
Learning to Learn Faster from Human Feedback
with Language Model Predictive Control

Jacky Liang∗, Fei Xia∗, Wenhao Yu∗, Andy Zeng∗

Montserrat Gonzalez Arenas, Maria Attarian, Maria Bauza, Matthew Bennice, Alex Bewley, Adil Dostmohamed, Chuyuan Kelly Fu
Nimrod Gileadi, Marissa Giustina, Keerthana Gopalakrishnan, Leonard Hasenclever, Jan Humplik, Jasmine Hsu, Nikhil Joshi,

Ben Jyenis, Chase Kew, Sean Kirmani, Tsang-Wei Edward Lee, Kuang-Huei Lee, Assaf Hurwitz Michaely, Joss Moore, Ken Oslund
Dushyant Rao, Allen Ren, Baruch Tabanpour, Quan Vuong, Ayzaan Wahid, Ted Xiao, Ying Xu, Vincent Zhuang

Peng Xu†, Erik Frey†, Ken Caluwaerts†,Tingnan Zhang†, Brian Ichter†, Jonathan Tompson†, Leila Takayama†, Vincent Vanhoucke†

Izhak Shafran†, Maja Mataric†, Dorsa Sadigh†, Nicolas Heess†, Kanishka Rao†, Nik Stewart†, Jie Tan†, Carolina Parada†
∗corresponding authors in alphabetical order, †advising leads, all other authors in alphabetical order

Reward function code.
import numpy as np
set_torso(0.2, np.deg2rad(-45))

set_torso(0.2, np.deg2rad(45))

set_torso(0.2, np.deg2rad(-45))
set_feet('front_left', 0.3, 0.1)

sit and give me a high five!

Reward function code.
set_torso(0.2, np.deg2rad(-45))
set_feet('front_left', 0.4, 0.1)

"insert the red thing slowly""hand it over to the other arm"

"try lifting with both arms""hold the can upright this time"

Fig. 1: Code-writing large language models (LLMs) present opportunities for non-experts to teach robots new tasks with language – enabled by fast adaptation via in-context
learning (left). In this work, we fine-tune the underlying LLMs to further accelerate fast adaptation and improve their teachability (right). Results with human-robot
interactions from non-experts teaching 5 robot embodiments on 78 tasks (gray) show that our framework (middle∗) can identify top performing users (purple), and leverage
their interactions (only 14% of task coverage) to drive LLM performance improvements for all users (blue) – measured in terms teaching success rates on unseen tasks,
responsiveness to user feedback, and number of user corrections. Experiments show that these improvements generalize to new robot embodiments and APIs.
∗visualizations from real data: before and after circles are centered on mean good rating rates (i.e., responsiveness to feedback metric, described in Sec. III-C) vs task success rates over all users.

Abstract—Large language models (LLMs) have been shown to
exhibit a wide range of capabilities, such as writing robot code from
language commands – enabling non-experts to direct robot behaviors,
modify them based on feedback, or compose them to perform new
tasks. However, these capabilities (driven by in-context learning) are
limited to short-term interactions, where users’ feedback remains
relevant for only as long as it fits within the context size of the LLM,
and can be forgotten over longer interactions. In this work, we
investigate fine-tuning the robot code-writing LLMs, to remember
their in-context interactions and improve their teachability i.e., how
efficiently they adapt to human inputs (measured by average number
of corrections before the user considers the task successful). Our key
observation is that when human-robot interactions are formulated
as a partially observable Markov decision process (in which human
language inputs are observations, and robot code outputs are actions),
then training an LLM to complete previous interactions can be viewed
as training a transition dynamics model – that can be combined with
classic robotics techniques such as model predictive control (MPC) to
discover shorter paths to success. This gives rise to Language Model
Predictive Control (LMPC), a framework that fine-tunes PaLM 2
to improve its teachability on 78 tasks across 5 robot embodiments
– improving non-expert teaching success rates of unseen tasks by
26.9% while reducing the average number of human corrections
from 2.4 to 1.9. Experiments show that LMPC also produces strong
meta-learners, improving the success rate of in-context learning new
tasks on unseen robot embodiments and APIs by 31.5%. See videos,
code, and demos at: https://robot-teaching.github.io/.

I. INTRODUCTION

Natural language provides a rich and accessible interface for
teaching robots – with the potential to enable anyone with minimal
training to direct behaviors, express preferences, and provide
feedback. Recent works show that large language models (LLMs),
pretrained on Internet-scale data, exhibit out-of-the-box capabilities
that can be applied to robotics – from planning a sequence of
steps given language commands [1, 30], to writing robot code
[41, 59, 71, 45]. Language inputs can also be sequenced in a
multi-turn setting for example, to generate and modify reward
function code from human feedback to compose new quadruped
behaviors via real-time motion control [71] (example in Fig. 1).

LLM-based robot teaching (as shown in Fig. 1) can be driven by
in-context learning [9] (e.g., on code and dialogue data), where pre-
vious interactions are kept as input context for subsequent ones. In-
context learning occurs during inference without gradient updates to
model weights, enabling fast adaptation to language instructions (via
exemplar-based compositional generalization [11, 32]). However,
this adaptation is limited to short-term reactive interactions where the
users’ feedback remains relevant for only as long as it fits within the
context size of the LLM. As a result, if human instructions accumu-
late over longer multi-step interactions that fall outside the receding

https://robot-teaching.github.io/

context horizon, previous instructions can simply be forgotten.
We are interested in improving LLMs’ teachability for robot tasks,

i.e., how efficiently they adapt to human feedback, by enabling
LLMs to remember their in-context interactions. Teachability
in multi-turn language-based human-robot interaction (HRI)
can be measured as the average number of human inputs (e.g.,
corrections) n before the robot succeeds at the task. For instance,
n=1 refers to the standard zero-shot instruction following setting
[33, 44]. Prior works propose to improve teachability by generating
linguistic summaries of human feedback [75] or preferences [68]
that can be indexed into memory and later retrieved in-context
to guide future interactions. However, such methods are often
constrained by in-context learning generalization (observed to be
more “exemplar-based” i.e., on the basis of similarity to in-context
examples [11, 57]), as opposed to generalization from in-weights
learning via fine-tuning (which tends to be more “rule-based” i.e.,
on the basis of minimal features that support category boundaries
in the training data [11, 6]). Subsequently, prior methods excel at
overfitting to training tasks, but offer limited generalization (e.g.,
domain-level adaptation) to unseen tasks. Is it possible to leverage
both forms of learning to address these shortcomings?

In this work, we investigate improving the teachability of robot
code-writing LLMs via in-context learning (fast adaptation) by day,
and model fine-tuning (slow adaptation) by night, to accelerate
fast adaptation the next day.1 Given a setting where non-experts
teach robots new tasks with language, our goal is to study which
methods of improvement (e.g., via fine-tuning) can best leverage
data collected from in-context learning to improve future teachability
(as measured on unseen tasks). Our key observation is that when
human-robot interactions are formulated as a partially observable
Markov decision process (POMDP – in which human language
inputs are observations, and robot code outputs are actions), then
training an LLM to autoregressively complete previous interactions
can be viewed as training a transition dynamics model – that can be
combined with classic robotics techniques such as model predictive
control (MPC) to discover shorter paths to success. This gives
rise to Language Model Predictive Control (LMPC), where we
train the LLM to predict imagined future rollouts of human-robot
interactions – and at inference time, sample multiple futures (with
non-zero decoding temperature) to search for the best one and take
the next action (i.e., receding horizon control as a decoding strategy).
Classically challenging HRI problems (such as modeling individual
user preferences) become more straightforward e.g., by simply con-
ditioning LMPC rollouts on usernames (“user __ might say...”), with
the intuition that different users cover different areas of the POMDP.

Extensive experiments (via blind A/B evaluations) show that fine-
tuning with LMPC improves the teachability of PaLM 2 [3] on 78
tasks across 5 robot embodiments (on simulated and real platforms)
– enabling non-experts to teach robots to achieve higher success rates
on unseen tasks by 26.9%, and reduces average number of human
corrections from 2.4 to 1.9. In particular, LMPC produces strong
meta-learners – teachability improvements generalize to unseen
embodiments, improving the success rate of in-context learning new

1In-context learning by day & fine-tuning by night analogy is loosely inspired
by the role of circadian rhythms in the learning and memory of biological systems.

tasks with new robot APIs by 31.5%. Interestingly, we observe
substantial gains from top-user conditioned LMPC, which (i)
autonomously identifies top users (by performance on training tasks),
(ii) groups their data together with a special username “top-user,”
then (iii) conditions inference-time LMPC rollouts on this special
username (i.e., assume everyone is a top-user). Despite top users
having seen only 14% of tasks, experiments show this conditioning
mechanism drives performance improvements for all users on all
tasks, including unseen ones by 10.5%. LMPC also outperforms
retrieval baselines [75], and user studies affirm that performance
improvements are likely the result of changes in model capability,
rather than user teaching proficiency. Our approach is not without
limitations – we discuss these and areas for future work in ??.

II. LANGUAGE MODEL PREDICTIVE CONTROL

We investigate teachability in the context of language-based
human-robot interactions, where users communicate with robots via
text messages through a chat-like interface next to a simulated visu-
alization of the robot and its surroundings using the MuJoCo simu-
lation engine [65] (see Fig. 3, more details in Appendix V-Q). User
messages are free-form and up to users’ discretion; they may include
instructions, preferences, feedback, etc. In response to each message,
the system outputs robot code, which is directly sent to a real-time
motion controller on a simulated or real robot (??). Users then
provide subsequent feedback based on the observed robot behavior.

Each human-robot conversation (i.e., chat session) is goal-driven:
users are asked to teach one task per session and at the end of each
session label “success” or “failure” conditioned on whether they
believe the robot to have completed the task. Chat sessions can
consist of multiple chat turns (i.e., human-robot input-output pairs)
before success. On average, successful sessions run for 2-3 chat
turns, while failure sessions run for 5-6 chat turns (see Fig. 3; bar
plot shown in bottom left). User messages can be corrections or
broken-up step-by-step sub-tasks to piece together more complex
ones, and they are usually multi-round contextual. During data
collection, users rate individual robot responses as ‘good’ or ‘bad’
— good if the robot responded correctly to the most recent human
feedback (although it may not be successful at completing the entire
task yet), and bad otherwise. We find that the ratio of good chat
turn ratings correlates with task success (Fig. 3, bottom right).

A. Problem Statement

Our goal is to improve the teachability of LLMs that follow
human instructions and feedback to write robot code. Teachability is
defined as the average number of human inputs (chat turns) n before
the robot succeeds at the task. This metric measures how efficiently
the robot adapts to human inputs, and n = 1 is equivalent to a
standard zero-shot instruction following setting [33, 44]. To improve
teachability is to reduce the number of chat turns n before a desired
success rate, and can be viewed as a meta-learning objective – i.e.,
learning to learn faster from human feedback [26]. Intuitively, im-
proving teachability of a model should encourage its responsiveness
to feedback, as a means to maximize the likelihood of generating the
correct behavior (according to the user). Teachability can also reflect
how well a model adapts to preferences. For instance, user input

Fig. 3: Our chat interface (top left) allows non-experts to use language to teach
robots new behaviors (visualized in simulation, top right). Our LLM responds with
reward code, to drive real-time motion control of a simulated or real robot. Statistics
show that base model data meets expectations: successful teaching sessions take
fewer chat turns than failures (bottom left), and task success rates correlate with
fewer chat turns (r = −0.85, bottom middle) and higher good rating rates (i.e.,
responsiveness to feedback, r=0.92, bottom right).

“move a bit to the left” might yield different robot behavior modifi-
cations depending on the user – a strong meta-learner (with respect
to teachability) is one that can learn this difference to minimize the
number of interactions n, conditioned on with whom it interacts.

We formulate language-based human-robot interaction as a
partially observable Markov decision process, in which the policy
interacts with the human teacher (part of the environment) through
code that is executed via motion control on the robot (the action),
and the human gives natural language feedback (the observation)
and indicates the success of the teaching session (the reward). The
policy’s goal is to produce code that leads the robot to behave as in-
tended by the human, however, this target behavior has to be inferred
from the human feedback. Mathematically, st∈S is the unobserved
human (user) state at time t, human text inputs are observations
ot∈O of the state, and the agent (LLM) generates code as actions
at∈A according to a policy π(ot|o0,...,ot−1) that is then executed
on the robot.P(ot+1,rt|o≤t,a≤t,r<t) is the transition probability of
human interactions, and if at any time the user determines the task
is a “success”, the episode terminates with a sparse reward r= 1,
and the chat session terminates. If the robot struggles to improve
for more than 7 timesteps (chat turns, or (ot,at) tuples), then the
episode terminates as a “failure” (r = 0). Improving teachability
here can be defined as improving the ability of π to infer the target
behavior intended by the human, i.e. to discover shorter paths in the
POMDP to task success (i.e., human-labeled success r=1).

B. Fast Adaptation with In-Context Learning

Fast adaptation involves users providing multi-turn language
inputs to guide LLM outputs towards generating reward code to
elicit desired robot behavior(s). This is an interactive process – users
provide feedback based on observing robot behaviors online, rather
than labeling offline LLM data. In this work, fast adaptation is driven
by in-context learning, where the language model is conditioned
on a prompt that provides the initial tokens in the sequence

Fig. 4: Given a dataset of users teaching robots new tasks with language (represented
as text inputs and code outputs from online in-context learning – left), LMPC-
Rollouts is trained to predict subsequent inputs and outputs conditioned on the current
chat history (middle), and uses MPC (receding horizon control) for inference-time
search to return the next best action (with fewest expected corrections before success).
LMPC-Skip is an alternate variant that is trained to directly predict the last action
(right). Both LMPC variants accelerate fast robot adaptation via in-context learning.

x1:k = (x1,...,xk) and uses the model to complete xk+1:n. Our
in-context prompt uses PromptBook formatting [4], which contains
a description of the embodiment, the available robot APIs, as well
as 1-2 example episodes (chat sessions) between the user and LLM,
followed by the current chat session (full prompts in Appendix V-S).

We use an existing pre-trained LLM PaLM 2 [3], with which
using the above prompts yields non-zero initial task success rates
given feedback from the user. The code generated within each turn
can either be a single reward function, or a sequence of multiple
reward functions. See Section V-D for more details on how we
execute the generated code on both simulated and real-world robots.
Upon terminating a chat session, the interaction data is saved into
a cached dataset to be used for slow adaptation. Note that even with
human inputs, the model may struggle to perform certain tasks –
experiments in Section III-C show that slow adaptation is needed
to unlock fast adaptation on these tasks.

C. Slow Adaptation with Model Fine-Tuning

Gathering interaction data from in-context learning (fast adap-
tation) allows us to fine-tune the underlying LLM (slow adaptation)
to improve its ability to both write useful robot reward code and
respond to human feedback, and subsequently improve teachability.
In this work, we apply supervised fine-tuning (SFT) on our LLM,
using Language Model Predictive Control (LMPC). LMPC formu-
lates the human-robot exchange as a POMDP (see Section II-A),
with human text inputs as observations ot, and robot code outputs
as actions at. Each chat session terminates with a success or failure
reward r. We implement two variants of LMPC (depicted in Fig. 4):
(i) LMPC-Rollouts. Given the current chat session (system prompt
and current chat history), the LLM is trained to autoregressively
predict the rest of the chat session (sequence of ot and at’s, until
receiving a reward r at the end of the episode). For training,
the input to the LLM is the system prompt with the initial user
instruction; both are included because different robot embodiments
have different system prompts (robot APIs), and this allows the
LLM generation to support different robot APIs at inference time.
The target is for the LLM to predict any remaining portions of a chat
session, conditioned on the current portion. For inference, we sample
multiple trajectories from the finetuned model, select the trajectory
with the fewest chat turns to success, and return the first code in that
chat session. This is similar to Model Predictive Control, using the
finetuned LLM as a model of robot code and human feedback.

(ii) LMPC-Skip is a variant of LMPC-Rollouts with the same
training inputs, but different targets. LMPC-Skip is trained to predict
only the last action, skipping predictions of the interim trajectory (see
Fig 4, right). This encourages the finetuned model to predict the final
correct code as soon as possible e.g., optimizing for 1-turn success.
However, because LMPC-Skip is not trained on nor does it model
intermediate interactions with the user, it may be less responsive to
corrective feedback. During inference, we condition LMPC-Skip’s
generation on the system prompt with the chat session so far, and
only query the model once to generate a response. Both LMPC-Skip
and LMPC-Rollouts are only trained on successful chat sessions.

