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Abstract

Large language models (LLMs) with one or001
more fine-tuning phases have become neces-002
sary to unlock various capabilities, enabling003
LLMs to follow natural language instructions004
and align with human preferences. However, it005
carries the risk of catastrophic forgetting during006
sequential training, the parametric knowledge007
or the ability learned in previous stages may be008
overwhelmed by incoming training data. This009
paper finds that LLMs can restore some orig-010
inal knowledge by regularly resetting partial011
parameters. Inspired by this, we introduce Half012
Fine-Tuning (HFT) for LLMs, as a substitute013
for full fine-tuning (FFT), to mitigate the forget-014
ting issues, where half of the parameters are se-015
lected to learn new tasks. In contrast, the other016
half are frozen to retain previous knowledge.017
We provide a feasibility analysis from the opti-018
mization perspective and interpret the parame-019
ter selection operation as a regularization term.020
HFT could be seamlessly integrated into exist-021
ing fine-tuning frameworks without changing022
the model architecture. Extensive experiments023
and analysis on supervised fine-tuning, direct024
preference optimization, and continual learn-025
ing consistently demonstrate the effectiveness,026
robustness, and efficiency of HFT. Compared027
with FFT, HFT not only significantly alleviates028
the forgetting problem, but also achieves the029
best performance in a series of downstream030
benchmarks, with an approximately 30% re-031
duction in training time.032

1 Introduction033

Large language models (LLMs) bring immense034

revolutions to various natural language processing035

applications with powerful language understanding036

and generation capabilities. Unsupervised large-037

scale pre-training for learning basic world knowl-038

edge (hereinafter referred to as basic knowledge),039

followed by one or more fine-tuning phases with040

supervised data or human feedback, is becoming a041

new training paradigm in the era of LLMs (Ouyang 042

et al., 2022; Achiam et al., 2023; Touvron et al., 043

2023). As the fine-tuning phase proceeds, the enor- 044

mous potential of LLMs is gradually unleashed to 045

handle various downstream tasks, while the para- 046

metric knowledge previously learned and stored 047

in the pre-trained model might face a considerable 048

risk of catastrophic forgetting (Lin et al., 2024; 049

Neeman et al., 2023; Dong et al., 2024). To main- 050

tain intrinsic basic knowledge, the most straight- 051

forward idea is to keep the pre-trained parameters 052

unchanged and include extra modules (e.g., LoRAs 053

or adapters) for learning task-specific abilities (Dou 054

et al., 2023; Wu et al., 2024a). However, such ar- 055

chitectural modifications pose significant obstacles 056

to model deployment and continual fine-tuning. 057

Without changing model architecture, full fine- 058

tuning (FFT) methods update all parameters to im- 059

prove the performance of downstream tasks (Zhang 060

et al., 2023c), in which the element-wise parameter 061

difference between fine-tuned and pre-trained mod- 062

els (i.e., task vector) represents the knowledge shift 063

during fine-tuning (Ilharco et al., 2023). Herein, 064

a desirable task vector is expected to keep basic 065

knowledge of pre-trained models and learn new 066

specialized knowledge. Interestingly, recent work 067

shows that partial dropping or trimming of the task 068

vector has only milder impacts on target task (Ya- 069

dav et al., 2023; Yu et al., 2023). In other words, 070

partial new parameters are sufficient for the learn- 071

ing of new abilities, so the upcoming question is, is 072

it possible that a portion of old parameters could 073

maintain the capabilities of the pre-trained model? 074

To answer this question, we start with LLAMA 2- 075

7B and LLAMA 2-CHAT-7B, and attempt to reset 076

partial parameters of the chat-model to the pre- 077

trained model, then prob the general abilities and 078

basic knowledge of these models (see Figure 1). As 079

a representative general-purpose fine-tuning prac- 080

tice, there is some improvement in the general abili- 081

ties of LLAMA 2-CHAT-7B, while the basic knowl- 082
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Figure 1: Performance of LLAMA 2-7B, LLAMA 2-CHAT-7B, and the Half-Reset model on six general abilities and
three basic knowledge benchmarks. It is interesting that simply resetting half of the parameters of the chat-model to
the pre-trained model could roughly restore a significant amount of forgotten basic knowledge while maintaining
high-level general abilities performance.

edge falls off a cliff. It is consistent with previous083

observations, indicating the destruction of paramet-084

ric knowledge stored in LLAMA 2-7B (Dou et al.,085

2023). To balance the emerging general abilities086

and the inherent basic knowledge, we intuitively087

select and reset half of the parameters1 of LLAMA088

2-CHAT-7B and are pleasantly surprised to find089

that the Half-Reset model greatly resumes the ba-090

sic knowledge in LLAMA 2-7B while remaining091

the excellent general abilities of LLAMA 2-CHAT-092

7B (More details in Section 2).093

Inspired by these above observations, we pro-094

pose Half Fine-Tuning (HFT), a simple yet effec-095

tive approach for the training of LLMs and further096

extrapolate it to the continual fine-tuning scenarios.097

Specifically, in each round of fine-tuning, we ran-098

domly select and freeze half of the parameters, and099

only update the other half. This enables the model100

to retain the capabilities at the starting point while101

learning downstream tasks and maintain the best102

balance between previous abilities and new skills.103

Note that HFT does not change the model architec-104

ture or traditional fine-tuning paradigm, thus theo-105

retically it can be applied to any setting where the106

standard full fine-tuning is previously applicable,107

including but not limited to supervised fine-tuning108

(SFT), direct preference optimization (DPO), con-109

tinual learning (CL), etc.110

To evaluate the effectiveness of HFT in instruc-111

tion fine-tuning settings, we conduct extensive ex-112

periments with TÜLU V2 (Ivison et al., 2023) for113

SFT and UltraFeedback (Cui et al., 2023) for DPO.114

Simultaneously, we also extend experiments on115

1Here, we keep the embedding and lm_head layers un-
changed as LLAMA 2-CHAT-7B, and select 50% of the pa-
rameters in transformer layers. The parameter ratios in this
paper all follow this statistical calibre.

TRACE (Wang et al., 2023a) for CL (i.e. multi- 116

round fine-tuning) to validate the proposed method 117

in a more extreme scenario. Experimental results 118

demonstrate that HFT not only exhibits excellent 119

talent in alleviating catastrophic forgetting but also 120

achieves comparable or even better performance 121

in learning new abilities compared to FFT. Fur- 122

ther analysis reveals that regardless of which half 123

(or even only about half) of the parameters are 124

selected, HFT is capable of attaining tolerable per- 125

formance gains and impressive efficiency improve- 126

ments, which brings considerable competition to 127

the routine fine-tuning paradigm. In summary, the 128

main contributions of this paper are as follows: 129

(1) We reveal that by resetting half of the fine- 130

tuned parameters to the startup state, it is possible 131

to preliminary restore the primeval ability while 132

maintaining new learning ability, which poses new 133

opportunities to alleviate catastrophic forgetting 134

and obtain an all-around LLM. 135

(2) We propose Half Fine-Tuning (HFT), which 136

entails freezing half of the parameters while train- 137

ing the other half. It allows LLMs to acquire new 138

abilities while retaining and utilizing previously 139

learned knowledge in various training settings. 140

(3) Extensive experiments and analyses demon- 141

strate the effectiveness and efficiency of HFT. With- 142

out any alterations to the model architecture, HFT, 143

as a plug-and-play solution with only a few lines 144

of code, exhibits the potential to supersede FFT in 145

the era of LLMs. 146

2 Pilot Experiments 147

Considering that the partial task vector is capable 148

of maintaining new abilities (Yadav et al., 2023; Yu 149

et al., 2023), we attempt to roll back the primaeval 150

abilities of pre-trained models by resetting the re- 151
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Figure 2: The schematic procedure of HFT with LLAMA 2’s architecture. In each stage, we selectively freeze half
of the parameters at the category-level and update the other half. Best viewed in color.

maining part of the task vector, thereby alleviating152

the catastrophic forgetting problem caused by fine-153

tuning. In this section, We employ the representa-154

tive well-aligned LLM, LLAMA 2-CHAT-7B, and155

the corresponding pre-trained backbone, LLAMA156

2-7B, as models for analysis.157

Setup. To balance the original abilities and the158

enhanced capabilities gained through instruction159

tuning, we simply choose to reset 50% of the pa-160

rameters in LLAMA 2-CHAT-7B to LLAMA 2-7B,161

so that half of the parameters are hoped to align162

with the new tasks, while the other half is intended163

to restore the old capabilities. In the implementa-164

tion, we randomly select half of each transformer165

layer according to the category of the parameter166

matrix. Specifically, we choose two from four self-167

attention matrices (i.e., WQ, WK , WV , WO),168

and for the odd parameter number in LLAMA’s169

feed-forward layers (i.e., Wup, Wdown, Wgate),170

we randomly select half of the transformer layers171

to choose two matrices and the other half to choose172

one. Such a fine-grained selection strategy ensures173

that the Half-Reset operation rolls back exactly174

50% of the parameters.175

To assess the performance of the pre-trained,176

chat, and half-reset models on both new and old ca-177

pabilities, we follow (Ivison et al., 2023) and (Dou178

et al., 2023) to introduce two categories of eval-179

uation benchmarks: (1) General Abilities, in-180

cluding MMLU, GSM8K, BBH, TyDiQA, Truth-181

fulQA, and HumanEval, which measure the LLMs’182

newly enhanced abilities to perform specific down-183

stream tasks like examination, reasoning, and cod-184

ing. (2) Basic Knowledge, including NaturalQues-185

tion, TriviaQA, and HotpotQA, which reflect the 186

parametric world knowledge in the pre-trained 187

model and could be used to evaluate retention of 188

the primeval capabilities. For more details about 189

the datasets and evaluation metrics, please refer to 190

Appendix A.3.1 and A.3.2 191

Results. From Figure 1, it is intuitive to observe 192

significant improvement of LLAMA 2-CHAT-7B 193

on several general ability benchmarks, as well as 194

the comprehensive decline on the basic knowledge 195

benchmarks. When selectively restoring half pa- 196

rameters to the pre-trained LLAMA 2-7B model, 197

although there is a slight performance loss in the 198

overall performance of general abilities, we wit- 199

ness the remarkable recovery of basic knowledge. 200

In Appendix A.4.2, we attempt other possible half- 201

reset solutions and provide more numerical results, 202

all of which exhibit similar phenomena. 203

In conclusion, the pilot experiments demonstrate 204

that (1) full parameter fine-tuning with large-scale 205

instruction data disrupts the basic knowledge stored 206

within pre-trained LLMs. (2) Through a simple 207

half-reset operation, it is possible to restore the 208

forgotten knowledge partially. Take another step 209

forward, these findings open a new door for model 210

merging, inspiring us to preserve some mastered 211

abilities of the startup point by freezing partial 212

parameters during fine-tuning. 213

3 Methodology 214

Without loss of generality, we consider a sequential 215

(continual) learning setting with multiple tasks T , 216

in which each task corresponds to a set of input- 217

output pairs Dt =
{
xtn, y

t
n

}N t

n=1
. In the training 218
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process, a single model aligns all the tasks sequen-219

