
Under review as a conference paper at ICLR 2022

EQUIVALENCE OF STATE EQUATIONS FROM DIFFERENT
METHODS IN HIGH-DIMENSIONAL REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

State equations (SEs) were firstly introduced in the approximate message passing
(AMP) to describe the mean square error (MSE) in compressed sensing. Since
then a set of state equations have appeared in studies of logistic regression, ro-
bust estimator and other high-dimensional statistics problems. Recently, a con-
vex Gaussian min-max theorem (CGMT) approach was proposed to study high-
dimensional statistic problems accompanying with another set of different state
equations. This paper provides a uniform viewpoint on these methods and shows
the equivalence of their reduction forms, which causes that the resulting SEs are
essentially equivalent and can be converted into the same expression through pa-
rameter transformations. Combining these results, we show that these different
state equations are derived from several equivalent reduction forms. We believe
that this equivalence will shed light on discovering a deeper structure in high-
dimensional statistics.

1 INTRODUCTION

Classical statistical methods often failed in the high-dimensional data where the number of features
is larger than the number of observed samples. Studies in high dimensional data have attracted lots
of attentions in past decades. A set of state equations (SEs) were first introduced in approximate
message passing (AMP) algorithm in (Donoho et al., 2009) to precisely characterize the mean-
square-error (MSE) and the phase transition phenomenon for true signal recovery in compressed
sensing (CS). Since then, SEs, associated to certain AMP algorithm, have played indispensable role
in various high-dimensional problems. For example, (Donoho et al., 2011) investigated the phase
transition phenomenon and the precise MSE of LASSO estimator; (Donoho & Montanari, 2016)
studied the variance of asymptotic distribution of M-estimator; (Huang, 2020) provided a precise
characterization of min-max MSE of l1 penalized robust M-estimator and the corresponding phase
transition phenomenon.

Though the SEs were first introduced through certain AMP type algorithms, researchers meet them
in a variety of models through different methods. For example, the SEs appeared in (El Karoui et al.,
2013) when they performed the leaving-one-out (LOO) analysis of M-estimator in high dimensions.
They showed that asymptotic normality, asymptotically unbiased property also hold as in the low
dimension, nevertheless the variance of asymptotic distribution of M-estimators is higher. (Sur &
Candès, 2019) employed the similar idea to analyze the properties of MLE in logistic regression
where the SEs were used to show that (1) asymptotically unbiased property does not hold; (2)
variance of asymptotic distribution increases; (3) likelihood ratio test is not distributed as chi-square.
SEs also appeared in another line of researches where Thrompoulidies et al. performed analysis of
a family of high dimensional problems through the Convex Gaussian min-max theorem (CGMT).
More precisely, (Thrampoulidis et al., 2018) characterized the MSE precisely for general regularized
M-estimator problem in high-dimensions; (Salehi et al., 2019) established the correlation and MSE
of the resulting estimator of regularized logistic regression; (Deng et al., 2019) showed the changing
trend of MSE with the growth of features in support vector machine and logistic regression.

Lastly, an insightful series of works (Barbier et al., 2019; Ricci-Tersenghi & Semerjian, 2009;
Moore, 2014; Krzakala et al., 2016; Coja-Oghlan et al., 2018; Mézard & Parisi, 2003; Del Ferraro
et al., 2014) have utilized the SEs (named as cavity method in statistical physics) as a ubiquitous
tool when they studied the high dimensional statistical problem through the perspective of statisti-
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cal physics. Importantly, this tool has exhibited as a powerful weapon in applications of a lot of
fields(Mezard & Montanari, 2009; Obuchi & Kabashima, 2016; Vuffray, 2014; Lesieur et al., 2015;
2016).

Though many papers have explicitly written down the corresponding state equations, none of them
have shown that these sets of state equations are compatible. To the best of our knowledge, only
(Deng et al., 2019) mentioned there is another set of state equation but without any comparison.

Although SEs were proved to be important in high dimensional problems, it is awkward that for
one specific problem, the resulting SEs from AMP, CGMT and LOO are different. To be more
clear, let us take a look at logistic regression. The SEs derived from CGMT (20) in (Deng et al.,
2019) are obviously different from the SEs derived from LOO (19) in (Sur & Candès, 2019). This
is annoying, since the asymptotic performance for a specific high-dimensional problem should be
unique no matter which method was used.

Therefore, we are interested in the following questions:

Are SEs derived from different methods all equivalent in some sense? If so, from what viewpoint
these methods are equivalent and are there more inner equivalence?

Among them, as the most direct, accessible, basic tool, equivalence of SEs is the basis of equivalence
of methods and more inner equivalence.

Our contributions. We successfully show that for various high dimensional problem, the different
sets of SEs derived through different methods are actually equivalent to each other. More precisely,
we construct the equivalence between different sets of SEs through explicit parameter transforms for
LASSO, M-estimator and logistic regression. These transformations are inspired by the statistical
meanings of certain quantities appeared in the SEs. Moreover, we also provide a heuristic expla-
nation on the relation between the different methods: AMP, CGMT and LOO. To the best of our
knowledge, this is the first work to clearly clarify the equivalence among SEs derived from different
methods and try to establish the equivalence of different methods.

Outlines. In section 2, we show that the SEs for M-estimator from AMP, LOO and CGMT are
equivalent to each other. In section 3.1, we show the equivalence of SEs derived from AMP and
CGMT for another example and explain the essential reasons behind this equivalence. In Section
3.2, we illustrate the similar work regarding the equivalence between CGMT and LOO. Section 4
provides some discussions and future directions. Most proofs are deferred to the appendix.

Notations. Let N (0, Id),N (0, 1) denote the d-dimensional standard Gaussian distribution and 1-
dimensional standard Gaussian distribution respectively. For a vector x, we denote ∥x∥p as the lp
norm of x. For an integer n we denote [n] as {1, · · · , n}. We abbreviate independent and identically
distributed to i.i.d.. For a function f : R 7→ R, variable x ∈ R and t > 0, we denote the Moreau
envelope associated with f as

Mf (x; t) := min
z∈R

f(z) +
1

2t
(x− z)2 (1)

and the proximal operator, which is the solution of this minimization as

Proxf (x; t) := argmin
z∈R

f(z) +
1

2t
(x− z)2. (2)

For multi-dimensional case x = (x1, · · · , xd)
T ∈ Rd, Moreau envelope and proximal operator are

applied element-wisely: Mf (x; t) := (Mf (xi; t)) ∈ Rd and Proxf (x; t) := (Proxf (xi; t)) ∈ Rd.

2 AN ILLUSTRATIVE EXAMPLE

Suppose that xi
i.i.d.∼ N (0, 1

dId) and yi ∈ R satisfying that

yi = xT
i β

∗ + ϵi, for i ∈ [n] (3)

where ϵi are drawn i.i.d. from distribution Pϵ with mean 0 and variance σ2
∗. We assume that the

entries β∗
i of β∗ are independently distributed as Π which has finite second moment r2∗ = Eβ∼Πβ

2.
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Let ρ be a non-negative convex function. We are interested in the the Mean-squared-error (MSE)
performance limn,p→∞

1
n∥β − β∗∥2 of the M-estimator:

β̂ = argmin
β

n∑
i=1

ρ(yi − xT
i β) (4)

when both n and d go to infinity satisfying that limn,d→∞
d
n = κ∗ ∈ (0,∞).

This problem first studied by (El Karoui et al., 2013) where they showed that the MSE of β̂ can be
characterized by a set of SEs. More precisely, they proved the following proposition.

Proposition 2.1. (El Karoui et al., 2013) Given ratio κ∗ < 1. Consider the following system of
nonlinear equations (SEs) regarding (τ1, γ1) :

1− κ∗ = E[
∂Proxρ

∂x
(W1 + τ1Z1;λ1)]

κ∗τ
2
1 := E[W1 + τ1Z1 − Proxρ(W1 + τ1Z1;λ1)]

2
(5)

where W1 ∼ Pϵ, Z1 ∼ N (0, 1) is independent of W1. If this system of nonlinear equations possesses
a unique solution (τ̄1, λ̄1), then the τ̄1 is exactly the MSE of β̂ appeared in (4).

The M -estimator was also studied by (Donoho & Montanari, 2016) where they proved the following
proposition.

Proposition 2.2. (Donoho & Montanari, 2016) Given ratio κ∗ < 1. Consider the following system
of nonlinear equations (SEs) regarding (τ2, γ2) :

τ22 =
1

κ∗
λ2
2E[

∂Mρ

∂x
(W2 + τ2Z2;λ2)]

2

κ∗ = λ2E[
∂2Mρ

∂x2
(W2 + τ2Z2;λ2)]

(6)

where W2 ∼ Pϵ, Z2 ∼ N (0, 1) is independent of W2. If this system of nonlinear equations possesses
a unique solution (τ̄2, λ̄2), then the τ̄2 is exactly the MSE of β̂ appeared in (4).

