen Schmidhuber. Offline handwriting recognition with multidimensional re-
current neural networks. Advances in neural information processing systems, 21, 2008.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist tem-
poral classification: labelling unsegmented sequence data with recurrent neural networks. In
Proceedings of the 23rd international conference on Machine learning, pp. 369–376, 2006.

Jiatao Gu and Xiang Kong. Fully non-autoregressive neural machine translation: Tricks of the trade.
arXiv preprint arXiv:2012.15833, 2020.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Conformer: Convolution-augmented
Transformer for Speech Recognition. In Proc. Interspeech 2020, pp. 5036–5040, 2020.

Dan Guo, Shuo Wang, Qi Tian, and Meng Wang. Dense temporal convolution network for sign
language translation. In IJCAI, pp. 744–750, 2019.

Hossein Hadian, Hossein Sameti, Daniel Povey, and Sanjeev Khudanpur. End-to-end speech recog-
nition using lattice-free mmi. In Proc. Interspeech 2018, pp. 12–16, 2018.

Awni Hannun, Vineel Pratap, Jacob Kahn, and Wei-Ning Hsu. Differentiable weighted finite-state
transducers. arXiv preprint arXiv:2010.01003, 2020.

Yosuke Higuchi, Shinji Watanabe, Nanxin Chen, Tetsuji Ogawa, and Tetsunori Kobayashi.
Mask ctc: Non-autoregressive end-to-end asr with ctc and mask predict. arXiv preprint
arXiv:2005.08700, 2020.

Chenyang Huang, Hao Zhou, Osmar R Zaı̈ane, Lili Mou, and Lei Li. Non-autoregressive translation
with layer-wise prediction and deep supervision. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 10776–10784, 2022.

Jaeyoung Kim, Han Lu, Anshuman Tripathi, Qian Zhang, and Hasim Sak. Reducing Streaming
ASR Model Delay with Self Alignment. In Proc. Interspeech 2021, pp. 3440–3444, 2021. doi:
10.21437/Interspeech.2021-322.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Fangjun Kuang, Liyong Guo, Wei Kang, Long Lin, Mingshuang Luo, Zengwei Yao, and Daniel
Povey. Pruned RNN-T for fast, memory-efficient ASR training. In Proc. Interspeech 2022, pp.
2068–2072, 2022. doi: 10.21437/Interspeech.2022-10340.

11

Published as a conference paper at ICLR 2023

Gakuto Kurata and Kartik Audhkhasi. Guiding ctc posterior spike timings for improved posterior
fusion and knowledge distillation. In Proc. Interspeech 2019, 2019.

Ludwig Kürzinger, Dominik Winkelbauer, Lujun Li, Tobias Watzel, and Gerhard Rigoll. Ctc-
segmentation of large corpora for german end-to-end speech recognition. In International Con-
ference on Speech and Computer, pp. 267–278. Springer, 2020.

Aleksandr Laptev, Somshubra Majumdar, and Boris Ginsburg. CTC Variations Through New WFST
Topologies. In Proc. Interspeech 2022, pp. 1041–1045, 2022.

Jaesong Lee and Shinji Watanabe. Intermediate loss regularization for ctc-based speech recogni-
tion. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 6224–6228, 2021.

Yuchen Liu, Junnan Zhu, Jiajun Zhang, and Chengqing Zong. Bridging the modality gap for speech-
to-text translation. arXiv preprint arXiv:2010.14920, 2020.

Jay Mahadeokar, Yuan Shangguan, Duc Le, Gil Keren, Hang Su, Thong Le, Ching-Feng Yeh, Chris-
tian Fuegen, and Michael L. Seltzer. Alignment restricted streaming recurrent neural network
transducer. In 2021 IEEE Spoken Language Technology Workshop (SLT), pp. 52–59, 2021.

Pavlo Molchanov, Xiaodong Yang, Shalini Gupta, Kihwan Kim, Stephen Tyree, and Jan Kautz.
Online detection and classification of dynamic hand gestures with recurrent 3d convolutional
neural networks. In CVPR, pp. 4207–4215, 2016.

Niko Moritz, Takaaki Hori, and Jonathan Le Roux. Semi-supervised speech recognition via graph-
based temporal classification. In ICASSP 2021 - 2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 6548–6552, 2021.

Nicholas A Nystrom, Michael J Levine, Ralph Z Roskies, and J Ray Scott. Bridges: a uniquely
flexible hpc resource for new communities and data analytics. In Proceedings of the 2015 XSEDE
Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure, pp. 1–8, 2015.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An asr corpus
based on public domain audio books. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5206–5210, 2015.

Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and
Quoc V. Le. Specaugment: A simple data augmentation method for automatic speech recognition.
Interspeech 2019, Sep 2019.

Peter Plantinga and Eric Fosler-Lussier. Towards real-time mispronunciation detection in kids’
speech. In 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp.
690–696, 2019.

Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pp. 186–191, Brussels, Belgium, October 2018. Associ-
ation for Computational Linguistics.

