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Abstract

The large language model (LLM)-as-judge001
paradigm has been used to meet the demand002
for a cheap, reliable, and fast evaluation of003
model outputs during AI system development004
and post-deployment monitoring. While judge005
models—LLMs finetuned to specialize in as-006
sessing and critiquing model outputs—have007
been touted as general purpose evaluators, they008
are typically evaluated only on non-contextual009
scenarios, such as instruction following. The010
omission of contextual settings—those where011
external information is used as context to gen-012
erate an output—is surprising given the increas-013
ing prevalence of retrieval-augmented genera-014
tion (RAG) and summarization use cases. Con-015
textual assessment is uniquely challenging, as016
evaluation often depends on practitioner pri-017
orities, leading to conditional evaluation cri-018
teria (e.g., comparing responses based on fac-019
tuality and then considering completeness if020
they are equally factual). To address the gap,021
we propose ContextualJudgeBench, a judge022
benchmark with 2,000 challenging response023
pairs across eight splits inspired by real-world024
contextual evaluation scenarios. We build our025
benchmark with a multi-pronged data construc-026
tion pipeline that leverages both existing hu-027
man annotations and model-based perturba-028
tions. Our comprehensive study across 11029
judge models and 7 general purpose models,030
reveals that the contextual information and as-031
sessment criteria present a significant challenge032
to even state-of-the-art models. For example,033
o1, the best-performing model, barely reaches034
55% consistent accuracy.035

1 Introduction036

In the LLM era, timely, affordable, and accu-037

rate evaluation of model responses is essential for038

model development and monitoring. One auto-039

mated evaluation solution available to practitioners040

is the LLM-as-judge approach, where relatively041

lightweight judge models are trained to evaluate042
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Who has the number one pick in 
the NBA draft this year?

Highlights from the draft include the first 
Dominican to be the first overall pick 
(Karl-Anthony Towns), 
…
The draft lottery took place on May 19, 2015.
The Minnesota Timberwolves won the draft 
lottery to earn the first overall pick in the draft.
It marked the first time in Timberwolves history 
that they would receive the first overall pick 
through the lottery.
…
[additional context omitted]

Response A
…The Minnesota Timberwolves won the draft lottery to earn the first 
overall pick in the 2015 NBA draft. The 2015 NBA drafts had 
Karl-Anthony Towns as the first overall pick, and was the first 
Dominican to get this. 

Response B
The Minnesota Timberwolves won the draft lottery to earn the first 
overall pick in the 2015 NBA draft, marking the first time in 
Timberwolves history that they would receive the first overall pick 
through the lottery. This marked the first time in Timberwolves history 
that they would receive the first overall pick through the lottery. The 
Los Angeles Lakers also received the second overall pick in the 2015 
NBA draft, giving them the number one pick in the 2018 NBA draft.

Unverifiable from context!

Figure 1: (Top) An overview of top-performing models
on the eight splits of ContextualJudgeBench. (Bottom)
A truncated sample from the faithfulness split, where
Response A is preferred because all of its content is
factually verifiable from the context.

and critique other model responses. Judge models 043

are broadly touted as general-purpose evaluators 044

(e.g., Vu et al. (2024); Alexandru et al. (2025)), ca- 045

pable of being deployed across domains and evalua- 046

tion settings. However, judges are rarely evaluated 047

on contextual settings (Wang et al., 2024c; Saha 048

et al., 2025; Ye et al., 2024), where the evaluated 049

responses are generated from an externally pro- 050

vided context rather than solely from the model’s 051

parametric knowledge, like in retrieval-augmented 052

generation (RAG) or summarization. 053

As contextual generation systems gain promi- 054

nence, specialized generators (Cohere Team, 2024; 055

Contextual AI Team, 2024; Nguyen et al., 2024) 056

have been developed to meet the stringent faithful- 057

ness demands of business applications and high- 058

risk fields, like medicine (Xiong et al., 2024) and 059

law (Wiratunga et al., 2024). Reliably evaluating 060

such systems is increasingly important, but presents 061

unique challenges. The presence of contextual in- 062

formation magnifies challenges that exist in non- 063
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contextual human evaluation (Liu et al., 2023):064