Moreover, inspired by the work (Thrampoulidis et al., 2014), we employ the CGMT techniques to
study the M -estimator and show that the asymptotic MSE can be characterized by the the following
SEs. To avoid unnecessary digression, we defer the detailed proof to the appendix A.
Proposition 2.3. Given ratio κ∗ < 1. Consider the following system of nonlinear equations (SEs)
regarding (τ3, α, µ) :

0 =
α

2
− τ3

√
κ∗ −

α

µ2
E[

∂Mρ

∂t
(W3 + τ3Z3;α/µ)]

0 =− µ
√
κ∗ + E[Z3

∂Mρ

∂x
(W3 + τ3Z3;α/µ)]

0 =
µ

2
+

1

µ
E[

∂Mρ

∂t
(W3 + τ3Z3;α/µ)]

(7)

where W3 ∼ Pϵ, Z3 ∼ N (0, 1) is independent of W3. If this system of nonlinear equations possesses
a unique solution (τ̄3, ᾱ, µ̄), then the τ̄3 is exactly the MSE of β̂ appeared in (4).

On the one hand, these three sets of SEs are different at the first glance. On the other hand, since
they are all supposed to describe the MSE of the M -estimators in high dimension, there shall be
some relation between these three sets of equations. A striking fact is that we can actually show
that all these three set of SEs are equivalent to each other. More precisely, we have the following
theorem.

Theorem 1. For M-estimator(4), the SEs derived from AMP (6), LOO (5) and CGMT (7) are equiv-
alent. Specifically, (6) can be converted into the same form as (5) after the following parameter
transformations:

τ1 = τ2, λ1 = λ2. (8)
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(6) can be converted into the same form as (7) after the following parameter transformations:

τ1 = τ3, λ1 =
α

µ
. (9)

The equivalence of these three sets of SEs seems straightforward, however, it suggests us that all the
three procedures: AMP, CGMT and LOO might be deeply entangled in some sense. This will be
investigated in this manuscript.

The proof of this theorem is deferred to the appendix B.

3 GENERAL RESULTS

In this section, we show that the aforementioned equivalence between different sets of SEs holds not
only for M-estimator, but also for Lasso and logistic regression in high dimensions.

3.1 EQUIVALENCE BETWEEN THE SES DERIVED FROM CGMT AND AMP

Let us consider the following optimization

min
β

1

2
∥y −Xβ∥22 + λ∗∥β∥1 (10)

where yi = xτ
i β

∗+ϵi with xi
i.i.d.∼ N (0, 1

nId) , r∗ := limn,p→∞
∥β∗∥√

n
and λ∗ ≥ 0 is the regularized

parameter, ϵi are drawn i.i.d. from distribution Pϵ with mean 0 and variance σ2
∗.

We are interested in the the Mean-squared-error(MSE) performance limn,p→∞
1
n∥β − β∗∥2 of the

LASSO. (Donoho et al., 2011), (Mousavi et al., 2018), (Bayati & Montanari, 2011; Miolane &
Montanari, 2018; Javanmard & Montanari, 2018) have utilized the AMP to study the asymptotic
performance of the Lasso estimator. For our purpose, we briefly recall the results in (Mousavi et al.,
2018) below.

Proposition 3.1. (Mousavi et al., 2018) Given noise scale σ2
∗ and ratio κ∗, consider the following

system of nonlinear equations (SEs) regarding (τ1, γ1) :

τ21 = σ2
∗ + κ∗E[η(β1 + τ1Z1;λ∗ + γ1)− β1]

2

γ1 = κ∗(γ1 + λ∗)E[η′(β1 + τ1Z1;λ∗ + γ1)]
. (11)

where Z1 ∼ N (0, 1) is a standard normal variable, β1 ∼ Π is independent of Z1, η(·; ·) is the soft
threshold function:

η(x; t) := sign(x)(|x| − t)+,

x+ means max{x, 0} and

sign(x) :=


1 if x > 0

0 if x = 0

−1 if x < 0

.

If this system of nonlinear equations possesses a unique solution (τ̄1, λ̄1), then the τ̄1 is exactly the
MSE of β̂ appeared in (10).

Inspired by the sequence of work (Thrampoulidis et al., 2014; 2015; 2018; Salehi et al., 2019), we
apply the CGMT to study the asymptotic performance of the Lasso estimator appeared in (10) and
find that it is characterized by the following set of SEs.
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Proposition 3.2. Given noise scale σ2
∗, signal strength r2∗ in model (3) and ratio κ∗, Consider the

following system of nonlinear equations (SEs) regarding (α, σ, τ2, θ, λ, γ2):

0 = − α

στ2
+ θ − 1 +

α+ λ

λ+ 1

0 = − 1

2τ2
+

r2∗κ∗α
2

2σ2τ2
− τ2κ∗

2
E[(Proxf̃ (γ2Z2 + θβ2;λ∗))

2] +
σ

λ+ 1

0 = γ2
2 − r2∗κ∗ − σ2

∗ +
2[(α+ λ)r2∗κ∗ + λσ2

∗]

λ+ 1
− (α+ λ)2r2∗κ∗ + σ2 + λ2σ2

∗
(λ+ 1)2

0 = r2∗κ∗α− στ2κ∗E[β2Proxf̃ (γ2Z2 + θβ2;λ∗)]

λ = στ2κ∗E[
∂Proxf̃ (γ2Z2 + θβ2;λ∗)

∂x
]

0 =
σ

2τ22
+

r2∗κ∗α
2

2στ22
− σκ∗

2
E[(Proxf̃ (γ2Z2 + θβ2;λ∗))

2]

(12)

where Z2 ∼ N (0, 1) is a standard normal variable, β2 ∼ Π is independent of Z2, f̃(x) := |x|.

If this system of nonlinear equations possesses a unique solution (ᾱ, σ̄, τ̄2, θ̄, λ̄, γ̄2), then the λ̄2

θ̄
is

exactly the MSE of β̂ appeared in (10)

The detailed proof is deferred until the Appendix C. The following proposition illustrate the equiv-
alence between these two sets of SEs.

Theorem 2. The SEs of LASSO derived from AMP (11) are equivalent to the SEs derived from
CGMT (12). Specifically, (12) can be converted into the same form as (11) after the following
parameter transformations:

τ1 =
γ2
θ
, γ1 =

λ∗

θ
− λ∗. (13)

The detailed proof is deferred until Appendix C.1.

We provided a heuristic explanation on the equivalence of the SEs derived from AMP and CGMT.
For the sake of the self-contentment, we briefly review the procedures of how to derive SEs from
AMP and CGMT respectively.

Deriving SEs from AMP. The derivation of SE from AMP can be divided into two stages:

(1) Constructing an iterative algorithm

1) AMP first transform initial optimization problem into pursuing a Bayesian posterior distri-
bution where objective function is transformed into a probability distribution.

2) Based on the corresponding factor graph of this distribution, it invokes the message pass-
ing(MP) algorithm to compute the Bayesian posterior distribution.

3) The MP is then further approximated by some large system limit, large β limit and the
approximation of iteration.

(2) The asymptotic behavior of AMP is then characterized by the state evolution equations/SEs.

Deriving SEs from CGMT. The derivation of SE from CGMT can be divided into four steps.

1) The initial optimization problem is transformed into a min-max form, which is called the
primary optimization (PO) problem.

2) CGMT perform a dimensionality reduction on PO and obtain the auxiliary optimization
(AO) problem

3) AO is further simplified to an optimization problem only depending on several scalar vari-
ables, which is called scalar optimization (SO) problem.
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4) SEs are derived by finding first-order optimality conditions of the asymptotic version of
SO.

Remark 3.1. We find that AO can be viewed as a relaxation of PO in the sense that the feasible
region of AO is larger than that of PO. Concrete examples, such as M-estimator, Logistic regression,
Support vector machine and so on, are deferred to the appendix. We believe that this relaxation can
help us understand the equivalence between the resulting SEs from AMP and CGMT respectively.

We now present a uniform viewpoint on AMP and CGMT: 1) Constructing the AMP corresponds
to the first step of CGMT in LASSO, which suggests that the iteration of AMP is actually equiv-
alent to the process of solving PO. 2) Deriving the SEs from AMP corresponds to the last three
steps of CGMT. Both of them aim to deriving SEs and characterizing asymptotic performance by
approximating the initial optimization problem. We proved the first statement in Proposition 3.3.

Proposition 3.3. (Rangan et al., 2016) For LASSO, the fixed point of AMP is just the solution of
first-order optimality conditions of PO in CGMT.