Vineel Pratap, Awni Hannun, Gabriel Synnaeve, and Ronan Collobert. Star temporal classification:
Sequence classification with partially labeled data. arXiv preprint arXiv:2201.12208, 2022.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong Yu, and Lei Li.
Glancing transformer for non-autoregressive neural machine translation. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1993–2003,
Online, August 2021. Association for Computational Linguistics.

Haşim Sak, Andrew Senior, Kanishka Rao, Ozan Irsoy, Alex Graves, Françoise Beaufays, and Jo-
han Schalkwyk. Learning acoustic frame labeling for speech recognition with recurrent neural
networks. In 2015 IEEE international conference on acoustics, speech and signal processing
(ICASSP), pp. 4280–4284. IEEE, 2015.

12

Published as a conference paper at ICLR 2023

Haşim Sak, Matt Shannon, Kanishka Rao, and Françoise Beaufays. Recurrent neural aligner: An
encoder-decoder neural network model for sequence to sequence mapping. Proc. Interspeech
2017, pp. 1298–1302, 2017.

Andrew Senior, Haşim Sak, Félix de Chaumont Quitry, Tara Sainath, and Kanishka Rao. Acoustic
modelling with cd-ctc-smbr lstm rnns. In 2015 IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU), pp. 604–609, 2015.

Yangyang Shi, Yongqiang Wang, Chunyang Wu, Ching-Feng Yeh, Julian Chan, Frank Zhang, Duc
Le, and Mike Seltzer. Emformer: Efficient memory transformer based acoustic model for low
latency streaming speech recognition. In ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 6783–6787, 2021.

Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, Shimon Whiteson, and Ingmar Posner. Taco:
Learning task decomposition via temporal alignment for control. In International Conference on
Machine Learning, pp. 4654–4663. PMLR, 2018.

Yusuke Shinohara and Shinji Watanabe. Minimum latency training of sequence transducers for
streaming end-to-end speech recognition. In Proc. Interspeech 2022, pp. 2098–2102, 2022. doi:
10.21437/Interspeech.2022-10989.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop,
D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr. Xsede: Accelerating
scientific discovery. Computing in Science & Engineering, 16(5):62–74, Sept.-Oct. 2014. ISSN
1521-9615. doi: 10.1109/MCSE.2014.80. URL doi.ieeecomputersociety.org/10.
1109/MCSE.2014.80.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Shuo Wang, Dan Guo, Wen-gang Zhou, Zheng-Jun Zha, and Meng Wang. Connectionist temporal
fusion for sign language translation. In Proceedings of the 26th ACM international conference on
Multimedia, pp. 1483–1491, 2018.

Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R Hershey, and Tomoki Hayashi. Hybrid
ctc/attention architecture for end-to-end speech recognition. IEEE Journal of Selected Topics
in Signal Processing, 11(8):1240–1253, 2017.

Brian Yan, Siddharth Dalmia, Yosuke Higuchi, Graham Neubig, Florian Metze, Alan W Black,
and Shinji Watanabe. Ctc alignments improve autoregressive translation. arXiv preprint
arXiv:2210.05200, 2022.

Zhuoyuan Yao, Di Wu, Xiong Wang, Binbin Zhang, Fan Yu, Chao Yang, Zhendong Peng, Xiaoyu
Chen, Lei Xie, and Xin Lei. Wenet: Production oriented streaming and non-streaming end-to-end
speech recognition toolkit. In Proc. Interspeech, Brno, Czech Republic, 2021. IEEE.

Jiahui Yu, Chung-Cheng Chiu, Bo Li, Shuo-yiin Chang, Tara N. Sainath, Yanzhang He, Arun
Narayanan, Wei Han, Anmol Gulati, Yonghui Wu, and Ruoming Pang. Fastemit: Low-latency
streaming asr with sequence-level emission regularization. In ICASSP 2021 - 2021 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6004–6008,
2021.

Albert Zeyer, André Merboldt, Ralf Schlüter, and Hermann Ney. A new training pipeline for an
improved neural transducer. Proc. Interspeech 2020, pp. 2812–2816, 2020.

Albert Zeyer, Ralf Schlüter, and Hermann Ney. Why does ctc result in peaky behavior? arXiv
preprint arXiv:2105.14849, 2021.

Binbin Zhang, Hang Lv, Pengcheng Guo, Qijie Shao, Chao Yang, Lei Xie, Xin Xu, Hui Bu, Xiaoyu
Chen, Chenchen Zeng, et al. Wenetspeech: A 10000+ hours multi-domain mandarin corpus for
speech recognition. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 6182–6186. IEEE, 2022.

13

doi.ieeecomputersociety.org/10.1109/MCSE.2014.80
doi.ieeecomputersociety.org/10.1109/MCSE.2014.80

Published as a conference paper at ICLR 2023

Zeyu Zhao and Peter Bell. Investigating sequence-level normalisation for ctc-like end-to-end asr. In
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 7792–7796, 2022.

Zhihong Zhu, Weiyuan Xu, Xuxin Cheng, Tengtao Song, and Yuexian Zou. A dynamic graph
interactive framework with label-semantic injection for spoken language understanding. CoRR,
abs/2211.04023, 2022.