tially, with only access to the specific dataset Dt220

at t-th round. Formerly, given an LLM parame-221

terized by θ, the entire process aims to optimize222

the following objective, which encompasses all the223

tasks,224

J (θ) = max
θ

∑
t∈{1,|T |}

∑
(xtn,y

t
n)∈Dt

logPθt
(
ytn|xtn

)
, (1)225

where logP(·) represents the probability distribu-226

tion of the model’s output. When there is only227

one task, the learning process degenerates into the228

standard supervised fine-tuning (SFT) form.229

Half Fine-Tuning. Next, we accordingly pro-230

pose Half Fine-Tuning (HFT) to learn the upcom-231

ing new task while maintaining and utilizing old232

abilities. Figure 2 illustrates the overall work-233

flow of HFT, regarding the intermediate repeti-234

tive transformer layers, we divide each layer into235

three blocks: self-attention, feed-forward, and lay-236

ernorm, so as half of each block is selected for237

updating in this round, while the remaining half238

is frozen. Note that the frozen and updated pa-239

rameters vary among each training round. In this240

way, HFT is more conducive to maintaining relative241

knowledge parity across different rounds during the242

sequential alignment process, thus exhibiting sig-243

nificant scalability in successive training. From the244

formula perspective, we define the parameters that245

remain unchanged during the t-th round as ψt, and246

correspondingly, the parameters that align to the247

upcoming tasks as ϑt (i.e., θt = {ϑt, ψt}). The248

training objective in Equation 1 thus changes to249

J (θ) = max
θ

∑
t∈{1,|T |}

∑
(xtn,y

t
n)∈Dt

logP{ϑt,ψt}
(
ytn|xtn

)
,

s.t. ϑt ← ϑt−1 − η∇ϑL
(
θt−1) , ψt ← ψt−1 ,

(2)250

where η and L(·) represent the learning rate and251

loss function, ∇ϑ indicates that we only consider252

the gradients of selected parameters in fine-tuning.253

Why Half Fine-Tuning Works. Excluding254

heuristic motivations, we are also interested in the255

theoretical principles behind HFT. Theoretically,256

HFT could be regarded as exerting a parameter-257

level mask to vanilla FFT. In this part, we bor-258

row the thread in (Fu et al., 2022) to interpret259

why HFT works from the perspective of optimiza-260

tion. Given a pre-trained model M0 with param-261

eters θ0, the fine-tuned model M with parame-262

ters θ has the same structure as M0 such that263

∥θ − θ0∥0 ≤ p dim(θ), where p = 0.5 in HFT.264

Next, we denote M ∈ {0, 1}m×m as a mask di- 265

agonal matrix on the parameter, in which the di- 266

agonal is equal to 1 if the parameter is selected, 267

thus the fine-tuning procedure can be formulated 268

as θ = θ0 +M∆θ, where ∆θ is the task vector. 269

In that case, HFT solves an optimization problem 270

with constraints min∆θ,M L(θ0+M∆θ) such that 271

∥M∥0 = ⌊mp⌋; Mij = 0, ∀i ̸= j; Mii ∈ {0, 1}. 272

where L is the loss function, ⌊·⌋ is the floor func- 273

tion, m is the parameter numbers. By integrating 274

previous conditions, the optimization procedure of 275

HFT can be reformulated as 276

O = min
θ
L(θ) s.t. ∥(I −M)(θ − θ0)∥2 = 0, (3) 277

With Lagrangian duality, solving the constrained 278

optimization problem is equivalent to solving the 279

following unconstrained optimization problem 280

OL = min
θ

max
λ
L(θ) + λ∥(I −M)(θ − θ0)∥2, (4) 281

where λ is the Lagrange multiplier. Based on 282

the Minimax inequality, it is intuitive to derive 283

that minθ maxλ L(θ) + λ∥(I −M)(θ − θ0)∥2 ≥ 284

maxλminθ L(θ) + λ∥(I − M)(θ − θ0)∥2 ≥ 285

minθ L(θ) + ∥(I −M)(θ − θ0)∥2. In conclusion, 286

the optimization process of HFT is equivalent to op- 287

timizing the upper bound of the FFT loss function 288

L(θ) with a regularization term ∥(I−M)(θ−θ0)∥2. 289

From the optimization perspective, such regulariza- 290

tion (with an appropriate sparsityM ) contributes to 291

the stability of the sparse fine-tuned model (Radiya- 292

Dixit and Wang, 2020; Fu et al., 2022), meaning 293

that HFT has the opportunity to achieve results 294

comparable to or even better than FFT. 295

4 Experiments 296

In this section, we primarily report the experimen- 297

tal results of full fine-tuning (FFT) and the pro- 298

posed half fine-tuning (HFT) on supervised fine- 299

tuning (with TÜLU V2 (Ivison et al., 2023) as 300

training set), human preference alignment (with 301

UltraFeedback (Cui et al., 2023)), and continual 302

learning (with TRACE (Wang et al., 2023a)) sce- 303

narios, in which direct preference optimization 304

(DPO) (Rafailov et al., 2023) is used to learn hu- 305

man preferences. Following (Ivison et al., 2023) 306

and (Wang et al., 2023a), we employ LLAMA 2 and 307

LLAMA 2-CHAT as the backbone model, respec- 308

tively. Apendix A.3 shows more information about 309

implementations and Appendix A.4 proposes more 310

additional experiments consisting of the compar- 311

ison with more baselines, the impact of learning 312
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rates and random seeds, the exploration of DPO on313

HFT-based models, efficiency analysis and many314

other detailed results.315

4.1 Experiments on Instruction Tuning316

Setup. We employ the general abilities and ba-317

sic knowledge benchmarks mentioned in Section318

2 to evaluate various models under the instruction319

tuning settings. In Appendix A.4.4, we introduce320

a series of sparse fine-tuning and model merging321

methods as additional baselines. To assess the con-322

versation ability, we also compare these models on323

AlpacaEval 2.0 (see Appendix A.4.9).324

Results on Improving General Abilities. Re-325

sults in Table 1 demonstrate the effectiveness of our326

proposed HFT method, which simultaneously im-327

proves different specialized abilities by selectively328

fine-tuning half of the parameters. Specifically,329

compared to FFT under the SFT setting, HFT leads330

to an overall performance improvement of 1.9% on331

LLAMA 2-7B and 2.9% when scaling to LLAMA332

2-13B. Furthermore, as we continue to perform333

DPO on SFT models, we observe that updating the334

policy model with HFT does not hinder the model335

from learning human preferences. In sum, the HFT336

method has strong robustness to adapt to differ-337

ent fine-tuning algorithms. Besides, we also review338

the Half-Reset method in Section 2, but the benefits339

of this approach are not robust, and we attribute it340

to the randomness of parameter operations. In com-341

parison, HFT achieves a more stable performance342

improvement through the learning process, while343

avoiding the complexity of the two-stage process344

of fully updating followed by partially resetting.345

Results on Preserving Basic Knowledge.346

When it comes to basic knowledge, as depicted347

in Table 2, both SFT and DPO exhibit a signifi-348

cant decline across all three benchmarks. Notably,349

HFT demonstrates excellent talent in preserving350

basic knowledge, consistently outperforming fully351

updating parameters during SFT and DPO. For352

example, during the SFT stage, HFT achieves im-353

provements of 3.4% and 2.9% with LLAMA 2-7B354

and LLAMA 2-13B compared to FFT, respectively.355

It is worth mentioning that Half-Reset also shows356

a stable performance in alleviating knowledge for-357

getting, which once again confirms the motivation358

to keep partial initial parameters unchanged.359

Remark. HFT not only effectively preserves360

a certain degree of basic knowledge of the pre-361

trained model, but also utilizes this knowledge to362

achieve better learning of new abilities.363

4.2 Experiments on Continual Learning 364

Setup. We evaluate the performance in the con- 365

tinual learning setting (with TRACE (Wang et al., 366

2023a)), using four representative approaches and 367

attempt to replace FFT with HFT. (1) SeqFT: It is 368

a standard for sequentially learning all parameters 369

of downstream tasks. (2) GEM (Lopez-Paz and 370

Ranzato, 2017): It leverages episode memories to 371

avoid forgetting, but it consumes extra computation 372

time like other regularization-based methods. (3) 373

Replay: It is a common strategy, here we integrate 374

alignment data from LIMA (Zhou et al., 2023) into 375

the replay memory and replaying 10% of histor- 376

ical data. (4) LoraSeqFT (Hu et al., 2022): It 377

sequentially updates the low-rank matrices while 378

keeping the backbone fixed. Note that the LoRA- 379

based method modifies the model architecture and 380

is not suitable for combination with HFT. Follow- 381

ing (Wang et al., 2023a), we start with LLAMA 2- 382

CHAT-7B/13B, adopt Overall Performance (OP) 383

and Backward Transfer (BWT) as the evaluation 384

metrics (Appendix A.3.2 details the calculation pro- 385

cess). Besides, we also report the general abilities 386

and basic knowledge of various models after the 387

final round of learning (see Appendix A.4.6). 388

Results. Table 3 shows that the three FFT ap- 389

proaches could all benefit from equipping HFT. 390

Specifically, HFT brings performance improve- 391

ments of 5.7% and 2.0% on the OP metric in the Se- 392

qFT and GEM settings, respectively. It also boosts 393

the performance with 4.6%, 0.7%, and 2.0% on 394

the BWT metric based on the LLAMA 2-CHAT- 395

7B. When scaling the model to 13b, HFT could 396

also achieve superior performances. Further, fine- 397

tuning with full parameters often suffers from se- 398

vere catastrophic forgetting in the 5-th round (see 399

Appendix A.4.12), while HFT does not experience 400

such a problem in any of the rounds, making the 401

learning process more stable. Besides, LoraSeqFT 402

exhibits notably suboptimal performance in this 403

setting. We assume that the knowledge capacity of 404

the LoRA parameter is quite limited, thus resulting 405

in considerable forgetting during the process of se- 406

quential training. On the contrary, HFT is based 407

on a full set of parameters and selects half of the 408

parameters to be fine-tuned in each round, which 409

has a stronger knowledge tolerance. 410

Remark. HFT is naturally suitable for scenarios 411

with continual fine-tuning, and (almost all) meth- 412

ods with FFT can be further improved by assem- 413

bling HFT, highlighting the plug-and-play feature. 414
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MMLU GSM8K BBH TyDiQA TruthfulQA HumanEval