Since contextual generation requires responses to065

be faithful to the provided context, humans must066

first comprehend potentially long, domain-specific067

contexts before they can evaluate a response. This068

additional “hallucination detection” step adds an-069

other layer of complexity on top of evaluating the070

substantive quality of responses.071

Taken together, contextual settings are the ideal072

candidate for automatic evaluation: LLMs have073

strong language understanding across specialized074

domains (Xie et al., 2023; Ke et al., 2025; Colombo075

et al., 2024) and have rapidly improving long-076

context comprehension abilities (Kamradt, 2023).077

Indeed, many recent benchmarks for contextual078

generation use prompted (Laban et al., 2024; Ja-079

covi et al., 2025) or finetuned (Friel et al., 2024)080

LLMs to serve as evaluators due to longer, more081

complex model outputs. However, to our knowl-082

edge, no benchmarks exist to measure the qual-083

ity of contextual evaluators. We bridge this gap084

by proposing ContextualJudgeBench, which con-085

sists of 2,000 challenging pairwise samples across086

8 splits that measure different evaluation criteria087

and settings. Fig. 1 showcases our dataset splits088

and benchmarking results. Our work complements089

existing contextual generation benchmarks by of-090

fering a way to assess contextual evaluators.091

The dominant criteria for responses in contex-092

tual evaluation center around faithfulness and an-093

swer relevancy (Es et al., 2023; Saad-Falcon et al.,094

2023; Jacovi et al., 2025; Laban et al., 2024). Such095

metrics are often assigned independently in a point-096

wise manner, i.e., a model assigns a faithfulness097

score and a relevance score to a single response,098

with each score assigned without considering the099

other. ContextualJudgeBench, in contrast, pro-100

poses a pairwise evaluation setup. This pairwise101

setup offers utility to practitioners (e.g., evalua-102

tion for A/B testing) while eliciting evaluations bet-103

ter aligned with humans judgment from automatic104

evaluators (Wang et al., 2023; Liu et al., 2024a).105

However, directly using pointwise scores to do pair-106

wise comparisons can lead to ambiguity: If a re-107

sponse is more relevant but less faithful, is it better?108

To remedy this, we propose a principled condi-109

tional evaluation hierarchy (Sec. 3) that prioritizes110

refusal accuracy and response faithfulness. First,111

we evaluate if judges can assess accurate or in-112

accurate refusals, where a response that refuses113

to answer due to a perceived lack of evidence is114

compared against a substantive response. Given115

two substantive responses, we next assess based 116

on faithfulness: Which response contains more fac- 117

tually supported information? If two responses 118

are equally faithful, then they are evaluated on 119

completeness, with more thorough responses be- 120

ing preferred. Finally, for two equally complete 121

responses, they are evaluated based on concise- 122

ness, as responses should not contain extraneous 123

information, even if factual. The splits in Con- 124

textualJudgeBench are carefully designed to test 125

judges in each setting that arises in this hierarchy. 126

Concretely, our contributions are: 127

• With an emphasis on refusals and faithfulness, 128

we propose a hierarchy that provides an “order of 129

operations” for pairwise contextual evaluation. 130

• We present ContextualJudgeBench, a benchmark 131

for evaluating judge models consisting of 2,000 132

response pairs across eight splits derived from 133

real-world contextual outcomes. 134

• We evaluate 11 judge models, ranging in size 135

from 3.8B to 70B parameters on Contextual- 136

JudgeBench along with 7 general purpose/rea- 137

soning models. 138

Our findings reveal that contextual assessment re- 139

mains an open challenge, with o1 and SFRJudge- 140

70B only achieving 55.3 and 51.4 accuracy. De- 141

spite the reasoning intense nature of contextual 142

evaluation, our analysis shows that inference-time 143

scaling for judges may lead to performance degra- 144

dations. We will make our code and benchmark 145

available for future research in the evaluation and 146

development of contextual judges. 147

2 Related work 148

Our work, rather than evaluating contextual sys- 149

tems, evaluates judge models as contextual evalu- 150

ators. Here, we review current judge benchmarks 151

and contextual evaluation setups. 152

Evaluation for LLM-as-judges. LLM-as-judge 153

is a generative evaluator paradigm where LLMs 154

are trained to produce an evaluation (natural lan- 155

guage explanation and judgment) given the original 156

user input, evaluation protocol (rules and criteria 157

for evaluation), and model responses as input. As 158

the popularity of LLM-as-judges grows, numerous 159

benchmarks have been proposed to evaluate these 160

evaluators. These benchmarks are typically for 161

specific domains, like instruction following (Zeng 162

et al., 2023), fine-grained evaluation (Kim et al., 163

2023, 2024), bias (Park et al., 2024), reward model- 164

ing (Lambert et al., 2024; Frick et al., 2024; Gureja 165
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et al., 2024), or reasoning (Tan et al., 2024). While166

new judge benchmarks are challenging, none fo-167

cus on contextual evaluation. Of judge bench-168

marks, a subset of Eval-P (Li et al., 2023a) con-169

tains summarization pairs with the winner cho-170

sen by aggregating various criteria into an over-171

all score. InstruSum (Liu et al., 2023) has also172

been used for judge evaluation (Wang et al., 2024b;173

Alexandru et al., 2025; Liu et al., 2024c). Contex-174

tualJudgeBench, in contrast, is dedicated entirely175

to contextual evaluation, requiring evaluation to176

be done in under-explored settings like RAG-QA177

along previously untested criteria such as refusal.178

Evaluation for contextual responses. RAG gen-179

erators have been typically evaluated with stan-180

dard knowledge-based QA tasks, e.g., Contex-181

tualBench (Nguyen et al., 2024), or with newer182

benchmarks that cover scenarios such as faithful-183

ness (Ming et al., 2024; Niu et al., 2024; Tang184

et al., 2024; Li et al., 2023b; Sadat et al., 2023),185

diverse domains (Friel et al., 2024), refusals (Peng186

et al., 2024), and reasoning (Wei et al., 2024; Kr-187

ishna et al., 2024). Because RAG settings have188

progressed beyond simple factoid answers, recent189

benchmarks have deployed carefully prompted190

frontier LLMs (e.g., Jacovi et al. (2025)) to per-191

form assessment in a pointwise manner, rather than192

using exact string matching (Nguyen et al., 2024).193

Initial evaluation efforts for RAG settings fo-194

cused on faithfulness, training hallucination detec-195

tors (Tang et al., 2024) as both sequence classifiers196

and generative models (Wang et al., 2024a; Ravi197

et al., 2024; Ramamurthy et al., 2024). More holis-198

tic evaluation systems with multiple metrics have199

recently been proposed, such as Es et al. (2023);200

Saad-Falcon et al. (2023). For the most part, these201

approaches involve specialized prompting (Es et al.,202

2023), using synthetic data generation to train spe-203

cialized evaluators (Saad-Falcon et al., 2023).204

Summarization evaluation has evolved from n-205

gram metrics like ROUGE (Lin, 2004) and ME-206

TEOR (Banerjee and Lavie, 2005) to contextual207

embedding model scorers (Zhang et al., 2020; Zhao208

et al., 2019; Yuan et al., 2021). However, these eval-209

uators cannot assess based on multiple criteria and210

tend to correlate poorly with humans. To evaluate211

quality, the primary focus has been on model-based212

factual verification (Laban et al., 2022; Cao and213

Wang, 2021; Goyal and Durrett, 2021; Kryscinski214

et al., 2020; Laban et al., 2023). Recent studies215

have shifted toward human annotations for finer-216

grained assessment (Song et al., 2024; Lee et al.,217

2024; Oh et al., 2025), focusing on metrics such as 218

faithfulness and conciseness. 219

Our proposed work complements these existing 220

benchmarks in summarization and RAG by evalu- 221

ating contextual judges, rather than the generators. 222

3 ContextualJudgeBench 223

“63 percent of respondents...said that 224

output inaccuracy was the greatest risk 225

they saw in their organizations’ use of 226

gen AI.” –McKinsey, 2024 AI Survey 227

Inaccuracy is the largest reported risk for practi- 228

tioners using AI systems. 30% of respondents in 229

a Deloitte survey specifically cite trust loss due to 230

hallucinations as a top concern. Hallucinations are 231

especially unacceptable in contextual settings, as 232

the model is expected to generate responses strictly 233

based on the provided context. This grounding con- 234

text is typically considered a gold-standard source 235

of knowledge. If the relevant information is absent, 236

the model should refrain from responding rather 237

than generate unsupported content. Motivated by 238

real-world concerns, we propose a conditional eval- 239

uation workflow (Fig. 2) that prioritizes answerabil- 240

ity and faithfulness before assessing other criteria. 241

Each evaluation step in our workflow requires cre- 242

ating new splits for ContextualJudgeBench. 243

In developing contextual systems, practitioners 244

often conduct A/B testing between systems with 245

different generator, retriever, pre-processing con- 246

figurations (Saad-Falcon et al., 2023). Contextu- 247

alJudgeBench is designed to reflect this pairwise 248

A/B testing setup, containing 2,000 test samples. 249

Each sample includes a user input, a context, and 250

two responses, from which a judge selects the "bet- 251

ter" response based on our workflow. The pairwise 252

setting is well-suited for judge-based evaluation 253

as it aligns closely with human preferences (Wang 254

et al., 2023; Liu et al., 2024a). We first describe 255

two methods we use to create the pairwise samples. 256

Then, we present ContextualJudgeBench in four 257

stages (Sec. 3.2 – 3.5), each corresponding to a step 258

in the evaluation workflow (Fig. 2). 259

3.1 Dataset creation approach 260

We employ two primary approaches to create Con- 261

textualJudgeBench: utilizing existing human anno- 262

tations and leveraging frontier models for criteria- 263

based response perturbation. 264

• Human annotations [H]: We use existing hu- 265

man annotations (Lee et al., 2024; Wan et al., 266
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Figure 2: A refusal and faithfulness-first contextual evaluation hierarchy, as assessed by ContextualJudgeBench.