14

Published as a conference paper at ICLR 2023

A APPENDIX: DETAILS OF THE FORWARD-BACKWARD PROCESS AND THE
CLOSE-FORM GRADIENT OF VANILLA CTC

This appendix describes the recursive computation of the forward-backward algorithm and the close
form gradient of vanilla CTC.

For the forward variable α(t, v), the recursive process is:

α(t, v) =

{
[α(t− 1, v) + α(t− 1, v − 1)] · ytl′v , if l′v = ∅ or l′v = l′v−2

[α(t− 1, v) + α(t− 1, v − 1) + α(t− 1, v − 2)] · ytl′v , Otherwise

}
(13)

with the initial condition:

α(1, 1) = y1∅; α(1, 2) = y1l′2 ; α(1, v) = 0, ∀v > 2 (14)

Symmetrically, for the backward variable β(t, v), the recursive process is:

β(t, v) =

{
[β(t+ 1, v) + β(t+ 1, v + 1)] · ytl′v , if l′v = ∅ or l′v = l′v+2

[β(t+ 1, v) + β(t+ 1, v + 1) + β(t+ 1, v + 2)] · ytl′v , Otherwise

}
(15)

with the initial condition:

β(T, 2U + 1) = yT∅; β(T, 2U) = yTl′2U ; β(T, v) = 0, ∀v < 2U (16)

After all forward and backward variables are computed, the CTC gradient can be computed in close
form. Firstly, for the posterior of any path π, its gradient w.r.t. the ytk is:

∂p(π|x)
∂ytk

=
∂
∏T
t′=1 y

t′

πt′

∂ytk
=

(

t−1∏
t′=1

yt
′

πt′
) · (

T∏
t′=t+1

yt
′

πt′
) if k = πt

0 otherwise

 (17)

Then consider the occupation probability in Eq.4 and include the two products above into the for-
ward and backward variables, its gradient w.r.t. the output ytk is:

∂
∑
π∈B−1(l);πt=l′v

p(π|x)
∂ytk

=

1

ytk
2 · α(t, v) · β(t, v) if k = πt

0 otherwise

 (18)

Finally, enumerate all v like in Eq.5, the gradient of CTC is computed as:

p(l|x)
∂ytk

=
1

ytk
2 ·

∑
v∈lab(l′,k)

α(t, v) · β(t, v) (19)

where lab(l′, k) indicates where the k occurs: lab(l′, k) = {v : l′v = k}

15

Published as a conference paper at ICLR 2023

B FURTHER EXPLANATION OF BRCTC GENERAL FORMULATION

This appendix provides a more detailed explanation of the BRCTC general formulation. The equa-
tions are provided below.

Jbrctc(l,x) =
∑

π∈B−1(l)

[p(π|x) · r(π)]

=
∑
τ

∑
π∈B−1(l)
f(π)=τ

[p(π|x) · r(π)]

=
∑
τ

∑
π∈B−1(l)
f(π)=τ

[p(π|x) · rg(τ)]

=
∑
τ

[rg(τ) ·
∑

π∈B−1(l)
f(π)=τ

p(π|x)] (20)

The first line is the original definition of BRCTC, in which each path π along with its risk value r(π)
is considered and the product is summed for all paths. The second line is to group the paths with
identical concerned property τ . In this stage, the risk value for each path is still r(π). The third line
suggests the risk values for all paths within a group are identical and only depend on the concerned
property τ . So the risk value is changed from r(π) to rg(τ) within the group. The final line is to
extract the common factor rg(τ) out of the summation within the group. This suggests we can first
compute the summed posterior of all paths within the group and then apply the risk value for that
group in one go.

Example: we further provide a naive example to illustrate how paths are grouped and how the risk
values are assigned to each group. Assume the input length is 3 (index from 1 to 3) and the target
sequence is [A, B]. Then, all possible paths and their posteriors are listed in the first and the second
rows of the table below respectively.

We also assume the concerned property τ = f(π) is the time-stamp when the prediction of token
B finishes. Thus, the value of the concerned property for each path is listed in the third row of the
table below.

Paths with the identical τ value should form a group. So the path AB∅ forms a group with a single
element while the remained paths form another group. For paths within a group, the risk value
should be identical. The risk value for each group rg(τ) is user-defined. We simply set rg(2) = 1.0
and rg(3) = 0.8. Then the risk for each path r(π) is then set in the fourth row of the table below.

Path(π) AB∅ ABB AAB A∅B ∅AB
p(π|x) 0.3 0.1 0.2 0.0 0.1
τ 2 3 3 3 3

r(π) or rg(τ) 1.0 0.8 0.8 0.8 0.8

Finally, formulating all these processes in equations will be:

Jbrctc = p(AB∅) · r(AB∅) + p(ABB) · r(ABB) + p(AAB) · r(AAB)

+ p(A∅B) · r(A∅B) + p(∅AB) · r(∅AB) #Initial formulation
= [p(ABB) · r(ABB) + p(AAB) · r(AAB) + p(A∅B) · r(A∅B) + p(∅AB) · r(∅AB)]

+ [p(AB∅) · r(AB∅)] #grouping
= [p(ABB) · rg(3) + p(AAB) · rg(3) + p(A∅B) · rg(3) + p(∅AB) · rg(3)]
+ [p(AB∅) · rg(2)] #replace r(π) by rg(τ)

= [p(ABB) + p(AAB) + p(A∅B) + p(∅AB)] · rg(3)
+ [p(AB∅)] · rg(2) #extract common factors

= (0.1 + 0.2 + 0.0 + 0.1) · 0.8 + 0.3 · 1.0 = 0.62 (21)

16

Published as a conference paper at ICLR 2023

C APPENDIX: THE EXPLANATION FOR GROUPING STRATEGY FORMULATION

This appendix explains the formulation in section 3.2. The property function is set to τ = fu(π) =
argmaxt s.t. πt = lu = l′2u.