Overall(factuality) (reasoning) (reasoning) (multilingual) (truthful) (coding)

EM EM EM F1 MC2 Pass@10
(0-shot) (8-shot, CoT) (3-shot, CoT) (1-shot, GP) (0-shot) (0-shot)

Pre-trained models
LLAMA 2-7B 41.6 12.0 39.9 48.4 38.5 26.2 34.4
LLAMA 2-13B 52.2 34.5 50.7 50.3 49.8 32.7 45.0

Supervised Fine-Tuning (SFT) on TÜLU V2
LLAMA 2-7B-SFT 48.5 25.0 42.2 51.2 41.7 36.9 41.0
LLAMA 2-7B-SFT (Reset) 48.4 23.0 43.4 52.4 42.5 32.5 40.4
LLAMA 2-7B-SFT (Half) 50.8 30.5 43.6 52.3 45.4 34.6 42.9 (+1.9)

LLAMA 2-13B-SFT 50.6 45.0 47.8 55.0 42.6 42.4 47.2
LLAMA 2-13B-SFT (Reset) 52.7 46.0 52.8 55.5 46.8 41.4 49.2
LLAMA 2-13B-SFT (Half) 54.5 46.5 53.7 56.7 45.7 43.5 50.1 (+2.9)

Direct Preference Optimization (DPO) on UltraFeedback
LLAMA 2-7B-DPO 48.9 28.0 42.9 50.2 45.7 35.6 41.9
LLAMA 2-7B-DPO (Reset) 49.0 28.5 43.1 50.3 43.3 34.8 41.5
LLAMA 2-7B-DPO (Half) 48.8 25.5 42.8 51.1 45.5 36.7 41.7 (-0.2)

LLAMA 2-13B-DPO 52.0 44.0 47.1 51.5 45.5 44.3 47.4
LLAMA 2-13B-DPO (Reset) 51.5 46.5 48.2 53.7 43.7 42.7 47.7
LLAMA 2-13B-DPO (Half) 51.8 48.5 49.9 52.9 45.3 41.0 48.2 (+0.8)

Table 1: Results on general ability benchmarks of various models with instruction tuning (SFT, DPO), in which the
default setting is FFT, Reset and Half refer to the proposed Half-Reset and Half Fine-Tuning methods, respectively.
Bold text denotes the best result in each group. More baselines in Table 10.

NaturalQuestion TriviaQA HotpotQA Overall(EM, 0-shot) (EM, 0-shot) (EM, 0-shot)

Pre-trained models
LLAMA 2-7B 12.9 40.2 15.6 22.9
LLAMA 2-13B 9.6 24.0 13.4 15.7

Supervised Fine-Tuning (SFT) on TÜLU V2
LLAMA 2-7B-SFT 3.2 26.4 14.5 14.7
LLAMA 2-7B-SFT (Reset) 7.3 26.4 14.4 16.0
LLAMA 2-7B-SFT (Half) 6.2 32.8 15.4 18.1 (+3.4)

LLAMA 2-13B-SFT 0.7 9.2 4.9 4.9
LLAMA 2-13B-SFT (Reset) 1.8 13.5 5.3 6.9
LLAMA 2-13B-SFT (Half) 2.7 12.4 8.2 7.8 (+2.9)

Direct Preference Optimization (DPO) on UltraFeedback
LLAMA 2-7B-DPO 1.4 20.8 10.0 10.7
LLAMA 2-7B-DPO (Reset) 2.0 23.6 12.1 12.6
LLAMA 2-7B-DPO (Half) 1.9 22.9 12.8 12.5 (+1.8)

LLAMA 2-13B-DPO 0.1 4.4 2.4 2.3
LLAMA 2-13B-DPO (Reset) 0.3 6.5 3.8 3.5
LLAMA 2-13B-DPO (Half) 0.2 5.5 3.0 2.9 (+0.6)

Table 2: Results on basic knowledge benchmarks of
various models with instruction tuning.

4.3 Impact of Parameter Selection415

HFT heuristically selects parameters to be tuned or416

frozen. We hope to reveal the impact of parameter417

selection from parameter radio and selection strat-418

egy, to discuss the universality of the methodology.419

Impact of Trainable Parameter Ratio. Firstly,420

we traverse the radio of parameters to be fine-tuned421

at a granularity of ∼10% and evaluate the impact422

in both single-round and multi-round fine-tuning423

scenarios. From Figure 3, we observe that most of424

the results with only updating partial parameters425

are superior to FFT, and the performance is quite426

satisfactory when the trainable parameter radio427

is around 50%. In SFT, the performance of basic428

knowledge shows a clear downward trend with the429

increase of parameter ratio, while the general abili-430

ties slowly rise, which allows updating half or less431

of the parameters to have good performance. Mean-432

FFT HFT

OP BWT OP BWT

LLAMA 2-CHAT-7B
LoraSeqFT 6.4 -45.2% - -
SeqFT 45.7 -10.2% 51.3 (+5.6) -5.6% (+4.6)

GEM 48.2 -7.9% 50.2 (+2.0) -5.9% (+2.0)

Replay 54.3 1.4% 54.1 (-0.2) +2.1% (+0.7)

LLAMA 2-CHAT-13B
LoraSeqFT 26.5 -30.0% - -
SeqFT 49.0 -9.4% 52.0 (+3.0) -8.5% (+0.9)

GEM 50.4 -8.9% 53.6 (+3.2) -6.1% (+2.8)

Replay 54.7 -0.6% 57.4 (+2.7) +1.6% (+2.2)

Table 3: OP and BWT on TRACE with different strate-
gies, OP measures the learning of new tasks and BWT
measures the forgetting of old tasks.

while, when selecting half of the parameters during 433

continual learning, the model reaches a balance of 434

abilities between each round of tasks, resulting in a 435

more robust training procedure and optimal perfor- 436

mance. This observation again confirms the early 437

conjecture about catastrophic forgetting, especially 438

in continual learning, it is necessary to freeze a 439

portion of parameters in each round to preserve 440

the capabilities of the previous models. Not only 441

that, we also find that fixing partial parameters can 442

improve training efficiency (see Table 9), and HFT 443

could shorten the training time by 30% in FFT. 444

Impact of Selection Strategy. Next, we con- 445

sider other possible strategies for selecting half 446

of the parameters: (1) Model-level. It arbitrarily 447

chooses half the number of parameter matrices, 448
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Figure 3: Performance concerning different trainable parameter ratios. The solid lines mark the performance of
HFT with various ratios and the dashed lines mark the FFT baseline.

which may prevent the parameter ratio from accu-449

rately reaching 50%. (2) Layer-level. It selects450

all parameters of a layer every other layer. (3)451

Category-level. It selects based on parameter cat-452

egories, which is the default strategy used in this453

paper, and ensures the accurate selection of 50%454

of the parameters. Table 4 reports the results of455

performing HFT on TRACE with sequential fine-456

tuning (SeqFT). The first noteworthy phenomenon457

is that all three selection strategies outperform the458

standard FFT, which once again confirms the moti-459

vation that freezing some parameters helps balance460

the old and new abilities in continual fine-tuning.461

Moreover, the category-level selection wins the best462

performance, we attribute it to the fine-grained463

strategy that maximizes the interaction between464

updated and non-updated parameters. From the465

perspective of model merging, it minimizes the466

damage to ready-made capabilities when perform-467

ing a 50% dropout on the task vector, thereby pro-468

viding greater possibilities for learning new tasks469

based on existing knowledge.470

OP BWT

SeqFT (FFT) 45.7 -10.2%

SeqFT (Model-level HFT) 46.9 (+1.2) -9.2% (+1.0%)

SeqFT (Layer-level HFT) 47.9 (+2.2) -8.3% (+1.9%)

SeqFT (Category-level HFT) 51.3 (+5.6) -5.6% (+4.6%)

Table 4: Different strategies for selecting half of the
parameters on TRACE.

