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Abstract

Ambiguity is pervasive in language, yet we001
resolve it effortlessly and unconsciously, of-002
ten aided by context and part-of-speech (POS)003
cues. This study investigates how context sim-004
ilarity and POS influence homonym disam-005
biguation in humans and large language mod-006
els (LLMs). To enable comparable analyses007
between humans and LLMs, we first built an008
expert-curated sentence-pair dataset, manipu-009
lating context similarity and homonym POS010
categories. Participants (n = 55) and LLMs (via011
prompting) were asked to rate the sense sim-012
ilarity of target homonyms embedded within013
each sentence on a 7-point Likert scale. We014
found that context similarity influenced both015
groups similarly, but only humans utilized POS016
information, likely contributing to their supe-017
rior performance. Model-derived metrics (sur-018
prisal, entropy) predicted human reaction times,019
and angular similarity between homonym rep-020
resentations accounted for additional variance,021
highlighting the roles of both expectation-based022
and semantic processes. Psycholinguistic fac-023
tors like age of acquisition affected only human024
responses, underscoring distinct language ac-025
quisition mechanisms. Together, our findings il-026
lustrate how context and POS information inter-027
actively shape homonym resolution in humans,028
while exposing the limitations of current lan-029
guage models in capturing these nuanced pro-030
cesses. Dataset and codes are publicly available031
at https://anonymous.4open.science/r/032
context-and-pos-in-action-976D.033

1 Introduction034

Language ambiguity is common in daily communi-035

cation, in part because languages tend to maximize036

the use of individual words by allowing them to037

take on multiple meanings (Piantadosi et al., 2012;038

Wang, 2011). This process creates homonyms and039

helps reduce the overall vocabulary size and mem-040

ory demands for speakers. Although homonyms041

could potentially lead to confusion, true ambiguity042

is rare, as speakers and listeners rely on mutual 043

understanding and employ strategies, such as us- 044

ing sentential context and part of speech (POS), 045

to quickly and automatically resolve ambiguous 046

words (Zempleni et al., 2007). 047

Behavioral, electrophysiological, and fMRI stud- 048

ies show that context is crucial for resolving am- 049

biguity in words with multiple meanings (Titone, 050

1998; Swaab et al., 2003; Zempleni et al., 2007). 051

Even individuals with cognitive deficits, such as 052

older adults, attempt to use context to resolve 053

homonymous ambiguity (Dagerman et al., 2006). 054

Additionally, the POS characteristics of homonyms 055

affect processing; for example, greater brain ac- 056

tivity occurs when senses share the same POS 057

category (Grindrod et al., 2014). Furthermore, 058

psycholinguistic factors such as word frequency 059

and age of acquisition (AoA) also influence word 060

processing (Elsherif et al., 2023; Brysbaert et al., 061

2017). 062

Distributed semantic models have been devel- 063

oped to generate dynamic word representations 064

based on contextual information (Vaswani et al., 065

2017; Lenci et al., 2022). These models par- 066

tially address the meaning conflation problem for 067

homonyms that was previously criticized in static 068

vector models (Mikolov et al., 2013; Navigli and 069

Martelli, 2019). However, it is unclear whether 070

these contextualized embeddings genuinely reflect 071

how humans conceptualize word meaning across 072

contexts, or if they depend on non-generalizable 073

shortcuts, such as overreliance on previously en- 074

countered data (Lake and Murphy, 2023; Haber 075

and Poesio, 2024). For example, it remains un- 076

known whether such models, like humans, incorpo- 077

rate the influence of POS and AoA when represent- 078

ing senses of homonyms in context. 079

The main contributions of this study are twofold. 080

First, we systematically investigate how context 081

similarity and POS modulate both human and lan- 082

guage model performance in homonym disam- 083
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biguation, using these variables as the primary inde-084