2024; Wu et al., 2023; Liu et al., 2024b) that eval-267

uate multiple model responses for the same con-268

text. These assessments include criteria-specific269

scores or errors, either holistically or sentence-270

level. We select responses with significant differ-271

ences based on specific criterion to form pairs,272

enabling comparative assessments.273

• Model-based perturbations: In the absence of274

human labels, we form pairs through criteria-275

based response perturbation. Specifically, we276

use frontier LLMs to modify accurate responses277

based on the context to produce responses that278

do not align with the intended criteria. We apply279

this approach in two distinct ways:280

Desired output prompting [M1]: We ask an281

LLM to directly generate a response based on282

the context that fits certain output criteria. This283

includes generating context-based refusals or de-284

liberately unfaithful responses.285

Existing output modification [M2]: We use an286

LLM to modify an existing response, introducing287

deviations based on predefined criteria. This can288

include making the response more verbose or289

altering its content in specific ways.290

See App. A for details on the datasets, prompts,291

and specific approaches used for each split.292

3.2 Step 1: QA refusal validity [splits 1 & 2]293

Knowing when to refuse to answer due to lack of294

information is a critical first step specific to RAG295

settings1. Refusals can be viewed as a form of296

faithfulness: To remain faithful to the context, the297

model should refuse to hallucinate an answer if no298

relevant information is present. Conversely, the299

model should not refuse if the context is sufficient.300

Splits 1 and 2 of ContextualJudgeBench assess301

if judges can identify appropriate refusals. Each302

sample consists of a refusal (e.g., “The answer303

cannot be answered based on the context”) and a304

substantive response. Split 1 contains answerable305

questions from LFRQA (Han et al., 2024), where306

1Refusals are uncommon in summarization, as instructions
and context are both user provided; In RAG settings, the user
has no control over the retrieved context.

the judge should pick the substantive response, 307

whereas split 2 contains unanswerable questions 308

from FaithEval (Ming et al., 2024), making refusal 309

the correct choice. To construct split 1, we use 310

approach M1 from Sec. 3.1, using an LLM to gen- 311

erate context-based refusals as negative responses 312

to pair up with the provided positive responses. In 313

split 2, we again employ approach M1 to generate 314

context-based refusal responses to correctly decline 315

the question as positive responses and generate hal- 316

lucinated (incorrect) responses as negative ones. 317

See App. A for generation prompt. 318

3.3 Step 2: Faithfulness [splits 3 & 4] 319

When evaluating two substantive responses, the 320

first criterion is faithfulness, as a response cannot 321

be considered accurate if it contains hallucinated 322

content. Faithfulness measures the consistency of 323

the response with the context: all factual statements 324

in a faithful response must be attributable to the 325

context, ensuring there are no hallucinations. Splits 326

3 and 4 evaluate the judge’s ability to select the 327

more faithful response for QA and summarization, 328

respectively. Each pairwise sample is designed to 329

include one substantively more faithful response, 330

allowing the judge to choose the better response 331

based solely on faithfulness. 332

We construct split 3 by combining multiple QA 333

datasets. For QA-Feedback (Wu et al., 2023) and 334

RAGTruth (Niu et al., 2024), we use the approach 335

H to form pairs between RAG responses, annotated 336

with either faithfulness scores or factuality errors. 337

For LFRQA (Han et al., 2024), LFQA (Xu et al., 338

2023), and short queries from MRQA (Fisch et al., 339

2019), we treat the provided responses as factually 340

correct (positive) and apply approach M1 to gener- 341

ate factually inconsistent negative responses based 342

on the context. See App. A for prompt template. 343

We manually reviewed the formed pairs to ensure 344

their reliability. For Split 4, we use approach H 345

to create summarization response pairs of different 346

factuality levels. To ensure diversity, we sample 347

contexts from Wan et al. (2024); Lee et al. (2024), 348

which cover both topic-specific and general sum- 349

marization instructions across diverse domains. 350
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Figure 3: Distributions of context domain as a percent
of the total set of preference pairs in the benchmark.

3.4 Step 3: Completeness [splits 5 & 6]351

Beyond faithfulness, contextual evaluation must352

also assess response quality. When comparing two353

faithful responses, the better one should cover all354

essential information needed for a thorough and355

useful answer. As such, we consider completeness,356

i.e., how comprehensive the response is, as the next357

criteria. Splits 5 and 6 assess the judge’s ability to358

select more complete response when both options359

are faithful, for QA and summarization tasks, re-360

spectively. Each pairwise sample is designed such361

that one response is more complete than the other362

while both the responses are faithful.363

Judges should first confirm that both responses364

are faithful and then determine which one is365

more complete. We construct Split 5 using the366

LFRQA(Han et al., 2024) and QA-Feedback(Wu367

et al., 2023) datasets. For LFRQA, we use approach368

M2 from Sec. 3.1 to modify a faithful response369

by omitting lines associated with certain citations370

while expanding on other citations. This yields a371

less complete negative response that is still faith-372

ful and similar in length to the original (positive)373

response. See App. A for generation prompt. For374

QA-Feedback, we use approach H to create pref-375

erence pairs from RAG responses annotated for376

completeness scores or missing information errors.377

Similarly, split 6 is created using approach H with378

existing human annotations that assess faithfulness379

and completeness in summarization responses. To380

form preference pairs, we first filter unfaithful re-381

sponses . Then, we form pairs based on complete-382

ness, ensuring that one response is significantly383

more complete (positive) than the other (negative).384

3.5 Step 4: Conciseness [splits 7 & 8]385

Our final criterion is conciseness: does the response386

avoid including more than what was asked? Our hi-387

erarchy intentionally places conciseness after com-388

pleteness, as an answer should not sacrifice relevant389

content for the sake of brevity. However, complete 390

responses may not be minimally complete: They 391

may contain faithful yet extraneous information, 392

repeated content, or unnecessary stylistic details. 393

In splits 7 and 8, each pairwise sample has one 394

response that is more concise while maintaining 395

the same faithfulness and completeness. Judges 396

should first verify both responses are faithful and 397

complete, then choose the more concise one. 398

For Split 7, we use LFRQA (Han et al., 2024) 399

and QA-Feedback (Wu et al., 2023). For LFRQA, 400

we apply approach M2, tasking the model to in- 401

sert direct quotations from the context without 402

modifying the substance of provided responses. 403

See App. A for generation prompt. For QA- 404

Feedback, we use approach H to create pairs 405

from responses annotated along conciseness, re- 406

dundancy, and irrelevance. Preference pairs are 407

formed by pairing faithful and complete responses 408

by conciseness. For split 8, we again use approach 409

H, using human annotations (Lee et al., 2024; Liu 410

et al., 2024b) that assess summarization faithful- 411

ness, completeness, and conciseness. 412

3.6 Overall dataset statistics 413

ContextualJudgeBench is constructed based on our 414

evaluation workflow (Fig. 2), resulting in 8 splits 415

across 4 evaluation criteria, covering two common 416

use cases of contextual generation: RAG-QA (5 417

splits) and Summarization (3 splits). We present the 418

domain distribution in Fig. 3 and dataset statistics 419

in Tab. 1. Overall, ContextualJudgeBench consists 420

of 2,000 preference pairs, balanced across all splits, 421

with over 1,500 unique contexts to minimize dupli- 422

cation. We include a wide range of context lengths, 423

from a few tokens to nearly 10K tokens, with sum- 424

marization contexts typically longer than QA ones. 425

Response lengths range from brief answers to sum- 426

maries over 1,000 tokens. To account for length 427

bias in judges (Zeng et al., 2023; Park et al., 2024), 428

we ensure minimal length differences between pos- 429

itive and negative responses across all splits; how- 430

ever, conciseness correlates with response length, 431

resulting in longer positive responses. 432

4 Evaluation and analysis 433

4.1 Evaluation setup and baselines 434

Because the order of responses influences judge de- 435

cisions (Wang et al., 2023), we adopt a consistency 436

evaluation setup, like Tan et al. (2024); Li et al. 437

(2023a). We run evaluation for each test sample 438
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Split # Pairs # Context Lc Lr Lpos Lneg

Refusal (Ans.) 250 250 1,444 102 108 95
Refusal (Unans.) 250 250 418 64 64 63
Faithfulness (QA) 250 213 414 100 99 101
Faithfulness (Summ.) 250 192 1,754 94 97 91
Completeness (QA) 250 250 658 106 98 113
Completeness (Summ.) 251 171 1,066 91 93 89
Conciseness (QA) 255 254 1,086 199 116 281
Conciseness (Summ.) 244 117 1,557 98 77 118