Firstly, for the scenario τ < T , the property function can be translated into the condition πτ = l′2u
and πτ+1 6= l′2u. Thus, the summed probability of the path group is formulated as:

∑
π∈B−1(l)
fu(π)=τ

p(π|x) =
∑

π∈B−1(l)

πτ=l′2u;πτ+1 6=l′2u

p(π|x) =
∑

π∈B−1(l)

πτ=l′2u;πτ+1 6=l′2u

T∏
t′=1

yt
′

πt′

=
∑

π∈B−1(l)

πτ=l′2u

T∏
t′=1

yt
′

πt′
−

∑
π∈B−1(l)

πτ=l′2u;πτ+1=l′2u

T∏
t′=1

yt
′

πt′

=
α(τ, 2u) · β(τ, 2u)

yτπτ
− α(τ, 2u) · β(τ + 1, 2u) (22)

Set:
β̂(τ, 2u) = β(τ, 2u)− β(τ + 1, 2u) · yτπτ (23)

The summed probability then becomes:∑
π∈B−1(l)
fu(π)=τ

p(π|x) = α(τ, 2u) · β̂(τ, 2u)
yτπτ

(24)

Secondly, τ = T suggests that:∑
π∈B−1(l)
fu(π)=τ

p(π|x) = α(τ, 2u) =
α(τ, 2u) · β(τ, 2u)

yτπτ
(25)

To sum up, the summed probability of the path group with the given τ and u is∑
π∈B−1(l)
fu(π)=τ

p(π|x) = α(τ, 2u) · β̂(τ, 2u)
yτπτ

(26)

with

β̂(τ, 2u) =

{
β(τ, 2u)− β(τ + 1, 2u) · yτπτ , if τ < T

β(τ, 2u), Otherwise

}
(27)

17

Published as a conference paper at ICLR 2023

D APPENDIX: THE TWO-STAGE METHOD FOR BRCTC DOWN-SAMPLING

Attention
DecoderEncoder

BCTC

Trim

Cross-Entropy
Loss

Encoder 2

Bayes Risk
CTC Loss

Encoder 1

Bayes Risk
CTC Loss

Downstream
ModulesEncoder

BCTC

Trim

Downstream
Loss

Encoder 2

Bayes Risk
CTC Loss

Encoder 1

Vanilla
CTC Loss

Trimming

Attention
Decoder

Cross-Entropy
Loss

Prediction
Networ

Joint
Network

Transducer
Loss

Translation
Encoder

Vanilla
CTC Loss

Attention
Decoder

Cross-Entropy
Loss

Attention
Decoder

Joint
Network

Prediction
Networ

Translation
Encoder

First stage Second Stage

Transducer
(ASR)

Hybrid CTC/Attention
(ASR, MT)

Hybrid CTC/Attention
(ST)

Figure 6: An illustration of the proposed two-stage method for BRCTC down-sampling.
This appendix describes the proposed two-stage method for BRCTC down-sampling. Details are
described in Fig.6. The first stage mainly follows the architecture in Watanabe et al. (2017): the
encoder-decoder model is jointly optimized by both CTC loss and cross-entropy loss. The decoder
part is adopted in order to be reused in the second stage. Intermediate CTC technique (Lee &
Watanabe, 2021) is consistently adopted so that the whole encoder is split into two parts with an
identical number of layers, and the hidden outputs from both the intermediate layer (a.k.a., h1) and
the final layer (a.k.a., h2) are supervised by the CTC criterion. In this stage, all CTC criteria are our
proposed BRCTC. In the second stage, the weights of the two encoder parts and the CTC classifier
are preserved, but several things are changed. First, the h1 is trimmed into h′1 using the CTC
posterior y1 as the reference, so the length of the intermediate hidden output is reduced. Second,
the CTC loss for h2 is the vanilla CTC loss since h2 does not need to be trimmed again. Thirdly,
the h2 is then fed into downstream modules and losses.

The design of downstream modules and losses depends on the specific tasks and system architec-
tures. For ASR and MT tasks with the Hybrid CTC/Attention architecture, the attention decoder and
the cross-entropy loss are adopted and the weight can be inherited from the first stage. For ASR with
the Transducer architecture, the prediction network and the joint network are randomly initialized
and the Transducer loss is adopted. For the ST task with the Hybrid CTC/Attention architecture,
the translation encoder and the attention decoder are randomly initialized and two extra losses are
adopted: the vanilla CTC loss and the cross-entropy loss. Note in ST tasks, the text labels from both
the source language and the target language are provided. CTC loss for Encoder 1 and Encoder 2
still adopts the source language labels like in the first stage, but the translation encoder and the at-
tention decoder are supervised by the target language labels (tgt l). For all architectures, the global
training objective is the weighted sum of all loss items.