Proof. For CGMT, by introducing u to constrain u = Xβ and Lagrange vector v, the corresponding
PO can be written as:

min
β,u

max
v

1

2
∥u∥22 − yTu+

1

2
∥y∥22 + λ∗∥β∥1 + vT (Xβ − u).

Consider the first-order optimality conditions of PO:
0 = λ∗sign(β) +XTv

0 = u− y − v

0 = u−Xβ.

(14)

Comparing above formulas in (14) leads to

λ∗sign(β) +XT (Xβ − y) = 0.

For AMP algorithm, the iteration of LASSO is

βt+1 = η(βt +XTzt;λ∗ + γt)

zt = y −Xβt + κ∗z
t−1⟨ ∂

∂x
η(βt−1 +XTzt−1;λ∗ + γt−1)⟩

γt = κ∗(λ∗ + γt−1)⟨ ∂

∂x
η(βt−1 +XTzt−1;λ∗ + γt−1)⟩

where ∂
∂x acts component-wisely. For some vector x, ⟨x⟩ :=

∑d
i=1 xi denotes the entry-sum of x.

The fixed point (β∞, z∞, γ∞) satisfy the following equations:

0 = (λ∗ + γ)sign(β) + β − (β +XTz) (15a)
z = y −Xβ + κ∗z · c (15b)
γ = κ∗(λ∗ + γ)c (15c)

where c = c(β, z, γ) = ⟨ ∂
∂xη(β + XTz;λ∗ + γ)⟩ and (15a) is given by the following property

about the soft thresholding function:

t · sign(z) + z − x = 0

for z = η(x; t) and some scalar x.

Simplifying (15b) and (15c) leads to:

z =
y −Xβ

1− κ∗c

γ =
κ∗cλ∗

1− κ∗c
.

(16)
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Comparing (16) with (15a) gives,
λ∗

1− κ∗c
sign(β)− 1

1− κ∗c
XT (y −Xβ) = 0.

which finishes the proof.

Remark 3.2. It needs to be discussed component-wisely according to whether each entry of the
optimal β is 0 or not. The above proof holds for the entries that βi ̸= 0. For i such that βi = 0,
the optimality from PO gives −λ∗ + (XT (Xβ − y))i < 0 and λ∗ + (XT (Xβ − y))i > 0. This is
equivalent to |(XT (Xβ−y))i| ≤ λ∗, where (XT (Xβ−y))i denote the i-th entry of XT (Xβ−y).
This is still equivalent to the fixed-point condition in AMP. Hence the equivalence holds for all
entries of β.

3.2 EQUIVALENCE BETWEEN THE SES DERIVED FROM CGMT AND LOO

Suppose that xi
i.i.d.∼ N (0, 1

dId) and yi ∈ {−1, 1} drawn from logistic model:

P(yi = 1|xi) = ρ′(xT
i β

∗), for i ∈ [n] (17)

where ρ(t) = log(1+et). Each entry of β is independently distributed as Π which has finite second
moment r2∗ = Eβ∼Πβ

2.

We are interested in the following optimization problem:

β̂ = argmin
β

1

n

n∑
i=1

ℓ(yix
T
i β) (18)

where ℓ(t) := log(1 + e−t). When the β̂ exists, we are interested in the the Mean-squared-
error(MSE) performance limn,p→∞

1
n∥β − β∗∥2 of the Logistic regression.

Logistic regression in high dimensions have been studied recently by (Candès & Sur, 2020; Mousavi
et al., 2018), (Deng et al., 2019). The asymptotic MSE of β̂ was characterized by the following two
propositions.
Proposition 3.4. (Sur & Candès, 2019) Given signal strength r2∗ in logistic model (17) and ratio
κ∗, Consider the following system of nonlinear equations (SEs) regarding (λ1, α1, σ):

α2
1 =

1

κ2
∗
E[2ρ′(Q1) (λ1ρ

′(Proxρ(Q2;λ1)))
2
]

0 = E[ρ′(Q1)Q1λ1ρ
′(Proxρ(Q2;λ1))]

1− κ∗ = E[
2ρ′(Q1)

1 + λ1ρ′′(Proxρ(Q2;λ1))
]

(19)

where

(Q1, Q2) ∼ N
(
0;

[
r2∗ −σr2∗

−σr2∗ σ2r2∗ + α2
1κ∗

])
and ρ(t) := log(1 + et).

If this system of nonlinear equations possesses a unique solution (λ̄1, ᾱ1, σ̄), then the MSE of β̂
appeared in (18) is [(σ̄ − 1)Eβ∼Πβ]

2 + ᾱ2.

Remark 3.3. In (Sur & Candès, 2019), it is assumed that Xi,j ∼ N (0, 1
nId) and r2∗ = κ∗Eβ∼Πβ

2,
which is slightly different from the setting in this paper. However, this difference only leads to a
constant change related to κ∗ in the final parameter transformations (21) and does not affect the
equivalence of these two set of SE.
Proposition 3.5. (Deng et al., 2019) Given signal strength r2∗ in logistic model (17) and ratio κ∗,
Consider the following system of nonlinear equations (SEs) regarding (λ2, α2, µ):

0 = E[V ℓ′(Proxℓ(α2Z + µV ;λ2))]

α2
2κ∗ = λ2

2E[(ℓ′(Proxℓ(α2Z + µV ;λ2)))
2]

κ∗ = λ2E[
ℓ′′(Proxℓ(α2Z + µV ;λ2))

1 + λℓ′′(Proxℓ(α2Z + µV ;λ2))
]

(20)
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where Z ∼ N (0, 1), V = Z1Yr∗ , in which Z1 ∼ N (0, 1) is independent of Z and Yr∗ ∼
Ber(ρ′(r∗Z1)). Ber(p) denotes the Bernoulli distribution with probability p for the value +1 and
probability 1− p for the value −1. If this system of nonlinear equations possesses a unique solution
(λ̄2, ᾱ2, µ̄), then the MSE of β̂ appeared in (18) is [( ᾱ2√

κ∗
− 1)Eβ∼Πβ]

2 + ( µ̄
r∗
)2.

As before, we can show that (19) and (20) are equivalent.

Theorem 3. For logistic regression (18), the SEs derived from LOO (19) and CGMT (20) are equiv-
alent. Specifically, (19) can be converted into the same form as (20) after the following parameter
transformations:

α1 =
α2√
κ∗

, σ =
µ

r∗
, λ1 = λ2. (21)

The proof of this theorem is deferred to appendix E

For the sake of self-contentment, we briefly review the procedure on deriving SEs from LOO.

Deriving SEs from LOO The derivation can be divided into 4 steps.

1) First, for the original optimization problem, LOO considers first-order conditions of three
cases: a) keeping all observations and predictors, corresponding solution is denoted as β̂,
b) leaving one predictor, corresponding solution is denoted as β̂(−j) and c) leaving one
predictor and one observation, corresponding solution is denoted as β̂(−i),(−j)

2) Two properties are derived from comparing three version of first-order conditions: a) The
i-th fitted value Xiβ̂ has an asymptotic expression composed of two independent random
vectors Xi,(−j) and β̂(−i),(−j). b) Each coordinate β̂j can be written as a sum of n random
variables which are asymptotically independent.

3) Using above two properties , β̂j has the same distribution as a combination of several scalar
variables when n, p → ∞. Hence every statistic of β̂ (such as expectation, variance and
first order condition of optimization) can be expressed by these scalar variables, from which
the SEs of β̂ are derived.

Briefly reviewing the procedures of LOO approach, we find that the sample matrix X (which is a
Rn×p Gaussian matrix)is decomposed into two independent Gaussian vectors through some special
techniques in both LOO and CGMT, which allows the law of large numbers to simplify the first-
order equations into scalar equations. This may help us understand the equivalence between CGMT
and LOO. The more intrinsic equivalence of these two methods is still under investigation.

4 DISCUSSION AND FUTURE DIRECTIONS

In this paper, we first showed that for the high dimensional M -estimator, the three sets of SEs
derived from AMP, CGMT and LOO are equivalent. We then further show that this equivalence
actually appears in various high dimensional problems. This strongly suggests us that there should
be a deep relation between these three approaches.

Though AMP, CGMT and LOO are different at the first glance, we find that they all can be treated as
approximations of the same first order optimality conditions. To be more precise, LOO decouples the
correlation between samples and estimator after comparing first-order optimality conditions of the
initial optimization with two leaving-one-out version; CGMT simplifies the first-order optimality
conditions by making some relaxation of the PO problem; AMP solves the first order optimality
conditions directly. All their asymptotic behaviours are characterized by the corresponding SEs
respectively. The equivalence between these SEs sheds us light on looking for a more comprehensive
theories to explain this intriguing phenomenon.
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and phase transitions in high-dimensional generalized linear models. Proceedings of the National
Academy of Sciences, 116(12):5451–5460, 2019.