Total 2,000 1,537 1,048 94 119 107

Table 1: ContextualJudgeBench statistics. # Context
denotes unique contexts across all pairsLc and Lr rep-
resent the mean context and response lengths, while
Lpos and Lneg denote the mean positive and negative
response lengths per split.

twice, swapping the order of responses for the sec-439

ond run, and measure consistent accuracy: A judge440

output is considered correct if the judge selects the441

correct response for both runs. Under this setup,442

randomly choosing responses achieves a consistent443

accuracy of 25%. We also measure consistency ,444

the fraction of times a judge selects the same re-445

sponse in both runs, regardless of correctness.446

We evaluate 11 competitive LLM-as-judge mod-447

els, ranging in size from 3.8B to 70B parameters:448

Prometheus (Kim et al., 2024), OffsetBias (Park449

et al., 2024), SFRJudge (Wang et al., 2024b),450

Skywork-Critic (Shiwen et al., 2024), Self-taugh-451

evaluator (Wang et al., 2024c), GLIDER (Desh-452

pande et al., 2024), and Atla-Selene (Alexandru453

et al., 2025). See Tab. 2 for an overview of judges454

and App. B.1 for a more detailed description of455

each evaluated judge. For each judge, we re-456

tain the original prompt template while modifying457

evaluation instructions to align with our proposed458

workflow. Please see App. B.2 for prompt sam-459

ples. In addition to specialized judges, we use460

Llama-3.1-8B & 70B (instruct versions) and GPT-461

4o, GPT-4o-mini, o3-mini, o1, and Deepseek-R1462

as prompted judge model baselines. For all non-463

reasoning model-based judges, we generate with464

greedy sampling.465

As a reference point, we also run RAGAS (Es466

et al., 2023), a pointwise RAG evaluator that lever-467

ages both prompted frontier models and embedding468

models, as well as MiniCheck (Tang et al., 2024),469

a hallucination detector. We apply these two meth-470

ods to benchmark splits covered by their respec-471

tive metrics: refusal and faithfulness for both, and472

completeness for RAGAS. For RAGAS, we score473

each response pointwise and derive corresponding474

pairwise outcomes in line with our hierarchy (e.g.,475

for the completeness split, two responses must be476

considered equally faithful). For MiniCheck, we477

Model # Params Expl. Context len.

GLIDER (Deshpande et al., 2024) 3.8B ✓ 128K
Prometheus-2 (Kim et al., 2024) 7,8x7B ✓ 16K
OffsetBias (Park et al., 2024) 8B ✗ 8K
Atla-Selene (Alexandru et al., 2025) 8B ✓ 128K
Skywork-Critic (Shiwen et al., 2024) 8,70B ✗ 128K
SFRJudge (Wang et al., 2024b) 8,12,70B ✓ 128K
STEval. (Wang et al., 2024c) 70B ✓ 128K

Llama-3.1 (Dubey et al., 2024) 8,70B ✓ 128K
GPT-4o,4o-mini (Hurst et al., 2024) ? ✓ 128K
GPT-o1,o3-mini (Jaech et al., 2024) ? ✓ 128K
DeepSeek-R1 (Guo et al., 2025) 671B ✓ 128K

Table 2: Judge (top) and general (bottom) models evalu-
ated. Expl. denotes if model outputs explanations.

directly compare the classifier probabilities of each 478

response to determine the pairwise winner. 479

4.2 Judge model evaluation 480

The results presented in Tab. 3 highlight the chal- 481

lenges of contextual evaluation. Overall, the best 482

models on ContextualJudgeBench are o1 (55.3), 483

o3-mini (52.6) and DeepSeek-R1 (51.9), two large- 484

scale reasoning models. The best-performing 485

judge, SFRJudge-70B (51.4), nearly matches 486

DeepSeek-R1. Judge model performance generally 487

increases with model size, with the best-performing 488

judges exceeding their similarly-sized API coun- 489

terparts (e.g., SFRJudge-8B at 39.3 and GPT-4o- 490

mini at 38.8). The scaling trend, along with the 491

strong performance of reasoning models, suggests 492

that contextual evaluation is a reasoning-intensive 493

task. However, we show that two inference-time 494

reasoning techniques, self-consistency and better 495

chain-of-thought prompting, do not boost judge 496

performance in Sec. 4.5 and App. C.1. 497

Generative judge models tend to lag specialized 498

evaluators. MiniCheck naturally excels for faithful- 499

ness, while RAGAS offers more balanced, yet still 500

competitive performance across refusal and faith- 501

fulness splits. However, most judges outperform 502

the embedding-based RAGAS completeness score, 503

showing an advantage of generative evaluation. 504

Models tend to struggle with conciseness and 505

unanswerable refusals. The difficulty with concise- 506

ness may be exacerbated by length bias (Zeng et al., 507

2023), as selecting shorter concise responses con- 508

flicts with the tendency of judge models to prefer 509

longer ones. Likewise, struggling to select accu- 510

rate refusals may be a special case of concreteness 511

bias (Park et al., 2024), as judges are biased towards 512

substantive responses. Further analysis in App. C.2 513

reveal that poor accurate refusal performance may 514

be an unintended result of judge finetuning. 515
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Model
Refusal Refusal Faithfulness Faithfulness Completeness Completeness Conciseness Conciseness

Average
(Ans.) (Unans.) (QA) (Summ.) (QA) (Summ.) (QA) (Summ.)

Sm
al

lJ
ud

ge

Glider-3.8B 12.0 8.8 45.6 9.2 20.8 28.7 5.1 4.1 16.8
Promtheus-2-7b 12.4 44.0 27.2 32.0 24.0 42.6 6.7 29.5 27.3
Llama-3-OffsetBias-8B 64.8 11.2 34.0 26.4 33.2 21.1 46.3 23.0 32.6
Skywork-8B 60.8 12.0 38.8 31.6 38.4 26.7 29.4 21.3 32.4
Alta-Selene-8B 74.4 26.4 40.8 32.8 32.4 34.7 23.1 32.0 37.1
SFRJudge-8B 70.8 22.0 40.4 38.8 40.4 43.4 27.5 31.1 39.3
SFRJudge-12B 68.4 28.4 45.2 43.6 28.0 51.0 16.1 29.5 38.8

L
ar

ge
Ju

dg
e Promtheus-2-8x7b 22.0 29.6 22.4 29.6 20.4 39.8 10.2 18.4 24.1

Skywork-70B 82.4 11.2 48.0 47.6 36.8 41.4 21.6 27.9 39.6
ST-Eval-70B 50.0 42.0 51.2 45.6 40.8 39.4 36.1 29.9 41.9
SFRJudge-70B 87.6 32.4 60.8 54.8 40.8 53.4 44.7 36.1 51.4

In
st

ru
ct

+
R

ea
so

ni
ng Llama-3.1-8B 28.0 43.2 34.8 34.8 23.2 41.0 11.4 21.3 29.7

Llama-3.1-70B 59.6 48.0 58.0 48.4 38.0 51.8 15.7 27.5 43.4
GPT-4o-mini 71.2 22.8 45.6 42.4 33.2 54.2 11.8 29.5 38.8
GPT-4o 64.0 52.0 68.0 50.8 39.6 56.2 12.9 22.5 45.8
o3-mini 95.2 34.4 76.4 58.0 40.4 59.8 20.8 35.7 52.6
o1 96.0 48.4 84.4 59.2 48.4 63.7 15.3 27.0 55.3
DeepSeek-R1 92.0 52.0 72.0 50.4 41.2 60.6 20.4 26.2 51.9

O
th

er RAGAS 62.4 60.0 78.8 54.4 22.4 23.1 – – –
Minicheck-7B 93.6 20.4 83.2 70.4 – – – – –

Table 3: Consistent accuracy for judge models, open-source instruct models, and API models on ContextualJudgeBench.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Consistent Accuracy

0.2

0.4

0.6
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t A
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ur
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y,
 v

er
ifi

ed

SFRJudge-8B
Atla-Selene-8B
SFRJudge-70B

STEval-70B
Llama-3.1-8B
Llama-3.1-70B

Correct for right reason
Refusal
Faithfulness

Best fit, coeff.: 0.86
Completeness
Conciseness

Figure 4: Accuracy vs. verified accuracy for six models,
aggregated by criteria. The larger the drop from the
dashed black line, the larger fraction of correct outcomes
used incorrect criteria, as assessed by GPT-4o.