Remark. HFT is robust and insensitive to param-471

eter selection, and selecting approximately 50% of472

the parameters with a reasonable selection strategy473

could achieve acceptable improvements.474

5 Discussion 475

In this section, we further discuss the parameter 476

changes in the fine-tuning process to deepen the 477

understanding of HFT. We review the influence of 478

embedding and lm_head layers, and visualize the 479

parameter variations during successive training. 480

Revisit the Embedding and LM_head Layers. 481

HFT defaults to updating the embedding and 482

lm_head layers. Here, we aim to explore the 483

roles of these two layers. Specifically, we freeze 484

them while maintaining the same selection strategy 485

and report results in SFT and continual learning. 486

Since freezing the embedding and lm_head lay- 487

ers slightly reduces trainable parameters, we also 488

include two models with similar parameter ratios 489

that only freeze the parameters in transformer 490

layers, to mitigate the impact of parameter ra- 491

tio. As shown in Table 5, freezing these two lay- 492

ers leads to a substantial decline in knowledge- 493

intensive benchmarks, especially for QA-related 494

tasks. Experimental results in Table 6 witness an- 495

other phenomenon, where forgetting metric BWT 496

significantly increases while the learning metric 497

OP faces a cliff-like decrease. Detailed results 498

in Appendix A.4.10 reveal that there is a substan- 499

tial decline in the performance of ScienceQA. To 500

this extent, a preliminary conjecture emerges that 501

the embedding and lm_head store information are 502

highly relevant to world knowledge, so it is crucial 503

to update them during the fine-tuning process. 504

Parameters Variation Analysis. To intuitively 505

perceive the difference in model parameters be- 506

tween HFT and FFT, we visualize parameter vari- 507

ations of fine-tuned models relative to the ini- 508

tial model (LLAMA 2-CHAT-7B) during continual 509

learning on TRACE. On the one hand, we group 510

two adjacent layers and calculate the average vari- 511
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MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Questions QA QA

HFT38.9% (update E,H) 49.9 26.0 44.6 52.3 45.0 33.2 6.3 24.0 14.1 32.8
HFT50.0% (update E,H) 50.8 30.5 43.6 52.3 45.4 34.6 6.2 32.8 15.4 34.6
HFT61.1% (update E,H) 49.0 29.5 42.7 50.6 49.6 35.4 6.6 31.3 16.1 34.5

HFT50.0% (freeze E,H) 51.4 29.0 45.0 50.5 45.2 35.0 3.2 24.1 13.7 33.0

Table 5: General abilities and basic knowledge performance of HFT models fine-tuned on TÜLU V2 without
embedding (E) and lm_head (Half) layers. Note that the subscript indicates the proportion of selected parameters
of transformer layers.
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Figure 4: Parameters variations of the last round model fine-tuned on TRACE relative to the starting point LLAMA
2-CHAT-7B. The outer blue circle indicates FFT and the inner red circle indicates HFT.

OP BWT

HFT38.9% (update E,H) 49.6 -5.6%
HFT50.0% (update E,H) 51.3 -5.6%
HFT61.1% (update E,H) 49.9 -5.6%

HFT50.0% (freeze E,H) 46.1 -2.2%

Table 6: OP and BWT scores of HFT models fine-tuned
on TRACE without embedding and lm_head layers.

ation of self-attention and feed-forward blocks,512

where average variation refers to the average of513

all matrix differences in the block of two models.514

On the other hand, based on the selected number515

of times in these eight rounds of fine-tuning, we516

compare the average variation of each block with517

FFT. Figure 4 shows variations from the perspec-518

tive of the transformer block and selected time,519

respectively. Interestingly, we find that: (1) The pa-520

rameter variation of each layer using HFT is fainter521

than those using FFT. (2) There is no significant522

difference in parameter variation between shallow523

and deep transformer layers, which is consistent in524

both fine-tuning settings. (3) The deviation from525

pre-trained parameters increases linearly with the526

time of selection, and the variations of parameters527

selected eight times are very similar to FFT. There-528

fore, the excessive offset of task vectors may not529

necessarily lead to an improvement in downstream 530

performance but result in forgetting existing capa- 531

bilities. HFT seeks subtle balance by pulling back 532

the task vector, alleviating catastrophic forgetting 533

when learning subsequent tasks. 534

6 Conclusion 535

In this paper, we observe that rolling back half 536

of the parameters to the pre-trained state may re- 537

cover partial knowledge of the startup model while 538

holding the performance of downstream tasks. Tak- 539

ing inspiration from this, we propose HFT, which 540

adopts a category-level strategy to select half of the 541

parameters for updating in each training round, and 542

the remaining parameters are expected to maintain 543

the learned knowledge. Extensive experiments on 544

supervised fine-tuning, direct preference optimiza- 545

tion, and continual learning scenarios demonstrate 546

the effectiveness of HFT. It not only alleviates the 547

catastrophic forgetting in preceding capabilities but 548

also achieves comparable or even superior perfor- 549

mance than FFT in downstream tasks. Further anal- 550

ysis shows that HFT is robust to selection strategies 551

and selected parameter numbers. Moreover, HFT 552

does not change the model architecture, making 553

it easy to implement and scale, especially under 554

successive fine-tuning scenarios. 555

8



Limitations556

Half Fine-Tuning (HFT) achieves a balanced per-557

formance in general abilities and basic knowledge558

benchmarks. It outperforms the Full Fine-Tuning559

(FFT) strategy while saving approximately 30% of560

training time, and is scalable for scenarios with561

continual fine-tuning. In contrast, the widely used562

Sparse Fine-Tuning methods such as LoRA fall563

short of HFT in overall performance, and in more564

challenging scenarios like continual fine-tuning,565

these methods fail and lead to performance col-566

lapses. We believe that HFT has the potential567

to become a successor to FFT in nearly all sce-568

narios due to its superior performance and faster569

training speed. Nonetheless, there are still some570

limitations to this paper. Firstly, due to computa-571

tional resource constraints, we experiment with the572

most representative open-source models LLAMA573

2-7B and LLAMA 2-13B, without scaling to larger574

or other family models. Secondly, we validate575

HFT on the standard dense transformer architec-576

ture, while other architectures such as Mixture-of-577

Experts (MoE) are not discussed in this paper. We578

believe that HFT is sufficient to adapt to other ar-579

chitectures and models, which warrants further re-580

search and exploration. In the future, we will strive581

to explore the potential of HFT in a wider range582

and diverse architecture models, while also refining583

selection methods to further improve performance.584
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A Appendix932

A.1 Discussion of Selecting Ratios933

Yu et al. (2023) have found that parameters are934

redundant during the SFT process, and excellent935

performance can be achieved for downstream tasks936

without the need for full parameter fine-tuning. In937

section 2, we also find that there is a correspon-938

dence between parameters and abilities. From the939

perspective of forgetting and knowledge conflict,940

HFT helps mitigate catastrophic forgetting by max- 941

imizing the balance between existing capabilities 942

and newly introduced abilities through selecting 943

half of the parameters, thereby reducing conflicts 944

between different knowledge and improving perfor- 945

mance. Furthermore, in Section 3 of our paper, we 946

provide a theoretical analysis demonstrating that 947

HFT optimize the upper bound of the FFT loss 948

function with a regularization term. 949

A.2 Related Work 950

Sparse Fine-Tuning. With the continuous in- 951

crease in the number of language model param- 952

eters, sparse fine-tuning (a.k.a. parameter-efficient 953

fine-tuning (PEFT)) offers an effective solution by 954

reducing trainable parameters while achieving com- 955

parable performance to FFT (Fu et al., 2022; Ding 956

et al., 2023; Han et al., 2024). Adapter (Houlsby 957

et al., 2019; Mahabadi et al., 2021; Zhang et al., 958

2023a) and LoRA (Hu et al., 2022; Dou et al., 2023; 959

Dettmers et al., 2023), the two most famous kinds 960

of work, freeze the initial model weight and inject 961

an adapter or a trainable rank decomposition ma- 962

trices into each layer. However, these approaches 963

change the model architecture and therefore re- 964

quire customized deployment. Keeping the archi- 965

tecture unchanged, DiffPruning (Guo et al., 2021) 966

learns a sparse diff vector for each task, enabling 967

PEFT to scale well with new tasks. BitFit (Za- 968

ken et al., 2021) only fine-tunes the bias terms 969

of BERT and achieves considerably good perfor- 970

mance. Unfortunately, these methods designed for 971

specific tasks or networks (e.g., bias) are unsuit- 972

able for modern general-purpose large-scale mod- 973

els. From the perspective of low GPU memory 974

overhead, BAdam (Luo et al., 2024) randomly di- 975

vides the entire parameter into multiple blocks and 976

updates each block sequentially, LISA (Pan et al., 977

2024) changes the granularity of blocks at the layer 978

level. Besides, Mixout (Lee et al., 2020) resets a 979

portion of neurons to a pre-trained state in each 980

training step. In this way, all parameters in BAdam, 981

LISA, and Mixout are updated, which is different 982

from HFT and not conducive to continual learning. 983

Continual Learning. Continual learning aims 984

to develop learning algorithms that can accumulate 985

knowledge on non-stationary data, and vanilla FFT 986

has been proven to lead to severe catastrophic for- 987

getting issues when adapting to incoming stream- 988

ing tasks (Luo et al., 2023; Wang et al., 2024). 989

To address this issue, experience replay (Rolnick 990

et al., 2019; Peng et al., 2024) is a widely used 991
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Algorithm 1: Algorithm of HFT with Category-Leval Parameter Selection
Input: Pre-trained model θ0
Initialize sequential training task T with data Dt, feed-forward block container FFNs=[], self-attention block container
SANs=[], and layernorm block container LNs=[].

for t = 1 to |T | do
// Set all parameters to retain gradients before each fine-tuning stage
foreach param in θt−1 do

param.requires_grad = True

// Omit the embedding and lm_head layer
mark_layers = random.sample(transformer_layers, len(transformer_layers)//2)
foreach layer in transformer_layers do

foreach param in layer do
if param belongs to FFN block then

FFNs.append(param)

else if param belongs to SAN block then
SANs.append(param)

else
LNs.append(param)

// For FFNs with an odd number of parameters in one layer, the number of selected parameters in half of the
layers is rounded up, while the other half is rounded down.

if layer in mark_layers then
freeze_ffn = random.sample(FFNs, ⌈len(FFNs)/2⌉)

else
freeze_ffn = random.sample(FFNs, ⌊len(FFNs)/2⌋)

freeze_san = random.sample(SANs, len(SANs)//2)
freeze_ln = random.sample(LNs, len(LNs)//2)
foreach param in freeze_ffn, freeze_san and freeze_ln do

param.requires_grad = False

Set FFNs, SANs and LNs to []