To further improve LLM teachability with fine-tuning, we
propose conditioning LLM generations, during both training and
inference, on the user. See more details inSection V-H

III. EXPERIMENTS

Our experiments evaluate how much the various proposed finetun-
ing strategies (slow adaptation) improve online in-context learning
(fast adaptation) for humans interactively teaching robots via natural
language feedback. Evaluations are performed on 78 robot tasks,
across 5 robot embodiments in simulation and 2 on real hardware.

All data collection and most evaluations were performed in sim-
ulations. All models were trained on data obtained with simulation.
We separately evaluate finetuned models on real robots, but we have
not experimented with training on data from teaching real robots.

A. Data Collection and Evaluation

To collect human teaching data and evaluate teaching perfor-
mance, we worked with 35 non-expert users, who were able to
collect 350 chat sessions per day. These users are non-experts: they
are not researchers or engineers, and they are not familiar with the
underlying LLMs or robot code. We instruct users to give natural
language feedback on the behavior of the robot for each chat turn,
instead of giving technical feedback or giving feedback on the code
written by the LLM. Data collection protocol details are in Appendix
V-E. When a user interacts with a new chat session, a random robot
embodiment and task is sampled, and the user is asked to teach the
robot that task. Data collection is separated into two phases: 1) initial
data collection with the base model and 2) subsequent data collection
(evaluations) with finetuned models. In phase 2, we randomly
sample which model the user interacts with, and the user does not
know which model they are currently engaging with. This allows
for blind A/B evaluations to minimize biases. For a given model,
the data collected can be used for both downstream finetuning and
evaluating the model. See more details in Section V-E.

B. Compared Methods

We compare performances across the base model (PaLM 2-S),
the two finetuned variants LMPC-Rollouts and LMPC-Skip, and a
Retrieval-Augmented Generation (RAG) [40] baseline. Comparing
LMPC-Rollouts and LMPC-Skip captures the difference between
finetuning the LLM to leverage and predict the entire human-robot
chat interaction, versus skipping to predicting the final robot-code
response. Comparing to RAG captures if the LLM’s improvement
in our domain is possible if we do not have access to model
weights or the resources needed for finetuning. For RAG, we use

Fig. 5: Our fine-tuned LLMs with LMPC-Rollouts and LMPC-Skip improve
the teachability of the base model (PaLM 2-S), and outperforms a RAG [40]
baseline across all embodiments. LMPC-Skip overfits to train tasks (left), while
LMPC-Rollouts generalizes better (i.e., more teachable and responsive to feedback)
on unseen test tasks (right) for multi-turn sessions (with more than one chat turn).

a pretrained embedding model to retrieve relevant examples from
the training data then inserting them into the LLM context, similar
to other RAG applications for adapting robot behavior [75]. See
implementation details in the Appendix V-I.

C. Experiment Results

We evaluate the LLM’s teachability as task-success for<N user
interactions or “chat turns". This is visualized in a curve in Fig. 5,
where each point indicates the proportion of chat sessions that
achieved success (y-axis) with equal to or less than a certain number
of chat turns (x-axis). Models that have better teachability would
have a curve that is higher and to the left.

Fig. 5 reports the main teachability results aggregated over all
embodiments for the base PaLM 2-S model, the finetuned models
LMPC-Rollouts and LMPC-Skip, and the base model with RAG.
Through finetuning, models are able to exceed teachability perfor-
mance of the base model. On train tasks, LMPC-Skip performs the
best. On test tasks, LMPC-Rollouts perform the best, improving
success rate over the base model by 27%. Both models also reach
high success rates faster than the base model - matching or exceeding
the final success rate of the base model after just one chat turn. While
LMPC-Skip achieves the higher 1-turn success rate than LMPC-
Rollouts on test tasks, the order flips starting at 2 chat turns. This sug-
gests that LMPC-Rollouts is more amenable to improvements from
user feedback. RAG performs competitively over the base model,
but it trails behind the finetuned methods in both train and test tasks.

See additional experiment results, analyses, and ablations in
Appendix V-G.

IV. CONCLUSION

We introduce a method that improves the teachability of LLMs
by 1) formulating human-robot interaction as a POMDP and
2) performing Language Model Predictive Control with LLMs
finetuned to predict the dynamics of human-robot interactions.
LMPC can learn to learn faster from human feedback, and we
observe performance gains on test tasks and test robot embodiments.
Our approach improves the teaching experience of non-expert users,
and it can be deployed in both simulation and in the real world.

REFERENCES
[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,

Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol
Hausman, et al. Do as i can, not as i say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691, 2022.

[2] Ahmed Akakzia, Cédric Colas, Pierre-Yves Oudeyer, Mohamed Chetouani,
and Olivier Sigaud. Grounding language to autonomously-acquired skills via
goal generation. arXiv:2006.07185, 2020.

[3] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. Palm 2 technical report. arXiv preprint arXiv:2305.10403, 2023.

[4] Montserrat Gonzalez Arenas, Ted Xiao, Sumeet Singh, Vidhi Jain, Allen Z
Ren, Quan Vuong, Jake Varley, Alexander Herzog, Isabel Leal, Sean Kirmani,
et al. How to prompt your robot: A promptbook for manipulation skills with
code as policies. In Towards Generalist Robots: Learning Paradigms for
Scalable Skill Acquisition@ CoRL2023, 2023.

[5] Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic
parsers for mapping instructions to actions. Transactions of the Association
for Computational Linguistics (TACL), 1:49–62, 2013.

[6] F Gregory Ashby and James T Townsend. Varieties of perceptual independence.
Psychological review, 93(2):154, 1986.

[7] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson
Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv
preprint arXiv:2212.08073, 2022.

[8] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph
Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog,
Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas Jackson, Sally
Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang,
Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha
Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta,
Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh Sontakke,
Austin Stone, Clayton Tan, Huong Tran, Vincent Vanhoucke, Steve Vega,
Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna
Zitkovich. Rt-1: Robotics transformer for real-world control at scale, 2023.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[10] Ken Caluwaerts, Atil Iscen, J Chase Kew, Wenhao Yu, Tingnan Zhang, Daniel
Freeman, Kuang-Huei Lee, Lisa Lee, Stefano Saliceti, Vincent Zhuang, et al.
Barkour: Benchmarking animal-level agility with quadruped robots. arXiv
preprint arXiv:2305.14654, 2023.

[11] Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh,
Pierre Richemond, James McClelland, and Felix Hill. Data distributional
properties drive emergent in-context learning in transformers. Advances in
Neural Information Processing Systems, 35:18878–18891, 2022.

[12] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha
Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision
transformer: Reinforcement learning via sequence modeling. Advances in
neural information processing systems, 34:15084–15097, 2021.

[13] Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and
Dario Amodei. Deep reinforcement learning from human preferences, 2023.

[14] Geoffrey Cideron, Mathieu Seurin, Florian Strub, and Olivier Pietquin.
Self-educated language agent with hindsight experience replay for instruction
following. DeepMind, 2019.

[15] John D. Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick Altieri, John
DeNero, Pieter Abbeel, and Sergey Levine. Guiding policies with language
via meta-learning. In International Conference on Learning Representations
(ICLR), 2019.

[16] Yuchen Cui, Siddharth Karamcheti, Raj Palleti, Nidhya Shivakumar, Percy
Liang, and Dorsa Sadigh. No, to the right – online language corrections
for robotic manipulation via shared autonomy. In Proceedings of the 2023
ACM/IEEE Conference on Human-Robot Interaction (HRI), 2023.

[17] Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi Zhang. Task and motion
planning with large language models for object rearrangement. arXiv preprint
arXiv:2303.06247, 2023.

[18] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha
Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong,
Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet, Daniel
Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e:
An embodied multimodal language model, 2023.

[19] Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural
machine translation. arXiv preprint arXiv:1702.01806, 2017.

[20] Edith Galy, Julie Paxion, and Catherine Berthelon. Measuring mental workload
with the nasa-tlx needs to examine each dimension rather than relying on the
global score: an example with driving. Ergonomics, 61(4):517–527, 2018.

[21] Prasoon Goyal, Scott Niekum, and Raymond J Mooney. Pixl2r: Guiding
reinforcement learning using natural language by mapping pixels to rewards.
arXiv:2007.15543, 2020.

[22] Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova,
Lotte Weerts, Abhishek Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang,
Chenjie Gu, et al. Reinforced self-training (rest) for language modeling. arXiv
preprint arXiv:2308.08998, 2023.

[23] S. G. Hart. Nasa-task load index (nasa-tlx); 20 years later. Proceedings of
the 50th HFES Conference, pages 904–908, 2006.

[24] Alexander Herzog, Kanishka Rao, Karol Hausman, Yao Lu, Paul Wohlhart,
Mengyuan Yan, Jessica Lin, Montserrat Gonzalez Arenas, Ted Xiao, Daniel
Kappler, Daniel Ho, Jarek Rettinghouse, Yevgen Chebotar, Kuang-Huei Lee,
Keerthana Gopalakrishnan, Ryan Julian, Adrian Li, Chuyuan Kelly Fu, Bob
Wei, Sangeetha Ramesh, Khem Holden, Kim Kleiven, David Rendleman,
Sean Kirmani, Jeff Bingham, Jon Weisz, Ying Xu, Wenlong Lu, Matthew
Bennice, Cody Fong, David Do, Jessica Lam, Yunfei Bai, Benjie Holson,
Michael Quinlan, Noah Brown, Mrinal Kalakrishnan, Julian Ibarz, Peter Pastor,
and Sergey Levine. Deep rl at scale: Sorting waste in office buildings with
a fleet of mobile manipulators, 2023.

[25] Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural
instructions: Tuning language models with (almost) no human labor. arXiv
preprint arXiv:2212.09689, 2022.

[26] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey.
Meta-learning in neural networks: A survey. IEEE transactions on pattern
analysis and machine intelligence, 44(9):5149–5169, 2021.

[27] Taylor Howell, Nimrod Gileadi, Saran Tunyasuvunakool, Kevin Zakka, Tom
Erez, and Yuval Tassa. Predictive sampling: Real-time behaviour synthesis
with mujoco. arXiv preprint arXiv:2212.00541, 2022.

[28] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685, 2021.

[29] Hengyuan Hu and Dorsa Sadigh. Language instructed reinforcement learning
for human-ai coordination. In 40th International Conference on Machine
Learning (ICML), 2023.

[30] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language
models as zero-shot planners: Extracting actionable knowledge for embodied
agents. In International Conference on Machine Learning, pages 9118–9147.
PMLR, 2022.

[31] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence,
Andy Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner
monologue: Embodied reasoning through planning with language models.
arXiv preprint arXiv:2207.05608, 2022.

[32] Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni.
Compositionality decomposed: How do neural networks generalise?
Journal of Artificial Intelligence Research, 67:757–795, 2020.

[33] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey
Lynch, Sergey Levine, and Chelsea Finn. Bc-z: Zero-shot task generalization
with robotic imitation learning, 2022.

[34] Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn.
Language as an abstraction for hierarchical deep reinforcement learning.
NeurIPS, 2019.

[35] Siddharth Karamcheti, Edward C. Williams, Dilip Arumugam, Mina Rhee,
Nakul Gopalan, Lawson L. S. Wong, and Stefanie Tellex. A tale of two draggns:
A hybrid approach for interpreting action-oriented and goal-oriented instruc-
tions. In First Workshop on Language Grounding for Robotics @ ACL, 2017.

[36] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland,
Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen
Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.

[37] Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy. Toward
understanding natural language directions. In Human-Robot Interaction, pages
259–266, 2010.

[38] Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward
design with language models. In International Conference on Learning
Representations (ICLR), 2023.

[39] Minae Kwon, Hengyuan Hu, Vivek Myers, Siddharth Karamcheti, Anca
Dragan, and Dorsa Sadigh. Toward grounded commonsense reasoning. In
2024 IEEE International Conference on Robotics and Automation (ICRA),
2024. URL arXivpreprintarXiv:2306.08651.

[40] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir

arXiv preprint arXiv:2306.08651

Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive
nlp tasks. Advances in Neural Information Processing Systems, 33:9459–9474,
2020.

[41] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter,
Pete Florence, and Andy Zeng. Code as policies: Language model programs
for embodied control. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 9493–9500. IEEE, 2023.

[42] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep
Biswas, and Peter Stone. LLM+P: Empowering large language models with
optimal planning proficiency. arXiv preprint arXiv:2304.11477, 2023.

[43] Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob
Andreas, Edward Grefenstette, Shimon Whiteson, and Tim Rocktäschel. A
survey of reinforcement learning informed by natural language, 2019.

[44] Corey Lynch and Pierre Sermanet. Language conditioned imitation learning
over unstructured data, 2021.

[45] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert
Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar.
Eureka: Human-level reward design via coding large language models. arXiv
preprint arXiv:2310.12931, 2023.

[46] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox. Learning to parse natural
language commands to a robot control system. In International Symposium
on Experimental Robotics (ISER), 2012.

[47] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin:
A benchmark for language-conditioned policy learning for long-horizon robot
manipulation tasks. IEEE Robotics and Automation Letters, 7(3):7327–7334,
2022.

[48] Suvir Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. Ella: Exploration
through learned language abstraction, October 2021.

[49] Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess,
Montserrat Gonzalez Arenas, Kanishka Rao, Dorsa Sadigh, and Andy
Zeng. Large language models as general pattern machines. arXiv preprint
arXiv:2307.04721, 2023.

[50] Dipendra Misra, John Langford, and Yoav Artzi. Mapping instructions and
visual observations to actions with reinforcement learning. arXiv:1704.08795,
2017.

[51] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
et al. Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

[52] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever. Language models are unsupervised multitask learners.
2018. URL https://d4mucfpksywv.cloudfront.net/better-language-models/
language-models.pdf.

[53] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer. The Journal of
Machine Learning Research, 21(1):5485–5551, 2020.

[54] Allen Z. Ren, Anushri Dixit, Alexandra Bodrova, Sumeet Singh, Stephen Tu,
Noah Brown, Peng Xu, Leila Takayama, Fei Xia, Jake Varley, Zhenjia Xu,
Dorsa Sadigh, Andy Zeng, and Anirudha Majumdar. Robots that ask for help:
Uncertainty alignment for large language model planners, 2023.

[55] Hao Sha, Yao Mu, Yuxuan Jiang, Li Chen, Chenfeng Xu, Ping Luo,
Shengbo Eben Li, Masayoshi Tomizuka, Wei Zhan, and Mingyu Ding.
Languagempc: Large language models as decision makers for autonomous
driving, 2023.

[56] Pratyusha Sharma, Balakumar Sundaralingam, Valts Blukis, Chris Paxton,
Tucker Hermans, Antonio Torralba, Jacob Andreas, and Dieter Fox. Correcting
robot plans with natural language feedback. arXiv preprint arXiv:2204.05186,
2022.

[57] Roger N Shepard and Jih-Jie Chang. Stimulus generalization in the learning
of classifications. Journal of Experimental Psychology, 65(1):94, 1963.

[58] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where
pathways for robotic manipulation. In CoRL, 2021.

[59] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu,

Jonathan Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg.
Progprompt: Generating situated robot task plans using large language models.
In 2023 IEEE International Conference on Robotics and Automation (ICRA),
pages 11523–11530. IEEE, 2023.

[60] Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta
Baral, and Heni Ben Amor. Language-conditioned imitation learning for robot
manipulation tasks. NeurIPS, 2020.

[61] Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe,
Chelsea Voss, Alec Radford, Dario Amodei, and Paul Christiano. Learning
to summarize from human feedback, 2022.

[62] Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bhagavatula, Yoav Goldberg,
Yejin Choi, and Jonathan Berant. CommonsenseQA 2.0: Exposing the limits
of AI through gamification. arXiv preprint arXiv:2201.05320, 2022.

[63] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew Walter, Ashis
Banerjee, Seth Teller, and Nicholas Roy. Understanding natural language
commands for robotic navigation and mobile manipulation. In AAAI, 2011.

[64] Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and
Cynthia Matuszek. Robots that use language. Annual Review
of Control, Robotics, and Autonomous Systems, 3(1):25–55,
2020. doi: 10.1146/annurev-control-101119-071628. URL
https://doi.org/10.1146/annurev-control-101119-071628.

[65] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012. doi:
10.1109/IROS.2012.6386109.

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

[67] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems,
35:24824–24837, 2022.

[68] Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran
Song, Jeannette Bohg, Szymon Rusinkiewicz, and Thomas Funkhouser.
Tidybot: Personalized robot assistance with large language models. arXiv
preprint arXiv:2305.05658, 2023.