4.3 How does context impact positional bias?516

Past studies have noted that judges are not robust to517

the order of the response pairs (Wang et al., 2023;518

Li et al., 2023a). This positional bias may be fur-519

ther exacerbated by the inclusion of context. As we520

show in Fig. 5 (top), consistency decreases as the521

context and response lengths increase, with eval-522

uations of very long (>11K) inputs 33% less con-523

sistent than very short (<1K) input tokens. Incon-524

sistency leads to performance variations, as shown525

in Fig. 5 (bottom). Here, we visualize the accuracy526

of each individual consistency run (Run 1 and Run527

2 accuracy) and optimistic accuracy, where the528

judgment is considered correct if the judge iden-529

tifies the better response in either of the two con-530

sistency runs, irrespective of the consistency. The531

inter-run performance gap tends to be small for532

stronger models, reflecting more consistent judg-533

ments. Weaker models exhibit higher levels of534

positional bias, but the favored position is model-535

dependent. For example, Prometheus-7B prefers536

the first response while OffsetBias prefers the sec-537

ond. The optimistic accuracy shows that judges538

are not wrong in a consistent manner, but often539

flip-flop based on position. Notably, optimistic540
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Figure 5: (Top) Consistency computed across all models
and splits is inversely correlated with input length. .
(Bottom) Four accuracy measures showing performance
variations due to inconsistency, averaged across all splits
for each model.

accuracy of finetuned judge models is generally 541

higher than that of prompted judges (e.g., 73.1 for 542

OffsetBias vs. 68.3 for o1), revealing that judge 543

finetuning may raise the upper bound of evaluation. 544

Additional results can be found in App. C.3. 545

4.4 How do judges handle criteria? 546

Our analysis thus far has been outcome driven: 547

We have not verified that judges make correct 548

judgments based on the specified criteria. Here, 549

we conduct model-assisted verification on a sub- 550

set of judge models that generate explanations: 551

SFRJudge-8B,70B, Atla-Selene-8B, Self-taught- 552

evaluator, and the two Llama models. For all judg- 553

ments with the correct outcome, we prompt GPT- 554

4o to determine from the judge explanation if the 555

judgment was decided by the correct criteria (Full 556

prompt in App. B.3). From this, we compute a 557

verified consistent accuracy. In Fig. 4, we plot 558

the verified accuracies of each judge against its 559

original accuracies, with the black dashed-line indi- 560
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Figure 6: Judge performance changes are minor when
given exact criteria vs. full workflow, indicating chal-
lenges in contextual evaluation beyond criteria. Per-split
metrics averaged across all models, per-judge metrics
averaged across all splits.

cating the upper bound, where all correct responses561

use the right criteria. On average, verified accu-562

racies tend to be 20 absolute percent lower than563

outcome-based accuracy, revealing that judges are564

using incorrect reasoning to reach correct outcomes.565

Refusals and faithfulness are generally determined566

for the correct reasons, whereas completeness and567

conciseness are not, further highlighting the chal-568

lenges of evaluation in the contextual settings.569

While judges struggle to use the correct criteria570

when evaluating based on the contextual hierar-571

chy, they are slightly more capable when given572

the correct criteria to use, as shown in Fig. 6. For573

each split, we prompt the judge with only the split574

criteria, omitting any mention of the contextual hi-575

erarchy. We compare judge performance against576

prompting with the full hierarchy. Conciseness and577

unanswerable refusals receive the greatest benefit,578

showing that length bias and concreteness bias can579

be mitigated to a degree with specific prompting.580

However, performance gains are relatively muted581

across judges due to little change in judge consis-582

tency between the two settings. Judge inconsis-583

tency, even after abstracting away the hierarchical584

structure, suggests that contextual evaluation poses585

challenges beyond applying the correct criteria.586

4.5 Can scaling inference-time compute help?587

Inspired by recent efforts in inference-time scal-588

ing (Jaech et al., 2024; Snell et al., 2024), we in-589

vestigate the impact of two test-time scaling tech-590

niques: LLM-as-jury (Verga et al., 2024) and self-591

consistency (Wang et al., 2022). We experiment592

with three 70B judges, and for both settings, ag-593

gregate judgments via majority vote2. In Fig. 7,594

we present our results for LLM-as-jury (top) us-595

2We treat inconsistent judgments as ties. For a sample, if
the aggregated judgments do not have a clear winner, e.g., (A,
Tie, B) or (Tie, Tie, Tie), then we consider it incorrect.
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Figure 7: (Top) Ensembling judges into juries rarely
outperforms the strongest judge in the jury due to weak
judge agreement. (Bottom) Self-consistency rarely im-
proves judge performance.

ing responses from different three judges and self- 596

consistency (bottom) using 10 responses per judge 597

(using a temperature of 0.7) . LLM-as-jury rarely 598

outperforms the strongest judge in the jury, while 599

using self-consistency similarly has little impact on 600

judge performance. Similar trends hold for smaller 601

judge models, as shown in App. C.5. 602

These trends may be surprising given the strong 603

performance of reasoning models like o1 and 604

DeepSeek-R1. Lack of improvement from self- 605

consistency likely results from the fact that con- 606

textual assessment is largely unseen in judge train- 607

ing. As a result, better judgments cannot be ex- 608

tracted via random sampling. The lack of jury suc- 609

cess stems from the fact that judges do not exhibit 610

structured agreement. We use all judge outputs to 611

compute Krippendorff’s alpha coefficient (Krippen- 612

dorff, 2011), which measures inter-annotator agree- 613

ment on a range from -1 to 1, with 0 indicating ran- 614

dom chance. As shown in Fig. 7, judge agreement 615

is extremely random: Even on the best-performing 616

split, the alpha coefficient barely exceeds 0.2. 617

5 Conclusion 618

We introduce ContextualJudgeBench, a benchmark 619

designed to evaluate LLM-judges in contextual set- 620

tings. Building on a principled contextual eval- 621

uation hierarchy, we construct eight benchmark 622

splits that assess refusals, faithfulness, complete- 623

ness, and conciseness. This benchmark presents 624

a significant challenge for state-of-the-art judge 625

and reasoning models, with SFRJudge-70B and 626

o1 achieving consistent accuracies of 51.4% and 627

55.3%, respectively. Additionally, we conduct a 628

thorough analysis of reasoning correctness and ex- 629

amine the impact of common methods for scaling 630

test-time compute, result of which further validate 631

the unique challenges of contextual evaluation. 632
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Limitations633