Mohsen Bayati and Andrea Montanari. The lasso risk for gaussian matrices. IEEE Transactions on
Information Theory, 58(4):1997–2017, 2011.

Emmanuel J Candès and Pragya Sur. The phase transition for the existence of the maximum like-
lihood estimate in high-dimensional logistic regression. The Annals of Statistics, 48(1):27–42,
2020.

Amin Coja-Oghlan, Florent Krzakala, Will Perkins, and Lenka Zdeborová. Information-theoretic
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Marc Mézard and Giorgio Parisi. The cavity method at zero temperature. Journal of Statistical
Physics, 111(1):1–34, 2003.
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A PROOF OF PROPOSITION 2.3

By the following linear parameter transformation:

w := β − β∗,

the M-estimator optimization problem becomes:

min
w

1

n

n∑
i=1

ρ(ϵi − xT
i w). (22)

Introducing the Lagrange multiplier leads to:

min
w,v

max
u

1

n

n∑
i=1

ρ(vi) +
1√
n
ui(vi − ϵi + xT

i w)

where u := (u1, ..., un);v = (v1, ..., vn).

Then we rewrite it in the matrix form:

min
w,v

max
u

1√
n
uTXw +

1

n

n∑
i=1

ρ(vi) +
1√
n
(uTv − uT ϵ)

where ϵ := (ϵ1, ..., ϵn)
T . This is just the PO problem in CGMT.

Denote X̃ =
√
nX, w̃ = w√

n
, then we have X̃i,j

i.i.d.∼ N (0, 1), w̃ = β−β∗
√
n

. This means ∥w∥2

is just the MSE of interest and X̃ is a standard Gaussian matrix composed of iid standard normal
variable.

However, in the following, we rewrite X̃, w̃ as X,w respectively for the simplicity of notation.

Using CGMT about X̃ as in (Salehi et al., 2019) by Corollary 3 in it, then the AO problem associated
to it is the following min-max problem:

min
w,v

max
u

1√
n
(||u||2gTw + ||w||2hTu) +

1

n

n∑
i=1

ρ(vi) +
1√
n
(uTv − uT ϵ)

where g ∈ Rd and h ∈ Rn have i.i.d. N (0, 1) entries.

Let ∥w∥2 = τ3, note that now

τ23 =
1

n
||β − β∗||2 (23)

which is just the MSE.

Then the optimization becomes:

min
τ3,v

max
u

1√
n
(−τ3||u||2||g||2 + τ3h

Tu) +
1

n

n∑
i=1

ρ(vi) +
1√
n
(uTv − uT ϵ).

Letting ||u||2 = µ, then We have the following optimization:

min
τ3,v

max
µ>0

−τ3µ√
n
||g||2 +

1

n

n∑
i=1

ρ(vi) +
µ√
n
||τh+ v − ϵ||2. (24)

equivalently:

min
τ3,v

max
µ>0

1

n

n∑
i=1

ρ(vi) + µ(
1√
n
||τ3h+ v − ϵ||2 −

τ3√
n
||g||2). (25)
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In order to make the ||τ3h+ v − ϵ||2 separable, we use the following optimization:

x = min
α>0

α

2
+

x2

2α

for any x and α > 0. Replace x by 1√
n
||τ3h+ v − ϵ||2, the optimization problem (25) becomes:

min
τ3,v

max
µ

−τ3µ√
n
||g||2 +

1

n

n∑
i=1

ρ(vi) + µ(max
α>0

α

2
+

1

2αn
||τ3h+ v − ϵ||22).

Then what we want to do the scalarization procedure: make the optimization about v becoming
optimization about a scalar. First, flipping in the order of min-max by (Thrampoulidis et al., 2018):

min
τ3,α

max
µ

αµ

2
− τ3µ√

n
||g||2 +

1

n
[min

v

n∑
i=1

ρ(vi) +
µ

2α
(τ3hi + vi − ϵi)

2]. (26)

Introducing Moreau envelope function Mρ(x; t), the optimization problem (26) becomes:

min
τ3,α

max
µ

αµ

2
− τ3µ√

n
||g||2 +

1

n

n∑
i=1

Mρ(ϵi − τ3hi;α/µ).

By Lemma 9 in Appendix A in (Thrampoulidis et al., 2018), considering asymptotic n, p →
∞, p/n → κ∗ leads to:

αµ

2
− τ3µ√

n
||g||2 +

1

n

n∑
i=1

Mρ(ϵi − τ3hi;α/µ)
a.s.→ αµ

2
− τ3µ

√
κ∗ + EMρ(W3 − τ3Z3;α/µ)

where Z3 ∼ N (0, 1) is independent of everything else.

Introduce W3 ∼ Pϵ. Then, asymptotically, we can deal with the following problem:

min
τ3,α

max
µ

αµ

2
− τ3µ

√
κ∗ + EMρ(W3 + τ3Z;α/µ). (27)

Denoting the objective function of (27) by ϕ, then since ϕ is convex about (τ3, α) and concave about
µ, the saddle point of ϕ can be precisely characterized by its first order optimality condition:

∂ϕ

∂µ
= 0 ⇒ α

2
− τ3

√
κ∗ −

α

µ2
E[

∂Mρ

∂t
(W3 + τ3Z3;α/µ)] = 0

∂ϕ

∂τ
= 0 ⇒ −µ

√
κ∗ + E[Z3

∂Mρ

∂x
(W3 + τ3Z3;α/µ)] = 0

∂ϕ

∂α
= 0 ⇒ µ

2
+

1

µ
E[

∂Mρ

∂t
(W3 + τ3Z3;α/µ)] = 0.

Combining with (23) completes the proof.

B EQUIVALENCE OF SES OF M-ESTIMATOR FROM AMP, LOO, CGMT

Recall that the SEs of M-estimator from LOO are:

1− κ∗ = E[
∂Proxρ

∂x
(W1 + τ1Z1;λ1)]

κ∗τ
2
1 := E[W1 + τ1Z1 − Proxρ(W1 + τ1Z1;λ1)]

2.
(28)

SEs of M-estimator from AMP are:

τ22 =
1

κ∗
λ2
2E[

∂Mρ

∂x
(W2 + τ2Z2;λ2)]

2

κ∗ = λ2E[
∂2Mρ

∂x2
(W2 + τ2Z2;λ2)].

(29)

12
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Next, we show that these two sets of SEs are equivalent.

First, Simple calculation leads to:

∂Mρ(x, t)

∂x
= ρ′(Proxρ(x; t))

∂2Mρ(x, t)

∂x2
= ρ′′(Proxρ(x; t))

∂Proxρ(x; t)

∂x
=

ρ′′(Proxρ(x; t))

1 + tρ′′(Proxρ(x; t))

x− Proxρ(x; t)

t
= ρ′(Proxρ(x; t)).

(30)

Combine this, SEs from AMP can be rewritten as:

τ22 =
1

κ∗
λ2
2E[ρ′(Proxρ(W2 + τ2Z2;λ2))]

2

κ∗ = λ2E[
ρ′′(Proxρ(W2 + τ2Z2;λ2))

1 + λ2ρ′′(Proxρ(W2 + τ2Z2;λ2))
].

(31)

which verify that SEs from LOO and SEs from AMP are equivalent.

Next we prove equivalence of SEs from AMP and SEs from CGMT by parameter transformations
suggested.

Recall the SEs from CGMT are:

α

2
− τ3

√
κ∗ −

α

µ2
E[

∂Mρ

∂t
(W3 + τ3Z3;α/µ)] = 0

−µ
√
κ∗ + E[Z3

∂Mρ

∂x
(W3 + τ3Z3;α/µ)] = 0

µ

2
+

1

µ
E[

∂Mρ

∂t
(W3 + τ3Z3;α/µ)] = 0.

Let b = α
µ , then we have:

µb

2
− τ3

√
κ∗ −

α

µ2
E[

∂Mρ

∂t
(W3 + τ3Z3; b)] = 0

−µ
√
κ∗ + E[Z3

∂Mρ

∂x
(W3 + τ3Z3; b)] = 0

µ

2
+

1

µ
E[

∂Mρ

∂y
(W + τZ; b)] = 0.

Comparing these results leads to:

E[
∂Mρ

∂x
(W3 + τ3Z3; b)]

2 =
τ23κ∗

b2
E[

∂2Mρ

∂x2
(W3 + τ3Z3; b)] =

κ∗

b
. (32)

Combining stein lemma and

∂Mρ

∂t
(W3 + τ3Z3; b) = −1

2
[
∂Mρ

∂x
(W3 + τ3Z3; b)]

2. (33)

completes our proof.