[69] Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh.
Translating natural language to planning goals with large-language models.
arXiv preprint arXiv:2302.05128, 2023.

[70] Takuma Yoneda, Jiading Fang, Peng Li, Huanyu Zhang, Tianchong Jiang,
Shengjie Lin, Ben Picker, David Yunis, Hongyuan Mei, and Matthew R. Walter.
Statler: State-maintaining language models for embodied reasoning, 2023.

[71] Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee,
Montse Gonzalez Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard
Hasenclever, Jan Humplik, et al. Language to rewards for robotic skill
synthesis. arXiv preprint arXiv:2306.08647, 2023.

[72] Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar,
Jing Xu, and Jason Weston. Self-rewarding language models. arXiv preprint
arXiv:2401.10020, 2024.

[73] Eric Zelikman, Qian Huang, Gabriel Poesia, Noah D Goodman, and Nick
Haber. Parsel: A (de-) compositional framework for algorithmic reasoning
with language models. arXiv preprint arXiv:2212.10561, 2023.

[74] Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian
Wong, Stefan Welker, Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas
Sindhwani, Johnny Lee, Vincent Vanhoucke, and Pete Florence. Socratic
models: Composing zero-shot multimodal reasoning with language. arXiv
preprint arXiv:2204.00598, 2022.

[75] Lihan Zha, Yuchen Cui, Li-Heng Lin, Minae Kwon, Montserrat G. Arenas,
Andy Zeng, Fei Xia, and Dorsa Sadigh. Distilling and retrieving generalizable
knowledge for robot manipulation via language corrections. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), 2024. URL
https://arxiv.org/abs/2311.10678.

[76] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning
fine-grained bimanual manipulation with low-cost hardware. arXiv preprint
arXiv:2304.13705, 2023.

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.1146/annurev-control-101119-071628
https://arxiv.org/abs/2311.10678

AUTHORSHIP AND ACKNOWLEDGMENTS

Acknowledgements. We thank John Guilyard for his expert
animations, Giles Ruscoe for beautiful renderings, and Anirudha
Majumdar for help on writing. We thank Steven Bohez, Yuval Tassa,
Tom Erez, Murilo Martins, Rugile Pevceviciute, David Rendleman,
and Connor Schenck for their dedication to ensuring we had strong
simulated environments. We thank Travis Armstrong, Noah Brown,
Spencer Goodrich, Craig Hickman, Atil Iscen, Jerad Kirkland, Jason
Powell, Stefano Saliceti, Ron Sloat, Sergey Yaroshenko, Eddie Yu,
Grace Vesom, and Jake Varley for additional robot platform support
and robot lab operations. Special thanks to Michael Ahn, Kendra
Byrne, Aleksandra Faust, René Wagner, Yuheng Kuang, Yao Lu,
Yansong Pang, and Zhuo Xu for supporting this project.

We thank all the users who volunteered to collect the robot
teaching data. We also thank the Google DeepMind Visualization
and Human Interaction teams for their help with the development
and support of the chat interface. We also want to thank the
entire Google DeepMind Robotics team whose tireless efforts
can be traced to additional support on this paper. This includes
Administrative, Product, Programs, and Strategy teams whose
contributions impact all of the team’s successes. We also want to
thank our friends in Google DeepMind and Google Research for
their guidance, inspirational research, and even direct contributions.
Program Leads
This project is part of the Google DeepMind 2023 program
"ApprenticeBots," an interactive embodied AI moonshot with the
mission statement: "anyone can teach a robot, and a robot that can
learn from anyone."
Carolina Parada, Director
Nik Stewart, Technical Program Manager
Jie Tan, Team Lead
Technical Leads
Andy Zeng, Research Lead
Wenhao Yu, Fei Xia, Data Collection & Teaching Leads
Jacky Liang, Model Training & Improvement Lead
Jasmine Hsu, Data & Logging Lead
Peng Xu, Infrastructure Lead
Ben Jyenis, Operations Lead
Erik Frey, Simulation Lead
Operations
Ben Jyenis, Travis Armstrong, Head of operations
Jasmine Hsu, Jacky Liang, Data collection monitoring
Wenhao Yu, Pilot studies for Robot Dog
Fei Xia, Pilot studies for Mobile Manipulator
Baruch Tabanpour, Pilot studies for Aloha
Maria Attarian, Jonathan Tompson, Pilot studies for Bi-arm Kuka
Joss Moore, Maria Bauza, Pilot studies for Kuka+Hand
Contributors: Maria Attarian, Ken Caluwaerts, Jasmine Hsu, Jacky
Liang, Assaf Hurwitz Michaely, Jonathan Tompson, Fei Xia,
Wenhao Yu, Andy Zeng, Tingnan Zhang
Data Logging Infrastructure
Jasmine Hsu, Ken Caluwaerts, Datasets and dashboards

Peng Xu, Assaf Hurwitz Michaely, Jacky Liang, Materialization
Contributors: Adil Dostmohamed, Marissa Giustina, Nikhil Joshi,
Jacky Liang, Quan Vuong, Tingnan Zhang
Model Serving Infrastructure
Assaf Hurwitz Michaely, Ying Xu, Core contributors
Jasmine Hsu, Ken Caluwaerts, Adil Dostmohamed, LLM Chat UI
Contributors: Jacky Liang, Allen Ren, Andy Zeng, Tingnan Zhang
Model Training Infrastructure
Core contributors: Assaf Hurwitz Michaely, Jacky Liang, Peng Xu,
Andy Zeng, Jasmine Hsu, Edward Lee
Contributors: Quan Vuong, Tingnan Zhang
Evaluations & Analysis
Jacky Liang, Technical Lead
Leila Takayama, Human-Robot Interaction Lead
Contributors: Alex Bewley, Keerthana Gopalakrishnan, Jasmine
Hsu, Jacky Liang, Assaf Hurwitz Michaely, Dorsa Sadigh, Fei Xia,
Ted Xiao, Andy Zeng, Tingnan Zhang
Prompt Engineering
Maria Bauza, Marissa Giustina, Kuang-Huei Lee, Jacky Liang, Joss
Moore, Dushyant Rao, Baruch Tabanpour, Fei Xia, Wenhao Yu,
Andy Zeng
Simulation & MJPC
Maria Attarian, Ken Caluwaerts, Erik Frey, Chuyuan Kelly Fu,
Nimrod Gileadi, Leonard Hasenclever, Jan Humplik, Nikhil Joshi,
Ben Jyenis, Joss Moore, Dushyant Rao, Baruch Tabanpour, Fei Xia,
Ted Xiao, Wenhao Yu, Tingnan Zhang
Robot-Specific Infrastructure
Robot Dog: Ken Caluwaerts, Marissa Giustina, Chase Kew, Ken
Oslund, Wenhao Yu Tingnan Zhang,
Mobile Manipulator: Fei Xia, Chuyuan Kelly Fu
Aloha: Baruch Tabanpour, Jonathan Tompson, Erik Frey
Bi-arm Kuka: Maria Attarian
Kuka+Hand: Maria Bauza, Joss Moore, Dushyant Rao, Nimrod
Gileadi
Real Robot Deployment & Policy Distillation
Ken Caluwaerts, Chuyuan Kelly Fu, Leonard Hasenclever, Jan
Humplik, Chase Kew, Sean Kirmani, Kuang-Huei Lee, Ken Oslund,
Allen Ren, Jonathan Tompson, Quan Vuong, Fei Xia, Ted Xiao,
Zhuo Xu, Wenhao Yu, Tingnan Zhang
Advising
Alex Bewley, Erik Frey, Leonard Hasenclever, Jasmine Hsu, Jan
Humplik, Brian Ichter, Kuang-Huei Lee, Jacky Liang, Carolina
Parada, Dushyant Rao, Dorsa Sadigh, Nik Stewart, Leila Takayama,
Jie Tan, Fei Xia, Ted Xiao, Peng Xu, Wenhao Yu, Andy Zeng,
Tingnan Zhang
Additional Contributions
Authorship and Acknowledgments: Nik Stewart
Paper Content and Web Posts: Carolina Parada, Andy Zeng,
Wenhao Yu, Jacky Liang, Fei Xia, Tingnan Zhang
Steering: Carolina Parada, Nik Stewart, Izhak Shafran, Vincent
Vanhoucke, Maja Mataric, Leila Takayama, Jie Tan, Dorsa Sadigh,
Andy Zeng, Wenhao Yu, Jacky Liang, Fei Xia, Tingnan Zhang

V. APPENDIX

We organize the appendix as follows:
• Related Works
• Limitations
• Details on LMPC
• Details on MJPC
• Details on data collection (e.g., chat UI), and evaluation protocol

(e.g., task sampling). Section V-E
• Additional results and evaluations in Section V-G.
• Details on top-users conditioning (Section V-H): how they are

autonomously selected, quantitative and qualitative analysis on
how top-user teaching data differs from other users.

• Retrieval baseline details (Section V-I) and data augmentation
(Section V-J).

• Quantitative analysis of chat feedback embeddings (Section V-K).
• Real robot experiments details (Section V-L) including model

training and deployment (Section V-M).
• User studies and performance drift Section V-N.
• Failure mode analysis Section V-O.
• Model performance on existing code-writing benchmarks

Section V-P.
• Robot-specific embodiment details (Section V-Q), tasks

(Section V-R), and prompts (Section V-S).

A. Related Work

Language and Robotics. A large body of work integrates
language and robotics, including mapping language to planning
primitives [63, 37, 46, 5, 35], imitation learning from demonstrations
along with language instructions [33, 44, 58, 60, 47], learning
language-conditioned reward functions [48, 34, 21, 14, 50, 2],
and using language as corrective feedback to adapt or define new
behaviors [75, 16, 15]. We refer the reader to comprehensive surveys
for a more complete review of prior work in this area [64, 43].

Recently, LLMs trained on Internet-scale data have been
shown to exhibit profound capabilities ranging from step-by-step
planning [1, 30, 18, 69, 17, 42, 68, 54], writing robot code
[41, 59, 73, 70, 4, 49], commonsense reasoning [62, 39], and acting
as a proxy reward function capturing human preferences [38, 29, 71].
In this work, we are also interested in leveraging the power of LLMs
for adapting and teaching new behaviors via language feedback
[56, 74, 54, 75, 31] – but in contrast to prior work, we focus on
not only evaluating online adaptation via in-context learning (e.g.,
prompting LLMs), but also on how we can improve that adaptation
via offline model fine-tuning.
In-Context Learning for Robot Adaptation. In-context learning
is a form of supervised meta-training [9], where multiple examples
and instructions [51] from the same dataset are packed sequentially
into a context buffer that is fed as input to an LLM with an unsuper-
vised autoregressive completion objective [66]. The instructions and
examples specify tasks (extending the concept of “task prefixes”, i.e.,
predefined token sequences [53, 52]), where the model is expected to
complete further instances of the task by predicting what comes next.

In robotics, in-context learning (via prompting) has been used to
elicit a wide-range of capabilities – responding to feedback [74, 31],
modifying low-level behaviors [71, 55, 49, 4, 38], remembering

and applying user preferences [68], and asking for help [54]. Most
related to our work is Zha et al. [75], which investigates robot
teaching by summarizing human feedback, and indexing it in
memory to be used again as in-context examples for similar future
interactions via retrieval (e.g., retrieval augmented generation
(RAG) [40]). In contrast, we focus on directly fine-tuning the
underlying LLM to improve in-context learning from human
language inputs (which can be multi-round contextual). We find
finetuning exceeds the performance of retrieval-based methods for
teaching unseen tasks – without additional external modules.
Improving LLM Alignment to User Feedback. Our work builds
on an active area of research to align LLMs with user intent [51].
A common approach is to supervised fine-tune (SFT) the model
on expert human inputs and outputs, then use non-expert labeled
rankings (preferences) from model outputs to train reward models
for reinforcement learning from human feedback (RLHF) [13, 61, 7].
However, these works often focus on mapping from single user
inputs to preferred outputs (e.g., single-turn dialogue). In this work,
we also investigate learning from human feedback, but we focus on
improving the teachability of LLMs that write and improve robot
code based on multi-turn, interactive human feedback. Our LMPC
approach uses SFT to model human-robot interaction dynamics, and
uses inference-time search and receding horizon control to discover
shorter paths (with fewer rounds of corrections) to task success.

B. Limitations

Despite the promising results, there are several limitations to our
work that can point to potential future research. Some limitations
stem from resource availability. We assume access to sufficient
computational resources both for MJPC (e.g. 128 CPU cores) and
for LLM finetuning. More efficient MPC and finetuning techniques
(e.g. LoRA [28]) would help.

Other limitations relate to the foundation model. We assume
that the base LLM can generate some positive chat sessions for
bootstrapping the learning process. We also only use language
models; future work on expanding feedback modality (e.g. to
video/audio inputs) by using multimodal foundation models can
expand the richness of feedback as well as improve finetuned
models’ ability to predict human reactions to robot behavior. Lastly,
our approach currently observes no benefit from learning across
multiple in-context learning and fine-tuning cycles. Adapting the
data distribution, through methods like active task exploration or
synthetic data generation, may unlock additional performance gains.

C. LMPC Details

We only train LMPC-Rollouts on successful trajectories (training
on both successes and failures yielded much worse performance.
See Appendix V-G). Training Transformers with causal attention
on entire chat sessions (time-ordered sequences of observations
and actions, one session per context) directly amounts to training
a sequence-conditioned transition dynamics model of the POMDP.
This dynamics model is used for search during inference.

A key aspect of LMPC is that at inference time, the fine-tuned
LLM is used as a transition model together with model predictive
control (MPC) to discover optimal paths to success. MPC can
be thought of as a sequence-level decoding strategy [19], but

differs from standard ones used in modern language models as
it generates multiple episodic rollouts to search for the next best
action, and repeats the process at every decision-making step. To do
so, we sample from the LLM 8 rollouts with non-zero temperature
sampling (next-token decoding) for a max token length of 4096.
If a sampled trajectory reaches termination within the max token
length, we treat it as successful, since LMPC-Rollouts is only
trained on successful data. From these terminated samples, we
choose the trajectory with the fewest predicted timesteps (i.e., chat
turns) and return its first action, as shown in Fig 4 (center). If no
sample terminates, then we randomly pick a trajectory and return
its at+1. This process is then repeated given new human input
for every chat turn. Intuitively, LMPC-Rollouts can be thought
of as training the LLM via human-robot interaction as a form of
chain-of-thought [67] during both training and inference — rather
than cloning successful code, LMPC learns the process of getting
to the correct code, and accelerating it via search at inference time.

D. Real-Time Motion Control with MJPC.

We use robot reward code as an interface between LLM and robot
actions. This leverages the effective high-level reasoning capabilities
of LLMs to translate user intent into semantically meaningful reward
functions, which are then used to drive low-level motion control
for the robot in real-time, providing immediate visual feedback to
the user. Specifically, our approach builds on Yu et al. [71] where
given a reward function generated by the LLM, we use MuJoCo
Model Predictive Control (MJPC)2[27] to synthesize robot motion.
MJPC runs a receding horizon trajectory optimization algorithm
to find an action sequence that maximizes the reward in real-time.
This enables near real-time interactions between users and robots.

Our code format extends Yu et al. [71] with 2 notable changes
to expand the expressiveness of behaviors across embodiments: (i)
Yu et al. [71] relied on two prompts to respond to task commands
- one to generate high-level motion descriptions in natural language,
and another to convert those into reward code. In our approach, we
only use one prompt that embeds motion descriptions as comments
interspersed between the lines of the reward code. This Chain-of-
Thought style prompting simplifies reward code writing and enables
more flexible code generation. (ii) Yu et al. [71] can only specify one
reward function (robot behavior) at a time. In our approach, the LLM
can sequence multiple reward functions together by writing condi-
tion functions that signify when the robot should transition from one
reward function to the next. Here is an example of an LLM response
to a task that involves transferring an object from one arm to another:
To pick up the apple, bring it close to the left gripper.
min_L2_dist(obj1=‘left_hand’, obj2=‘apple’, weight=5.0)
To lift up the apple, get its position and increment along z.
pos = get_obj_pos(obj=‘apple’)
set_target_pos(obj=‘apple’, (pos[0], pos[1], pos[2] + 0.25))
Wait until the apple is in the air.
def condition_fn():

return get_obj_pos(obj=‘apple’)[2] >= 0.25
wait_until_condition(condition_fn)
To hand over the apple, bring it close to the right gripper.
min_L2_dist(obj1=‘apple’, obj2=‘right_hand’, weight=5.0)
Now let go of the apple with the left gripper.
min_L2_dist(obj1=‘left_hand’, obj2=‘apple’, weight=0.0)

2https://github.com/google-deepmind/mujoco_mpc

Functions such as min_L2_dist and set_target_pos directly set
reward terms for real-time MJPC, which returns high-rate low-level
action trajectories that maximize rewards.
Sim2Real Transfer. Despite MJPC working well in simulation,
it requires precise state estimation, which is computationally
expensive, and poses notable challenges when deploying it directly
in the real-world. To apply MJPC to real robotic control, prior
work used MJPC as a motion planner (MJPC-as-planner) and
deployed it to a real mobile manipulator robot [71]. However, the
same approach does not work for robots that require high-frequency
feedback such as quadruped robots. To enable real-world teaching
on quadruped robots, we develop a policy distillation pipeline to
train low-level end-to-end policies that are conditioned on cost
terms generated by reward code. This can be thought of as training
multi-task policies conditioned on latent task descriptors, which
serve as an interface between high and low level control. In our
experiments, we use policy distillation for real results on the
quadruped robot, and the MJPC-as-planner approach [71] for the
mobile manipulator robot. We defer additional details in policy
distillation and MJPC-as-planner deployment to the Appendix V-L.