Model training process on with dataset Dt

Output: Fine-tuned model θ|T |

technique that incorporates a portion of data from992

previous rounds into the current training process.993

Regularization-based models (Kirkpatrick et al.,994

2017; Lopez-Paz and Ranzato, 2017) introduce995

additional terms in the loss function to penalize996

changes in crucial weights. Parameter-allocation997

approaches (Li et al., 2019; Gurbuz and Dovrolis,998

2022) feature an isolated parameter subspace dedi-999

cated to each task throughout the network. When1000

LLMs enter the era of billions of parameters, re-1001

searchers prefer to use progressive prompts (Raz-1002

daibiedina et al., 2023) or PEFT (Dou et al., 2023;1003

Wu et al., 2024a) to tune a powerful general back-1004

bone for specific tasks or domains (Wu et al.,1005

2024b). Instead of introducing auxiliary modules1006

or losses, HFT explores a new direction based on1007

the characteristics of LLMs, proving that random1008

parameter selection is sufficient to achieve pass-1009

able performance and has the potential to become1010

a successor to FFT.1011

A.3 Experimental Setup 1012

A.3.1 Datasets 1013

To validate the performance of supervised fine- 1014

tuning, we choose TÜLU V2 (Ivison et al., 2023) 1015

which is a combination of high-quality open re- 1016

sources, including datasets (1) created by re- 1017

searchers from existing NLP datasets (e.g. Su- 1018

perNI (Wang et al., 2022)), (2) written by hu- 1019

mans (e.g. Dolly (Conover et al., 2023) and Open 1020

Assistant (Köpf et al., 2023)), (3) generated by 1021

LLMs (e.g. Self-Instruct (Wang et al., 2023b), 1022

Alpaca (Taori et al., 2023) and Baize (Xu et al., 1023

2023)), (4) comprised of user-shared prompts ac- 1024

companied by model-generated completions (e.g. 1025

ShareGPT (Chiang et al., 2023)), and (5) developed 1026

for specific abilities (e.g. CoT (Wei et al., 2022) 1027

for chain-of-thought and Code-Alpaca (Chaudhary, 1028

2023) for code generation). To examine the ca- 1029

pacity for reinstating a fraction of impaired capa- 1030

bilities while adhering to human preferences, we 1031

utilize UltraFeedback (Cui et al., 2023) which 1032

is a large-scale, high-quality, and diversified pref- 1033

erence dataset. For continual learning, we select 1034

TRACE (Wang et al., 2023a), a novel benchmark 1035
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MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA

FFT 59.4 61.0 59.2 56.2 50.1 68.5 5.1 48.6 20.7 47.8
HFT 61.2 63.5 58.3 60.4 50.5 67.9 10.9 55.5 21.6 50.0

Table 7: General abilities and basic knowledge performance of LLAMA 3 8B.

LLAMA 2- LLAMA 2- Model-level Layer-level Category-level
7B CHAT-7B Half-Reset Half-Reset Half-Reset

MMLU (EM, 0-shot) 41.6 47.0 46.2 45.8 46.7
GSM (ACC, 8-shot) 12.0 26.0 8.0 22.0 24.0
BBH (EM, 0-shot) 39.9 39.2 41.0 39.5 37.7
TyDiQA (F1, 1-shot) 48.4 43.6 46.3 44.2 44.9
TruthfulQA (MC2, 0-shot) 38.5 46.0 41.7 43.1 41.7
HumanEval (Pass@10) 26.2 23.9 26.8 25.0 22.0
Overall (General Ability) 34.4 37.6 35.0 36.6 36.2

NaturalQuestion (EM, 0-shot) 12.9 7.2 8.2 11.2 10.9
TriviaQA (EM, 0-shot) 40.2 3.3 18.3 21.3 21.3
HotpotQA (EM, 0-shot) 15.6 6.6 7.4 9.9 9.0
Overall (World Knowledge) 22.9 5.7 11.3 12.4 13.7

Overall 30.6 27.0 27.1 28.5 28.7

Table 8: General abilities and basic knowledge results of LLAMA 2-7B, the well-aligned model LLAMA 2-CHAT-7B,
and our proposed three half-reset approaches.

designed for continual learning (CL) in LLMs, to1036

evaluate catastrophic forgetting in standard CL set-1037

tings. TRACE consists of 8 distinct datasets span-1038

ning challenging tasks, domain-specific tasks, mul-1039

tilingual capabilities, code generation, and mathe-1040

matical reasoning.1041

A.3.2 Evaluation Metrics1042

Supervised Fine-Tuning and Direct Preference1043

Optimization. To validate the effectiveness of1044

our method, we employ general abilities and basic1045

knowledge benchmarks to assess the performance1046

in learning new tasks and preserving the original1047

capabilities, respectively. Specifically, for the gen-1048

eral abilities benchmarks, we include the following1049

evaluation sets to test various abilities. (1) Factual1050

knowledge: To assess the LLMs’ factual knowl-1051

edge, we employ the Massive Multitask Language1052

Understanding dataset (MMLU) (Hendrycks et al.,1053

2021). MMLU comprises a collection of ques-1054

tions across 57 subjects from elementary to pro-1055

fessional difficulty levels. We report the 5-shot1056

accuracy based on answer perplexity. (2) Reason-1057

ing: We utilize the test split of the Grade School1058

Math (GSM8K) dataset (Cobbe et al., 2021) and1059

Big-Bench-Hard (BBH) (Suzgun et al., 2023) to1060

evaluate the reasoning abilities. We report the1061

8-shot accuracy and the exact match (EM) rates1062

for GSM8K and BBH, respectively. (3) Multi-1063

lingualism: To evaluate multilingual capabilities, 1064

we employ TyDiQA (Clark et al., 2020), a multi- 1065

lingual question-answering benchmark that covers 1066

11 typologically diverse languages. We adopt the 1067

gold-passage setup, where a passage containing 1068

the reference answer is provided, and report the F1 1069

score. (4) Coding: To evaluate the LLMs’ ability 1070

to generate functionally correct programs from doc- 1071

strings, we utilize HumanEval (Chen et al., 2021) 1072

and report the pass@10 performance. (5) Truth- 1073

ful: We incorporate TruthfulQA (Lin et al., 2022) 1074

to assess the ability to avoid generating known 1075

falsehoods resulting from misconceptions or false 1076

beliefs while providing informative responses. (6) 1077

Conversation: We use AlpacaEval 2.0 (Li et al., 1078

2023) to evaluate the instruction-following abilities. 1079

AlpacaEval is an LLM-based automatic evaluation 1080

metric. In this paper, we calculate the win rates 1081

against the GPT-4-preview-1106. We include the 1082

following three datasets for basic knowledge bench- 1083

marks to validate the basic knowledge preserved in 1084

LLMs: (1) NaturalQuestion (Kwiatkowski et al., 1085

2019), (2) TriviaQA (Han et al., 2019), and (3) 1086

HotpotQA (Yang et al., 2018). 1087

Continual Learning. For continual learning eval- 1088

uations, following (Wang et al., 2023a), we use 1089

Overall Performance (OP) and Backward Transfer 1090

(BWT) scores as the main metrics in CL settings. 1091
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# Trainable Parameters (%) 8.3 22.3 30.6 38.9 50.0 61.1 69.4 77.7 91.7 100

Runtime (%) 48.0 52.2 56.4 64.0 68.5 72.5 85.1 85.2 89.0 100
∆ (%) -52.0 -47.8 -43.6 -36.0 -31.5 -27.5 -14.9 -14.8 -11.0 0.0

Table 9: Efficiency analysis among different ratios of trainable parameters, in which FFT as a reference value and
underline marks HFT proposed in this paper.

MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA

Sparse Fine-tuning Baselines
LoRA 46.8 18.0 39.5 51.7 44.8 27.3 12.7 36.2 17.8 32.8
QLoRA 38.0 2.5 37.2 15.0 40.6 24.0 12.7 43.2 15.5 25.4
AdaLoRA 47.2 19.5 39.1 51.9 44.4 30.2 12.3 37.5 16.9 33.2
P-tuning 44.7 16.5 36.9 50.2 43.6 26.5 12.8 40.9 17.3 32.2
Mixout 48.1 24.5 41.0 49.8 42.3 33.7 4.5 28.2 15.5 32.0

Model Merging Baselines
TIES (P+S) 47.8 25.5 40.2 50.1 43.3 30.2 5.5 31.7 14.4 32.1
DARE (P+S) 49.2 28.5 42.9 53.0 44.4 32.8 6.1 30.7 15.1 33.6
TIES (S+D) 39.6 1.5 39.7 16.1 38.4 23.3 12.9 40.2 15.6 25.3
DARE (S+D) 45.8 16.5 40.4 50.0 42.7 27.6 5.8 32.7 14.1 30.6
Average (S+D) 49.0 22.0 45.1 52.8 42.5 32.6 7.5 35.6 14.0 33.5

Layer Freezing Baselines
AutoFreeze 48.5 25.5 44.2 50.1 44.4 28.3 3.7 30.2 14.4 32.1
SmartFRZ 46.7 24.5 43.7 50.6 43.8 29.4 4.5 29.5 13.8 31.8
LISA 50.1 27.0 43.2 51.7 45.2 29.7 6.0 31.0 14.7 33.2

HFT (S) 50.8 30.5 43.6 52.3 45.4 34.6 6.2 32.8 15.4 34.6

Table 10: General abilities and basic knowledge performance of more baselines. In model merging baselines, P, S
and D refer to Pre-trained, SFT and DPO models, respectively.

In terms of the formula, after incrementally learn-1092

ing the t-th task, the performance on the i-th task1093

(where i ≤ t) is denoted as St,i. The OP and BWT1094

scores can be calculated as1095

OPt =
1

t

t∑
i=1

St,i, BWTt =
1

t

t−1∑
i=1

(St,i − Si,i) . (5)1096

We utilize accuracy as the primary evalua-1097

tion metric for C-STANCE, FOMC, ScienceQA,1098

NumGLUE-cm, and NumGLUE-ds. In the case of1099

Py150, we employ similarity as the evaluation met-1100

ric. Moreover, for the evaluation of MeetingBank1101

and 20Minuten, we employ the ROUGE-L metric.1102

A.3.3 Implementation Details1103

Following (Ivison et al., 2023), in the SFT phase1104

on TÜLU V2, we adopt a linear-decreasing learn-1105

ing rate of 2e-5 with a 0.3 warmup ratio and train1106

for 2 epochs. For the human preference alignment1107

phase on UltraFeedback, we use direct preference1108

optimization (Rafailov et al., 2023) to align the fine-1109

tuned LLMs on TÜLU V2. We use a learning rate1110

of 5e-7 and a global batch size of 32. Due to the1111

context length of 4096 used during LLAMA 2 pre-1112

training, as referenced in the (Ivison et al., 2023)1113

code repository issues, we set a maximum sequence1114

length of 4096 during the SFT stage. However, due1115

to hardware resource limitations, the maximum se- 1116

quence length is reduced to 1024 during the DPO 1117

stage under LLAMA 2-13B. During the contin- 1118

ual learning phase, following (Wang et al., 2023a), 1119

we employ a fixed learning rate of 1e-5 and fine- 1120

tune the eight sub-datasets for different numbers 1121

of epochs: 5, 3, 7, 5, 3, 5, 5, and 7 epochs, respec- 1122

tively. The global batch size for both stages is set 1123

to 128. All our experiments are conducted on one 1124

machine equipped with 8x80G Nvidia A100. Al- 1125

gorithm 1 introduce the detailed implementations 1126

of our proposed fine-grained selecting approach of 1127

HFT. Additionally, to evaluate the SFT and DPO 1128

models, we employ a chat format, using special- 1129

ized tokens <|user|> and <|assistant|> to mark 1130

user utterances and target assistant responses, re- 1131

spectively. However, we use a standard language 1132

format for HumanEval and the basic knowledge 1133

benchmarks when evaluating pre-trained models. 1134

As for the implementation of HFT, our HFT 1135

parameter selection method primarily focuses on 1136

each transformer block. For the parameter matrices 1137

within each block, we first categorize them into 1138

three types: attention, MLP, and other. Specifically, 1139

for the LLAMA 2 model, in the attention category, 1140

each block contains four attention layers (Q, K, V, 1141
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MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA

DPO (FFT-based, 7b) 48.8 25.5 42.8 51.1 45.5 36.7 1.9 22.9 12.8 32.0
DPO (HFT-based, 7b) 50.7 30.5 42.8 43.9 49.8 35.1 1.0 20.4 5.9 31.1
DPO (FFT-based, 13b) 51.8 48.5 49.9 52.9 45.3 41.0 0.2 5.5 3.0 33.1
DPO (HFT-based, 13b) 55.0 45.5 51.4 53.2 49.5 42.9 0.3 4.9 4.7 34.2

Table 11: General abilities and basic knowledge performance of DPO stage (with HFT), which is initialized with
HFT-based SFT models fine-tuned on TÜLU V2.

MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA

SeqFT-7b 35.5 3.0 24.3 39.1 42.7 0.3 10.0 23.9 14.0 21.4
GEM-7b 40.1 3.5 17.0 33.4 41.4 2.2 10.0 19.6 14.0 20.1
Replay-7b 45.9 4.5 35.2 41.6 39.6 8.5 11.6 36.1 14.2 26.4
LoraSeqFT-7b 43.3 11.0 30.7 35.5 41.7 8.8 8.7 24.7 13.4 24.2
SeqFT-7b (Half) 44.1 3.5 30.8 41.1 41.8 1.6 11.3 38.9 14.4 25.3 (+3.9)

GEM-7b (Half) 45.1 5.0 32.3 34.9 43.0 2.7 10.4 35.9 13.7 24.8 (+4.7)

Replay-7b (Half) 47.9 11.0 38.8 42.6 42.5 12.7 10.7 38.4 12.9 28.6 (+2.2)

SeqFT-13b 39.7 5.0 27.9 41.0 41.4 0.0 12.7 44.3 16.3 25.4
Replay-13b 49.0 3.5 40.1 37.7 43.1 12.0 12.5 6.7 13.3 24.2
GEM-13b 47.2 4.0 37.6 36.3 43.0 10.0 10.8 10.2 12.1 23.5
LoraSeqFT-13b 43.3 15.0 42.4 43.1 40.5 18.2 10.6 37.6 16.2 29.7
SeqFT-13b (Half) 50.0 7.0 46.3 47.2 41.4 11.2 14.7 50.6 18.7 31.9 (+6.5)

GEM-13b (Half) 49.9 9.5 46.5 38.2 45.1 18.9 9.8 39.7 14.2 30.2 (+6.7)

Replay-13b (Half) 50.0 10.5 47.1 39.6 45.8 20.1 10.1 41.1 14.0 30.9 (+2.3)

Table 12: General abilities and basic knowledge performance of the final round models fine-tuned on TRACE. We
compare four different fine-tuning methods and our HFT approach start from LLAMA 2-CHAT-7B and LLAMA
2-CHAT-13B.

and O), and we randomly select two of these layers1142

to freeze. In the "other" category, each block in-1143

cludes the input layer norm and post-attention layer1144

norm, and we randomly select one of these layers1145

to freeze. Finally, for the MLP category, each block1146

contains up, down, and gate layers. Since there is1147

an odd number of layers, to maintain a 50% pa-1148

rameter selection ratio, we freeze two layers in1149

every other block, while freezing one layer in the1150

remaining blocks.1151

A.4 Additional Experiments1152

A.4.1 More Trials on Other Transformer1153

Architecture1154

We mainly focus on the performance of HFT on1155

standard dense transformers and experiment with1156

the most representative open-source models. Here,1157

we conduct an additional experiment to compare1158

HFT and FFT on LLAMA 3-8B, which uses group-1159

query attention and differs from the multi-head1160

attention in LLAMA 2. We make some modifi-1161

cations to the selection method of HFT when ap-1162

plied to GQA. Specifically, since each key-value1163

((K,V )) pair corresponds to multiple queries (Q),1164

GQA maintains dimensional consistency in matrix1165

operations by duplicating the (K,V ) pairs. On a1166

macro level, in terms of matrix representation, the1167

dimensions of K and V matrices are smaller than 1168

that of Q. Therefore, we separate K and V as one 1169

group and Q as another for selection, rather than 1170

filtering Q,K, V together as traditionally done in 1171

MHA. As shown in Table 7, HFT still achieved the 1172

best performance, which also proves the universal- 1173

ity and robustness of our method. 1174

A.4.2 Detailed Results of Pilot Experiments 1175

Table 8 presents the detailed results of pilot exper- 1176

iments conducted in Section 2. We also compare 1177

two additional model-level and layer-level param- 1178

eter selection methods here. The results indicate 1179

that the category-level selection approach achieves 1180

the highest overall performance, consistent with 1181

the follow-up training setting conclusion. 1182

A.4.3 Efficiency Analysis 1183

We conduct a comparison of the runtime costs for 1184

different ratios of trainable parameters. Specifi- 1185

cally, we fine-tuned LLAMA 2-7B on TÜLU V2 1186

and record the total duration from the start to the 1187

end of the training program. The results in Table 9 1188

demonstrate that, without specific optimization, all 1189

models with varying ratios of trainable parame- 1190

ters can reduce the training time. As expected, as 1191

the proportion of trainable parameters increases, 1192

the training duration also increases. Notably, our 1193
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FFT FFT HFT FFT HFT
(linear,1e-5) (linear,2e-5) (linear,2e-5) (cosine,2e-5) (cosine,2e-5)

MMLU (EM, 0-shot) 49.2 48.5 50.8 47.8 50.6
GSM (ACC, 8-shot) 24.5 25.0 30.5 25.5 31.5
BBH (EM, 0-shot) 41.8 42.2 43.6 42.2 44.4
TyDiQA (F1, 1-shot) 51.5 51.2 52.3 51.2 52.8
TruthfulQA (MC2, 0-shot) 40.2 41.7 45.4 42.6 46.4
HumanEval (Pass@10) 36.0 36.9 34.6 34.3 33.7
Overall (General Ability) 40.4 41.0 42.9 40.6 43.2

NaturalQuestion (EM, 0-shot) 4.9 3.2 6.2 3.5 6.4
TriviaQA (EM, 0-shot) 22.7 26.4 32.8 27.6 33.6
HotpotQA (EM, 0-shot) 13.4 14.5 15.4 13.1 14.7
Overall (World Knowledge) 13.7 14.7 18.1 14.7 18.2

Overall 31.5 32.2 34.6 32.0 34.9

Table 13: General abilities and basic knowledge of LLAMA 2 7B based on different learning rates.

HFT HFT HFT HFT HFT
(seed 1) (seed 2) (seed 3) (seed 4) (seed 5)

MMLU (EM, 0-shot) 50.8 49.9 50.2 51.2 50.5
GSM (ACC, 8-shot) 30.5 31.0 30.5 28.5 29.5
BBH (EM, 0-shot) 43.6 43.2 42.9 43.4 44.1
TyDiQA (F1, 1-shot) 52.3 52.3 53.2 52.8 51.7
TruthfulQA (MC2, 0-shot) 45.4 45.7 44.7 45.2 44.9
HumanEval (Pass@10) 34.6 35.1 34.8 34.7 35.2
Overall (General Ability) 42.9 42.9 42.7 42.6 42.7

NaturalQuestion (EM, 0-shot) 6.2 6.1 5.9 6.1 6.4
TriviaQA (EM, 0-shot) 32.8 31.9 33.4 33.1 33.0
HotpotQA (EM, 0-shot) 15.4 15.4 15.6 14.9 15.6
Overall (World Knowledge) 18.1 17.8 18.3 18.0 18.3

Overall 34.6 34.5 34.6 34.4 34.6

Table 14: General abilities and basic knowledge of LLAMA 2 7B based on different random seeds.

Models AlpacaEval 2.0

LLAMA 2-7B-SFT 6.96
LLAMA 2-7B-SFT (Reset) 2.98
LLAMA 2-7B-SFT (Half) 5.59

LLAMA 2-7B-DPO 10.68
LLAMA 2-7B-DPO (Reset) 8.44
LLAMA 2-7B-DPO (Half) 9.07

LLAMA 2-13B-SFT 8.32
LLAMA 2-13B-SFT (Reset) 11.93
LLAMA 2-13B-SFT (Half) 10.43

LLAMA 2-13B-DPO 11.55
LLAMA 2-13B-DPO (Reset) 12.55
LLAMA 2-13B-DPO (Half) 11.68

Table 15: Evaluation results on AlpacaEval 2.0.