Note that, in the second stage, it is possible to use vanilla CTC or BRCTC consistently. However,
when vanilla CTC is consistently adopted, the down-sampling factor will degrade gradually along
with the second-stage training; when BRCTC is consistently adopted, a slight performance degra-
dation is observed. All hyper-parameters of this two-stage method are presented in Appendix E.

18

Published as a conference paper at ICLR 2023

E APPENDIX: REPRODUCIBILITY

This appendix describes the details of all experiments for reproducibility.

• Datasets: all statistics of the datasets are in table 2.
• Models and Features: all model architectures and the input features are presented in table

3, table 4, table 6 and table 5.
• Training and BRCTC settings: Adam (Kingma & Ba, 2014) optimizer with the learning

rate being inverse square root decaying (Vaswani et al., 2017) is adopted. Details for the op-
timization and the setting for BRCTC are shown in table 7. All experiments are conducted
on Nvidia V100 GPUs.

• Decoding: For the online ASR model, we adopt greedy CTC decoding. For all other offline
models, the decoding configurations are in table 8. All the inference jobs are conducted on
Intel(R) Xeon(R) Platinum 8255C CPU (2.5GHz). The RTFs are calculated by the first
1/88 data in the corresponding test sets. External language models in any form are not used
in inference. Checkpoints from the last 10 epochs (for ASR) or the 10 epochs with the best
validation accuracy (for ST) are averaged for evaluation.

Dataset Task #Hours #Pairs Language Units
Aishell-1 (Bu et al., 2017) ASR 178 120k Mandarin 4231 Char.
Aishell-2 (Du et al., 2018) ASR 1k 962k Mandarin 5214 Char.
Wenetspeech (Zhang et al., 2022) ASR 10k 14M Mandarin 6267 Char.
Librispeech (Panayotov et al., 2015) ASR 960 281k English 500 BPE
IWSLT De-En (Cettolo et al., 2012) MT - 160k German-English 10k BPE (shared)
IWSLT Es-En (Cettolo et al., 2012) MT - 160k Spanish-English 10k BPE (shared)
MuST-C-V2 En-De (Di Gangi et al., 2019) ST 450 250k English-German 500 BPE / 4k BPE

Table 2: Dataset description of ASR / MT / ST tasks.

Acoustic input features: FBank + Pitch
Frame length 25ms Frame shift 10ms
Fbank dim 80 Pitch dim 3

Text input: Embedding
Embedding size 512

Acoustic data augmentation: speed perturbation and specaugment(Park et al., 2019)
Num time masks 2 Time mask length 40
Num frequency masks 2 Frequency mask length 30
Max time warp 5 speed perturbation factors [0.9, 1.0, 1.1]

Encoder: Conformer (Gulati et al., 2020):
Num layer 12 Num attention head 4
Attention dim 512 Feed-forward dim 2048
Num CNN module kernel 31 CNN down sample 4x

Decoder for hybrid CTC/Attention architecture: Transformer (Vaswani et al., 2017):
Num layer 6 Num attention head 4
Attention dim 512 Feed-forward dim 2048

Decoder for Transducer (Graves, 2012) plus CTC architecture:
Prediction network LSTM LSTM hidden size 512
LSTM num layer 1 Joint network Linear
Joint network dim 512

Hybrid CTC/attention (Watanabe et al., 2017) architecture:
CTC loss weight 0.3 Attention loss weight 0.7
Attention label smooth 0.1

Transducer (Graves, 2012) + CTC architecture:
CTC loss weight 0.5 Transducer loss weight 1.0

Others:
Inter. CTC (Lee & Watanabe, 2021) 6-th Inter. CTC weight 0.3
Dropout rate 0.1

Table 3: Offline ASR system configuration

19

Published as a conference paper at ICLR 2023

Acoustic input features: FBank + Pitch
Frame length 25ms Frame shift 10ms
Fbank dim 80 Pitch dim 3

Text input: Embedding
Embedding size 512

Acoustic data augmentation: speed perturbation and specaugment(Park et al., 2019)
Num time masks 2 Time mask length 40
Num frequency masks 2 Frequency mask length 30
Max time warp 5 speed perturbation factors [0.9, 1.0, 1.1]

Encoder: Emformer (Shi et al., 2021):
Num layer 12 Num attention head 4
Attention dim 512 Feed-forward dim 2048
Memory bank length 4 Left context 320ms
Chunk size: Right Context 2:1 or 1:1 Chunk size [80, 160, 320, 480, 640]ms

Decoder for hybrid CTC/attention architecture: Transformer (Vaswani et al., 2017):
Num layer 6 Num attention head 4
Attention dim 512 Feed-forward dim 2048

Hybrid CTC/Attention (Watanabe et al., 2017) architecture:
CTC loss weight 0.3 Attention loss weight 0.7
Attention label smooth 0.1