C EQUIVALENCE OF SES OF LASSO FROM AMP AND CGMT

In this proof, we refer to the technique developed in (Donoho & Montanari, 2016). The Lasso
problem solves

13
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argmin
β

λ∗

n
∥β∥1 +

1

2n
∥y −Xβ∥2. (34)

Notice that ∥y −Xβ∥2 =
∑n

i=1

[
(xT

i β)
2 − 2yix

T
i β + y2i

]
. The optimization can be transformed

into

argmin
β

λ∗

n
∥β∥1 +

1

n

n∑
i=1

[
1

2
(xT

i β)
2 − yix

T
i β

]
. (35)

In the following proof, we consider a more general optimization than Lasso:

argmin
β

λ∗

n
f(β) +

1

n

n∑
i=1

[
1Tρ(u)− yix

T
i β

]
(36)

where ρ(·) and f(·) are ’separable’ in the sense that there exist scalar functions ρ(·), f̃(·) so that
ρ(·) and f(·) can be expressed as the following form: ρ(x) = (ρ(x1), · · · , ρ(xd))

T and f(x) =∑d
i=1 f̃(xi). In particular, in Lasso, ρ(t) = 1

2 t
2 and f(x) = ∥x∥1.

In order to apply CGMT, we introduce a new variable u and have following optimization

min
β,u

λ∗

n
f(β) +

1

n

(
1T ρ(u)− yTu

)
s.t. u = Xβ =

1√
n
H∗β

(37)

where H∗ =
√
nX ∈ Rn×d and hence H∗

ij
i.i.d.∼ N (0, 1). By using Lagrange multiplier we can

rewrite (37) as a min-max optimization:

min
β∈Rd,u∈Rn

max
v

1

n
1T ρ(u)− 1

n
yTu+

λ∗

n
∥β∥1 +

1

n
vT (u− 1√

n
H∗β). (38)

Denote P = β∗(β∗)T

∥β∗∥2 as the projection matrix of true signal β∗ and P⊥ = Id −P as the orthogonal
complement. To apply CGMT, we need first decompose H∗ into

H∗
1 = H∗ · P, H∗

2 = H∗ · P⊥

H∗ =H∗
1 +H∗

2.
(39)

In addition, Recalling the linear model (3) we have y = Xβ∗ + ϵ = 1√
n
H∗β∗ = 1√

n
H∗

1β
∗. Hence

(38) can be rewritten as

min
β∈Rd,u∈Rn

max
v

1

n
1T ρ(u)− 1

n
yTu+

λ∗

n
f(β) +

1

n
vT (u− 1√

n
H∗

1β)−
1

n
√
n
vTH∗

2β. (40)

By using CGMT for vTH∗
2β as in (Salehi et al., 2019) by Corollary 3 in it, the corresponding AO

of (40) is

min
β∈Rd,u∈Rn

max
v

1

n
1T ρ(u)− 1

n
yTu+

λ∗

n
f(β) +

1

n
vT (u− 1√

n
H∗

1β)

− 1

n
√
n

(
vTh∥P⊥β∥2 + ∥v∥2gTP⊥β

) (41)

where h ∼ N (0, In) and g ∼ N (0, Id) are two independent gaussian vectors.
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We first consider the maximization with respect to the direction of v. The part related to v in
optimization (41) is:

max
v∈Rn

1

n
√
n
∥v∥2gTP⊥β +

1

n
vT

(
u− 1√

n
H∗

1β − 1√
n
h∥P⊥β∥2

)
. (42)

Denoting r := ∥v∥2√
n

and maximizing along the direction of v give

max
r≥0

r

(
1

n
gTP⊥β + ∥ 1√

n
u− 1

n
H∗

1β − ∥P⊥β∥2
n

h∥2
)
. (43)

Inserting this into (41) gives

min
β,u

max
r≥0

1

n
1T ρ(u)− 1

n
yTu+

λ∗

n
f(β) + r

(
1

n
gTP⊥β +

∥∥∥∥ 1√
n
u− 1

n
H∗

1β − ∥P⊥β∥2
n

h

∥∥∥∥
2

)
.

(44)

In addition, introduce µ to replace β in ∥β∥1 Lagrangian and w. Then (44) can be rewritten as,

min
u∈Rn;

β,µ∈Rd

max
r≥0;

w∈Rd

1

n
1T ρ(u)− 1

n
yTu+

λ∗

n
f(µ) + r

(
1

n
gTP⊥β

)

+ r

∥∥∥∥ 1√
n
u− 1

n
H∗

1β − ∥P⊥β∥2
n

h

∥∥∥∥
2

+
1

d
wT (µ− β).

(45)

We define α = βTβ∗

∥β∗∥2
2

, σ = 1√
n
∥P⊥β∥2 and q = H∗β∗

r1∗
√
n

where r1∗ = ∥β∗∥2√
n

. Then q is a standard
Gaussian vector and

1

n
H∗

1β =
1

n
H∗(Pβ) =

H∗

n
· αβ∗ d

=
α

n
r1∗

√
nq. (46)

Decomposing w = (P + P⊥)w, then the last item in (45) can be rewritten as

1

d
wT (µ− β) =

1

d
(Pw)Tµ+

1

d
(P⊥w)Tµ− 1

d
(Pw)Tβ − 1

d
(P⊥w)Tβ. (47)

Inserting (46) and (47) into (45), we have,

min
u∈Rn;

β,µ∈Rd

max
r≥0;

w∈Rd

1

n
1T ρ(u)− 1

n
yTu+

λ∗

n
f(µ) + r

(
1

n
gTP⊥β

)
− 1

d
(P⊥w)Tβ

+ r

∥∥∥∥ 1√
n
u− αr1∗√

n
q− σ√

n
h

∥∥∥∥
2

+
1

d
(Pw)Tµ+

1

d
(P⊥w)Tµ− 1

d
(Pw)Tβ.

(48)

Then we can fix Pβ and consider the minimization along the direction of P⊥β. Considering the
optimization related to P⊥β, we have

min
P⊥β

r

n
gTP⊥β − 1

d
(P⊥w)Tβ = min

P⊥β
(
r

n
gT − 1

d
wT )P⊥β

= −∥P⊥β∥2 · ∥
r

n
P⊥g − 1

d
P⊥w∥2

= −σ · ∥ r√
n
P⊥g −

√
1

dκ∗
P⊥w∥2.

(49)
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Notice that (48) reaches optimal when µ = β. Inserting (49) into (48) leads to

min
u∈Rn,µ∈Rd;

α∈R,σ≥0

max
r≥0;

w∈Rd

1

n
1T ρ(u)− 1

n
yTu+

λ∗

n
f(µ)− σ · ∥ r√

n
P⊥g −

√
1

dκ∗
P⊥w∥

+ r

∥∥∥∥ 1√
n
u− αr1∗√

n
q− σ√

n
h

∥∥∥∥+
1

d
(P⊥w)Tµ.

(50)

For the simplifying procedures in the following steps in our analysis, we change ∥ · ∥2 → ∥ · ∥22 by

rx = min
v≥0

r

2v
+

rv

2
x2

−σx = max
τ≥0

− σ

2τ
− στ

2
x2.

(51)

Applying (51), we are able to rewrite (50) as

min
u∈Rn,µ∈Rd;α∈R,v,σ≥0

max
w∈Rd;
r,τ≥0

1

n
1T ρ(u)− 1

n
yTu+

λ∗

n
f(µ)− σ

2τ
− στ

2
∥ r√

n
P⊥g −

√
1

dκ∗
P⊥w∥2

+
r

2v
+

rv

2

∥∥∥∥ 1√
n
u− αr1∗√

n
q− σ√

n
h

∥∥∥∥2 + 1

d
(P⊥w)Tµ.

(52)

Optimization with respect to w: Next we consider the maximization with respect to w. We first
extract the item related to w in (52) and apply the completion of squares:

max
w

− στ

2

∥∥∥∥ r√
n
P⊥g −

√
1

dκ∗
P⊥w

∥∥∥∥2 + 1

d
(P⊥w)Tµ

= max
w

− στ

2

∥∥∥∥∥ r√
n
P⊥g −

√
1

dκ∗
P⊥w +

1√
d/κ∗στ

P⊥µ

∥∥∥∥∥
2

+
1

2nστ

∥∥P⊥µ+ στrP⊥g
∥∥2 − στr2

2n
∥P⊥g∥2.

(53)

1) For the last item in (53), since g ∼ N (0, Id) and P⊥ is a (n − 1)-dimensional projection
matrix, we derive that ∥P⊥g∥22 ∼

∥∥d(0, (P⊥)2)
∥∥2
2

d
= χ2

d−1 and

στr2

2n
∥P⊥g∥2 a.s.→ στr2κ∗

2
. (54)

2) Since P⊥ = Id − P , the second item in (53) can be rewritten as

1

n

∥∥P⊥µ+ στrP⊥g
∥∥2 =

1

n
∥µ+ στrg∥2 − 1

n
∥Pµ∥2

− (στr)2

n
∥Pg∥2 − 2στr

n
(Pg)Tµ.