E. Data Collection and Evaluation Details

Out of the 78 tasks, 51 are train tasks (65%), while 27 are test
(35%). While separating tasks into train and test splits allows us
to measure model generalization performance, it also means there
are less data available for training. To address this and also to make
the data distribution robust to user teaching noise, data collection
and evaluation of models are typically aggregated across 2 days.
Additional data filtering were performed to remove invalid and
incorrect data (<4%). In total, 299 successful chat sessions from
the initial data collection were made available for fine-tuning.
Across chat sessions, the max total token length is 3900, with 1800
as the median. Given the limited amount of data, and to make LLM
responses more robust to small differences in user feedback, we
perform data augmentation on the collected data. This is done by
generating 5 variations of user instructions (as well as intermediate
feedbacks for training LMPC-Rollouts) using PaLM 2-L. We do
not generate variations of the robot code. Combining the augmented
and the original data, the training set contains about 3M tokens.

For evaluations, we collect approximately 350 chat sessions for
all model variants we evaluate, split across all platforms and tasks.
We observe minimal user performance drift over time (see Appendix
V-N), so differences in model performance are likely due to changes
in model capabilities, and not in users’ teaching proficiency.

During data collection, non-expert users interact with the robot
using natural language through a browser-based chat UI (shown in
Fig. 3). The chat UI displays a user input box, the message history,
and a visualization of the simulated robot and its surroundings
using MuJoCo [65]. The human provides textual input and the
LLM replies to each subsequent user query with executable code.
The user can then select a button to either run the code in the
simulator to observe the resulting motion, or run it on a real robot.
The user can continue to provide feedback (which can be multi-turn
contextual) and continue modifying the behavior through text inputs
in the chat UI until the desired robot behavior is achieved. Each user
is remotely connected (via Remote Desktop) to one machine, drawn

from a shared pool of high performance machines (128 cores)
in the cloud. Machines with high core counts are necessary for
Mujoco’s MJPC [27] to synthesize robot motion at an interactive
rate – leading to better low-level robot behaviors and subsequently
user feedback data.

For each chat session, the user teaches the robot one task specified
via language e.g., teach the robot-dog to “sit down and give a
high-five.” For each chat turn (user-input, LLM-output pair), the
user has the option to rate the individual robot response as ‘good’
or ‘bad’. These single turn good rating rates (while not used
during training) help us evaluate responsiveness to feedback across
individual responses, and we find they are strongly correlated to task
success (see Fig. 3). Finally, users can label the entire chat session as
“success” by clicking a success button if the robot succeeded at the
task during the conversation, or “failure” if the task does not succeed
within 7 rounds of human input. Variation in success is expected, and
users are encouraged to rate success based on the observed behaviors
of the robot (as opposed to the accuracy of the code). After labeling a
chat session, the chat history UI refreshes, the robot simulator is reset,
and a new sampled task and embodiment is presented to the user.
Users are able to flag chat sessions in case of technical difficulties.

Our UI backend uses a Task Sampler, which is configured
to (i) randomly sample tasks from the set of 78 tasks across 5
embodiments (platforms illustrated in Fig. 1), and (ii) randomly
sample an LLM model to connect to. Users do not know which
model they speak to, which allows us to perform fair blind A/B
evaluations. All experiment numbers are computed with data
collected using this sampler.

From the perspective of users, our data collection protocol is
equivalent to our evaluation protocol – we train on data collected
from users interacting with the model(s) through the UI, and we
measure whether users believe the model(s) to have improved (via
statistics on good rating rates and session success labels) through the
UI with blind A/B evaluations. This deviates from the standard norm
in robot learning pipelines (e.g., 3-stage pipeline of collect data,
train, and evaluate), and presents practical infrastructure/operations
advantages (predominantly around simplicity).

To operationalize data collection, we started off with running
multiple pilot sessions with the users for each embodiment. These
pilot sessions were focused on introducing these 35 non-expert
users to the the chat UI, the type of tasks they are expected to teach,
and the MuJoCo simulation environment. After the pilot sessions
conclude, the users were tasked to contribute 10 chat sessions per
day on all embodiments through the task sampler, amounting to 350
chat sessions every day. The users were also asked to fill out a brief
questionnaire for a feedback after each day about their experience
on the data collection and the overall teaching session. To meet the
daily target of 350 chat sessions per day, it was important to maintain
participation from all of the users equally to obtain the expected
level of diversity in the data. We maintained consistent distribution
of number of chat sessions across multiple embodiments i.e. Robot
Dog, Mobile Manipulator, Aloha, Bi-arm Kuka, Kuka+Hand.

The users who participated in these experiments were 23-43 years
of age (M=30.5, SD=5.6), including 11 who identified as cisgender
women, 17 who identified as cisgender men, and 1 as non-binary.
They had a range of educational degrees (9 Associates degrees or
some college, 6 Bachelor of Arts, 11 Bachelor of Sciences, and

3 Masters degrees) – 14 non-technical and 15 technical. When
asked about their familiarity with the ML models on a scale of
1 (zero familiarity) to 5 (most familiar), 15 users reported 1 (zero
familiarity), 11 users reported 2, and 3 users reported 3; none of the
users reported to have more familiarity with ML models (4 or 5).

Fig. 6: Correlation of Operator Success Rate and Num Chat Turns until Failures

User Persistence Analysis. We plot the success rate of each
user against the mean number of chat turns in failed sessions across
each user in Fig. 6. The higher the mean number of chat turns for
failure, the more persistant the user was in teaching the robot (i.e.
the user did not give up early). These two quantities exhibit a slight
positive correlation, suggesting that on average, users who were
more persistant at teaching achieved slightly higher success rates.

F. Robot Embodiments and Tasks

In this section we give a brief overview of the 5 robot
embodiments in our experiments. We chose these embodiments
to explore teaching a diverse set of robot capabilities, from tasks
that require a single arm, to bi-manual tasks, and to dexterous and
locomotion tasks. See Fig. 1 for illustrations. We include the full
list of tasks each embodiment in the Appendix V-R.
1. Robot Dog. The first embodiment is a small custom quadruped
robot [10] with comparable dimension and weight to both Unitree
A1 and MIT Mini-Cheetah quadrupeds. Robot Dog has a total of 12
actuated degrees-of-freedom (DoF), 3 on each leg. Our tasks for the
Robot Dog range from stationary posing tasks, like sitting and high-
five, to more dynamic tasks, like trotting and door opening. We per-
form Robot Dog experiments in both simulation and the real world.
2. Mobile Manipulator In this embodiment, we use a mobile
manipulator [24] with a 7 DoF arm and parallel jaw grippers. We
explore tabletop manipulation tasks with rigid objects, such as
flipping and stacking objects. The Mobile Manipulator is also
available both in simulation and the real world.
3. Aloha. This is a bi-manual embodiment with two 6 DoF arms,
each attached with a parallel jaw gripper [76]. The two arms sit
directly opposite of each other on a table that has a set of rigid
household objects. We explore tasks that require coordination with
both arms, such as object transfers.
4. Bi-arm Kuka. Bi-arm Kuka consists of two 7 DoF Kuka
LBR IIWA14 arms without end-effectors. The omission of

Fig. 7: Tasks evaluated in the real-world Mobile Manipulator and Robot Dog.

end-effectors allows us to explore whole-body manipulation tasks
(e.g. manipulating objects with any part of the robot arm) with this
embodiment. We populate the workspace with boxes of different
sizes and colors, and the robot needs to manipulate individual or
sets of objects to desired goal locations (which may be on the
workspace surface or in the air) and in a given order.
5. Kuka+Hand. This embodiment comprises a 7 DoF Kuka arm
attached with a custom three-fingered hand. The full system is
controlled via torque control. Along with the arm, a set of rigid
objects is provided in the workspace. With Kuka+Hand, we explore
dexterous manipulation tasks that are difficult to perform with the
other manipulation embodiments, such as lifting multiple objects
in-hand and plug insertion.

G. Additional Results

Table I provides additional quantitative comparisons across all
models evaluated, including:
• Success Rate: overall success rate on all tasks and embodiments
• Num Chat Turns: mean number of chat turns for successful chat

sessions
• Good Rating Rate: proportion of positively rated chat turns after

the first chat turn (captures responsiveness to corrective feedback)
• Successful Tasks Rate: the proportion of tasks with at least one

successful chat session
• 1 turn Success Rate: proportion of chat sessions that were

successful with just one chat turn (1st instruction)
• 2+ turn Success Rate: proportion of chat sessions that were

successful with > 1 chat turns. This is the difference between
the overall success rate and 1 turn Success Rate

For both train and test tasks, LMPC-Skip achieves the lowest Num
Chat Turns for successful chat sessions, as well as the highest 1-turn
Success Rate. These reflect how LMPC-Skip is trained to predict
the final code as fast as possible. However, LMPC-Rollouts has
the highest 2+ turn Success Rate, suggesting it is most amenable to
corrective feedback given an incorrect first response. To maximize
performance in practice, these results suggest that one should
use LMPC-Skip for responding to the initial user instruction,
then LMPC-Rollouts for responding to subsequent user feedback.
For RAG, while the method improves upon the base model on
overall success rate, it achieves lower Successful Task Rate than
the base model on test tasks. This suggests that while RAG may
be proficient at increasing the success rate of tasks similar to the
retrieved examples, it struggles to perform well on novel tasks.

Effects of Top-User Conditioning. In Table II, we show the
change in task success when training without top-user conditioning
on 1) data from all users and 2) data from only top users. These
ablations were only performed on the Robot Dog and Mobile
Manipulator embodiments due to time constraints. From the
initial data collected on the base model, 10 out of 35 users were
identified as top-users, and they only covered 11 out of 50 train
tasks. However, despite this small coverage, top-user conditioning
significantly outperforms both variants of no top-user conditioning,
across model types (LMPC-Rollouts and LMPC-Skip) and task
types (train and test). This suggests that with top-user conditioning,
models can learn to transfer the style of responses induced by
top-users teaching to novel tasks. It also highlights the importance
of training the LLM to mimic generations from a high-quality
data distribution as well as across a diverse data distribution. See
Appendix V-H for analysis on the teaching styles of top-users.
Cross-Embodiment Generalization. Beyond evaluating
generalization towards test tasks, we also evaluate whether training
on a subset of embodiments would lead to improved performance
on new embodiments that the finetuned models were not trained
on. To the LLM, the difference in embodiment is captured through
the prompt, which contains different robot descriptions and APIs
for each embodiment. We performed an experiment where we train
the LMPC models on data from Robot Dog, Mobile Manipulator,
and Aloha, omitting Bi-arm Kuka and Kuka+Hand. See results
in Table IV, where we report success rate differences between the
finetuned models and the base model. We see improvements in
test embodiments of 18.6% for LMPC-Skip and 31.5% for LMPC-
Rollouts, suggesting that finetuned models generalize not only to
test tasks, but test robot embodiments as well. This generalization
is non-trivial as the embodiments have very different APIs from
each other, and the test embodiments require writing robot reward
code that can induce complex dexterous manipulation behaviors.
Real-world Evaluations. We evaluate our approach on a subset
of tasks for the Mobile Manipulator and the Robot Dog in the real
world (Fig. 7). For each task, we ask users to perform four teaching
sessions on the real-robot directly. See results that compare PaLM
2-S and LMPC-Rollouts in Table III. LMPC-Rollouts achieves
higher success rate than PaLM 2-S across all tasks. While Num
Chat Turns for successful sessions is about the same for PaLM 2-S
and LMPC-Rollouts on these tasks, LMPC-Rollouts achieves much
higher success rates. See more detailed comparisons between sim
and real executions in the Appendix V-L.
Multiple Fine-tune Iterations. Given that the finetuned models
exhibit improved teachability performance over the base model,
additional, iterative training with data collected with the finetuned
models could potentially further improve performance. We tested
this hypothesis by training Iteration 2 LMPC models with data
collected by the Iteration 1 models. Results are shown in Table V.
Currently, we do not observe further improvements from the second
iteration of finetuning. This implies that the data distribution or
data amount used to train the second iteration of models do not
differ significantly from that of the first iteration, so the resultant
model behaviors remain largely unchanged. While recent works
have demonstrated iterative self-improving finetuning for LLMs [72,

Tasks Model Success Rate Num Chat Turns Good Rating Rate Successful Tasks Rate 1 Turn Success Rate 2+ Turn Success Rate

Train PaLM 2-S 34.8% 2.3 16.7% 74.0% 13.0% 21.7%
RAG 46.4% 2.2 21.4% 83.3% 25.1% 21.2%
LMPC-Skip 56.0% 1.7 25.6% 83.3% 34.6% 21.4%
LMPC-Rollouts 51.9% 2.2 21.8% 74.0% 23.5% 28.4%

Test PaLM 2-S 39.4% 2.4 18.1% 81.5% 17.5% 21.9%
RAG 51.9% 2.0 20.9% 75.0% 27.9% 24.0%
LMPC-Skip 59.4% 1.6 24.7% 88.9% 41.7% 17.8%
LMPC-Rollouts 66.3% 1.9 26.5% 88.9% 34.8% 31.5%

TABLE I: Comparing base and finetuned models across all embodiments. Success: overall success rate on all tasks. Num Chat Turns: mean number of chat turns for successful
chat sessions. Good Rating: proportion of positively rated chat turns after the turn. Successful Tasks: proportion of tasks with at least one successful chat session. 1 turn Success:
the proportion of chat sessions that were successful with just one chat turn. 2+ turn Success: the proportion of chat sessions that were successful with two or more chat turns.

Data Model Train Tasks Test Tasks

All Users LMPC-Rollouts -8.4% -10.5%
LMPC-Skip -16.3% -26.1%

Only Top Users LMPC-Rollouts -23.8% -21.7%
LMPC-Skip -9.6% -13.6%

TABLE II: Changes in success rate without Top-User Conditioning. We evaluate two
variants of LMPC-Rollouts and LMPC-Skip that do not apply top-user conditioning:
training on data from all users and training on data from only top users. Success rates
degrade significantly for both variants, suggesting that 1) focusing LLM generation
on the style of top-users is important and 2) top-user data alone is insufficient, and
training on the wider data distribution of all users is still important.
25, 22], enabling LLM iterative improvement with human feedback
and grounded on robot code executions remain promising but under-
explored, and we defer this topic to future research.

Per Embodiment Evaluation. Fig. 8 shows our main
teachability result (Fig. 5) separated by embodiments. On test tasks,
models improved upon the base model the most in Aloha and
Bi-arm Kuka, while LMPC-Rollouts improved much higher on
Kuka with Hand than the other model.

Chat Duration Analysis. We measured and analyzed the dura-
tion of chat sessions and chat turns and compared them across differ-
ent embodiments and models. Chat turn duration measures the total
time it took for the model to respond, for the user to run the robot
code in simulation, for the user to observe the resulting robot behav-
ior, and for the user to input the subsequent language feedback. Fig. 9
shows the distribution of chat turn durations across both models and
embodiments. While there are no obvious differences in these distri-
butions, some are more long-tailed than others, and we see this in the
median statistics. In Table VI, we show the median durations for chat
sessions and chat turns across different embodiments. Kuka+Hand
and Bi-arm Kuka have significantly higher durations than other
embodiments. This reflects that these embodiments were likely more
difficult to teach (it took longer for users to respond) as well as taking
longer to simulate (they had tasks that had longer horizons than the
other embodiments). In Table VII, we compare the median durations
for LMPC-Rollouts and LMPC-Skip. LMPC-Rollouts has slightly
higher chat turn and chat session durations, and this difference re-
flects how inference (decoding the LLM for entire chat sessions) for
LMPC-Rollouts takes slightly longer than inference for LMPC-Skip.
Lastly, in Fig. 10, we show a small negative correlation between
task success rate and chat duration — the longer it takes for users to
complete a chat turn, the less likely it is for that task to be successful.