Others:
Dropout rate 0.1

Table 4: Online ASR system configuration

Acoustic input features: FBank
Frame length 25ms Frame shift 10ms
Fbank dim 80

Text input: Embedding
Embedding size 512

Acoustic data augmentation: speed perturbation and specaugment(Park et al., 2019)
Num time masks 5 Time mask length 5% of T
Num frequency masks 2 Frequency mask length 27
Max time warp 5 speed perturbation factors [0.9, 1.0, 1.1]

Encoder: Conformer (Gulati et al., 2020):
Num layer 12 Num attention head 4
Attention dim 256 Feed-forward dim 2048
Num CNN module kernel 31 CNN down sample 4x

Translation Encoder: Conformer (Gulati et al., 2020):
Num layer 6 Num attention head 4
Attention dim 512 Feed-forward dim 2048
Num CNN module kernel

Decoder for hybrid CTC/attention architecture: Transformer (Vaswani et al., 2017):
Num layer 6 Num attention head 4
Attention dim 512 Feed-forward dim 2048

Hybrid CTC/attention (Watanabe et al., 2017) architecture:
ASR CTC loss weight 0.3 ST CTC loss weight 0.21
ST Attention loss weight 0.49 Attention label smooth 0.1

Others:
Inter. CTC (Lee & Watanabe, 2021) 6-th Inter. CTC weight 0.3
Dropout rate 0.1

Table 5: ST system configuration

Text input: Embedding
Embedding size 512

MT encoder: LegoNN Encoder (Dalmia et al., 2022):
Num layer before up-sampling 6 Num layer after up-sampling 6
Attention dim 512 Feed-forward dim 1024
Num attention head 4 Up-sampling rate 3

Decoder for hybrid CTC/attention architecture: Transformer (Vaswani et al., 2017):
Num layer 6 Num attention head 4
Attention dim 512 Feed-forward dim 1024

Hybrid CTC/attention (Watanabe et al., 2017) architecture:
CTC loss weight 0.3 Attention loss weight 0.7
Attention label smooth 0.1

Others:
Inter. CTC (Lee & Watanabe, 2021) 6-th Inter. CTC weight 0.3
Dropout rate 0.3

Table 6: MT system configuration

20

Published as a conference paper at ICLR 2023

Dataset λ (offline) λ (online) #epochs peak lr #warmup iter. #GPU Max Global Batch size
Aishell-1 10 20 50+50 3e-4 25k 8 400 seconds
Aishell-2 10 20 50+50 3e-4 25k 8 400 seconds
Wenetspeech 30 - 50+50 3e-4 25k 32 3200 seconds
Librispeech 100 - 50+50 3e-4 25k 8 400 seconds
IWSLT 50 - 150+50 2e-3 10k 4 8M bin
MuST-C-V2 50 - 60+40 1e-3 25k 8 6M bin

Table 7: Optimization strategy and BRCTC settings. Epochs 50+50 means 50 epochs for both the
first and the second stages. If there is only one stage (baseline offline systems, online systems),
the number of epochs is the sum. Bin for each example: bin = input length · output length · input
dimension.

Dataset Beam Size CTC weight Attention weight Length reward
Aishell-1 10 0.5 0.5 0
Aishell-2 10 0.5 0.5 0
Wenetspeech 10 0.5 0.5 0
Librispeech 10 0.5 0.5 0
IWSLT 5 {0, 0.2, 0.4, 0.6, 0.8} 1 - CTC weight {0, 0.2, 0.4, 0.6, 0.8}
MuST-C-V2 10 {0, 0.2, 0.4, 0.6, 0.8} 1 - CTC weight {0, 0.2, 0.4, 0.6, 0.8}

Table 8: Offline decoding configurations. Numbers in curly braces {} indicate grid search. For grid
search we report the best results.

F APPENDIX: FORMAL DEFINITION OF THE LATENCY SOURCES AND
FURTHER EXPLANATION

This appendix provides the formal definitions for the three latency sources in section 3.4. All kinds
of latency are computed as the expected value and are at the token-level. Note we are using the Em-
former (Shi et al., 2021), which defines three parts of context: left context, chunk and right context.
The left context is the observed history and is irrelevant to the latency. The chunk is the current
context. The adoption of the right context allows a look-ahead mechanism.

• Data Collecting Latency (DCL): DCL = chunk size/2 + right context, which is the mean
time to wait before the collected frames can form a chunk.

• Computational Latency (CL): CL = chunk size ∗ RTF, which represents the rough infer-
ence time for a chunk.

• Drift Latency (DL): DL = τ − τ̂ , where τ is the ending unit index of the token prediction
in the path; τ̂ is the starting unit index of that token obtained by DNN-HMM systems. To
ensure every token has its reference, we only consider the tokens in the longest common
subsequence between the reference transcription and predicted hypothesis. The DL can be
negative due to the look-ahead mechanism.

We further provide an example to explain that the three latency sources are exclusive and should be
accumulated. Assume an event happens at the step with the input index of τ̂ . The input unit for the
τ̂ step will not enter the model for inference until the following units are collected enough to form
a chunk, which results in the DCL. After the chunk forms, the computation on the model will take
some time, which is the CL. Even though the inference process of the τ̂ step has been finished, the
output posterior yτ̂ usually will not predict the event due to the index drift shown in Fig.2.c. Instead,
the model may predict the event at another input index τ . So the Event prediction cannot be emitted
until the inference process of the τ unit has been finished, which is also a latency. The gap between
τ and τ̂ is the DL. Note the DL only depends on the input index, not the real-world timeline.