Our evaluations center around generative evalua-634

tors, as they are the most flexible in terms of incor-635

porating context and indicating different evaluation636

criteria. However, reward models (RMs) are a com-637

mon class of evaluators that may be applicable to638

this setting. However, to our knowledge, no con-639

textual reward models exist. While in practice, one640

can embed the context in the input, it is unclear641

how to derive criteria-specific rewards from current642

models. A fruitful direction of future work is de-643

veloping and benchmarking classifier based RMs644

for contextual settings.645

As we repurposed existing annotated datasets –646

particularly for faithfulness and completeness – we647

are constrained by their coverage. This limitation648

may prevent us from making observations that gen-649

eralize beyond their original distribution. Further-650

more, ContextualJudgeBench is constructed pri-651

marily from English sources, a language abundant652

with context, model responses, and correspond-653

ing annotations. Further research should aim to654

rigorously assess contextual assessment in low-655

resource languages, where contextual content and656

corresponding annotations may be more scarce.657
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A ContextualJudgeBench: Additional1070

details1071

Here, we provide additional details on all 81072

splits of ContextualJudgeBench, including the1073

datasets used, the approaches applied, and the1074

prompts used for data creation. See Table 4 for a1075

summarized overview. We sampled data using a1076

model-based response perturbation approach, as1077

introduced in Sec. 3, which includes two methods:1078

desired output prompting (M1) and existing output1079

modification (M2).1080

1081

Prompt 1 (M1): Generate context-based refusal1082

Prompt 2 (M1): Generate hallucinated response1083

Prompt 3 (M1): Generate unfaithful response1084

Prompt 4 (M2): Generate less-complete response1085

Prompt 5 (M2): Generate less-concise response1086

### Data Prompt 1 (M1) : Generate context-based
refusal response

Given the following question and context, generate a
context-specific refusal response that:
1. Explains why you cannot answer based on the given
context
2. Points out specific missing information or topics
that would be needed to answer properly
3. May suggest what kind of information would be
needed to provide a proper answer
4. Avoids generic responses like "I don't know" or
"not enough information"

Examples of good refusals:
- "Although the context discusses cooking
temperatures, it lacks crucial information about
high-altitude adjustments and humidity factors that
would be necessary to properly answer this baking
question."
- "While the context mentions flight regulations, it
doesn't include specific airline policies or
statistical data on baggage handling that would be
needed to fully address this question."
- "The context touches on basic gardening principles
but lacks essential details about soil pH levels and
regional climate variations needed to answer this
plant care question."

Important: Even if the context contains partial
information, explain what specific information you
claim is missing.

Question:
{question}

Contexts:
{context}

Please provide:
1. A convincing refusal response that explains what
specific information you claim is missing
2. A brief justification explaining why this refusal
appears appropriate

Format the response as a JSON object with keys
'refusal_response' and 'justification'.

1087

### Data Prompt 2 (M1) : Generate hallucinated response

Given the following question and context, provide a
well-thought, and specific answer:

Question:
{question}

Contexts:
{context}

Please provide:
1. A step-by-step reasoning process explaining how you
arrive at your answer
2. A final, direct answer based on this reasoning

You must provide a specific answer. You cannot respond
with "I don't know" or "not enough information".

Format the response as a JSON object with two keys:
- 'thoughts': Your step-by-step reasoning process
- 'answer': Your final answer.

1088

### Data Prompt 3 (M1) : Generate unfaithful response

Given the following question and its faithful answer,
generate an unfaithful answer (unfaithful with respect
to the given context) that:
1. Can be a correct answer to the question.
2. May include plausible-sounding but irrelevant
information with respect to the given contexts.
Question:
{question}

Contexts:
{context}

Faithful Answer:
{answer}

Please provide:
1. An unfaithful answer
2. A brief justification explaining why the answer is
unfaithful (irrlevant) to the context.
Format the response as a JSON object with keys
'unfaithful_answer' and 'justification'.

1089

### Data Prompt 4 (M2) : Generate less-complete
response
Task: Modify the given response by removing key
details from one or more cited passages while
maintaining a similar length by expanding on less
relevant details.

Instructions:
1. Omit one or more cited passages to make the
response less complete, removing essential details.
2. Compensate for the missing information by
elaborating on other cited passages with unnecessary
or redundant details.
3. Ensure the modified response remains factually
accurate and aligns with the provided context.
4. Maintain a similar length to the original response,
ensuring the new version differs by more than 10-15
words.
5. Avoid copying the structure of the given response;
create a unique structure instead. \n6. Do not include
citations (e.g., [*]) in the modified response.

Question:
{question}

Context:
{context}

1090
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Split Dataset Positive Response (approach) Negative Response (approach)

Refusal
(Ans.)

LFRQA(Han et al., 2024) Provided response Context-based refusal using data prompt-1 (M1)

Refusal
(Unans.)

FaithEval(Ming et al., 2024) Context-based refusal using data prompt-1 (M1) Generate substantive response with data prompt-2
(M1)

Faithfulness LFRQA(Han et al., 2024) Provided response Generate unfaithful response using data
(QA) LFQA(Xu et al., 2023) prompt-3 (M1)

MRQA(Fisch et al., 2019)
QA-Feedback(Wu et al., 2023) Faithful responses (H) Unfaithful responses (H)
RAGTruth(Niu et al., 2024)

Faithfulness FineSumFact(Oh et al., 2025) Fully faithful responses or response with higher Unfaithful response with lower faithfulness
(Summ.) InstruSum(Liu et al., 2024b) faithfulness (0.75 or more) (H) score (H)

LongformFact(Wan et al., 2024)
UniSumEval(Lee et al., 2024)
FineSurE(Song et al., 2024)
RAGTruth (Niu et al., 2024)

Completeness
(QA)

LFRQA(Han et al., 2024) Provided response Omitted few relevant information and expanded
on remaining ones using data prompt-4 (M2)

QA-Feedback(Wu et al., 2023) Response w/o ’missing-info’ error (H) Response with ’missing-info’ error (H)

Completeness InstruSum(Liu et al., 2024b) Response with faithfulness=1 and higher Response with faithfulness=1 and lower
(Summ.) UniSumEval(Lee et al., 2024) completeness score (H) completeness score (H)

FineSurE(Song et al., 2024)

Conciseness
(QA)

LFRQA(Han et al., 2024) Provided response Direct quotations inserted from the context in the
original response using data prompt-5 (M2)

QA-Feedback(Wu et al., 2023) Response w/o ’irrelevant’ or ’redundant’ error (H) Response with ’irrelevant’ or ’redundant’ error (H)

Conciseness InstruSum(Liu et al., 2024b) Response with faithfulness=1, completeness=1 Response with faithfulness=1, completeness=1
(Summ.) UniSumEval(Lee et al., 2024) and higher conciseness score (H) and lower conciseness score (H)

Table 4: Detailed information on all eight splits of ContextualJudgeBench, including the datasets utilized, approaches
applied for pair construction, and the prompts used for data generation. Here (H) refers to using existing human
annotations, while (M2), (M2) refers to desired output prompting and existing output modification respectively.

Response with citations:
{answer}
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### Data Prompt 5 (M2) : Generate less-concise response

Task: Given the following question, context, and
answer with citations, your task is to generate a less
concise and more detailed response by expanding some
of the citations through direct quotations from the
cited passages. The response should include all
relevant details from the original answer but should
be rephrased to avoid copying directly. By
incorporating specific lines from the cited articles,
the response will become more authoritative. Not all
citations need to be expandedchoose which ones to
elaborate on for the greatest impact. Ensure that the
final response does not exceed the original length by
more than 50 words and maintains a unique structure
while conveying the same information. Do not include
citations in the generated response.