(55)

The last two items of (55) can be omitted in the limit of d, n → ∞ because ∥Pg∥2

n = Op(
1
n )

and 1
n (Pg)Tµ = Op(

1√
n
). The second item of (55) is 1

n∥Pµ∥2 = 1
n∥Pβ∥2 = α2r1∗

2 by
definition.

3) The first item in (53) reaches 0 when maximizing w.

The optimization (52) now can be rewritten as
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min
u∈Rn,µ∈Rd;
α∈R,v,σ≥0

max
r,τ≥0

1

n
1T ρ(u)− 1

n
yTu+

λ∗

n
f(µ)− σ

2τ
+

1

2nστ
∥µ+ στrg∥2 − α2r21∗

2στ
− στr2κ∗

2

+
r

2v
+

rv

2

∥∥∥∥ 1√
n
u− αr1∗√

n
q− σ√

n
h

∥∥∥∥2 .
(56)

Optimization respect to µ: Consider the items related to µ in (56)

min
µ∈Rd

λ∗

n
f(µ) +

1

2nστ
∥µ+ στrg∥22

s.t. µ = β.

(57)

Notice that g ∼ N (0, Id), ∥µ+ στrg∥22
d
= ∥µ− στrg∥22. We rewrite (57) as

min
µ∈Rd

λ∗

n
f(µ) +

1

2nστ
∥µ− στrg∥22

s.t.
1

n
β∗Tµ =

1

n
β∗Tβ =

1

n
nαr21∗ = αr21∗.

(58)

Introducing Lagrangian θ, (58) can be rewrite as

min
µ∈Rd

max
θ∈R

1

2nστ
∥µ− στrg∥2 + λ∗

n
f(µ)− θ

n
β∗Tµ+ αθr21∗. (59)

Applying the completion of squares to 1,3 items in (59) we have,

1

2nστ
∥µ− στrg∥2 − θ

n
β∗Tµ =

1

2nστ
∥µ− στrg − θστβ∗∥2

− (θστ)2

2nστ
∥β∗∥2 − θrσ2τ2

2nστ
gTβ∗.

(60)

The third item can be omitted since gTβ∗

n = Op(
1√
n
) and the second item has limit

− (θστ)2

2nστ ∥β∗∥2 → − (θστ)2

2nστ · nr21∗ = −στθ2r21∗
2 . Hence we rewrite right side of (60) as

1

2nστ
∥µ− στrg∥2 − θ

n
β∗Tµ =

1

2nστ
∥µ− στrg − θστβ∗∥2 − στθ2r21∗

2
. (61)

Next, denote f̃(x) as single-entry form of f(x). We can rewrite the (61) in terms of Moreau envelope
entry-wisely as follows

min
µ∈Rd

max
θ∈R

1

2nστ
∥µ− στrg∥2 + λ∗

n
f(µ)− θ

n
β∗Tµ+ αθr21∗

=max
θ

1

n
Mλ∗f̃

(στ(rg + θβ∗);στ) + αθr21∗ −
στθ2r21∗

2
.

(62)

Substituting (62) in (56) we have,

min
u∈Rn;

α∈R,σ,v≥0

max
r,τ≥0;
θ∈R

1

n
1T ρ(u)− 1

n
yTu+

rv

2

∥∥∥∥ 1√
n
u− αr1∗√

n
q− σ√

n
h

∥∥∥∥2 − σ

2τ
− α2r21∗

2στ

− στr2κ∗

2
+

r

2v
+

1

n
Mλ∗f (στ(rg + θβ∗);στ) + αθr21∗ −

στθ2r21∗
2

.

(63)
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Optimization respect to u: First we consider the items related to u. The optimization is

min
u∈Rn

1

n
1T ρ(u)− 1

n
yTu+

rv

2

∥∥∥∥ 1√
n
u− αr1∗√

n
q− σ√

n
h

∥∥∥∥2 . (64)

Applying the completion of squares we have,

− 1

n
yTu+

rv

2

∥∥∥∥ 1√
n
u− αr1∗√

n
q− σ√

n
h

∥∥∥∥2 =
rv

2

∥∥∥∥ 1√
n
u− αr1∗√

n
q− σ√

n
h− 1

rv
√
n
y

∥∥∥∥2
− 1

2rvn
∥y∥2 − r1∗α

n
yTq− σ

n
yTh.

(65)

Using the strong law of large numbers we have,

− 1

2rvn
∥y∥2 a.s.→ −r21∗ + σ2

∗
2rv

−r1∗α

n
yTq

a.s.→ −r21∗α

−σ

n
yTh

a.s.→ 0.

(66)

Next, by substituting (65), (66) in (64), we can rewritten the optimization as,

min
u∈Rn

1

n
1T ρ(u)− 1

n
yTu+

rv

2

∥∥∥∥ 1√
n
u− αr1∗√

n
q− σ√

n
h

∥∥∥∥2
= min

u∈Rn

1

n
1T ρ(u) +

rv

2

∥∥∥∥ 1√
n
u− αr1∗√

n
q− σ√

n
h− 1

rv
√
n
y

∥∥∥∥2
− r21∗ + σ2

∗
2rv

− r21∗α.

(67)

Then we can rewrite (67) in terms of Moreau envelope,

min
u∈Rn

1

n
1T ρ(u) +

rv

2

∥∥∥∥ 1√
n
u− αr1∗√

n
q− σ√

n
h− 1

rv
√
n
y

∥∥∥∥2
=
1

n
Mρ(·)(αr1∗q+ σh+

1

rv
y;

1

rv
).

(68)

Substituting (67), (68) in (63) we have

min
α∈R;
σ,v≥0

max
r,τ≥0;
θ∈R

1

n
Mρ(αr1∗q+ σh+

1

rv
y;

1

rv
)− r21∗ + σ2

∗
2rv

− r21∗α

− σ

2τ
− α2r21∗

2στ
− στr2κ∗

2
+

r

2v
+ αθr21∗ −

στθ2r21∗
2

+
1

n
Mλ∗f (στ(rg + θβ∗);στ).

(69)

Final scalarization: Using the strong law of large number (q, h, y, g,β∗ are entry-wise i.i.d.), we
can rewrite (69) as
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min
α∈R,
σ,v≥0

max
r,τ≥0;
θ∈R

− σ

2τ
− α2r21∗

2στ
− στr2κ∗

2
+

r

2v
+ αθr21∗ −

στθ2r21∗
2

− r21∗ + σ2
∗

2rv
− r21∗α

+ E
[
Mρ(αr1∗Z1 + σZ2 +

1

rv
(r1∗Z1 + σ∗Z3);

1

rv
)

]
+ E

[
Mλ∗f̃

(στ(rZ + θb0);στ)
]
· d
n

(70)

where Z1, Z2, Z ∼ N (0, 1), σ∗Z3 ∼ Pϵ and b0 ∼ Π are all independent.

For LASSO, f̃(x) = |x|. The Moreau envelope Mλf̃ (·; ·) has property:

Mλ∗f̃
(στ(rZ + θb0);στ) = στ ·Mλ∗f̃

(rZ + θb0; 1). (71)

Besides, for ρ(x) = 1
2x

2 in LASSO, the Moreau envelope Mρ(·; ·) has explict form:

Mρ(v; t) =
v2

2(t+ 1)
(72)

and the second last item of (70) can be simplified to:

E
[
Mρ(·)(αr1∗Z1 + σZ2 +

1

rv
(r1∗Z1 + σ∗Z3);

1

rv
)

]
= E

[(
(α+ 1

rv )r1∗Z1 + σZ2 +
σ∗
rvZ3

)2
2( 1

rv + 1)

]

=
r21∗(αrv + 1)2 + r2v2σ2 + σ2

∗
2(1 + rv)rv

.

(73)

In order to simplify (73), we denote λ = 1
rv in place of v. At this time, minv≥0 is replaced by

maxλ≥0 and

r21∗(αrv + 1)2 + r2v2σ2 + σ2
∗

2(1 + rv)rv
=

(α+ λ)2r21∗ + σ2 + σ2
∗λ

2

2(λ+ 1)
. (74)

Substituting (74) in (70) we have the final optimization for LASSO:

min
α∈R;
σ≥0

max
r,τ,λ≥0;

θ∈R

− σ

2τ
− α2r21∗

2στ
− στr2κ∗

2
+

r2λ

2
+ αθr21∗ −

στθ2r21∗
2

− (r21∗ + σ2
∗)λ

2
− r21∗α

+
(α+ λ)2r21∗ + σ2 + σ2

∗λ
2

2(λ+ 1)
+ E

[
Mλ∗f̃

(rZ + θb0; 1)
]
· στκ∗

(75)

which is a smooth function with respect to α, σ, r, τ, λ, θ. Let ϕ denote the objective function of
(75).