Training LMPC on Both Success and Failures. In principle,
LMPC-Rollouts (when viewed as a dynamics model) can be
trained on both success and failure data (since all chat turns are
valid transitions, regardless of whether the session ended in task

success). In this version, LMPC-rollouts also predicts (on trajectory
termination) whether the predicted rollout would lead to a success
or failure. Inference-time search would then be adjusted accordingly
to disregard sampled rollouts that ended in predicted failure. While
this remains an interesting aspect of LMPC-Rollouts, our main
experiments report results from training LMPC-Rollouts on success
data only (as a fair comparison with LMPC-Skip, which can only
be trained on success data), with which we do observe performance
improvements over mixing failure sessions into the training data
(results in Table VIII). We hypothesize that training LMPC-Rollouts
only on sessions that ended in task success yields more efficient
inference-time search, since the alternative of training on both
success and failure sessions leads to more unused predicted rollouts
that terminate with failure.

H. Top-Users and Details on Autonomous Top-Users Selection

For training, we modify the input prompt to include which
user generated the following chat session using a unique ID label.
Top-users are autonomously identified from the training dataset
and are given a special ID “top-user." During inference, we always
condition LLM generations on the “top-user" label. We identify
top-users as the top 25% of users by their user performance score.
This score is the average of a user’s task success rate weighted by
task difficulty, which is the task’s failure rate across all users.

Top-user conditioning, in the context of LMPC, can be interpreted
as conditioning the LLM to generate the distribution of observations
ot (expected human inputs) and actions at (expected code outputs)
closest to the top 75th percentile of users. Intuitively, if observations
are viewed as a partial noisy representation of the true (user) state
(or intent, during teaching), then different user proficiency levels can
correspond to a varying amount of noise (i.e., higher proficiency is
less noise), to which conditioning on top-users prompts the LLM to
generate rollouts with less noise. Top-user conditioning draws simi-
larity to performance conditioning with Decision Transformers [12],
albeit (in the absence of dense rewards) using inference-time search
via MPC. Note that top-user conditioning can broadly index distri-
butions that represent a wide range of user-related attributes (e.g.,
preferences, user-specific styles, etc.), expanding beyond the scope
of what performance conditioning on rewards alone can provide.

We identify top-users by evaluating how well they perform
on training tasks (Appendix Section V-R), weighted by task
difficulty. Let there be N tasks and K users. Let s(n,k) denote
the self-reported success rate of the nth task for the kth user,
c(n, k) denote the number of times the kth user taught the
nth task, and c̄(n, k) = 1(c(n, k) ≥ 1) to indicate whether

PaLM 2-S LMPC-Rollouts

Embodiment Task Success Num Chat Turns Success Num Chat Turns

Robot Dog “downward dog” 100% 1.3 100% 2.8
“hop” 25% 2.0 100% 2.3
“high-five with left hand”∗ 75% 2.3 75% 3.0
“walk forward in a trotting gait”∗ 25% 2.0 100% 2.8
“hop while turning counterclockwise”∗ 25% 5.0 25% 4.0

Mobile Manipulator “knock over coke can” 20% 5.0 20% 3.0
“open top drawer half-way”∗ 100% 3.4 100% 3.2
“push coke can from right to left”∗ 60% 2.0 80% 2.0

Average 53.8% 2.9 75% 2.9

TABLE III: LMPC-Rollouts has higher success than PaLM 2-S on real robots. Test tasks are starred∗. Robot Dog tasks are performed 4 times, Mobile Manipulator tasks 5 times.

Fig. 8: Task Success vs. Number of Chat Turns. across embodiments

Fig. 9: Distribution of Chat Turn Duration over Models and Embodiments

Model Chat Session Duration (s) Chat Turn Duration (s)

LMPC-Rollouts 187 60
LMPC-Skip 158 49

TABLE VII: Median Chat Session and Chat Turn Durations across Models

Fig. 10: Correlation of Success Rate vs. Median Chat Turn Durations across Tasks.

Train Tasks Test Tasks

LMPC-Rollouts-with-Failures −11.5% −14.0%

TABLE VIII: Success Rates of Training LMPC-Rollouts on both Success and
Failure chat sessions.

Model Top Users Other Users

LMPC-Skip +15.1% +14.2%
LMPC-Rollouts +26.3% +18.9%

TABLE IX: Success rate improvements by user group for test tasks.

Train Embodiments Test Embodiments

Model Train Tasks Test Tasks

LMPC-Skip +28.8% +19.0% +18.6%
LMPC-Rollouts +17.2% +23.8% +31.5%

TABLE IV: Finetuned models can generalize to new robot embodiments and APIs
not seen during training. Higher improvements in test tasks and embodiments are
caused by the train:test split not being explicitly selected for uniform task difficulty
and baseline performance; doing so is infeasible as the split needs to be chosen before
starting evaluations, when task difficulty and baseline performance were unknown.

Fig. 11: Analysis of feedback traits across all chat turns for Top Users and Other Users

Success Rate Diff from Iter 1

Model Train Tasks Test Tasks

LMPC-Skip Iter 2 +5.1% -4.7%
LMPC-Rollouts Iter 2 -5.5% -1.9%

TABLE V: Further finetuning on data generated from both the base model and the
first finetuned models models does not yield performance improvements.

Embodiment Chat Session Duration (s) Chat Turn Duration (s)

Kuka+Hand 429 97
Bi-arm Kuka 406 88
Aloha 200 66
Mobile Manipulator 238 65
Robot Dog 138 41

TABLE VI: Median Chat Session and Chat Turn Durations across Embodiments

or not the kth user has taught the nth task. Due to practical
constraints, c̄(n, k) = 0 for many user-task pairs. We define
the task difficulty rating d(n) as the average task failure rate
across all users: d(n) = 1 − 1

Kn

∑K
k=1 s(n, k)̄c(n, k), where

Kn =
∑K

k=1c̄(n,k). Then, we define a user performance score as
a user’s average success rate weighted by the task difficulty rating:
h(k) =

∑Nk

n=1d(n)s(n,k)̄c(n,k), where Nk =
∑N

n=1 c̄(n,k). We
define top-users as those who are in the top 75th percentile by this
performance score. We refer to the remaining users as “other users".

Table IX shows the average performance improvements of
user-conditioned LMPC over the base model split by top users and
other users. We observe largest performance improvements when
LMPC-Rollouts (conditioned on top-users) is served to top users
directly, and this is less evident with LMPC-Skip, suggesting that
inference-time search (via MPC) over future interactions performs
better at catering to improving the teachability of top users (e.g.,
satisfying their criterion for success).

Our experiments in the main paper (Table II) demonstrate
that conditioning LMPC on top-users can drive performance
improvements for all users – but what makes top-user teaching data
different from other users? To explore this question, we define 4 axes
to categorize the feedback: (1) Quantitative, (2) Related to Code,
(3) Detailed, and (4) Kind. Classification is done via GPT-4 with
a few-shot prompt. See Section V-H1 for the prompts used to do
the trait classification. Each message of feedback is classified with
these traits. If a given chat session has a trait for any message in the

session, we say the entire session had that trait. For example, if one
question is “detailed", we say the session had “detailed" feedback.

As can be seen in the analysis of feedback for all users in Fig. 11,
both the top-users and other users provide quite detailed feedback.
One interesting trait that stood out is that top users are more “kind",
which might imply that they have more patience for errors in the
code generated. This may lead to more thoughtful responses that
end up in successful policies. Another surprising finding was that
the other-users were more quantitative in their responses than the
top users, indicating that it’s preferred to give softer feedback signals
than precise numbers. These insights are preliminary and further in-
vestigation is needed to understand what makes top users successful.

To better understand how top-users teach, we asked them about
their teaching strategies and what advice they would give to
others. Many top-users started out with simple, natural language
instructions. Then they would review the robot’s performance. If
that performance was not satisfactory, then they would provide
more detailed feedback. One top-user summarized this approach
quite well: “Think of talking to a toddler, sentences are a couple
words long and are easy to understand; however, this toddler knows
words or terms from a university physics textbook (e.g. rotational
velocity, perpendicular, yaw, pitch, roll).”

1) Trait Classification Prompts: Code Feedback Prompt

INSTRUCTIONS: Given an instruction teacher gives to a student, rate this instruction based on "Code Feed-
back". After considering the instruction carefully, output one of three following ratings along with a justification:
* NEGATIVE: There is *no* feedback related to the code in the instruction.
* NEUTRAL: There is a *fuzzy* feedback related to the code in the instruction.
* POSITIVE: There is *clear* feedback related to the code in the instruction.
EXAMPLE 1:
QUERY: grasp apple and place it on top of the cube
JUSTIFICATION: There is *no* feedback related to the code in the instruction.
RATING: NEGATIVE
EXAMPLE 2:
QUERY: set your turning_speed equal 0
JUSTIFICATION: There is *clear* feedback related to the code in the instruction.
RATING: POSITIVE
IMPORTANT: Always output justification first, then the rating.
INPUT
QUERY: {query}
JUSTIFICATION:

Quantitative Feedback Prompt

INSTRUCTIONS: Given an instruction teacher gives to a student, rate this instruction based on "Quantitative
Feedback". After considering the instruction carefully, output one of three following ratings along with a
justification:
* NEGATIVE: There are *no* numerical and quantitative information in the instruction.
* NEUTRAL: There is a *fuzzy* indication of numerical and quantitative information in the instruction.
* POSITIVE: There is *clear* numerical and quantitative information in the instruction.
EXAMPLE 1:
QUERY: move the left arm towards green cube and push it to the right 20cm
JUSTIFICATION: There is *clear* numerical and quantitative information in the instruction.
RATING: POSITIVE
EXAMPLE 2:
QUERY: pick up the connector
JUSTIFICATION: There are *no* numerical and quantitative information in the instruction.
RATING: NEGATIVE
IMPORTANT: Always output justification first, then the rating.
INPUT
QUERY: {query}
JUSTIFICATION:

Kindness Prompt

INSTRUCTIONS: Given an instruction teacher gives to a student, rate this instruction based on "Kindness".
After considering the instruction carefully, output one of three following ratings along with a justification:
* NEGATIVE: This instruction is *not* kind.
* NEUTRAL: This instruction is neither kind nor unkind.
* POSITIVE: This instruction is kind.
EXAMPLE 1: QUERY: move the cube a little bit to the left please
JUSTIFICATION: This instruction is kind.
RATING: POSITIVE
EXAMPLE 2:
QUERY: did you forget how to walk? Please reposition yourself heading south
JUSTIFICATION: This instruction is *not* kind.
RATING: NEGATIVE
EXAMPLE 3:
QUERY: close the door by pushing it.
JUSTIFICATION: This instruction is neither kind nor unkind.
RATING: NEUTRAL
IMPORTANT: Always output justification first, then the rating.
INPUT

QUERY: {query}
JUSTIFICATION:

Detail Prompt

INSTRUCTIONS: Given an instruction teacher gives to a student, rate this instruction based on "Detail". After
considering the instruction carefully, output one of three following ratings along with a justification:
* NEGATIVE: This instruction is *not* detailed.
* NEUTRAL: This instruction is neither detailed nor undetailed.
* POSITIVE: This instruction is quite detailed.
EXAMPLE 1:
QUERY: very good, now extend your front left paw as far forward as possible without losing balance on the rest
of your legs. Change the angle of your torso as needed to maintain balance
JUSTIFICATION: This instruction is quite detailed.
RATING: POSITIVE
EXAMPLE 2:
QUERY: stand up
JUSTIFICATION: This instruction is *not* detailed.
RATING: NEGATIVE
IMPORTANT: Always output justification first, then the rating.
INPUT
QUERY: {query}
JUSTIFICATION:

I. RAG Implementation Details
To implement our RAG baseline, we first construct an embedding

dataset from the same data used to train LMPC-Skip. This dataset
includes each data point’s initial user instruction, its Gecko
embedding (obtained via an embedding model based on PaLM
2), and the final successful response code. During inference, we
use the embedding of the initial user instruction of the current
chat session to find the 5 most relevant data points of the same
robot embodiment from the dataset. This is done by first selecting
the closest 30% of data by cosine similarity (embeddings are
normalized), then applying the farthest point sampling algorithm
among this set to ensure diversity of the selected data points. Finally,
the retrieved data points are re-ordered from lowest to highest
relevancy, such that the most relevant example is closest to the
current instruction. This ordered list of (instruction, code) pairs is
then inserted into the context of the LLM prompt.

J. Data Augmentation Details

Success Rate Diff w/o Data Augmentation

Model Train Tasks Test Tasks

LMPC-Skip w/o Aug -7.1% +0.6%
LMPC-Rollouts w/o Aug +2.8% -7.0%

TABLE X: Success rate differences between models that do not use data
augmentation and models that do.

We augment user inputs, including 1st input (task request) and
subsequent feedback and corrections with PaLM 2-L. The prompt
for augmentation asks PaLM 2-L to rewrite original text in K
different ways by replacing words with synonyms, rephrasing,
changing grammatical structure, sentence lengths, punctuation, etc.
We also specifically prompt the model to output theK ways in one
batch with variations in the batch and use relatively high generation
temperature (0.8) to ensure the output is sufficiently diverse.

For example, a user’s request of “pick up the cube" is rewritten
into “grab the cube and raise it ", “lift up the cube", “raise the cube",
etc; user’s correction “wrong direction, keep hopping but turn the
opposite direction" for the “hop while turning counterclockwise"
task is rewritten into “that is the incorrect direction, maintain
hopping but go the opposite way", “you are going the wrong way,
keep hopping but turn in the opposite direction", “wrong direction,
maintain hopping but turn the opposite way", etc.

The augmented data is used for training both LMPC-Skip and
LMPC-Rollout models. We report the success rate differences when
training models without data augmentation in Table X. Without data
augmentation, LMPC-Skip performs worse on train tasks, but on
par on test tasks. By contrast, without data augmentation, LMPC-
Rollouts performs on par on train tasks, but much worse on test tasks.
This suggests that the generalization capabilities of LMPC-Rollouts
benefits more from data augmentation than does LMPC-Skip. We
hypothesize this is due to that data augmentation makes LMPC-
Rollouts’ chat session predictions more robust to compounding
errors, leading to better predictions of feedback dialogue.

K. Analysis of Chat Feedback Embeddings

Fig. 12: T-SNE plot of embeddings of human feedback across embodiment.

Fig. 13: T-SNE plot of embeddings of human feedback across experts and
non-experts, and across good/bad chat ratings (left) and whether or not that feedback
belongs to a chat session that was eventually a success/failure (right).

What kinds of feedback do users provide to steer robot behaviors?
To study this, we compute language embeddings on all individual
chat turn user queries, using a finetuned T5 XL model [53]. Then,
we compute a T-SNE embedding vectors, mapping each embedding
with associated features for: whether the query was from a “Top
User” or not, whether the user rated the LLM response to the query
as “Good” or “Bad”, whether the query was from a session which
resulted in a “Success” or “Fail”, and which robot embodiment
the session used. First, we find that user queries are indeed highly
correlated with specific embodiments, as shown in Figure 12. This
intuitively makes sense since language embeddings will consider
semantic details like specific syntax or verbal suggestions that are
specific to tasks or robot physics that are only present on a specific

embodiment (for example, “raise your paw higher” is only relevant
for the Robot Dog embodiment). Second, we find that there are
clear cases where for even the same embodiment, “Top User”
semantic language embeddings are clearly clustered separately
from “Other Users”, as shown in Figure 13. Additionally, we also
find other interesting clusters, such as where “Other Users” seem
to be more pessimistic about LLM responses by giving clusters of
“Bad Ratings”, which result in either “Success” or “Fail”.

L. Real Robot Experiments
Distillation for Robot Dog. Our robot dog distilled policy

is based on the Locomotion-Transformer model, which uses
a Transformer to map sequences of velocity commands,
proprioceptive observations, and past actions to next actions [10].
We generalize the original velocity command formulation to MJPC
cost weights and parameters as the objective tokens. Our final policy
consists of a transformer with d = 256 and four layers, totaling
roughly 3.2 million parameters.