We would also like to note that this decomposition of latency sources ideally ignores the other
sources like communication, feature extraction, model loading, etc., as these latency sources are
usually marginal or out of the scope of seq2seq tasks.

21

Published as a conference paper at ICLR 2023

G APPENDIX: DETAILED EXPERIMENTAL RESULTS ON OFFLINE
DOWN-SAMPLING

Aishell-1 Aishell-2 Wenetspeech Librispeech
178h, Mandarin 1kh, Mandarin 10kh, Mandarin 960h, English

System dev / test android / ios / mic dev / meeting / net t-clean / t-other
Attention + CTC 4.26 / 4.74 6.33 / 5.48 / 6.29 9.44 / 15.97 / 9.11 3.02 / 7.72
Attention + BRCTC (ours) 4.30 / 4.75 6.13 / 5.34 / 6.03 9.59 / 16.86 / 9.04 3.15 / 7.63
Transducer + CTC 4.47 / 4.92 6.39 / 5.47 / 6.18 9.20 / 17.34 / 8.61 3.05 / 7.79
Transduder + BRCTC (ours) 4.33 / 4.73 6.36 / 5.35 / 6.30 9.20 / 17.41 / 8.87 3.14 / 7.41

Table 9: ASR results on the models’ transcription performance w/o BRCTC down-sampling method.
All models adopt auto-regressive decoding algorithms. CER/WER (↓) are reported. The beam size
is set to 10 consistently.

Aishell-1 Aishell-2 Wenetspeech Librispeech
test test-ios test-net t-other

System RTF DSF / Oracle RTF DSF / Oracle RTF DSF / Oracle RTF DSF / Oracle
Attention + CTC 1.19 - 1.07 - 1.91 - 1.97 -
Attention + BRCTC (ours) 0.94 0.21 / 0.12 0.95 0.34 / 0.12 1.53 0.37 / 0.21 1.38 0.35 / 0.21
Transducer + CTC 0.37 - 0.42 - 0.48 - 0.31 -
Transducer + BRCTC (ours) 0.21 0.20 / 0.12 0.22 0.29 / 0.12 0.33 0.40 / 0.21 0.18 0.36 / 0.21

Table 10: Evaluations results on the models’ inference cost w/o BRCTC down-sampling method.
The real-time factor (RTF ↓), the down-sampling factor (DSF ↓) and its oracle are reported. The
beam size is set to 10 consistently. The maximum inference cost reduction happens in Aishell-2
Transducer case, in which the RTF is reduced from 0.42 to 0.22 (47% relative reduction).

H APPENDIX: DETAILED EXPERIMENTAL RESULTS ON ONLINE
PERFORMANCE-LATENCY TRADE-OFF

λ
DCL+DL+CL(ms) Hardware-Independent Hardware-Dependent CER% MarkerDCL (ms) DL (ms) DCL+DL (ms) RTF CL (ms) Greedy Search

Aishell-1 test

0

474 240 206 446 0.176 28 6.88 ?
480 120 336 456 0.305 24 7.19 ?
614 480 94 574 0.128 40 6.28 ??
850 720 80 800 0.106 50 5.77

1090 960 72 1032 0.092 58 5.55

20

315 240 47 287 0.176 28 8.10 N
339 120 195 315 0.305 24 7.97 N
440 480 -80 400 0.128 40 7.23 N
501 960 -517 443 0.092 58 6.40 ?
570 720 -200 520 0.106 50 6.31 ??

λ Aishell-2 test-android

0

431 160 243 403 0.175 28 9.97 ?
465 80 363 443 0.283 22 10.25 ?
546 320 189 509 0.116 37 9.44 ??
632 480 103 583 0.104 49 9.03
770 640 72 712 0.091 58 8.57

20

302 80 200 280 0.283 22 11.63 N
311 160 123 283 0.175 28 11.21 N
349 320 -8 312 0.116 37 10.33 N
447 480 -82 398 0.104 49 9.65 ?
532 640 -166 474 0.091 58 9.16 ??

Table 11: Trade-off between the transcription performance and the latency for online CTC mod-
els. λ: risk factor of BRCTC; DCL: data collecting latency; CL: computational latency; DL: drift
latency; CER: character error rate; RTF: real-time factor. Latency data is computed for greedy
search only. ? and ?? represent cases for comparison. N represents the extremely low latency cases
that cannot be achieved by vanilla CTC. The minimum overall latency achieved by BRCTC is only
302ms (Aishell-2). Compared with its vanilla baseline whose minimum overall latency is 431ms,
the BRCTC achieves a 30% overall latency reduction relatively.

22

Published as a conference paper at ICLR 2023

I APPENDIX: DETAILED EXPERIMENTAL RESULTS ON MT TASKS

This appendix presents the experimental results on MT tasks. As suggested in table 12, BRCTC
can reduce the length of h to 63% and save 27% inference cost. At the same time, the model with
BRCTC still preserves the competitive transcription ability (very close BLEU scores).