HFT method achieves a 31.5% reduction in train-1194

ing time, significantly decreasing the training cost1195

for extremely large-scale instruction datasets.1196

A.4.4 More Baselines of Instruction Tuning 1197

We highlight that the motivation of HFT is to al- 1198

leviate the catastrophic forgetting problem during 1199

fine-tuning without changing the model architec- 1200

ture, which distinguishes it from PEFT methods 1201

such as LoRA. Based on this, we also introduce 1202

three extra groups of methods to illustrate the ef- 1203

fectiveness of HFT. Specifically, we compare four 1204

sparse fine-tuning methods, LoRA (Hu et al., 2022), 1205

QLoRA (Dettmers et al., 2023), AdaLoRA (Zhang 1206

et al., 2023b), P-Tuning (Liu et al., 2022), and 1207

Mixout (Lee et al., 2020), three model merging 1208

methods, Average merging, TIES merging (Ya- 1209

dav et al., 2023), and DARE (Yu et al., 2023) and 1210

three layer freezing method, AutoFreeze (Liu et al., 1211

2021), SmartFRZ (Li et al., 2024), and LISA (Pan 1212

et al., 2024). The experimental results are shown 1213

in Table 10, demonstrating that the HFT method 1214

achieves the best trade-off in both general abili- 1215
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ties and basic knowledge benchmarks. The sparse1216

fine-tuning methods preserve more basic knowl-1217

edge but suffer more performance degradation in1218

the general abilities evaluation, which is consistent1219

with the previous conclusion that LoRA learns less1220

and forgets less (Biderman et al., 2024). On the1221

other hand, the model merging methods, in general,1222

also perform worse than HFT. Additionally, model1223

merging methods require FFT training followed by1224

task vector pruning, making them more complex1225

and time-consuming due to the two-stage process.1226

For the Other layer freezing method, finally all the1227

parameters are updated. According to the experi-1228

ments and analysis in Section 2, this still cannot1229

achieve the optimal performance.1230

A.4.5 Direct Preference Optimization with1231

HFT-based Models1232

In Section 4.1, we initialize our DPO process with1233

the FFT model. In this section, we investigate the1234

performance of the DPO process when initialized1235

with the HFT model. The experimental results are1236

shown in Table 11. We observe that while the DPO1237

process on the HFT model performs better in cer-1238

tain general abilities„ it experiences minor losses1239

in overall performance under LLAMA 2-7B. How-1240

ever, the situation is reversed in LLAMA 2-13B,1241

where the DPO deployed on the HFT model outper-1242

forms the FFT-initialized DPO. Nonetheless, DPO1243

equipped with HFT tends to improve performance1244

compared to DPO with FFT consistently.1245

A.4.6 General Abilities and Basic Knowledge1246

of Continual Fine-tuned Models1247

We also evaluate the models mentioned in Sec-1248

tion 4.2 on general abilities and basic knowledge1249

benchmarks. The experimental results are pre-1250

sented in Table 12. We observe that after 8 rounds1251

of fine-tuning on consecutive tasks, the models1252

fine-tuned with the HFT method consistently out-1253

perform the FFT models in terms of overall per-1254

formance. This further confirms the effectiveness1255

of HFT in preserving the original capabilities of1256

the model and mitigating catastrophic forgetting.1257

Furthermore, although LoRA preserves more layer1258

parameters unchanged, it still performs worse com-1259

pared to HFT. We believe this may be attributed1260

to the low-rank decomposition resulting in a lim-1261

ited number of trainable parameters. Merging the1262

LoRA weights back into the original model could1263

potentially disrupt the original parameter space to1264

a greater extent.1265

A.4.7 The Impact of Learning Rates 1266

To validate whether our approach indeed leverages 1267

the frozen parameters to mitigate the catastrophic 1268

forgetting, rather than being equivalent to the ef- 1269

fects brought about by a reduced learning rate, we 1270

compare the half learning rate and the cosine learn- 1271

ing rate schedule to demonstrate further that the 1272

way HFT alleviates forgetting is not depending on 1273

learning rate but is indeed due to the role played 1274

by the frozen parameters. As shown in Tabel 13, 1275

we observe that upon halving the learning rate, the 1276

overall performance declines, with no significant 1277

recovery in the performance on world knowledge, 1278

thereby underscoring the capability of HFT in mit- 1279

igating catastrophic forgetting. Moreover, under 1280

the cosine learning rate schedule, HFT still outper- 1281

forms FFT, which also demonstrates the robustness 1282

of HFT to variations in the learning rate. 1283

A.4.8 The Impact of Randomness 1284

Here, we discuss a series of factors related to the 1285

randomness of HFT, including different trainable 1286

parameter ratios and selection methods. Note that 1287

in the continual learning setting, we randomly se- 1288

lect trainable parameters for each fine-tuning pro- 1289

cess, with a total of 8 random selections. The signif- 1290

icant performance improvement of HFT over FFT 1291

indicates that it is not sensitive to fine-grained pa- 1292

rameter selection. For all that, we also supplement 1293

a randomness experiment under the instruction tun- 1294

ing setting with 5 different random seeds (i.e. pa- 1295

rameter selections). As shown in Table 14, among 1296

these 5 trials, HFT exhibits minimal variations and 1297

a stable lead relative to FFT, demonstrating its ro- 1298

bustness again. 1299

A.4.9 Evaluation on AlpacaEval 1300

As shown in Table 15, we evaluate different mod- 1301

els on AlpacaEval 2.0. The results indicate that 1302

our method is less effective than FFT on LLAMA 1303

2-7B. However, a reversal occurs when the model 1304

size scales up to 13b, where our approach outper- 1305

forms the FFT models comprehensively. This sug- 1306

gests that our method has greater potential on much 1307

larger-scale LLMs, as supported by the experimen- 1308

tal results in Table 1, which show a larger improve- 1309

ment of HFT compared to FFT on LLAMA 2-13B 1310

compared to LLAMA 2-7B. Interestingly, the Half- 1311

Reset method performs well on LLAMA 2-13B 1312

but shows completely different results on LLAMA 1313

2-7B. This suggests that simply resetting half of 1314

the parameters may not provide consistent perfor- 1315
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.1 48.0 47.2 45.8 46.4 46.2 46.3 48.0
FOMC - 69.0 66.1 65.7 65.7 64.7 63.9 66.9
MeetingBank - - 37.5 34.5 34.2 32.7 31.9 33.2
Py150 - - - 51.2 50.3 49.8 49.2 50.8
ScienceQA - - - - 58.1 58.0 56.8 56.2
NumGLUE-cm - - - - - 33.3 25.9 29.6
NumGLUE-ds - - - - - - 45.8 43.1
20Minuten - - - - - - - 40.6

OP 50.1 58.5 50.3 49.3 50.9 47.5 45.7 46.1
BWT - - - - - - - -2.2%

Table 16: Detailed results on TRACE with 50.0% trainable parameters while freezing embedding and lm_head
layers.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 49.2 43.7 43.2 44.2 44.2 44.4 43.7 45.1
FOMC - 71.0 64.3 65.3 60.7 65.9 65.1 63.3
MeetingBank - - 46.9 37.7 35.4 39.0 38.5 36.9
Py150 - - - 57.9 52.6 53.6 53.6 53.4
ScienceQA - - - - 85.7 77.5 71.8 74.8
NumGLUE-cm - - - - - 33.3 29.6 33.3
NumGLUE-ds - - - - - - 56.6 48.9
20Minuten - - - - - - - 41.1

OP 49.2 57.4 51.5 51.3 55.7 52.3 51.3 49.6
BWT - - - - - - - -5.6%

Table 17: Detailed results on TRACE with 38.9% trainable parameters while updating embedding and lm_head
layers.

mance since the model is trained on the full set of1316

parameters.1317

A.4.10 Detailed Results of Revisiting1318

Embedding and LM_Head Layers1319

Table 16 details the results of freezing the input and1320

output layers. Meanwhile, Table 17 and 18 show1321

the detailed results of the two adjacent numbers of1322

parameter settings on TRACE.1323

A.4.11 Detailed Results of Different1324

Parameter Selection Strategies1325

Table 19 and 20 provide the detailed results on1326

TRACE with model-level and layer-level parameter1327

selection strategies mentioned in Section 4.3.1328

A.4.12 Detailed Results of TRACE1329

Table 21 to 34 show the detailed results of different1330

models and approaches of each round during the1331

continual learning on TRACE.1332
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 45.3 50.8 50.9 51.4 51.3 51.4 51.1 53.3
FOMC - 72.8 63.7 65.7 6.3 68.3 69.0 67.9
MeetingBank - - 48.9 41.1 38.3 41.3 41.1 40.0
Py150 - - - 57.3 50.3 52.8 52.9 52.9
ScienceQA - - - - 88.2 70.6 67.3 69.4
NumGLUE-cm - - - - - 30.9 28.4 21.0
NumGLUE-ds - - - - - - 59.4 53.5
20Minuten - - - - - - - 40.8

OP 45.3 61.8 54.5 53.9 46.9 52.6 52.7 49.9
BWT - - - - - - - -5.6%

Table 18: Detailed results on TRACE with 61.1% trainable parameters while updating embedding and lm_head
layers.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 49.3 49.1 48.8 50.2 50.0 48.9 48.1 49.2
FOMC - 70.6 57.5 53.8 42.7 54.4 58.1 55.2
MeetingBank - - 48.9 37.8 36.5 38.2 37.3 38.9
Py150 - - - 57.7 55.4 55.9 54.8 55.7
ScienceQA - - - - 87.7 59.8 54.2 56.4
NumGLUE-cm - - - - - 38.3 22.2 25.9
NumGLUE-ds - - - - - - 55.7 53.5
20Minuten - - - - - - - 40.7

OP 49.3 59.9 51.7 49.9 54.5 49.3 47.2 46.9
BWT - - - - - - - -9.2%

Table 19: Detailed results on TRACE with model-level parameter selection.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.8 41.4 44.6 46.5 47.5 48.6 48.2 49.0
FOMC - 72.2 58.5 54.6 1.8 46.8 50.2 50.0
MeetingBank - - 47.1 34.7 34.5 37.2 38.6 37.1
Py150 - - - 56.5 53.3 53.8 54.2 54.1
ScienceQA - - - - 88.5 84.4 76.2 77.5
NumGLUE-cm - - - - - 35.8 28.4 21.0
NumGLUE-ds - - - - - - 57.2 52.9
20Minuten - - - - - - - 41.5

OP 50.8 56.8 50.1 48.1 45.1 51.1 50.4 47.9
BWT - - - - - - - -8.3%

Table 20: Detailed results on TRACE with layer-level parameter selection.
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 48.5 49.7 48.5 48.3 6.7 47.4 47.2 48.7
FOMC - 71.6 46.6 46.4 0.4 43.1 42.9 44.0
MeetingBank - - 49.0 39.9 40.8 37.6 34.5 37.9
Py150 - - - 57.0 49.2 54.5 54.2 54.0
ScienceQA - - - - 89.1 71.5 44.6 60.6
NumGLUE-cm - - - - - 30.9 24.7 25.9
NumGLUE-ds - - - - - - 59.4 52.6
20Minuten - - - - - - - 41.5