pendent factors in our experimental design. Second,085

by leveraging the metrices generated by language086

models under varying conditions of context similar-087

ity and POS, we evaluate the extent to which these088

computational outputs can account for and predict089

human behavioral responses in homonym process-090

ing tasks. Additionally, while word frequency and091

AoA are not manipulated as independent variables,092

we incorporate these psycholinguistic factors in093

our analyses to further contextualize our findings094

and explore their potential influence on homonym095

processing.096

2 Related work097

2.1 Human processing of homonymy098

Homonyms are seldom interpreted in an isolated099

manner in real-world communication. Instead, sur-100

rounding context plays a crucial role in guiding101

comprehension and facilitating the integration of102

incoming linguistic information (Swinney, 1979;103

Rodd, 2018; Vu et al., 2000). Context provides lis-104

teners with prior expectations that help anticipate105

and resolve ambiguity, enabling efficient commu-106

nication even when words have multiple meanings.107

The influence of context on homonym process-108

ing has been widely studied, with major theories109

proposing that meaning selection involves either110

exhaustive access followed by contextual selection,111

direct context-driven access, or dynamic reordering112

based on context and meaning dominance (Swin-113

ney, 1979; Vu et al., 1998; Duffy et al., 1988).114

While these accounts have illuminated how con-115

text biases interpretation toward dominant or sub-116

ordinate senses of a homonym, they do not fully117

explain the role of context similarity, such as in118

zeugmatic expressions, on meaning selection (De-119

Long et al., 2023); for example, it remains unclear120

how homonyms are processed in highly similar121

contexts, as in "they found the money and found122

the company." This gap highlights the need for fur-123

ther research into how contextual similarity shapes124

meaning selection during real-time comprehension.125

Beyond contextual cues, POS is a key factor126

in homonym processing. Behavioral studies show127

that homonyms whose meanings share the same128

POS (e.g., noun-noun homonyms like “match”) are129

recognized more slowly than those with meanings130

from different classes (e.g., noun-verb homonyms131

like “bark”), likely due to increased competi-132

tion among similar representations (Mirman et al.,133

2010). Yet, neuroimaging findings are mixed: 134

faster reaction times for noun-noun homonyms co- 135

incide with less left inferior frontal gyrus (LIFG) 136

activation, while slower reaction times for noun- 137

verb homonyms are associated with greater LIFG 138

activation, suggesting that noun-verb homonyms 139

require more neural effort for lexical-syntactic re- 140

trieval processes (Grindrod et al., 2014). These dif- 141

ferences may partly reflect limitations of the lexical 142

decision task, as such studies present homonyms 143

in isolation, potentially encouraging reliance on 144

perceptual familiarity with the word form rather 145

than full linguistic processing (Rogers et al., 2004). 146

Additionally, variables such as word frequency 147

and age of acquisition (AoA) play significant roles. 148

Frequently encountered meanings are accessed 149

more rapidly and are more likely to be selected 150

in ambiguous contexts, while meanings acquired 151

earlier in life may have processing advantages due 152

to their entrenchment in the mental lexicon (Jas- 153

trzembski, 1981; Brysbaert et al., 2000; McClel- 154

land and Rogers, 2003). Together, these factors, in 155

conjunction with contextual cues, jointly shape the 156

cognitive processes underlying homonym resolu- 157

tion and highlight the multifaceted nature of lexical 158

ambiguity processing. 159

2.2 Homonymy in contextualized word 160

embeddings 161

Word sense disambiguation (WSD) is also a fun- 162

damental problem in natural language process- 163

ing (NLP) and computational linguistics (Navigli, 164

2009; Vandenbussche et al., 2021). With the de- 165

velopment of word vector approaches, significant 166

progress has been made, especially with the intro- 167

duction of contextualized word embeddings, which 168

are capable of capturing context-sensitive semantic 169

nuances (Lenci, 2018). 170

While LLMs have advanced our understand- 171

ing of how models encode and recover word 172

senses from diverse contexts (Loureiro et al., 2021), 173

important limitations remain, particularly when 174

homonyms appear in highly similar sentential en- 175

vironments, such as in “We’re going to the airport 176

by coach/bus” (Garcia, 2021; Brivio and Coltekin, 177

2022). The effect of context similarity on sense em- 178

beddings is especially underexplored for Chinese, 179

a language lacking explicit POS marking found 180

in morphologically rich languages like English 181

(Wang, 1973). For example, in English, verbs like 182

“founded” in “they found the money and founded 183

the company” are readily identified by morphologi- 184
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cal cues, while Chinese relies more heavily on con-185