However, several things are noticeable. For MT tasks, the lengths of x and l are usually close.
Commonly, there is no need to conduct the down-sampling on h in MT tasks. This experiment
follows the setting in (Yan et al., 2022), where CTC is integrated as an auxiliary criterion. To ensure
|h| ≥ |l| in CTC computation, the x are up-sampled for 3 times when being encoded into h. In this
case, the down-sampling process will be needed.

Transcription Quality (BLEU↑) Down-sampling Effectiveness
System De-En Es-En DFS(↓) / Oracle Rel. Inference Time (↓)
Attention + Vanilla CTC (Yan et al., 2022) 31.9 37.9 - 1.00
Attention + BRCTC (ours) 31.7 38.0 0.63 / 0.34 0.73

Table 12: MT performance on IWSLT14 dataset w/o BRCTC down-sampling.

J APPENDIX: MORE VISUALIZATION

This appendix provides more visualization results on 1) the gradient analysis of BRCTC in online
applications and 2) the attention analysis of BRCTC down-sampling process.

Fig.7 compares the evolution of the CTC distributions and their gradients on the online performance-
latency trade-off application. Most of the observations are similar to those in Fig.5 except 1) at the
beginning of training, the gradients for each non-blank token, rather than the last non-blank token
only, are interfered with by the adoption of Bayes risk function. The gradient peaks of BRCTC are
shifted to the left. 2) after 2 epochs of training, the gradients will also be localized, but BRCTC has
not learned the places where the emission will happen. After convergence, the emissions of BRCTC
will be earlier. We add the input indexed to show its difference from vanilla CTC.

0

1

F
la

t
S

ta
rt

Vanilla CTC Posterior

0

1
BRCTC Posterior

0.00

0.03
Vanilla CTC Gradient

0.00

0.03
BRCTC Gradient

5 10 14
0

1

2
 E

p
o

ch
s

0 10 14
0

1

0.00

0.03

0.00

0.03

6 10 16
0

1

2
0

 E
p

o
ch

s

2 8 13
0

1

0.00

0.03

0.00

0.03

Figure 7: Evolution of CTC distribution y and the corresponding gradients on logy. BRCTC with
emission latency alleviation method is used.

Fig.8 demonstrates the encoder self-attention weights from different layers and attention heads. As
shown in the figure, the down-sampling process is completed mainly in the last two layers before the
BRCTC criterion (the 5-th and 6-th layers). The attention weights shown in the red boxes suggest
how the semantics of input units with large input indexes are aggregated to the output units with
small indexes. Observations like this are mainly in the last two layers before BRCTC so we assume
the global context is fully explored in other layers.

23

Published as a conference paper at ICLR 2023

Layer-1

Layer-2

Layer-3

Layer-4

Layer-5

Layer-6

Figure 8: Encoder attention plots from different layers and attention heads. Data from Librispeech
test-clean set, utterance 1089-134686-0000. Down-sampling is conducted in the last two layers
before BRCTC only (see the red boxes).

24

Published as a conference paper at ICLR 2023

K APPENDIX: ALIGNMENT DRIFT OF VANILLA CTC SYSTEM

This appendix demonstrates that systems even trained with vanilla CTC are predicting the align-
ment that drifts significantly. We draw several CTC posteriors and their reference alignment ob-
tained by DNN-HMM systems (the colored bars) in Fig.9. All figures are obtained from Aishell-2
test-android set.

Utterance: Aishell-2 AT0011W0009

Utterance: Aishell-2 AT0011W0020

Utterance: Aishell-2 AT0011W0020

Utterance: Aishell-2 AT0011W0020

Figure 9: CTC posteriors and their reference alignment predicted by vanilla CTC systems. Colored
bars are the reference alignments obtained by DNN-HMM systems. The predicted alignment drift
significantly compared with the DNN-HMM reference alignment.

25

	Introduction
	Review on Connectionist Temporal Classification (CTC)
	Training Process and alignment prediction
	Forward-Backward Algorithm

	Bayes risk CTC
	General Formulation
	Examples about how paths are grouped
	Application: Down-sample
	Application: performance-latency trade-off

	Experiments
	Experiment Setup
	Results on BRCTC down-sampling for offline ASR system
	Results on BRCTC performance-latency trade-off for online ASR system
	Generalizing BRCTC to ST
	Visualization

	Discussion
	Related Works
	Limitation
	Conclusion
	Acknowledgement
	Reproducibility statement
	Appendix: Details of the forward-backward process and the close-form gradient of vanilla CTC
	Further explanation of BRCTC general formulation
	Appendix: the explanation for grouping strategy formulation
	Appendix: The two-stage method for BRCTC down-sampling
	Appendix: Reproducibility
	Appendix: formal definition of the latency sources and further explanation
	Appendix: Detailed experimental results on offline down-sampling
	Appendix: Detailed experimental results on online performance-latency trade-off
	Appendix: Detailed experimental results on MT tasks
	Appendix: More Visualization
	Appendix: Alignment drift of vanilla CTC system