Deriving SEs from function ϕ: The SEs are given by the first order optimality conditions of ϕ :

1) For ∂ϕ
∂α = 0:

− α

στ
+ θ − 1 +

α+ λ

λ+ 1
= 0. (76)

2) For ∂ϕ
∂σ = 0:

− 1

2τ
− τr2κ∗

2
+

r21∗α
2

2σ2τ
− r21∗τθ

2

2
+ τκ∗E[Mλ∗f̃

(rZ + θb0; 1)] +
σ

λ+ 1
= 0. (77)
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3) For ∂ϕ
∂λ = 0:

r2 − r21∗ − σ2
∗ +

2[(α+ λ)r21∗ + λσ2
∗]

λ+ 1
− (α+ λ)2r21∗ + σ2 + λ2σ2

∗
(λ+ 1)2

= 0. (78)

4) For ∂ϕ
∂θ = 0:

r21∗α− στκ∗E[b0(Proxλ∗f̃
(rZ + θb0))] = 0. (79)

where we use the definition E[b20] = EΠX
2 = r21∗

5) For ∂ϕ
∂r = 0:

− στrκ∗ + rλ+ στκ∗E[(rZ + θb0 − Proxλ∗f̃
(rZ + θb0; 1))Z] = 0. (80)

Since E[Z2] = 1,E[Zb0] = 0. For any function f̃(x), the Moreau envelope and proximal
operator of f̃ stratifies

∂

∂x
Mf̃ (x; t) =

x− Proxf̃ (x; t)

t
. (81)

Then we rewrite the equation (80) as

rλ− στκ∗E[Proxλ∗f̃
(rZ + θb0; 1)Z] = 0. (82)

Using Stein lemma,

E[Proxλ∗f̃
(rZ + θb0; 1)Z] = E[r

∂Proxλ∗f̃
(rZ + θb0; 1)

∂x
]

= E[
∂Proxλ∗f̃

(rZ + θb0; 1)

∂Z
],

(83)

(82) can be rewritten as

λ = στκ∗E[
∂Proxλ∗f̃

(rZ + θb0; 1))

∂x
]. (84)

6) For ∂ϕ
∂τ = 0:

σ

2τ2
− σr2κ∗

2
+

r21∗α
2

2στ2
− r21∗σθ

2

2
+ σκ∗E[Mλ∗f̃

(rZ + θb0; 1)] = 0. (85)

For any function f̃(x), the Moreau envelope and proximal operator of f̃ stratifies

Mλ∗f̃
(x; b) = λ∗Mf̃ (x;λ∗b) =

x2

2b
−

[Proxf̃ (x;λ∗b)]
2

2b
, ∀λ∗, b > 0, x ∈ R (86)

Using this property, we can rewrite (85) as

σ

2τ2
− σr2κ∗

2
+

r21∗α
2

2στ2
− r21∗σθ

2

2
+σκ∗E[

(rZ + θb0)
2

2
−

[Proxλ∗f̃
(rZ + θb0; 1)]

2

2
] = 0

(87)
i.e.,

σ

2τ2
+

r21∗α
2

2στ2
− σκ∗

2
E[(Proxλ∗f̃

(rZ + θb0; 1))
2] = 0. (88)
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Similarly, the equation (77) derived by ∂ϕ
∂σ = 0 can be rewritten as

− 1

2τ
− τr2κ∗

2
+

r21∗α
2

2σ2τ
− r21∗τθ

2

2
+τκ∗E[

(rZ + θb0)
2

2
−

[Proxλ∗f̃
(rZ + θb0; 1)]

2

2
]+

σ

λ+ 1
= 0

(89)
i.e.,

− 1

2τ
+

r21∗α
2

2σ2τ
− τκ∗

2
E[(Proxλ∗f̃

(rZ + θb0; 1))
2] +

σ

λ+ 1
= 0. (90)

Hence we get the SEs by summarizing equations (76), (90), (78), (79), (84), (88)

0 = − α

στ
+ θ − 1 +

α+ λ

λ+ 1

0 = − 1

2τ
+

r21∗α
2

2σ2τ
− τκ∗

2
E[(Proxλ∗f̃

(rZ + θb0; 1))
2] +

σ

λ+ 1

0 = r2 − r21∗ − σ2
∗ +

2[(α+ λ)r21∗ + λσ2
∗]

λ+ 1
− (α+ λ)2r21∗ + σ2 + λ2σ2

∗
(λ+ 1)2

0 = r21∗α− στκ∗E[b0(Proxλ∗f̃
(rZ + θb0; 1))]

λ = στκ∗E[
∂Proxλ∗f̃

(rZ + θb0; 1))

∂x
]

0 =
σ

2τ2
+

r21∗α
2

2στ2
− σκ∗

2
E[(Proxλ∗f̃

(rZ + θb0; 1))
2].

(91)

regarding (α, σ, λ, θ, r, τ).

Since r2∗ = Eb0∼Πb
2
0 =

r21∗
κ∗

, the SEs (91) can be rewritten as

0 = − α

στ
+ θ − 1 +

α+ λ

λ+ 1
(92a)

0 = − 1

2τ
+

r2∗κ∗α
2

2σ2τ
− τκ∗

2
E[(Proxλ∗f̃

(rZ + θb0; 1))
2] +

σ

λ+ 1
(92b)

0 = r2 − r2∗κ∗ − σ2
∗ +

2[(α+ λ)r2∗κ∗ + λσ2
∗]

λ+ 1
− (α+ λ)2r2∗κ∗ + σ2 + λ2σ2

∗
(λ+ 1)2

(92c)

0 = r2∗κ∗α− στκ∗E[b0(Proxλ∗f̃
(rZ + θb0; 1))] (92d)

λ = στκ∗E[
∂Proxλ∗f̃

(rZ + θb0; 1))

∂x
] (92e)

0 =
σ

2τ2
+

r2∗κ∗α
2

2στ2
− σκ∗

2
E[(Proxλ∗f̃

(rZ + θb0; 1))
2]. (92f)

regarding (α, σ, λ, θ, r, τ). This is equivalent to the SEs (12) except for the notations are slightly
different.

C.1 EQUIVALENCE OF SES

We first rewrite r, τ , Z and b0 in (92) to γ2, τ2 and Z2 β2 respectively, the equation (92e) becomes

λ = στ2κ∗E[
∂Proxf̃ (γ2Z2 + θβ2;λ∗)

∂x
] = στ2κ∗E[η′(γ2Z2 + θβ2;λ∗)] (93)

for f̃(x) = |x|.
Then we simplify the SEs (92). Consider equations (92b) and (92f) and we have

στ2 = λ+ 1, (94)
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substituting (94) in (92a) we have

θ =
1

λ+ 1
=

1

στ2
. (95)

For the second equation of AMP in (11), which is

γ1 = κ∗(γ1 + λ∗)E[η′(β1 + τ1Z1;λ∗ + γ1)], (96)

it is obviously equivalent to the equation (92e) if we have parameter transformations τ1 = γ2

θ and
γ1 = λ∗(

1
θ − 1). A property of η(·; ·) is used for the equivalence:

η′(cx; ct) = η′(x; t), ∀c > 0. (97)

Using the parameter transformations mentioned above and denote W = η(β1 + τ1Z1;λ∗ + γ1), the
first equation of AMP in (11) can be rewritten as

γ2
2

θ2
= σ2

∗ + κ∗E[W − β2]
2 (98)

i.e.,
γ2
2

θ2
= σ2

∗ + κ∗(E[W 2] + E[β2
2 ]− 2E[Wβ2]). (99)

Substituting (92d), (92f) and E(β2
2) = r2∗, we have

E(W 2) = E(η2(β1 + τ1Z1;λ∗ + γ1))

= E(η2(β1 +
γ2
θ
Z1;

λ∗

θ
))

=
1

θ2
E(η2(θβ2 + γ2Z2;λ∗)) (because η(cx; ct) = cη(x; t))

=
1

θ2

[
1

τ22κ∗
+

r2∗α
2

σ2τ22

]
(using (92f))

−2E(Wβ2) = −2E(η(β1 + τ1Z1;λ∗ + γ1) · β1)

= −2

θ
E(η(θβ2 + γ2Z2;λ∗) · β2)

= −2

θ

r2∗α

στ2
(using (92d)),

(100)

then (99) can be rewritten as

r2

θ2
= σ2

∗ + κ∗

(
1

θ2τ22κ∗
+

r2∗α
2

θ2σ2τ22
− 2r2∗α

θστ2 + r2∗
.