text, potentially reducing the distinction between186

same-POS and different-POS homonyms in con-187

textualized embeddings (Ma et al., 2025). Thus,188

how context similarity and POS interact to shape189

homonym representations in Chinese remains un-190

clear and warrants further investigation.191

Moreover, recent studies show that computa-192

tional models, particularly transformer-based lan-193

guage models, can capture aspects of human lex-194

ical processing, as contextualized embeddings re-195

flect distinctions such as the polyseme advantage196

and homonym disadvantage observed in behav-197

ioral tasks (Wilson and Marantz, 2022; Rodd et al.,198

2002). However, while embedding-based similar-199

ity metrics like cosine similarity often correlate200

with human semantic judgments (Nair et al., 2020),201

they can misestimate similarities in highly simi-202

lar contexts, for example, underestimating same-203

sense and overestimating different-sense similarity204

in cases like “He saw the furry/wooden bat” (Trott205

and Bergen, 2021).206

Beyond embeddings, other model-derived met-207

rics such as next-token probability (surprisal) and208

entropy are increasingly used to probe language209

processing, offering measures of prediction confi-210

dence and uncertainty that align with human neural211

activity during comprehension (Ryskin and Nieuw-212

land, 2023; Willems et al., 2016; Goldstein et al.,213

2022; Frank et al., 2015; Heilbron et al., 2022). To-214

gether, these computational metrics may provide215

complementary insights into how language models216

approximate human lexical processing.217

3 Methods218

3.1 Sentence-pair dataset construction219

Given the absence of datasets that systematically220

account for both POS and context similarity in221

Chinese homonyms, we constructed a dedicated222

sentence-pair dataset for this study. First, 64 noun223

or verb homonyms (32 same-POS and 32 different-224

POS) were selected from the seventh edition of225

the Modern Chinese Dictionary (Xiandai Hanyu226

Cidian), a widely used standardized Mandarin ref-227

erence. For each homonym, relevant psycholinguis-228

tic properties, such as AoA and word frequency,229

were extracted from the Chinese Lexical Dataset230

(Sun et al., 2018). A full list of selected homonyms231

and their psycholinguistic properties can be found232

in Appendix A.2.233

For each target homonym, eight pairs of sen-234

Figure 1: Schematic illustration of experimental proce-
dures for both human and LLMs experiments.

tences were constructed, taking into account the 235

two critical factors: POS and Context. Additionally, 236

the senses of the two homonyms in the sentence 237

pairs were balanced to avoid response bias, ensur- 238

ing that neither "same" nor "different" judgments 239

dominate. The length of the sentences ranged from 240

10 to 20 characters. Each sentence underwent thor- 241

ough scrutiny for grammatical correctness and so- 242

cial acceptability. The Table 1 presents illustrative 243

examples for "粉丝" and "风化", each with eight 244

sentence pairs. Hereafter, homonyms will be de- 245

scribed as same/diff-POS corresponding to same or 246

different POS, and sentence-pair will be described 247

as same/diff-sense and same/diff-context. 248

3.2 Experimental procedures 249

3.2.1 Human experiment 250

Sixty-one participants (31M) were recruited, al- 251

though the data from one subject was excluded 252

due to technical issues. All participants were right- 253

handed Chinese native speakers and college stu- 254

dents (24.1 ± 2.5 years old) whose majors were 255

not related to linguistics or psychology. They 256

visited the laboratory to complete the homonym 257

judgment task. All participants gave informed 258

consent in accordance with the requirements of 259

The Hong Kong Polytechnic University’s Human 260

Subject Ethics Subcommittee (Reference Num- 261

ber: HSEARS20240515001). An honorarium (100 262

HKD) was paid to each participant. 263

Stimuli were presented electronically on a laptop 264

using E-Prime 3.0 software (Schneider et al., 2016). 265

After a fixation cross was displayed at the center 266

of the screen for 600 ms, the target homonym ap- 267

peared centrally for 500 ms. Subsequently, two 268

sentences were presented simultaneously on either 269

side of the screen, each occupying a single line. Par- 270

ticipants were required to use the mouse to click 271

the numbers below the two sentences to indicate 272

their response on a 7-point Likert scale, as illus- 273

trated in Figure 1. A rating of 1 indicated the most 274
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Word POS1 POS2 POSWord Context Sense Sentence1 Sentence2

粉丝 Noun Noun same same same 这种透明的粉丝是用绿豆淀粉制成的。 这种细长的粉丝是用绿豆淀粉制成的。
This transparent vermicelli is made from mung bean starch. This thin vermicelli is made from mung bean starch.

粉丝 Noun Noun same same same 她的忠实粉丝常常为她的作品刷屏支持。 她的铁杆粉丝常常为她的作品刷屏支持。
Her loyal fan often supports her works online. Her die-hard fan often supports her works online.