OP 48.5 60.7 48.0 47.9 37.2 47.5 43.9 45.7
BWT - - - - - - - -10.2%

Table 21: Detailed results on TRACE with SeqFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 49.4 47.6 45.6 46.4 47.8 49.5 49.1 49.3
FOMC - 71.8 57.7 59.1 46.0 66.5 67.3 66.3
MeetingBank - - 47.4 39.1 31.2 38.6 38.4 35.7
Py150 - - - 57.4 52.1 54.8 55.0 55.0
ScienceQA - - - - 87.4 82.1 77.6 75.3
NumGLUE-cm - - - - - 42.0 30.9 32.1
NumGLUE-ds - - - - - - 58.5 55.1
20Minuten - - - - - - - 41.3

OP 49.4 59.7 50.2 50.5 52.9 55.6 53.8 51.3
BWT - - - - - - - -5.6%

Table 22: Detailed results on TRACE with SeqFT and HFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.0 48.9 48.4 47.7 13.0 46.5 45.7 48.1
FOMC - 69.4 60.3 59.7 0.4 56.5 57.1 58.5
MeetingBank - - 49.0 40.4 38.4 38.8 34.8 39.0
Py150 - - - 56.7 51.2 54.0 53.6 53.8
ScienceQA - - - - 89.5 64.2 29.5 54.5
NumGLUE-cm - - - - - 33.3 32.1 33.3
NumGLUE-ds - - - - - - 59.7 57.2
20Minuten - - - - - - - 40.8

OP 50.0 59.2 52.6 51.1 38.5 48.9 44.6 48.2
BWT - - - - - - - -7.9%

Table 23: Detailed results on TRACE with GEM (start from LLAMA 2-CHAT-7B).
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.3 49.0 47.0 48.3 50.0 50.7 50.1 51.3
FOMC - 70.0 58.9 60.1 36.1 63.9 65.9 65.5
MeetingBank - - 47.5 40.2 38.2 39.2 39.0 37.9
Py150 - - - 57.0 53.0 55.3 55.1 54.6
ScienceQA - - - - 88.4 76.8 70.1 68.4
NumGLUE-cm - - - - - 34.6 24.7 29.6
NumGLUE-ds - - - - - - 60.0 53.6
20Minuten - - - - - - - 41.0

OP 50.3 59.5 51.1 51.4 53.1 53.4 52.1 50.2
BWT - - - - - - - -5.9%

Table 24: Detailed results on TRACE with GEM and HFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.7 50.1 49.4 48.2 50.6 49.7 49.9 52.0
FOMC - 64.9 68.1 70.2 70.0 70.0 70.6 70.0
MeetingBank - - 43.4 48.0 46.1 46.5 46.4 44.8
Py150 - - - 53.9 55.0 54.1 54.0 53.5
ScienceQA - - - - 81.9 86.0 86.3 87.5
NumGLUE-cm - - - - - 30.9 32.1 32.1
NumGLUE-ds - - - - - - 55.7 53.5
20Minuten - - - - - - - 40.6

OP 51.7 57.5 53.6 55.1 60.7 56.2 56.4 54.3
BWT - - - - - - - 1.4%

Table 25: Detailed results on TRACE with Replay (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 47.7 53.5 50.6 51.0 50.8 50.2 51.1 52.1
FOMC - 61.1 69.4 70.8 69.8 70.2 69.4 69.8
MeetingBank - - 39.3 47.1 47.0 46.0 46.7 47.3
Py150 - - - 55.3 56.3 56.3 56.5 55.6
ScienceQA - - - - 87.3 52.2 85.0 84.8
NumGLUE-cm - - - - - 37.0 29.6 32.1
NumGLUE-ds - - - - - - 48.0 50.5
20Minuten - - - - - - - 40.5

OP 47.7 57.3 53.1 56.1 62.2 52.0 55.2 54.1
BWT - - - - - - - +2.1%

Table 26: Detailed results on TRACE with Replay and HFT (start from LLAMA 2-CHAT-7B).
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.6 48.1 47.4 46.9 24.1 12.0 4.1 7.9
FOMC - 68.8 58.3 52.6 0.0 48.4 44.2 1.4
MeetingBank - - 45.7 10.6 5.9 1.1 2.7 3.0
Py150 - - - 58.6 20.8 46.8 45.2 0.4
ScienceQA - - - - 66.1 50.7 41.3 0.0
NumGLUE-cm - - - - - 33.3 27.2 0.0
NumGLUE-ds - - - - - - 50.5 0.0
20Minuten - - - - - - - 38.1

OP 51.6 58.5 50.5 42.2 23.4 32.1 30.7 6.4
BWT - - - - - - - -45.2%

Table 27: Detailed results on TRACE with LoRASeqFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.3 34.9 37.6 40.0 41.0 44.2 43.8 44.9
FOMC - 70.0 57.5 52.6 4.2 49.0 47.2 49.8
MeetingBank - - 50.5 44.9 44.4 45.7 44.7 41.9
Py150 - - - 56.8 54.9 54.4 53.1 54.6
ScienceQA - - - - 91.3 73.5 66.1 73.9
NumGLUE-cm - - - - - 43.2 28.4 25.9
NumGLUE-ds - - - - - - 62.5 59.4
20Minuten - - - - - - - 41.4

OP 51.3 52.5 48.5 48.6 47.2 51.7 49.4 49.0
BWT - - - - - - - -9.4%

Table 28: Detailed results of on TRACE with SeqFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 54.2 52.2 54.7 55.2 55.3 54.3 54.6 55.5
FOMC - 73.4 56.7 54.6 38.3 43.1 41.9 50.2
MeetingBank - - 48.9 44.4 44.1 45.5 45.9 43.6
Py150 - - - 58.9 56.3 56.4 56.7 56.3
ScienceQA - - - - 89.7 84.3 74.5 74.6
NumGLUE-cm - - - - - 54.3 33.3 35.8
NumGLUE-ds - - - - - - 64.0 59.4
20Minuten - - - - - - - 40.9

OP 54.2 62.8 53.4 53.3 56.7 56.3 53.0 52.0
BWT - - - - - - - -8.5%

Table 29: Detailed results on TRACE with SeqFT and HFT (start from LLAMA 2-CHAT-13B).

23



Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.5 47.2 46.7 48.1 19.0 47.4 48.3 49.2
FOMC - 70.5 59.4 60.2 0.0 60.7 58.2 61.2
MeetingBank - - 52.3 47.6 40.5 40.6 43.2 41.5
Py150 - - - 60.7 60.2 53.6 54.6 55.7
ScienceQA - - - - 92.7 78.5 30.6 60.5
NumGLUE-cm - - - - - 43.7 33.3 33.3
NumGLUE-ds - - - - - - 61.7 60.2
20Minuten - - - - - - - 41.8

OP 51.5 58.9 52.8 54.2 42.5 54.1 47.1 50.4
BWT - - - - - - - -8.9%

Table 30: Detailed results on TRACE with GEM (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 52.4 51.5 48.9 49.6 51.5 51.0 50.2 51.5
FOMC - 73.4 60.8 61.9 44.4 65.3 68.9 67.2
MeetingBank - - 50.2 47.6 41.2 43.3 40.9 41.8
Py150 - - - 61.7 60.1 60.3 58.7 57.5
ScienceQA - - - - 93.0 88.7 78.9 77.7
NumGLUE-cm - - - - - 44.4 33.3 36.7
NumGLUE-ds - - - - - - 61.9 55.7
20Minuten - - - - - - - 40.6

OP 52.4 62.5 53.3 55.2 58.0 58.8 56.1 53.6
BWT - - - - - - - -6.1%

Table 31: Detailed results on TRACE with GEM and HFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 48.8 51.3 48.5 49.3 49.2 47.5 46.7 51.4
FOMC - 62.3 70.6 72.4 71.2 71.2 70.8 73.0
MeetingBank - - 44.9 48.2 47.4 48.5 47.1 47.5
Py150 - - - 53.9 55.1 54.2 47.5 53.3
ScienceQA - - - - 89.5 91.6 90.7 89.6
NumGLUE-cm - - - - - 45.7 29.6 30.9
NumGLUE-ds - - - - - - 57.5 52.3
20Minuten - - - - - - - 39.7

OP 48.8 56.8 54.7 56.0 62.5 59.8 55.7 54.7
BWT - - - - - - - -0.6%

Table 32: Detailed results on TRACE with Replay (start from LLAMA 2-CHAT-13B).
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.2 52.5 53.8 53.0 53.4 52.7 52.4 52.1
FOMC - 61.3 74.2 71.2 71.8 73.2 72.4 73.6
MeetingBank - - 48.5 48.7 47.0 46.9 48.6 47.6
Py150 - - - 55.7 58.2 55.4 54.0 54.5
ScienceQA - - - - 83.3 90.0 90.1 89.7
NumGLUE-cm - - - - - 45.7 48.1 43.2
NumGLUE-ds - - - - - - 60.9 57.5
20Minuten - - - - - - - 41.0

OP 50.2 56.9 58.8 57.2 62.7 60.7 60.9 57.4
BWT - - - - - - - +1.6%

Table 33: Detailed results on TRACE with Replay and HFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 52.4 44.4 45.1 39.0 0.0 41.8 41.1 12.4
FOMC - 67.1 58.3 43.8 2.2 60.3 57.8 0.0
MeetingBank - - 47.3 11.3 18.2 14.6 3.2 12.2
Py150 - - - 59.2 40.0 47.7 50.0 23.6
ScienceQA - - - - 75.4 70.3 71.0 67.7
NumGLUE-cm - - - - - 47.5 28.5 25.7
NumGLUE-ds - - - - - - 61.3 28.6
20Minuten - - - - - - - 41.6

OP 52.4 55.8 50.2 38.3 27.2 47.0 44.7 26.5
BWT - - - - - - - -30.0%

Table 34: Detailed results on TRACE with LoRASeqFT (start from LLAMA 2-CHAT-13B).
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