Question:
{question}

Context:
{context}

Response with citations:
{answer}
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B Judge model details1093

Here, we provide additional details about evaluated1094

judge models, prompts used for judge models, and1095

prompts used for model-assisted criteria evaluation.1096

B.1 Overview of judge model baselines 1097

We evaluate the 11 judge models from the follow- 1098

ing judge families. 1099

• GLIDER (Deshpande et al., 2024): GLIDER 1100

is finetuned from Phi-3.5-mini-instruct (Ab- 1101

din et al., 2024) to be a lightweight evaluator. 1102

GLIDER is trained with anchored preference op- 1103

timization (D’Oosterlinck et al., 2024) to perform 1104

pairwise, single-rating, and binary classification 1105

evaluation, while producing explanations. 1106

• Prometheus-2 (Kim et al., 2024): The 1107

Prometheus-2 family of models are finetuned 1108

from Mistral 7B and 8x7B instruct models (Jiang 1109

et al., 2023, 2024) to conduct pairwise and single- 1110

rating evaluation. They utilize purely synthetic 1111

data distilled from GPT-4 to train their models to 1112

produce explanations and judgments. 1113

• OffsetBias (Park et al., 2024): OffsetBias is fine- 1114

tuned from Llama-3-Instruct (Dubey et al., 2024) 1115

to perform pairwise comparison evaluation. It 1116

is trained with supervised finetuning (SFT) ex- 1117

plicitly with an emphasis on bias mitigation via 1118

adversarially generated data. OffsetBias does not 1119

produce explanations. 1120

• Atla-Selene (Alexandru et al., 2025): Atla- 1121

Selene is a general purpose evaluator trained 1122
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from Llama-3.1-8B instruct. It is trained to per-1123

form pairwise, single-rating, and binary classifi-1124

cation evaluation via iterative reasoning prefer-1125

ence optimization (Pang et al., 2024).1126

• Skywork-Critic (Shiwen et al., 2024): Skywork-1127

Critic judges are finetuned from Llama-3.1-8B1128

and 70B instruct to perform pairwise evaluation.1129

The emphasis of Skywork is in data curation,1130

using a relatively small set judgments to train an1131

evaluator with SFT. Skywork-Critic models do1132

not generate explanations.1133

• SFRJudge (Wang et al., 2024b): SFRJudge are1134

a family of judges finetuned from Mistral-NeMo-1135

12B (The Mistral AI Team, 2024) and Llama-3.1-1136

8B and 70B instruct models to perform pairwise,1137

single-rating, and binary classification evaluation.1138

These models are trained with direct preference1139

optimization (Rafailov et al., 2024) with an em-1140

phasis on training tasks. SFRJudge models are1141

able to generate explanations.1142

• Self-taught-evaluator (Wang et al., 2024c): Self-1143

taught-evaluator is trained form Llama-3.1-70B1144

instruct using an iterative DPO training approach.1145

This model is trained to produce explanations1146

and conduct pairwise evaluation.1147

B.2 Sample judge model prompt template1148

For all judges, we preserve the model-developer1149

provided template. This informs the judge of ex-1150

pected data format and corresponding output for-1151

mat. We additionally use provided judgment pars-1152

ing code when available. We utilize the same evalu-1153

ation description across all judges. We present full1154

prompt examples below for our standard prompt,1155

which describes the entire workflow, our structured1156

prompt, which emphasizes faithfulness via struc-1157

tured chain-of-thought (as discussed in App. C.1),1158

and our criteria-specific prompts used in Sec. 4.4.1159

### Standard prompt

You are a contextual judge. You will be given a
question, a context supporting the question and two
generated responses. Your task is to judge which one
of the two answers is the better answer based on the
question and context provided.
Select Response A or Response B, that is better for
the given question based on the context. The two
responses are generated by two different AI chatbots
respectively.
Do NOT say both / neither are good.

Here are some rules of the evaluation:
(1) You should prioritize evaluating whether the
response is faithful to the context. A response is
faithful to the context if all of the factual
information in the response is attributable to the
context. If the context does not contain sufficient

1160

information to answer the user's question, a faithful
response should indicate there is not sufficient
information and refuse to answer.
(2) You should pick the response that is more faithful
to the context.
(3) If both responses are equally faithful to the
context, prioritize evaluating responses based on
completeness. A response is complete if it addresses
all aspects of the question.
If two responses are equally complete, evaluate based
on conciseness. A response is concise if it only
contains the minimal amount of information needed to
fully address the question.
(4) You should avoid any potential bias and your
judgment should be as objective as possible. Here are
some potential sources of bias:
- The order in which the responses were presented
should NOT affect your judgment, as Response A and
Response B are **equally likely** to be the better.
- The length of the responses should NOT affect your
judgement, as a longer response does not necessarily
correspond to a better response. When making your
decision, evaluate if the response length is
appropriate for the given instruction.

Your reply should strictly follow this format:
**Reasoning:** <feedback evaluating the responses>

**Result:** <A or B>

Here is the data.

Question:
```
{question}
```

Response A:
```
{response_a}
```

Response B:
```
{response_b}
```

Context:
```
{context}
```

1161

### Structured prompt

You are a contextual judge. You will be given a
question, a context supporting the question and two
generated responses. Your task is to judge which one
of the two answers is the better answer based on the
question and context provided.
Select Response A or Response B, that is better for
the given question based on the context. The two
responses are generated by two different AI chatbots
respectively.
Do NOT say both / neither are good.

Here are some rules of the evaluation:
(1) A response is faithful to the context if all of
the factual information in the response is
attributable to the context. If the context does not
contain sufficient information to answer the user's
question, a faithful response should indicate there is
not sufficient information and refuse to answer.
(2) First, determine if Response A is faithful to the
context. Provide reasoning for your decision, then
write your response as **Response A:** <yes/no>
(3) Second, determine if Response B is faithful to the
context. Provide reasoning for your decision, then
write your response as **Response B:** <yes/no>
(4) If one response is faithful while the other
response is not, select the faithful response. If both
responses are equally faithful to the context,
prioritize evaluating responses based on {criteria}.

1162
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(5) You should avoid any potential bias and your
judgment should be as objective as possible. Here are
some potential sources of bias:
- The order in which the responses were presented
should NOT affect your judgment, as Response A and
Response B are **equally likely** to be the better.
- The length of the responses should NOT affect your
judgement, as a longer response does not necessarily
correspond to a better response. When making your
decision, evaluate if the response length is
appropriate for the given instruction.

Your reply should strictly follow this format:
**Response A reasoning:** <reasoning for response A
faithfulness>

**Response A:** <yes/no if response A is faithful to
the context>

**Response B reasoning:** <reasoning for response B
faithfulness>

**Response B:** <yes/no if response B is faithful to
the context>

**Reasoning:** <feedback evaluating the responses>

**Result:** <A or B>

Here is the data.

Question:
```
{question}
```

Response A:
```
{response_a}
```

Response B:
```
{response_b}
```

Context:
```
{context}
```

1163

Below is our criteria-specific prompts, where for1164

criteria, we substitute in one of the following:1165

• Refusal: “refusal validity. A response correctly1166

refuses to answer if the context does not con-1167

tain sufficient information to answer the user’s1168

question.”1169

• Faithfulness: “faithfulness. A response is faith-1170

ful to the context if all of the factual information1171

in the response is attributable to the context.”1172

• Completeness: “completeness. A response is1173

complete if it addresses all aspects of the ques-1174

tion.”1175

• Conciseness: “conciseness. A response is con-1176

cise if it only contains the minimal amount of in-1177

formation needed to fully address the question.”1178

### Criteria specific

You are a helpful assistant in evaluating the quality
of the responses for a given instruction and context.

1179

Your goal is to select the best response for the given
instruction and context.
Select Response A or Response B, that is better for
the given instruction. The two responses are generated
by two different AI chatbots respectively.
Do NOT say both / neither are good.