粉丝 Noun Noun same same different 艺人们纷纷抱怨起那些难缠的粉丝。 艺人们纷纷抱怨那些失控的粉丝。
The artists all complained about those troublesome fans. The artists all complained about those out-of-control fans.

粉丝 Noun Noun same same different 那些激动的粉丝让专家们感到非常吃惊。 那些过期的粉丝让专家们感到非常吃惊。
Those excited fans surprised the experts very much. Those expired vermicelli surprised the experts very much.

粉丝 Noun Noun same different same 我妈妈做的粉丝汤味道真鲜美。 粉丝是广东菜中常见的食材之一。
The vermicelli soup my mom made is really delicious. Vermicelli is one of the common ingredients in Cantonese cuisine.

粉丝 Noun Noun same different same 周杰伦的粉丝会唱他的每一首歌。 粉丝们在演唱会上的热情非常高涨。
Jay Chou’s fans can sing every one of his songs. The fans were very enthusiastic at the concert.

粉丝 Noun Noun same different different 饥肠辘辘的他只想来一碗热腾腾的酸辣粉丝。 前来接机的粉丝把整个机场大厅都挤满了。
Starving, he just wanted a bowl of hot and sour vermicelli. The fans who came to pick up at the airport filled the entire hall.

粉丝 Noun Noun same different different 这场签售会吸引了上万的粉丝。 妈妈正在厨房里准备凉拌粉丝。
This signing event attracted tens of thousands of fans. Mom is preparing cold vermicelli salad in the kitchen.

风化 Noun Verb different same same 他的善举对年轻人起到了良好的风化示范作用。 他的善举对年轻人起到了良好的风化促进作用。
His good deeds set a good example of moral influence for young people. His good deeds had a positive moralizing effect on young people.

风化 Noun Verb different same same 某些矿物在潮湿环境中容易发生风化反应。 某些矿物在潮湿环境中容易发生风化侵蚀。
Certain minerals are prone to weathering reactions in humid environments. Certain minerals are prone to weathering erosion in humid environments.

风化 Noun Verb different same different 一个地区的风化观念往往是在长年累月的结果。 一个地区的风化作用往往是在长年累月的结果。
A region’s concept of public morals is often the result of many years. A region’s weathering process is often the result of many years.

风化 Noun Verb different same different 专家们正在调查社会风化对人民生活的影响。 专家们正在调查岩石风化对人民生活的影响。
Experts are investigating the effects of social morality on people’s lives. Experts are investigating the effects of rock weathering on people’s lives.

风化 Noun Verb different different same 发达国家的风化水平往往在体现了其文明程度。 风化习俗的传承有助于增强民族的凝聚力。
The level of morality in developed countries often reflects their level of civilization. The inheritance of moral customs helps strengthen national cohesion.

风化 Noun Verb different different same 风化后的岩石表面会出现许多微小的裂缝。 地貌的形成与频繁的风化密切相关。
The rock surface after weathering will have many tiny cracks. The formation of landforms is closely related to frequent weathering.

风化 Noun Verb different different different 村里新修建的祠堂成了传播风化理念的中心。 石碑上的文字因受风化影响而变得模糊不清了。
The newly built shrine in the village became a center for promoting morality ideas. The text on the stele became blurred due to the influence of weathering.

风化 Noun Verb different different different 那块花岗岩的表面出现了明显的风化裂纹。 这次文化活动的目的是为了促进地方风化建设。
Obvious weathering cracks appeared on the surface of that granite. The purpose of this cultural activity is to promote the local morality construction.

Table 1: Example sentence pairs for the homonyms “粉丝” and “风化” under different POS, contexts, and senses.