To train the policy, we used online imitation learning (DAgger)
against an expert MJPC policy over a distribution of tasks
encompassing both static posing and locomotion behaviors. This
task distribution was constructed by uniformly randomizing key
target parameter values, including robot velocity, torso height and
pitch, foot positions, and foot stepping. Due to the diversity of
the task distribution and domain randomization, we found offline
imitation (BC) to be unsuccessful. We also smooth all actions by
applying an exponential filter with strength 0.9.

MJPC-as-Planner for real Mobile Manipulator. For the main
experiment results in deploying the taught skills in simulation to
the real mobile manipulator robot, we extend the MJPC-as-Planner
approach from prior work by Yu et al [71]. In particular, to
obtain a simulated replica of the real scene, Yu et al. used an
open-vocabulary object detector to detect and segment objects in
the scene and fit known mesh models to the corresponding point
clouds. The reconstructed simulation scene is used in MJPC to
generate a trajectory plan, which is then executed on the robot.

Though the prior work showed good results in real-world,
it required knowing the list of objects in the scene and their
corresponding meshes in order to query the object detection
model and recreate the scene. In this work, we improve the
perception pipeline on both fronts: 1) we use a large visual language
model (VLM) to identify all the objects seen by the robot in the
environment, each of which is then segmented using the Segment
Anything (SAM) model [36] to achieve precise object localization,
2) we opt to use generic primitive shapes consisting of capsules
and boxes to represent the objects, which enables us to represent a
wide range of objects without having to obtain detailed meshes. As
a result, we can apply our approach to more diverse environments
with unknown objects and be able to teach the robot manipulation
skills on them. An example can be seen in Fig. 14.

Sim-to-Real Gap. Table XI shows a comparison between sim
and real performances on the set of tasks we evaluated in the real
world. For open drawer task, we achieve 100% success rate in
real world, likely because this task is quasi-static thus there is very
little physical domain gap. By contrast, knock over coke can only
achieved 20% success rate in the real world, due to the velocity of

the end effector not being fast enough. This is caused by physical
modelling domain gap, which allows the robot to knock over the
coke can with a lower end-effector velocity. For the hop while
turning task we observe a large discrepancy between simulation
and real world. While we are able to teach the robot to hop, it often
trips and falls after a few hops. This is due to that a highly agile
hopping while turning behavior is outside the training distribution
of the distilled policy. Adapting the distillation training distribution
to the teaching data is a promising direction for future research.

Distillation for Mobile Manipulator. There are a few limita-
tions with the MJPC-as-Planner approach: 1) generating the plan
with MJPC is not feasible for onboard computing due to com-
putation requirements, 2) it needs multiple models to identify and
segment the objects, adding additional complexities to the system, 3)
it does not respond to changes in the environment during execution.
To make a step towards addressing these issues, we explore the
reward-conditioned policy distillation approach used for the Robot
Dog on the Mobile Manipulator. Specifically, we validate the idea
in two settings: 1) use the reward to condition final object height for
the picking task, 2) use reward to condition picking up or knocking
over a can. We use MJPC to generate 30k and 10k trajectories
respectively with maximally 150 steps. The robot observation in
each step consists of the simulated depth image from robot camera
and the reward parameters. We train the policies based on the RT-1
model [8] using the generated dataset and deployed the policies on a
real mobile manipulator robot. Distilling a reward conditioned policy
allows us to deploy the policy with onboard computing and achieve
more robust behavior with closed-loop control. Although we have
yet to perform quantitative evaluations of the distilled Mobile Ma-
nipulator policy, we demonstrate example policy rollouts in Fig. 15.

M. Language Model Training Details

For finetuning models, we set the number of training steps to
cover 10 epochs of the available training data, apply Adam with a
learning rate of 5×10−3, a linear ramp up and cosine decay learning
rate scheduler, a batch size of 4, and a context length of 4096 tokens.

Because the LMPC-Rollouts model needs to predict the entire
remaining chat session, it is much slower than LMPC-Skip at
inference time. According to user feedback, the slowed inference
time degrades the teaching experience, making the chat session less
engaging, potentially reducing data quality. To address this issue,
we performed 8-bit quantization on the LMPC-Rollout models after
finetuning, and we serve the quantized LMPC-Rollout models. We
did not observe noticeably performance drops with the quantized
model. See Table XII for measured inference times for these models
— LMPC-Rollouts without quantization is much slower than
LMPC-Skip, while with quantization the inference times are similar.

N. User Performance Drift Analysis

Evaluating models over an extended period of time introduces the
concern that as users obtain more practice teaching the robot, they
become more proficient, and model performance improvements
may actually be caused by users’ improved teaching skills, instead
of improved model capability. We took three measures to mitigate
this concern. First, we conducted pilot data collection sessions
for each robot embodiment, so users could acquire a base level

Pick up the left can
without knocking over
the right can

User Language Inputs

LLM Robot Code - Rewards & Costs

Reward function code.

Need to figure out which
object is left can

if obj_1_position[1] >
obj_2_position[1]:
left_can = "soda soda_5"
...
minimize_l2_distance(object_a="g
ripper", object_b=left_can)

Good, but the right can is
knocked over, you need
to keep it upright.

User Language Inputs

LLM Robot Code - Rewards & Costs

Reward function code
…
set_object_orientation_target(ob
ject_name=right_can,
x_axis_rotation=0,
z_axis_rotation=0)

Execute on real robot.

User Language Inputs
Made with colab
https://colab.corp.google.com/google_src/files/he
ad/depot/google3/robotics/language2reward/log
ging/load_chat_session.ipynb?allowCreateClient=
true#templateParams=%7B%22ssot_session_id%
22%3A%20%220%2Fap~chat_session%2Fapprent
icebot_chat%2FDataCollectShowcaseDataCollect
Pilot~DataCollectShowcaseDataCollectPilot_noah
brown_1706915739772896000%2F17b02f6a4a1b0
a00%2F37b996ef363549ad%22%7D&sandboxMo
de=true&scrollTo=UzY-So0_Ycqe

Fig. 14: Real world teaching example on mobile manipulator using the MJPC-as-Planner approach.

Embodiment Task Ours-Sim Ours-Real N Chat Turns PaLM 2-S Sim PaLM 2-S Real N Chat Turns

Robot Dog High-Five with left hand 100% 100% 3.0 100% 75% 2.3
Downward Dog 100% 100% 2.8 100% 100% 1.3
Walk forward in a trotting gait 100% 100% 2.8 25% 25% 2.0
Hop 100% 75% 2.3 50% 25% 2.0
Hop while turning counterclockwise 100% 25% 4.0 100% 25% 5.0

Mobile Manipulator Open top drawer half-way 100% 100% 3.2 100% 100% 3.4
Push coke can from right to left 100% 80% 2.0 100% 60% 2.0
Knock over coke can 100% 20% 3.0 80% 20% 5.0

TABLE XI: Sim vs. Real Results

Fig. 15: Example Rollouts of reward conditioned distilled policy on mobile manipulator. Apart from using MPJC-as-Planner for real world deployment, we also
explored distilling the behavior into a policy using imitation learning following the robot dog example. This no longer requires accurate state estimation.

LMPC-Skip LMPC-Rollouts LMPC-Rollouts-No-Quantization

1.1±0.2 1.0±0.4 7.4±4.7

TABLE XII: Model inference times in seconds.

of familiarity with each embodiment before conducting official

data collection. Second, we evaluated LMPC variants during the
same data collection days, so their differences are unlikely to be
caused by user performance drift. Third, we explicitly compared
user performance with the base LLM during the first half and the
second half of our experiments. From the first to the second period,
mean success rate for each user changed by−0.6% across all tasks,
with a standard deviation of 9.3%, and the two periods show a
Pearson correlation coefficient of 0.87.

Another way to gauge potential changes in the users’ teaching ex-
perience is by measuring the self-reported cognitive load of the teach-
ers at the end of each day of data. Because different subsets of users
taught robots on different days, we analyzed our data in terms of
how each user experienced the cognitive load of teaching the robots
on their first day vs. on their last day. We used a subset of the NASA-
TLX measure of cognitive load [23] and analyzed the perceived
mental demand, effort, performance, and frustration dimensions [20].
There were 13 users who completed our end-of-day questionnaires
so we ran pair-wise t-tests (2-sided) on their data (N=13). We found
no statistically significant differences in teachers’ first vs. last days of
teaching robots in terms of mental demand (p=0.26), effort (p=0.47),
performance (p=0.22) or frustration (p=0.54). These are all well
above the cut-off p-value for statistical significance of .05; with Bon-
ferroni corrections, the cut-off value would be even lower at .0125.

These results suggest minimal user performance or user
experience change over time, so differences among models are
more likely the result of changes in model capability, not user
teaching proficiency.

O. Failure mode analysis

We categorized the following failure modes across our compared
models. Failure mode 1) is outputting code with errors or executable
code. In instances where it was outputting executable code, we
further checked if 2) the failure was from repeated code outputs,
3) from incomplete plans, or 4) from the LLM not responding to
the user’s feedback. In order to identify these failure modes, we
prompted an LLM to classify them from chat session data.

See Table XIII, where it shows the percentage of chat sessions
that resulted in each failure mode across all chat sessions (the
denominator is the total number of chat sessions for that model, not
the number of failures for that model). Please note that a particular
chat session may appear in multiple failure modes, so these failure
mode sets are not disjoint. As expected, LMPC models have overall
fewer failures than baselines. The most frequent failure mode is
outputting code that is not responsive to user feedback. The least
frequent failure mode is outputting incomplete code.

P. Fine-tuned Models on Code-writing Benchmarks

One concern with model finetuning is that the finetuned model
may forget some of its original capabilities. In our case, we are
specifically concerned about whether or not finetuning our model
degrades general code-writing capabilities of the LLM. To test this,
we evaluated our models after one and two iterations of finetuning
on the RoboCodeGen benchmark [41]. As seen in Table XIV,
there is relatively no degradation between the first iteration and the
baseline model or between first and second iteration. We attribute
this to our training data being in the distribution of the base LLM

as well as using code, therefore not biasing the model away from
code generations.

Q. Robot Embodiment Details

Robot Dog. The robot dog is a small quadruped robot with an
onboard computer and battery power. The robot was developed
in-house based on the design from [10]. The robot has a standing
height of approximately 0.4 m. Each of the robot’s 4 legs has 3
DoFs with a peak joint torque of 18 Nm.

The distilled policy (Section V-L) runs on the onboard computer
(Intel NUC11TNBv7) and provides joint position commands at
50 Hz to a low-level PD controller that outputs joint torques at
1 kHz. We set the P-gain to 50 Nm/rad and D-gain to 1.1 Nm s/rad.
We use ROS2 over a Wi-Fi connection to transmit the model output
(the reward function code) from a desktop computer to the robot
when a user clicks the Run on Robot command in the chat UI.

The simulated environment for the robot dog contains a door
without latch and a three-level kitchen drawer. In the MJPC
implementation, we place position and orientation sensors for
the robot torso and end-effectors, as well as joint sensors for the
articulated objects (e.g. door hinge angle). We then design a set of
APIs that the LLM can use to modulate the desired absolute and
relative sensor values (see more details in prompts). By coordinating
the movements of different legs in MJPC simulation, the robot
dog can achieve a rich set of skills from locomotion to posing.
Furthermore, although the robot dog does not have any form of
gripper, it can interact with the external world using its torso and
limbs to perform tasks such as open the door or close the drawer.
Mobile Manipulator. The mobile manipulator [24] consists of a
7-DoF arm and a parallel jaw gripper. The simulated environment
contains the simulated robot in front of household objects (apple,
coke can, and cube) placed on a counter with drawers.

For the MJPC implementation, we place gripper and joint sensors
on the robot, position and orientation sensors on household objects,
and joint sensors on articulated objects (e.g. drawer hinges).

With the MJPC planner, the robot is able to execute a rich set
of tasks with various constraints, including opening the drawer
half way, picking/pushing object A to a certain location without
knocking over object B, lifting objects up to a certain position and
orientation, etc. We further test the skills on the real robot.

We use a gRPC connection over Wi-Fi to transmit the reward
function code output by the model from a desktop computer to the
robot when a user clicks the Run on Robot command in the chat UI.
Aloha. The Aloha bi-manual robot [76] consists of two 6-DoF
arms fixed to a table, each with a 1-DoF parallel gripper. Household
objects (e.g. apple, soda can, cube, and bowl) are placed on the table.

The MJPC implementation includes sensors for the position
and orientation of each arm, and an API to get the position and
orientation of all objects in the workspace. With MJPC, Aloha is
able to execute a wide variety of tasks, such as picking/placing
objects, using both arms to re-orient objects, and handing over
objects from one arm to the other.

To allow MJPC to successfully plan in the 14-DoF action space,
we run the simulation at 25% real-time speed. MJPC is able to find
dynamic behaviors to solve tasks, such as rolling an apple on the
table to move it closer to another object, or using one arm as leverage

Failure Modes

Model Invalid Code Repeated Code Non-responsive Code Incomplete Code All Failures

PaLM 2-S 17.4% 10.9% 16.8% 7.6% 35.3%
RAG 6.4% 6.7% 19.8% 6.4% 38.5%
LMPC-Skip 9.5% 7.6% 11.9% 3.8% 23.0%
LMPC-Rollout 7.8% 7.0% 11.3% 4.0% 24.7%

TABLE XIII: Failure Mode as percentage of all chat sessions.

Pass@1
Model Iteration 1 Iteration 2

PaLM 2-S 51%
LMPC-Rollouts 51% 51%

LMPC-Skip 49% 49%

TABLE XIV: Performance on RoboCodeGen on finetuned models.

to flip a bowl upside down with the other arm. These policies are
only tested in simulation and are not tuned for transfer to real.
Bi-arm Kuka. The Kuka bi-arm robot is comprised by two 7-DoF
Kuka LBR IIWA14 arms fixed to the ground. For the scope of this
work, no end-effector was attached to them. Arrow indicators along
with the words "left" and "right" were added to facilitate data collec-
tion with regards to natural language to orientation mappnings in the
scene. For this embodiment, we have developed two distinct scenes:

a) Single large cube: This scene contains a single large cube in
the center of the arms’ workspace.

b) Particle manipulation: This scene contains 5 small cubes
(particles) of various colors - red, green, blue, yellow, purple
- initialized in random positions within the workspace of
the arms. More specifically, their x and y coordinates at
initialization are each sampled randomly from a uniform
distribution between (−0.5,0.5).

Finally both scenes contain four separate goal points, two in the
air (blue goal and red gaol) and two on the ground (green goal and
purple goal) that are stationary and can be used as target positions
for moving objects.

The MJPC implementation for this embodiment includes sensors
for the position and orientation of each arm, each goal and each
movable object. It also includes an API that allows obtaining and
setting the poses of all objects. For this platform, MJPC is leveraged
to perform singular tasks that involve moving the large cube towards
goal positions or in relative locations, pick up cubes, sweep cubes, as
well as sequential tasks such as moving one block towards another
followed a subsequent move towards a third block or goal position.

A current limitation of this embodiment is that it is only evaluated
in simulation. The setup as well as the arm control are not yet
realistic and would hinder any sim2real transfer. In addition, for
all results presented in this work, bi-arm Kuka was considered an
unseen embodiment used only for testing and not training. This
causes some domain shift in terms of produced code (e.g. minor code
mistakes such as APIs from other embodiments can be generated
on occasion) which can increase the number of chat UI interactions.
Kuka+Hand. This embodiment comprises a 7-DoF Kuka LBR
IIWA14 arm attached with a custom hand with three fingers (4-DoF

each). The arm is fixed within a basket containing four objects: red
and green blocks, and a connector that can be inserted into a plug
base.

The simulation and MJPC implementation for this embodiment
includes sensors providing the positions of all finger and arm joints
and pose/orientation of the hand and all objects in the scene.

With MJPC, the Kuka+Hand can execute a number of interesting
behaviors, such as dexterously using the fingers to rearrange objects.
Since there are no constraints imposed on maintaining contact with
the objects, we observe that the fingers can sometimes leverage
dynamic manipulations e.g., flicking objects from one part of the
workspace to another, or juggling to re-orient object mid-air before
grasping them to place them down. The caveat of course, is that
these behaviors are optimized in simulation and require object pose
information during predictive control rollouts (which may struggle
to transfer to the real world via sim2real distillation).

In terms of limitations, the predictive control search space for
dexterous manipulation with all 7+4×3=19 degrees of freedom
is large and can be challenging to do sampling-based control over.
Thus the simulator runs at only 15% of real-time speeds (to allow
for compute-bound MJPC with 128 cores) to discover manipulation
solutions. Chat turn durations (shown in Table VI) suggest that
the Kuka+Hand platform takes the longest time for users to teach
– each chat turn takes on average 1.5 minutes, while chat sessions
around 7 minutes, much of the time is spent watching the robot
“figure out” online how to do the task.