)
(101)

Using (95) in (101) we have

r2(στ2)
2 = σ2

∗ + σ2 + κ∗(α− 1)2r2∗. (102)

Besides, for CGMT, the equation (92c) can be written as

(λ+ 1)2r2 − (α− 1)2r2∗κ∗ − σ2 − σ2
∗ = 0. (103)

Using (95) in (103) we have

(στ2)
2r2 = σ2

∗ + (α− 1)2r2∗κ∗ + σ2. (104)

The equation (102) and (104) are equivalent. Hence the equations (92d), (92f) and (92c) of CGMT
can be shown to be a decomposition of the first equation of AMP in (11) after some parameter
transformations. In conclusion we prove the equivalence between SEs from CGMT and AMP in
Lasso framework.
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D RELAXATION PHENOMENON

D.1 RELAXATION PHENOMENON OF M-ESTIMATOR

Notice that (24) is equivalent to

min
τ3,v

1

n

n∑
i=1

ρ(vi) s.t.
1√
n
||τ3h+ v − ϵ||2 ≤ τ3√

n
||g||2. (105)

On the other hand, by rotation invariance of Gaussian distribution, (22) becomes

min
||w||2,v

1

n

n∑
i=1

ρ(vi) s.t. ||v − ϵ+ ||w||2Z ′|| = 0 (106)

where Z ′ ∼ N (0, 1), ϵ := (ϵ1, ..., ϵn)
T . Comparing (105) with (106) can verify the relaxation

phenomenon, i.e. the only difference between AO and PO is that the feasible region of PO is a
subset of the feasible region of AO.

D.2 RELAXATION PHENOMENON OF SUPPORT VECTOR MACHINE AND LOGISTIC
REGRESSION

The relaxation phenomenon of support vector machine and logistic regression can be similarly
shown as we have done in Appendix D.1, so we omit the proof here.

E EQUIVALENCE OF SES OF LOGISTIC REGRESSION FROM LOO AND CGMT

By doing the following parameter transformations:
α2 =

√
κ∗α1, µ = r∗σ, λ2 = λ1,

SEs of CGMT become:

0 = E[V l′(Proxλ1l(
√
κ∗α1Z + r∗σV ))]

κ2
∗(α1)

2 = (λ1)
2E[(l′(Proxλ1l(

√
κ∗α1Z + r∗σV )))2]

κ∗ = λ1E[
l′′(Proxλ1l(

√
κ∗α1Z + r∗σV ))

1 + λ1l′′(Proxλ1l(
√
κ∗α1Z + r∗σV ))

].

(107)

What we want to prove is that:

E[(l′(proxλ1l(
√
κ∗α1Z + r∗σV )))2] = E[2ρ′(Q1)(ρ

′(proxλ1ρ(Q2)))
2]

1− λ1E[
l′′(proxλ1l(

√
κ∗α1Z + r∗σV ))

1 + λ1l′′(proxλ1l(
√
κ∗α1Z + r∗σV ))

] = E[
2ρ′(Q1)

1 + λ1ρ′′(proxλ1ρ(Q2))
]

E[V l′(proxλ1l(
√
κ∗α1Z + r∗σV ))] = cE[ρ′(Q1)Q1ρ

′(proxλ1ρ(Q2))]

where c is a constant.

First, we verify the following identity:

E[(l′(proxλ1l(
√
κ∗α1Z + r∗σV )))2] = E[2ρ′(Q1)(ρ

′(proxλ1ρ(Q2)))
2]. (108)

Note that

l(t) = ρ(−t)

l′(t) = −ρ′(−t)

l′′(t) = ρ(t)

Proxλ1l(z) = −Proxλ1ρ(−z)

(109)
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and the probability density function (pdf) of V = GY is

PV (v) =
1√
2π

e−
v2

2
2

1 + e−r∗v
,

we have:

E[(l′(Proxλ1l(
√
κ∗α1Z + r∗σV )))2] =

∫∫
(l′(Proxλ1l(

√
κ∗α1h+ r∗σv)))

2PZ(h)PV (v)dhdv

=

∫∫
2(ρ′(Proxλ1ρ(−

√
κ∗α1h− r∗σv)))

2 1

2π
e−

h2+v2

2 ρ′(r∗v)dhdv

(110)

where PZ(h) :=
1√
2π

e−
h2

2 is the pdf of Z. Meanwhile,

E[2ρ′(Q1)(ρ
′(proxλ1ρ(Q2)))

2] =

∫∫
2ρ′(q1)(ρ

′(proxλ1ρ(q2)))
2PQ1,Q2

(q1, q2)dq1dq2. (111)

Now we introduce the following parameter transformations: q1 = r∗v, q2 = −√
κ∗α1h− r∗σv.

Then (111) becomes∫∫ √
κ∗α1r∗ ∗2ρ′(r∗v)(ρ′(proxλ1ρ(−

√
κ∗α1h−r∗σv)))

2PQ1,Q2
(r∗v,−

√
κ∗α1h−r∗σv)dhdv.

In order to verify (108), we only need to prove that:

1

2π
e−

h2+v2

2 =
√
κ∗α1r∗PQ1,Q2

(r∗v,−
√
κ∗α1h− r∗σv).

Construct Q′
1, Q

′
2 as follows: assume Z ′, V ′ i.i.d.∼ N (0, 1) and(

Q′
1

Q′
2

)
=

(
0 r∗

−√
κ∗α1 −r∗σ

)(
Z ′

V ′

)
.

We can easily verify that:

E[(Q′
1, Q

′
2)

T ] = (0, 0)T

Cov[(Q′
1, Q

′
2)

T ] =

(
r2∗ −r∗σr∗

−r∗σr∗
√
κ∗α

2
1 + r∗σ

2

)
which means (Q′

1, Q
′
2) has identical distribution of (Q1, Q2).

On the other hand, since

PQ′
1,Q

′
2
(q′1, q

′
2)dq

′
1q

′
2 = PZ′,V ′(h′, v′)dh′dv′

dq′1q
′
2

dh′dv′
= r∗

√
κ∗α1,

q′1 = r∗v
′,

q′2 = −
√
κ∗α1h

′ − r∗σv
′,

we have:
1

2π
e−

h′2+v′2
2 =

√
κ∗α1r∗PQ′

1,Q
′
2
(r∗v

′,−
√
κ∗α1h

′ − r∗σv
′)

which completes our proof of (108).

Secondly, we prove:

1− λ1E[
l′′(proxλ1l(

√
κ∗α1Z + r∗σV ))

1 + λ1l′′(proxλ1l(
√
κ∗α1Z + r∗σV ))

] = E[
2ρ′(Q1)

1 + λ1ρ′′(proxλ1ρ(Q2))
]. (112)
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Left hand side (LHS) of (112) is

E[
1

1 + λ1l′′(proxλ1l(
√
κ∗α1Z + r∗σV ))

] =

∫∫
1

1 + λ1l′′(proxλ1l(
√
κ∗α1h+ r∗σv))

PZ(h)PV (v)dhdv

=

∫∫
1

1 + λ1l′′(proxλ1l(
√
κ∗α1h+ r∗σv))

1

2π
e−

h2+v2

2 2ρ′(r∗v)dhdv

=

∫∫
1

1 + λ1ρ′′(proxλ1ρ(−
√
κ∗α1h− r∗σv))

1

2π
e−

h2+v2

2 2ρ′(r∗v)dhdv.

(113)

Through parameter transformations q1 = r∗v, q2 = −√
κ∗α1h− r∗σv, RHS of (112) becomes

∫∫
2ρ′(q1)

1 + λ2ρ′′(proxλ1ρ(q2))
PQ1,Q2

(q1, q2)dq1dq2

=

∫∫
2ρ′(r∗v)

1 + λ1ρ′′(proxλ1ρ(−
√
κ∗α1h− r∗σv))

PQ1,Q2
(r∗v,−

√
κ∗α1h− r∗σv)r∗

√
κ∗α1dhdv.

Combining with

1

2π
e−

h2+v2

2 = PQ1,Q2(r∗v,−
√
κ∗α1h− r∗σv)r∗

√
κ∗α1

completes the proof of (112).

The proof of

E[V l′(proxλ1l(
√
κ∗α1Z + r∗σV ))] = cE[ρ′(Q1)Q1ρ

′(proxλ1ρ(Q2))]

can be derived similarly. So we omit the proof here.

25


	Introduction
	An illustrative example
	General results
	Equivalence between the SEs derived from CGMT and AMP
	Equivalence between the SEs derived from CGMT and LOO

	Discussion and future directions
	Proof of Proposition 2.3
	Equivalence of SEs of M-estimator from AMP, LOO, CGMT
	Equivalence of SEs of LASSO from AMP and CGMT
	Equivalence of SEs

	relaxation phenomenon
	relaxation phenomenon of M-estimator
	relaxation phenomenon of support vector machine and Logistic regression

	equivalence of SEs of logistic regression from LOO and CGMT