different, while 7 indicated the most similar mean-275

ing between the senses of the homonym in the two276

sentences. All 512 sentence pair stimuli were pre-277

sented in a pseudo-random sequence and divided278

into 8 blocks. This pseudo-randomization ensured279

that no three consecutive stimuli were from the280

same homonym, nor were there three consecutive281

sentence pairs in which the senses of the target282

homonym were the same or different. After each283

block, a rest interval was provided. Eight practice284

trials were administered to familiarize participants285

with the experiment. Participants’ rating scores and286

reaction times were recorded. The entire procedure287

lasted approximately 90 minutes.288

3.2.2 LLM experiment289

Experiments were conducted on three different290

model families: Llama3 (Dubey and Zhao, 2024),291

Qwen2.5 (Yang and Fan, 2024) and Qwen3 (Qwen,292

2025). The prompts used to elicit the responses293

closely resemble the experimental instructions294

given to human participants. Further details of295

the prompt can be found in Appendix A.1.296

4 Analysis I: Comparison between human297

and LLMs’ responses298

All data preprocessing and statistical analyses re-299

ported were conducted via custom R (R Core300

Team, 2021) scripts. Linear mixed effect mod-301

els (LMEMs) and post-hoc comparisons were con-302

ducted with the lme4 (Bates et al., 2014) and em- 303

means (Lenth, 2025). 304

4.1 Data preprocessing 305

We preprocessed the human participants’ data 306

based on their rating scores and reaction times. 307

First of all, we computed the subject-specific me- 308

dian and the median absolute deviation (MAD) 309

of the reaction time. Then, trials with reaction 310

time deviated more than 2.5 times the subject- 311

specific MAD were removed (Leys et al., 2013). 312

Then, we proceeded to compute the accuracy of 313

the homonym judgment task for each participant. 314

For same-sense sentence pairs, ratings of {1, 2, 3} 315

were defined as correct responses. For diff-sense 316

sentence pairs, ratings of {5, 6, 7} were defined as 317

correct responses. The answer {4} which corre- 318

sponds to uncertain, was excluded. Participants 319

whose accuracy was below 70% were excluded, 320

leaving 55 participants in the following analyses. 321

To evaluate model performance, we extracted 322

the probabilities that the next token belonged to a 323

specific set of answers (here, 1 to 7), following pre- 324

vious studies on the evaluation of multiple-choice 325

questions(Wang et al., 2024a; Dominguez-Olmedo 326

et al., 2024; Santurkar et al., 2023; Hendrycks et al., 327

2021). We considered the model answered cor- 328

rectly when the sum of the probabilities of the cor- 329

rect answers was greater than that of the incorrect 330

answers. For instance, in the same-sense condi- 331
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Figure 2: Accuracy of the homonym judgment task.

tion, the model was determined to answer correctly332

if the sum of probabilities of responses {5, 6, 7}333

was greater than that of {1, 2, 3}. The answer {4},334

which corresponds to uncertain, was excluded.335

4.2 Accuracy of both human and LLMs on336

homonym judgment task337

The performance of both humans and LLMs on338

the homonym judgment task is shown in Figure 2.339

As depicted, human participants significantly out-340

performed all included LLMs, achieving an ac-341

curacy of 86.9%. Notably, only a few models342

performed above chance level, with Qwen3-4B-343

Base and Qwen3-8B-Base being the top perform-344

ers, achieving accuracies of 68.0% and 68.9%, re-345

spectively. Although these two models showed346

similar accuracy, they exhibited an unexpected347

dichotomous response pattern (see details in Ap-348

pendix A.5). While Qwen2.5-7B and Qwen2.5-349

3B demonstrated comparable performance, we fo-350

cused subsequent analyses on the two Qwen3 mod-351

els, as they represent the latest developments in352

open-weight language models (Qwen, 2025).353

4.3 Analysis of human reaction time354

To examine how human judgments were modu-355

lated by POS and Context, we fitted a linear mixed356

effect model (LMEM) with log reaction time as357

the dependent variable, Context and POS being358

the independent variables, with Sense, Trial and359

other psycholinguistic variables being the covari-360

ates. Trial indicates the present order of trials cor-361

responding to the stimuli. The LMEM was fitted362

as in Equation 1:363

log(RT) ∼ Context ∗ POS ∗ Sense + Trial

+ . . . psycholinguistic variables . . .

+ (1|Subject) + (1|Word)