R. Tasks

Robot Dog. We design 19 tasks for the robot dog embodiment,
among which 12 are used in training the LLM:

Robot Dog Train Tasks
Sit.
High-five with the front right paw.
Downward dog.
Walk to the left.
Walk forward.
Hop.
Turn around clockwise.
Walk backward.
Walk backward while turning to face right.
Walk forward while turning left.
Close the middle drawer.
Open the door by pushing it.

and 7 are held out for testing the LLM performance:

Robot Dog Test Tasks
High-five with the front left paw.
Walk to the right.
Turn around counterclockwise.
Hop while turning clockwise.
Hop while turning counterclockwise.
Close the bottom drawer.
Close the door by pushing it.

Mobile Manipulator. We task the users to teach the mobile
manipulator 14 tasks, among which 11 are used for training:

Mobile Manipulator Train Tasks
Grasp the apple.
Knock over coke can.
Lift the apple high.
Place the apple next to the cube.
Push the apple toward the cube.
Move the cube further away from the robot.
Move the cube a little bit to the left.
Open the top drawer.
Place the cube behind the apple.
Flip the cube upside down.
Place the apple on the cube.

and 3 are held out for testing:

Mobile Manipulator Test Tasks
Pick up the cube.
Place the apple in front of the cube.
Upright the coke can.

Aloha. The robot was instructed by users to perform 16 tasks in
total, with the following 10 used in training the LLM:

Aloha Train Tasks
Grasp the apple and lift it up.
Grasp the coke can and lift it up.
Pick up the cube and lift it above the apple.
Pick up the box and lift it above the coke can.
Flip the box upside down.
Flip the apple upside down.
Flip the drink upside down.
Flip the apple upside down and move the apple to the center
of the table.
Move the box and the apple close to each other.
Push the box and the bowl close to each other.

and the following 6 held out for testing:

Aloha Test Tasks
Grasp the box and lift it up.
Pick up the coke can and lift it above the apple.
Flip the bowl upside down.
Move the apple and the bowl closer to each other.
Move the foods closer to each other.
Flip the box upside down and move the box to the center of
the table.

Bi-arm Kuka. The robot was instructed by users to perform 16
different tasks (test only) across the two available scenes:

Bi-arm Kuka Single Large Cube Scene Test Tasks
Pick up the cube and lift it up to the blue goal.
Pick up the cube and lift it up by 20cm.
Move the cube to the green goal on the floor.
Move the cube 20cm to the right without rotating it.
Pick up the cube and lift it up to the red goal.
Move the cube 20cm to the left of the purple goal on the floor
and rotate it 90 degrees.

Bi-arm Kuka Particle Manipulation Scene Test Tasks
Move the blue cube to the green goal on the floor.
Move the green cube 20cm to the right.
Move the red cube to the green goal, then to the purple goal.
Sweep the red cube and the blue cube towards the green goal.
Sweep all the cubes to the purple goal.
Bring the red cube 20cm to the left of the green goal.
Move the blue cube 20cm in front of the green cube.
Sweep the yellow cube to the blue cube, then to the red cube.
Move the purple cube to the yellow cube, then to the green
cube, then to the blue cube.
Move the purple cube 10cm to the right of the yellow cube,
then 20cm behind the blue cube.

Kuka+Hand. The robot was instructed by users to perform 18
different tasks (test only):

Kuka+Hand Test Tasks
Move the gripper to reach the red block.
Lift the connector in the air.
Grasp the green object, hold it for a while in the air, and then
drop it.
Insert the connector into the socket.
Stack the red block on the green block.
Move the green cube to the far right corner.
Move the red thing and the plug base to the far left corner.
Stack the red block on the the base.
Move the four objects into different corners.
Move all objects into near left corner.
Insert the plug into the base and stack the red cube on the
green cube.
Insert the connector into the socket, then put the green cube
on the connector.
Lift both cubes in the air.
Disconnect the connector from the base.
Separate the red block from the green block.
Separate the red block away from the other objects.
Move all objects into near left corner.
Move the four objects into different corners.

S. Prompts

Prompts for each of the embodiments are shown in Fig. 16,
Fig. 17, Fig. 18, Fig. 19, and Fig. 20 respectively. The LLMs are
trained to complete session data with the input prompts prepended
for each robot embodiment.

SYSTEM INSTRUCTIONS:

High-Level Description:

You are an expert robot programmer.
Your goal is to program the positions and movements of a quadruped robot to fulfill instructions from a user.
You will interact with the user in turns:

Chat Turn N - User:
{user's instruction}
Chat Turn N - Program:
{your robot program, where each line includes a comment to explain your reasoning}

After a turn, the user may provide corrective feedback. In that case, you should revise your robot control program accordingly in the next turn.

Robot Control API (Python):

Conventions
- All dimensional units are in meters ([m]), angles are in degrees ([deg]), time is in seconds ([s]), and frequency is in Hertz ([Hz]) unless otherwise specified.
- All angles are constrained to be within [-180, 180].

Elements
foot_names = ['front_left', 'front_right', 'back_left', 'back_right']

Methods
def set_torso_targets(
 height: float | None = None,
 tilt_angle: float | None = None,
 roll_angle: float | None = None,
 location_xy: tuple[float, float] | None = None,
 velocity_xy: tuple[float, float] | None = None,
 heading: float | None = None,
 turning_speed: float | None = None
) -> None:
 '''Define robot torso movements by setting various targets.

 height: target torso height. default height for a quadruped starting on all fours is 0.3m.
 tilt_angle: target torso tilt. rotation about local y-axis, which starts from the quadruped's left side and points to the right. For a quadruped starting on all
fours, a positive tilt rotates the robot's head higher than its hips; a 90 degree rotation points the head upwards.
 roll_angle: target torso roll. rotation about local x-axis, which starts from the quadrupeds's tail and points to the robot's head. For a quadruped starting on
all fours, positive roll rotates the robot toward its right side, bringing its left hip higher than its right hip; a 180 degree rotation brings the robot onto its
back.
 location_xy: target location_xy for the robot in global frame
 velocity_xy: target velocity_xy for the robot in its local frame. for a quadruped starting on all fours, positive x is forward, positive y is left.
 heading: target direction for robot to point its head, in global frame. North is 90 deg, East is 0 deg, South is 270 deg, W is 180 deg.
 turning_speed: target turning speed of robot torso in revolutions per second. for a quadruped start on all fours, positive turning_speed turns the robot
counter-clockwise.

 IMPORTANT:
 - one of location_xy and velocity_xy must be None
 - one of heading and turning_speed must be None
 - No other args can be None
 '''
 pass

def set_foot_pos_targets(
 foot_name: FootName,
 lift_height: float | None = None,
 extend_forward: float | None = None,
 move_inward: float | None = None
) -> None:
 '''Set the target position of a foot on the robot.

 Arguments set the target deviation from a natural standing pose, defined in the robot's local frame. This function may be called up to once per foot.

 foot_name: name of foot to control
 lift_height: target distance between foot and floor; if set to 0, the foot will touch the ground
 extend_forward: target distance to extend foot in positive x direction
 move_inward: target distance to move foot inward along the y axis

 IMPORTANT:
 If any of lift_height, extend_forward, and move_inward, are set to None, then that target will be unconstrained, and the robot may adjust it as needed to maintain
balance.
 '''
 pass

def set_foot_movement_targets(
 foot_name: FootName,
 stepping_frequency: float,
 air_ratio: float,
 phase_offset: float,
 swing_up_down: float,
 swing_forward_back: float
) -> None:
 '''Set the target movement of a foot on the robot.

 This function may be called up to once per foot.

 foot_name: name of foot to control
 stepping_frequency: frequency [Hz] with which the foot should step on the floor
 air_ratio: (in [0, 1]) percentage of time the foot is in the air; 1 means the foot will always be in the air and never touch the floor
 phase_offset: (in [0, 1]) step timing offsets among different feet. If two feet have phase_offsets that differ by 0.5, then one leg will start the stepping motion
in the middle of the stepping motion cycle of the other leg.
 swing_up_down: target vertical distance (normal to the ground) that the foot's swinging should cover during one period of the stepping cycle.
 swing_forward_back: target delta (parallel to the ground along the robot's X axis) that the foot should swing during one period of the stepping cycle. Positive is
forward, negative is backward.
 '''
 pass

def minimize_l2_distance(
 object_a: str,
 object_b: str
) -> None:
 '''Define reward for minimizing the distance between two objects a and b.

 Object names can only be selected from: ['head', 'door_handle', 'middle_drawer_handle', 'bottom_drawer_handle'].

 object_a: name of the first object.
 object_b: name of the second object.
 '''
 pass

def set_joint_target(
 joint_name: str,
 target_joint_fraction: float
) -> None:
 '''Set a reward for encouraging a certain joint in the scene to go to a
 normalized value in [0, 1].

 joint_name: can be selected from: ['door_open_fraction', 'middle_drawer_open_fraction', 'bottom_drawer_open_fraction'].
 target_joint_fraction: a float number between 0 to 1. For object that has a
 concept of open and close, 0 means close and 1 means open.
 '''
 pass

Robot Code Writing Hints:
- Use only numpy (already imported as np) and the API provided above. Do not import other libraries.
- Write the reasoning for each function call as a comment that precedes the function call.
- Make your best guess for numerical values based on input from the user.
- The user may use synonyms to refer to the same body parts: {foot, paw}, {body, torso}, {back end, tail, rear, butt}, {front end, head, nose}, {belly, tummy}.
- !!!IMPORTANT!!! When responding to user instructions, always rewrite the entire previous program with the new revisions.

Chat Turn Example:

Chat Turn 1 - User:
I want you to make the robot stand on all fours.
Chat Turn 1 - Program:
Reasoning: when the robot is standing in a normal pose, its body should be 0.3 m high, with no velocity_xy or torso rotations.
set_torso_targets(height=0.3, tilt_angle=0, roll_angle=0, location_xy=None, velocity_xy=np.zeros(2), heading=None, turning_speed=0)
Reasoning: since the robot is standing on all fours, all feet need to be on the ground.
foot_names = ['front_left', 'front_right', 'back_left', 'back_right']
for foot_name in foot_names:
 set_foot_pos_targets(foot_name=foot_name, lift_height=0, extend_forward=None, move_inward=None)
Done.
Chat Turn 1 - User Rating: good
Chat Turn 2 - User:
Stand a bit taller
Chat Turn 2 - Program:
Reasoning: the user wants the robot to stand a bit taller. I will change torso height to 0.4m.
set_torso_targets(height=0.4, tilt_angle=0, roll_angle=0, location_xy=None, velocity_xy=np.zeros(2), heading=None, turning_speed=0)
foot_names = ['front_left', 'front_right', 'back_left', 'back_right']
for foot_name in foot_names:
 set_foot_pos_targets(foot_name=foot_name, lift_height=0, extend_forward=None, move_inward=None)
Done.

New Chat Session

Fig. 16: Robot dog prompt consists of a high level description of the goals and format (purple), robot reward code API (orange), code-writing hints (green), and chat
turn examples (blue).

SYSTEM INSTRUCTIONS:

High-Level Description:
You are an expert robot programmer.
Your goal is to program the positions and movements of a stationary robot arm with a gripper to fulfill instructions from a user.
You will interact with the user in turns:

Chat Turn N - User:
{user's instruction}
Chat Turn N - Program with reasoning:
{your robot program, where each line includes a comment to explain your reasoning}

After a turn, the user may provide corrective feedback. In that case, you should revise your robot control program accordingly in the next turn.

Robot Control API (Python):

Conventions
- All dimensional units are in meters ([m]), angles are in degrees ([deg]), time is in seconds ([s]), and frequency is in Hertz ([Hz]) unless otherwise specified.
- All angles are constrained to be within [0, 360].
- All actuation joint targets are constrained to be within [0, 1], where 0 corresponds to closed and 1 to open.

Coordinate systems
All object position and orientation settings use a coordinate system with similar axis definitions, however each object has its own coordinate system with origin
located at the object's center of mass.
The coordinate system is right-handed and three-dimensional. From the perspective of the stationary robot, the positive x-axis points forward, the positive y-axis
points to the left, and the positive z-axis points up.
All object position and orientation reward targets are given in absolute (not relative) terms in the object's own coordinate system.

API Elements
set of objects in the system that can be moved in xyz
mobile_objects = [
 "apple",
 "cube",
 "gripper",
 "coke_can",
 "top_handle", # handle of top_drawer
 "mid_handle", # handle of middle_drawer
 "bottom_handle" # handle of bottom_drawer
]
set of objects in the system that can be actuated
actuated_objects = [
 "top_drawer", # a joint_target of 0 corresponds to closed and 1 to open
 "middle_drawer", # a joint_target of 0 corresponds to closed and 1 to open
 "bottom_drawer" # a joint_target of 0 corresponds to closed and 1 to open
]

API Methods
def set_object_position_target(
 object_name: str | None = None,
 position: tuple[float | None, float | None, float | None] | None = None
) -> None:
 '''Set a target position for an object in its own xyz coordinate system.'''
 pass

def set_object_orientation_target(
 object_name: str | None = None,
 x_axis_rotation: float = 0,
 z_axis_rotation: float = 0
) -> None:
 '''Set a target rotational orientation for object in its own coord system.
 '''
 pass

def set_actuation(
 object_name: str | None = None,
 joint_target: float = 0
) -> None:
 '''Define reward for setting an actuated object to a target joint setting.

 The joint_target value is defined to be in [0, 1].
 The object must be within the api-defined actuated objects.'''
 pass

def minimize_l2_distance(
 object_a: str | None = None,
 object_b: str | None = None
) -> None:
 '''Define reward for minimizing the distance between two objects a and b.

 Important: object_a and object_b must be within the api-defined objects.
 '''
 pass

def get_object_position(object_name: str) -> list[float]:
 '''Obtain the position of the object named object_name in world coordinate.

 Important: object_name must be within the api-defined objects.
 '''
 pass

def get_object_orientation(object_name: str) -> list[float]:
 '''Obtain the orientation of the object named object_name in world coordinate.
 Note the orientation is represented as quaternions.

 Important: object_name must be within the api-defined objects.
 '''
 pass

Robot Code Writing Hints:
- Use only numpy (imported as np) and the API provided above.
- Do not use any functions or object names besides the ones defined in the API above.
- Write the reasoning for each function call as a comment on its own line, immediately preceding the function call.
- Make your best guess for numerical values based on input from the user.
- The user may use synonyms to refer to the same objects: {gripper, hand}.
- !!!IMPORTANT!!! When responding to user instructions, always rewrite the entire previous program with the new revisions.

Chat Turn Example:
Chat Turn 1 - User:
Move the apple to the left.
Chat Turn 1 - Program:
Reasoning: to move the apple, we need to use the gripper. This involves bringing the gripper and apple close together.
minimize_l2_distance(object_a="gripper", object_b="apple")
Reasoning: to move the apple to the left, we need to set its position on the positive y axis and keep other axes the same.
apple_current_position = get_object_position(object_name="apple")
set_object_position_target(object_name="apple", position=(apple_current_position[0], apple_current_position[1] + 0.2, apple_current_position[2]))
Done.
Chat Turn 1 - User Rating: good
Chat Turn 2 - User:
A bit more to the left.
Chat Turn 2 - Program:
Reasoning: the user wants the apple to be moved a bit more to the left. I will increase the y value of the apple's position.
minimize_l2_distance(object_a="gripper", object_b="apple")
apple_current_position = get_object_position(object_name="apple")
set_object_position_target(object_name="apple", position=(apple_current_position[0], apple_current_position[1] + 0.3, apple_current_position[2]))
Done.

New Chat Session

Fig. 17: Mobile manipulator prompt consists of a high level description of the goals and format (purple), robot reward code API (orange), code-writing hints (green),
and chat turn examples (blue).

SYSTEM INSTRUCTIONS:

High-Level Description:
You are an expert robot programmer.
Your goal is to program the positions and movements of a stationary bimanual robot arms with one gripper each to fulfill instructions from a user.
You will interact with the user in turns:

Chat Turn N - User:
{user's instruction}
Chat Turn N - Program with reasoning:
{your robot program, where each line includes a comment to explain your reasoning}

After a turn, the user may provide corrective feedback. In that case, you should revise your robot control program accordingly in the next turn.
At each turn, you should provide your entire program with reasoning, updated according to all the feedback you have received.