Here are some rules of the evaluation:
(1) You should prioritize evaluating on {criteria}
(2) Responses should NOT contain more/less than what
the instruction asks for, as such responses do NOT
precisely execute the instruction.
(3) You should avoid any potential bias and your
judgment should be as objective as possible. Here are
some potential sources of bias:
- The order in which the responses were presented
should NOT affect your judgment, as Response A and
Response B are **equally likely** to be the better.
- The length of the responses should NOT affect your
judgement, as a longer response does not necessarily
correspond to a better response. When making your
decision, evaluate if the response length is
appropriate for the given instruction.

Your reply should strictly follow this format:
**Reasoning:** <feedback evaluating the responses>

**Result:** <A or B>

Here is the data.

Question:
```
{question}
```

Response A:
```
{response_a}
```

Response B:
```
{response_b}
```

Context:
```
{context}
```

1180

B.3 Criteria verification GPT-4o prompt 1181

Here, we present the prompt used for criteria ver- 1182

ification in Sec. 4.4. For each split, we prompt 1183

GPT-4o to evaluate the response based on the judge 1184

explanation, judge output, and split criteria. For 1185

the criteria field, we use the following descriptions: 1186

• Refusal: “Refusal validity / faithfulness: The 1187

chosen response either correctly refuses to an- 1188

swer or correctly does not refuse and answers. 1189

This makes the chosen response appropriately 1190

faithful.” 1191

• Faithfulness: “Faithfulness: The chosen re- 1192

sponse is more faithful, factual, or truthful.” 1193

• Completeness: “Completeness: The chosen re- 1194

sponse is more complete, thorough, or compre- 1195

hensive.” 1196

• Conciseness: “Conciseness: The chosen re- 1197

sponse is more concise or less wordy or verbose.” 1198
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Figure 8: Using a structured chain-of-thought prompt
by instructing judges to explicitly list out faithfulness
evaluation before evaluating on other criteria does not
lead to meaningful performance changes.

### GPT-4o criteria evaluation prompt

You are given an <evaluation explanation>, a
<evaluation outcome>, and a set of <criteria>.
Another large language model conducted a pairwise
evaluation between two responses, Response A and
Response B.
Based on the content of the <evaluation explanation>,
your task is to decide if the <evaluation outcome> was
decided based on <criteria>.
The <evaluation explanation> is allowed to mention
criteria other than <criteria>. But it must use
<criteria> as the primary criteria in its decision.

<evaluation explanation>: {critique}
<evaluation outcome>: {judgment}
<criteria>: {criteria}

Please give a short explanation, then respond with Yes
or No. Use the format
<explanation>: your explanation
<decision>: Yes or No

1199

C Additional experimental results1200

C.1 Can we improve performance with1201

structured prompting?1202

Our results in Sec. 4.2 reveal that judges strug-1203

gle with verifying factuality, a key step early on1204

in the evaluation workflow. Here, we experiment1205

with a prompt (presented in App. B.2) that empha-1206

sizes factuality via a more structured output for-1207

mat. For judges that produce explanations, we ask1208

the judge to determine each response’s faithfulness1209

independently, requiring it to output “Response1210

{A,B} faithfulness reasoning: <reasoning>” and1211

“Response {A,B} faithfulness: <yes/no>” before its1212

evaluation along other workflow criteria. This can1213

be viewed as directing the judge to produce a more1214

structured chain-of-thought (Li et al., 2025) before1215

evaluation or using user-specified test cases (Saad-1216

Falcon et al., 2024; Saha et al., 2025). For judges1217

that do not produce explanations, we omit the rea-1218

soning requirement. We visualize the performance1219
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Figure 9: Non-contextual judge finetuning helps most
splits relative to base model performance, but notably
hurts unanswerable refusals.

per-judge and per-split in Fig. 8, which reveals 1220

that structured prompting has minimal effects. De- 1221

spite the prompt focus on factuality, performance in 1222

factuality splits only increases marginally. Perfor- 1223

mance shifts in either direction are minimal across 1224

most judges, with the out-of-training-distribution 1225

nature of this prompt likely offsetting any potential 1226

gains. As such, clever prompting at inference time 1227

cannot dramatically improve judge performance. 1228

C.2 What does non-contextual judge 1229

finetuning help? 1230

Judge models are typically finetuned starting from 1231

general-purpose instruct models. Here, we analyze 1232

the effects of such finetuning by comparing the 1233

SFRJudge-8B and Atla-Selene-8B to their original 1234

base model, Llama-3.1-8B, and SFRJudge-70B to 1235

Llama-3.1-70B. All models use the same prompt 1236

template for evaluation. As we visualize in Fig. 9, 1237

judge finetuning for non-contextual evaluation still 1238

helps evaluation performance for most splits, but 1239

notably hurts performance for identifying accurate 1240

refusals. This performance degradation may reveal 1241

one hidden assumption in judge model training: 1242

That the responses evaluated always attempt to sat- 1243

isfy the user requests. That is, judge training data 1244

likely does not include examples of accurate re- 1245

fusals, leading to skewed performance for refusals, 1246

with large boosts in identifying inaccurate refusals, 1247

but sizable drops in identifying accurate refusals. 1248

This same trend holds for larger judge models too, 1249

albeit with slightly smaller changes in performance. 1250

This indicates that larger base models come with 1251

a higher level of “fundamental judgment ability” 1252

than smaller models, resulting in less gains from 1253

judge-specific training. However, this does not 1254

mean there are no tangible benefits, as highlighted 1255

in the increase in Conciseness (QA) performance. 1256
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Figure 10: Positional bias results for instruction tuned
and reasoning models. Metrics averaged over all
datasets.
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Figure 11: Optimistic accuracy vs. verified optimistic
accuracy for six models, aggregated by criteria. The
larger the drop from the dashed black line, the larger
fraction of correct outcomes used incorrect criteria, as
assessed by GPT-4o.

C.3 Additional positional bias results1257

In Fig. 10, we present positional bias results for1258

instruction-tuned and reasoning models. Overall,1259

the trend follows that of judge models presented1260

in Sec. 4.3, with stronger models exhibiting smaller1261

inter-run variation, which leads to higher consis-1262

tency. Llama models tend to favor the first position,1263

whereas OpenAI models tend to favor the second1264

position.1265

C.4 Additional analysis of criteria usage.1266

Here, we present our criteria verification experi-1267

ment using the optimistic version of verified accu-1268

racy: We consider a sample to be correct if any1269

of the two consistency runs (1) returns the correct1270

outcome and (2) uses the correct reasoning. We1271

plot results in Fig. 4. Overall, optimistic accuracy1272

follows remarkably similar trends, with verified1273

optimistic accuracy lagging optimistic accuracy by1274

20 absolute percent, on average.1275

C.5 Additional inference-time compute1276

scaling results1277

Here, we present additional inference-time scaling1278

results for a group of three smaller judge models:1279
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Figure 12: (Top) Ensembling smaller judges rarely im-
proves performance beyond that of the strongest judge
in the ensemble. (Bottom) Self-consistency for smaller
judges has negligible effects on performance.

Skywork-8B, Atla-Selene-8B, and SFRJudge-8B. 1280

Similar to Sec. 4.5, scaling inference time compute 1281

for smaller judges similarly does not improve per- 1282

formance, whether it be ensembling judges into 1283

an LLMs-as-a-jury, or via self-consistency (using 1284

10 samples). Like larger judges, ensembling fails 1285

due to random inter-judge agreement, as measured 1286

by Krippendorff’s alpha coefficient. Furthermore, 1287

smaller judges are also restricted by their funda- 1288

mental judgment ability, meaning it is unlikely that 1289

random sampling will extract consistently better 1290

judgments. 1291
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