(1)364

After fitting Equation 2, backward elimination365

was conducted using likelihood ratio tests. The366

final LMEM is shown in Table 2. The Type-III 367

ANOVA result of the final model is presented in 368

Appendix Table 4. 369

As shown in Table 2, there is a significant three- 370

way interaction among Sense, Context, and POS; 371

follow-up analyses revealed a significant POS × 372

Context interaction only in the diff-sense condition 373

(t(22554.68) = -3.63, p < .001), but not in the same- 374

sense condition (see Section 4.5 for further discus- 375

sion). Additionally, Trial and PSPMI were neg- 376

atively correlated with reaction time, while AoA 377

was positively correlated: reaction times decreased 378

across trials (likely reflecting practice or fatigue ef- 379

fects (Lanthier et al., 2013)); higher PSPMI (reflect- 380

ing greater co-occurrence frequency of constituent 381

characters) predicted faster lexical processing (Ger- 382

tel et al., 2020; Brysbaert et al., 2017); and higher 383

AoA led to slower responses, a pattern not observed 384

in language models and potentially reflecting dif- 385

ferent underlying mechanisms (see Section 4.4 for 386

further discussion). 387

4.4 Analysis of LLM surprisal 388

Similar to the analysis of human responses in Sec- 389

tion 4.3, we fitted two LMEMs (Equation 2), one 390

for each of Qwen3-4B-Base and Qwen3-8B-Base. 391

Surprisalsum is the negative logarithm of the sum 392

of probabilities of the correct answers. The lower 393

the Surprisalsum value, the better the model perfor- 394

mance. 395

Surprisalsum ∼ Context ∗ POS ∗ Sense

+ . . . psycholinguistic variables . . .

+ (1|Word)
(2) 396

As shown in Table 2, POS significantly predicted 397

Surprisalsum in the 8B model but not in the 4B 398

model (see Appendix Tables 5 and 6 for Type III 399

ANOVA results). Further analysis of the 8B model 400

revealed a significant POS × Context interaction 401

in the same-sense condition (t(344) = -2.49, p = 402

0.013), but not in the diff-sense condition, in con- 403

trast to human results (see Section 4.5 for discus- 404

sion). In both models, additional factors such as 405

contextual similarity, word frequency, PMI, and 406

PSPMI also significantly predicted Surprisalsum. 407

Moreover, entropy of character frequencies was 408

negatively associated with surprisal, indicating 409

that words with more similar character frequencies 410

elicited lower surprisal. Finally, the word-specific 411

random effect was excluded from both final models, 412
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Final model
Human log(RT) ∼ Sense + Context + POS + Trial + AoA + PSPMI + (1|Subject)

+ (1|Word) + Sense:Context + Sense:POS + Context:POS + Sense:Context:POS
+ Sense:Context:POS

Qwen3-4B-Base Surprisalsum ∼ Sense + Context + Word_logW_CD + PMI + PSPMI + Sense:Context
Qwen3-8B-Base Surprisalsum ∼ Sense + Context + POSWord + EntropyCharacterFrequencies

+ Sense:Context + Sense:POS + Context:POS + Sense:Context:POS

Table 2: The final models fitted on human reaction time or LLM Surprisalsum, obtained via backward elimination.
The format of the model follows the convention in lme4 (Bates et al., 2014). Detailed procedures can be found in
Section 4.3 and 4.4.