Robot Control API (Python):

Conventions
- All dimensional units are in meters ([m]), angles are in degrees ([deg]), time is in seconds ([s]), and frequency is in Hertz ([Hz]) unless otherwise specified.
- All angles are constrained to be within [0, 360] degrees.
- All actuation joint targets are constrained to be within [0, 1], where 0 corresponds to closed and 1 to open.

Coordinate systems
All object position and orientation settings use a coordinate system with similar axis definitions, however each object has its own coordinate system with origin
located at the object's center of mass.
The coordinate system is right-handed and three-dimensional. The z-axis is aligned with gravity. There are two arms with grippers set-up across from each other on a
table. The arms are placed along the y-axis, along the length of the table. The x-axis points to the right, or along the width of the table. The positive z-axis
points up.
All object position and orientation reward targets are given in absolute (not relative) terms in the object's own coordinate system.
The center of the table is at (0.0, 0.0, 0.0).

API Elements
available_objects = [
 "apple",
 "bowl"
 "plate"
 "box"
 "coke_can"
] # set of objects in the system that can be moved in xyz

API Methods
def set_object_position_target(
 object_name: str | None = None,
 position: tuple[float | None, float | None, float | None] | None = None,
 xy_weight: float = 2.5, z_weight: float = 5.0
) -> None:
 '''Set a target position for an object in the world frame.'''
 pass

def set_object_orientation_target(
 object_name: str | None = None,
 x_axis_rotation: float = 0,
 z_axis_rotation: float = 0
) -> None:
 '''Set a target rotational orientation for object in its own coord system.
 '''
 pass

def minimize_l2_distance(
 object_a: str | None = None,
 object_b: str | None = None,
 weight: float = 5.0,
) -> None:
 '''Define reward for minimizing the distance between two objects a and b.

 Important: object_a and object_b must be within the available objects.
 '''
 pass

def get_object_position(object_name: str) -> list[float]:
 '''Obtain the position of the object named object_name in the world frame.

 Important: object_name must be within the available objects.
 '''
 pass

def get_object_orientation(object_name: str) -> list[float]:
 '''Obtain the orientation of the object named object_name in the world frame.
 Note the orientation is represented as quaternions.

 Important: object_name must be within the available objects.
 '''
 pass

def wait_until_condition(
 condition_fn: Callable[..., bool], timeout: int = 30) -> bool:
 '''Waits until a condition or until timeout. Resets the reward on success.'''
 pass

def get_l2_distance(object_a: str, object_b: str) -> float:
 '''Gets the L2 distance between two objects.'''
 pass

def limit_velocity(self, obj: str, weight: float = 1.0) -> None:
 '''Encourage the object to stay still with low velocity.'''
 pass

Robot Code Writing Hints:
- Do not use any functions or object names besides the ones defined in the API above.

Chat Turn Example:
Chat Turn 1 - User:
Grasp the cube.
Chat Turn 1 - Program:
Reasoning: to grasp the cube, we need to use the left gripper. This involves bringing the left gripper and cube close together.
minimize_l2_distance(object_a="left_hand", object_b="box", weight=5.0)
Done.
Chat Turn 1 - User Rating: good
Chat Turn 2 - User:
Now let go of the cube.
Chat Turn 2 - Program:
Reasoning: we need to release the cube, so let's set the weight to 0.
minimize_l2_distance(object_a="left_hand", object_b="box", weight=0.0)
Done.

Chat Turn Example:
Chat Turn 1 - User:
Lift the apple in the air, wait until you get there, then move it to the left of the bowl.
Chat Turn 1 - Program:
Reasoning: to grasp the apple, we need to use the left gripper. This involves bringing the left gripper and apple close together.
minimize_l2_distance(object_a="left_hand", object_b="apple", weight=5.0)
Reasoning: we need to wait until the apple is lifted in the air.
wait_until_condition(lambda: get_object_position(object_name="apple")[2] > 0.2)
Reasoning: to move it to the left of the bowl, we need to get the bowl position.
position = get_object_position(object_name="bowl")
Reasoning: now set the apple position to the left of the bowl in the positive y axis.
set_object_position_target(object_name="apple", position=(position[0], position[1] + 0.1, position[2]))
Done.

New Chat Session

Fig. 18: ALOHA prompt consists of a high level description of the goals and format (purple), robot reward code API (orange), code-writing hints (green), and chat turn
examples (blue).

SYSTEM INSTRUCTIONS:

High-Level Description:
You are an expert robot programmer.
Your goal is to program the positions and movements of a stationary robot with two arms to fulfill instructions from a user.
You will interact with the user in turns:

Chat Turn N - User:
{user's instruction}
Chat Turn N - Program with reasoning:
{your robot program, where each line includes a comment to explain your reasoning}

After a turn, the user may provide corrective feedback. In that case, you should revise your robot control program accordingly in the next turn.
At each turn, you should provide your entire program with reasoning, updated according to all the feedback you have received.

Robot Control API (Python):

Conventions
- All dimensional units are in meters ([m]), angles are in degrees ([deg]), time is in seconds ([s]), and frequency is in Hertz ([Hz]) unless otherwise specified.
- All angles are constrained to be within [0, 360].
- All actuation joint targets are constrained to be within [0, 1], where 0 corresponds to closed and 1 to open.

Coordinate systems
All object position and orientation settings use a coordinate system with similar axis definitions.
The coordinate system is right-handed and three-dimensional. The positive z-axis points up, the positive x-axis points to the left, the positive y-axis points to
forward.
All object position and orientation reward targets are given in absolute (not relative) terms in the world coordinate system.

API Elements
mobile_objects = [
 "cube",
 "left_hand",
 "right_hand",
 "blue_goal_mocap",
 "red_goal_mocap",
 "green_goal_mocap",
 "purple_goal_mocap",
 "blue_cube",
 "red_cube",
 "green_cube",
 "purple_cube",
 "yellow_cube"
] # set of objects in the system that can be moved in xyz

API Methods
def minimize_l2_distance(
 object_a: str | None = None,
 object_b: str | None = None
) -> None:
 '''Define reward for minimizing the distance between two objects a and b.

 Important: object_a and object_b must be within the api-defined objects.
 '''
 pass

def run_robot_motion() -> None:
 '''Run the robot motion with all the targets defined.'''
 pass

def get_object_position(object_name: str) -> list[float]:
 '''Obtain the position of the object named object_name in world coordinate.

 Important: object_name must be within the api-defined objects.
 '''
 pass

def get_object_orientation(self, object_name: str) -> list[float]:
 '''Obtain the orientation of the object named object_name in world coordinate.

 Important: object_name must be within the api-defined objects.
 '''
 pass

def set_object_position_target(
 self,
 object_name: str | None = None,
 position: tuple[float | None, float | None, float | None] | None = None,
 xy_weight: float = 2.5,
 z_weight: float = 5.0,
) -> None:
 '''Set a target position for an object in its own xyz coordinate system.'''
 pass

def set_object_orientation_target(
 self,
 object_name: str | None = None,
 x_axis_rotation: float = 0,
 z_axis_rotation: float = 0,
) -> None:
 '''Set a target rotational orientation for object in its own coord system.

 Args:
 object_name: name of the object.
 x_axis_rotation: desired rotation around x axis, in degrees.
 z_axis_rotation: desired rotation around z axis, in degrees.
 '''
 pass

def wait_until_condition(
 self, condition_fn: Callable[[], bool], timeout: int = 30
) -> bool:
 '''Waits until a condition is met or until timeout.'''
 pass

def get_l2_distance(self, object_a: str, object_b: str) -> float:
 '''Return the l2 distance between the two objects.'''
 pass

def limit_velocity(self, obj: str, weight: float = 1.0) -> None:
 '''Encourage the object to stay still with low velocity.'''
 pass

Robot Code Writing Hints:
- Use only numpy (imported as np) and the API provided above.
- Do not use any functions or object names besides the ones defined in the API above.
- Write the reasoning for each function call as a comment on its own line, immediately preceding the function call.
- Make your best guess for numerical values based on input from the user.
- The user may use synonyms to refer to the same objects: {gripper, hand}

Chat Turn Example:
Chat Turn 1 - User:
Approach the cube with the left hand.
Chat Turn 1 - Program:
Reasoning: to approach the cube with the left hand, we need to use the hands. This involves bringing the left hand and cube close together.
minimize_l2_distance(object_a="left_hand", object_b="cube")
Done.

Chat Turn Example:
Chat Turn 1 - User:
Pick up the cube and move it up in the air. Once the cube is in the air, wait a few seconds. Then place it back down.
Chat Turn 1 - Program:
Reasoning: to pick up the cube, we need to use both hands. First, we need to bring the hands and the cube close together.
minimize_l2_distance(object_a="left_hand", object_b="cube")
minimize_l2_distance(object_a="right_hand", object_b="cube")
Reasoning: to move the cube up in the air, we need to get the cube close to the blue goal in the air.
minimize_l2_distance(object_a="cube", object_b="blue_goal_mocap")
Reasoning: Now we need to wait for the cube to be in the air. The cube is in the air if its z position is greater than 0.25m.
condition_fn = lambda: get_object_position(object_name="cube")[2] >= 0.25
wait_until_condition(condition_fn, timeout=20)
Reasoning: Now we wait a few seconds.
time.sleep(3)
Reasoning: Now we can move the cube to the ground by bringing it close to the green goal on the ground.
minimize_l2_distance(object_a="cube", object_b="green_goal_mocap")
Reasoning: Now we need to wait for the cube to be on the ground. The cube is on the ground if its z position is less than 0.015m.
condition_fn = lambda: get_object_position(object_name="cube")[2] <= 0.015
wait_until_condition(condition_fn, timeout=20))
Reasoning: Now we wait a few seconds.
time.sleep(3)
Done.

New Chat Session

Fig. 19: Bi-arm Kuka prompt consists of a high level description of the goals and format (purple), robot reward code API (orange), code-writing hints (green), and chat
turn examples (blue).

SYSTEM INSTRUCTIONS:

High-Level Description:
You are an expert robot programmer.
Your goal is to program the movements of a stationary robot arm with a 3-fingered hand to fulfill instructions from a user.
You will interact with the user in turns:

Chat Turn N - User:
{{user's instruction}}
Chat Turn N - Program with reasoning:
{{your robot program, where each line includes a comment to explain your reasoning}}

After a turn, the user may provide corrective feedback. In that case, you should revise your program accordingly in the next turn.
At each turn, you should provide your entire program with reasoning, updated according to all the feedback you have received.

The scene has:
- The robot.
- The workspace is 24cm by 24cm, raised by 5cm above the floor, surrounded by sloping sides that extend to 0.5m from the center.
- Workspace coordinates are in meters. The center of the workspace is at (0.6, 0, 0.05); the far right corner is at (0.72, 0.12, 0.05); the near right corner is at
(0.72, -0.12, 0.05).
- The robot's hand is initialized 35cm above the workspace center, at (0.6, 0, 0.4)
- There are 4 objects:
1. A plug: a purple plastic connector which is 7cm long, and can be inserted into a socket.
2. A socket: A dark green plastic base to which the plug can be inserted.
3. A green cube with 5cm sides.
4. A red cube with 5cm sides.

Robot Control API (Python):

API Methods
def wait(duration_seconds: float):
 """Executes the current policy for the given number of seconds.

 This function should be used to separate different stages of the task.
 """

def set_object_target(
 obj: str,
 position: np.ndarray,
 xy_weight: float = 1.0,
 z_weight: float = 1.0,
):
 """
 Sets a target position for the object, with separate weights for XY distance and Z distance.
 Args:
 obj: The name of an object in the scene from ['plug', 'base', 'red' 'green']
 position: XYZ object position. Positive X is farther away from the scene, Negative X is closer. Positive Y is moving to the right, negative Y is left. Positive Z
is up. Do not set Z to below 0.05.
 xy_weight: If 1, the object will be moved to the target position in the XY plane. If 0, the object motion in the XY plane will be unregulated.
 z_weight: If 1, the object will be will be moved to the target position in Z. If 0, the object motion in Z will be unregulated.
 !!!DO NOT USE THIS FUNCTION TO MOVE ONE OBJECT TO ANOTHER!!!
 """

def limit_velocity(obj: str, weight: float = 1.0):
 """
 Encourages the robot to keep the object stationary and stop it from moving.
 Args:
 obj: The name of an object
 weight: If 1, will encourage the robot to keep the object stationary and motionless. If 0, the object velocity will be unregulated.
 """

def set_hand_position(position: np.ndarray, weight: float = 1.0):
 """Sets the target position for the hand
 Args:
 position: a 3D hand position.
 weight: If 1, the robot will be encouraged to move its hand to the target position. If 0, the hand motion will be unregulated.
 """

def reach(obj: str, weight: float = 1.0):
 """Move the robot hand to the given object.
 Args:
 obj: The name of an object in the scene from ['plug', 'base', 'red' 'green']
 weight: If 1, the robot will be encouraged to move its hand to the object and move the object around with the hand. If 0, the hand and the object will move
independently of each other, and the object will no longer be attached to the hand.
 """

def match_orientations(source: str, target: str, weight: float = 1.0):
 """Sets the importance of matching the orientations from object source to object target.
 Args:
 source: The name of an object in the scene from ['plug', 'base', 'red' 'green']
 target: The name of an object in the scene from ['plug', 'base', 'red' 'green']
 weight: If 1, the object orientations will be matched. If 0, their orientations will be unregulated.
 """

def minimize_distance_2d(source: str, target: str, weight: float = 1.0):
 """
 Brings the source object and target object together in the horizontal plane.
 Args:
 source: The name of an object in the scene from ['plug', 'base', 'red' 'green']
 target: The name of an object in the scene from ['plug', 'base', 'red' 'green']
 weight: If 1, the objects will be brought together. If 0, their distance will be unregulated. If -1, the robot will try to move the objects apart from each other.
 """

Robot Code Writing Hints:
- For APIs that accept an obj string (like set_object_target, reach, limit_velocity), the only object names allowed are {"plug", "base", "red", "green"}.
- Use only numpy (imported as np) and the API provided above.
- Do not use any functions or object names besides the ones defined in the API above.
- Write the reasoning for each function call as a comment on its own line, immediately preceding the function call.
- Make your best guess for numerical values based on input from the user.
- The user may use synonyms to refer to the same objects: {gripper, hand}, {socket, base}, {plug, connector}.
- Remember: The coordinates of the objects are unknown so do not use absolute coordinate for an object's position.
- You can UNDO previous motions by setting the corresponding weights to 0.
- !!!IMPORTANT!!! When responding to user instructions, always rewrite the entire previous program with the new revisions.

Chat Turn Example:
Chat Turn 1 - User:
Lift the green object up.
Chat Turn 1 - Program:
Reasoning: First we reach for the green cube and wait for completion.
reach(obj='green', weight=1.0)
wait(10.0)
Reasoning: Then, we lift the green cube by setting its Z target.
set_object_target('green', position=(0, 0, 0.2), xy_weight=0, z_weight=1)
Reasoning: We want the green cube to move up, but we don't want it to move arbitrarily in the XY plane. A limit velocity with a small weight should be used.
limit_velocity('green', 0.5)
Done.

Chat Turn Example:
Chat Turn 1 - User:
Move the red thing next to the green thing
Chat Turn 1 - Program:
Reasoning: First we reach for the red cube and wait for completion.
reach(obj='red', weight=1.0)
wait(10.0)
Reasoning: To move the red object to the green object, since we did not lift the red object, we can just minimize the planar distance between the two objects.
minimize_distance_2d('red', 'green', weight=1)
Done.

New Chat Session

Fig. 20: Kuka+Hand prompt consists of a high level description of the goals and format (purple), robot reward code API (orange), code-writing hints (green), and chat
turn examples (blue).

	Introduction
	Language Model Predictive Control
	Problem Statement
	Fast Adaptation with In-Context Learning
	Slow Adaptation with Model Fine-Tuning

	Experiments
	Data Collection and Evaluation
	Compared Methods
	Experiment Results

	Conclusion
	Appendix
	Related Work
	Limitations
	LMPC Details
	Real-Time Motion Control with MJPC.
	Data Collection and Evaluation Details
	Robot Embodiments and Tasks
	Additional Results
	Top-Users and Details on Autonomous Top-Users Selection
	Trait Classification Prompts

	RAG Implementation Details
	Data Augmentation Details
	Analysis of Chat Feedback Embeddings
	Real Robot Experiments
	Language Model Training Details
	User Performance Drift Analysis
	Failure mode analysis
	Fine-tuned Models on Code-writing Benchmarks
	Robot Embodiment Details
	Tasks
	Prompts