suggesting that the LLMs may respond homoge-413

neously to the 64 homonyms.414

Unlike the human LMEM, AoA is not a sig-415

nificant predictor of language model responses.416

In humans, homonyms learned earlier are pro-417

cessed more quickly, as shown in Appendix Fig-418

ure 5. Early-acquired words are more robustly rep-419

resented due to frequent exposure during critical420

developmental periods, leading to more efficient421

access and deeper integration within semantic net-422

works (Juhasz, 2005; Perret et al., 2014; Ellis and423

Lambon Ralph, 2000; Steyvers and Tenenbaum,424

2005). In contrast, LLMs are trained on large cor-425

pora without a curriculum that prioritizes founda-426

tional vocabulary (Kirkpatrick et al., 2017; Houlsby427

et al., 2019; Wang et al., 2022; Lopez-Paz and Ran-428

zato, 2017). As a result, sense-specific represen-429

tations in LLMs are formed homogeneously, and430

ratings are influenced mainly by token frequency or431

contextual distinctiveness rather than human-like432

AoA effects. These findings highlight a fundamen-433

tal divergence between biological and transformer-434

based learning.435

4.5 Similarity and differences between human436

and models437

To compare how humans and language models use438

POS and contextual cues during homonym process-439

ing, we examined their interaction effects on human440

reaction times and Qwen3-8B-Base Surprisalsum441

(Figure 3), the detailed statistics of the post-hoc442

tests can be found in Appendix Table 7 and 8. Both443

systems benefit from same context in same-sense444

conditions, with humans responding faster (Fig-445

ure 3E) and LLMs showing lower surprisal (Fig-446

ure 3F). This facilitation reverses in different-sense447

trials, where different contexts aid performance448

(Figure 3G-H), indicating that contextual similarity449

is only helpful when the underlying sense matches.450

POS effects, however, diverge. The language 451

model shows only marginal POS × context inter- 452

actions for same-sense pairs (Figure 3B; same- 453

context: t(344) = -1.78, p = 0.076; diff-context: 454

t(344) = 1.82, p = 0.070), while human reaction 455

times do not significantly differ by POS. In contrast, 456

for different-sense, same-context trials, humans 457

(Figure 3C) display a significant POS effect, with 458

slower responses for different-POS pairs (t(90.68) 459

= -3.02, p = 0.003), a pattern absent in the model 460

(Figure 3D). This POS effect disappears when con- 461

text is maximally different, suggesting both sys- 462

tems rely less on grammatical cues when context 463

alone is informative. 464

In summary, while both humans and LLMs ben- 465

efit from context in sense judgments, only humans 466

leverage POS information to resolve ambiguity in 467

challenging cases. LLMs do not significantly use 468

POS for homonym processing, which may underlie 469

their lower task accuracy. 470

5 Analysis II: Associating human 471

responses with LLMs 472

In Section 4, we fitted LMEMs with the same set 473

of independent variables separately to human re- 474

action time and LLM-derived Surprisalsum values 475

to examine the effects of POS and Context. In 476

this section, we further investigate whether three 477

model-derived metrics, including (1) surprisal, (2) 478

entropy, and (3) angular similarity, can improve 479

the modeling of human reaction time. Surprisal is 480

defined as the negative logarithm of the probability 481

assigned to a given response (i.e., cross-entropy) 482

(Goldstein et al., 2022). 483

Entropy is defined as follows in Equation 3 484

(Goldstein et al., 2022): 485

H(X) =

7∑
i=1

P (i)× logP (i) (3) 486
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Figure 3: Interaction plots between POS and Context at same-sense and diff-sense conditions. Left: Context effect
by POS. Right: POS effect by Context. First and third rows: effects from human data. Second and fourth rows:
effects from Qwen3-8B-Base.

where P (i) denotes the probability of the487

model’s next token being i, with i ranging from488

1 to 7. A higher entropy corresponds to a lower489

confidence in the model’s next token prediction.490

The angular similarity is defined as follows in491

Equation 4 (Ma et al., 2025):492

AngSim = 90− arccos(CosSim)× 180
π

(4)493

where CosSim is the cosine similarity between494

two homonym representations in a sentence pair.495

5.1 Contribution of surprisal and entropy496

To examine the contribution of surprisal and en-497

tropy, we added these two variables to Equation498

1 for Qwen3-4B-Base and Qwen3-8B-Base (see499

Type-III ANOVA results in Appendix Table 9 and500

10), and conducted backward elimination, respec- 501

tively. For metrics derived from Qwen3-4B-Base, 502

the surprisal, instead of entropy, contributed sig- 503

nificantly to the prediction of human reaction time 504

with a positive association (F (1, 21816.065)=87.2, 505

p<.001). On the other hand, for metrics derived 506

from Qwen3-8B-Base, the entropy, instead of sur- 507

prisal, contributed significantly with a positive as- 508

sociation (F (1, 22081.381)=4.813, p=0.028). 509

Given that autoregressive language models are 510

trained to predict the next token from prior context, 511

model-derived surprisal serves as a post-hoc mea- 512

sure of how unexpected a token is in context (Slaats 513

and Martin, 2025). A positive correlation between 514

surprisal and human reaction time suggests that 515

less likely tokens are associated with longer reac- 516

7



Figure 4: Layer-wise results of likelihood ratio tests
comparing nested models with and without angular sim-
ilarity.

tion times and greater cognitive effort, possibly517

because language models can reduce surprisal for518

easier prompts by extracting relevant information519

during inference. In contrast, entropy measures520

uncertainty about potential outcomes of a future521

event; its positive correlation with reaction time522

implies that higher uncertainty is likewise linked to523

increased cognitive effort (Heilbron et al., 2022).524

An interesting observation emerged when com-525

paring metrics derived from two language models526

of different sizes: surprisal from the 4B model pre-527

dicted reaction times, while entropy from the 8B528

model did. However, when these two metrics were529

entered into the same LMEM (i.e., Equation 1),530

only surprisal from the 4B model remained signifi-531

cant after backward elimination. This suggests that532

surprisal from the smaller model better captures533

human-like processing in this task, subsuming the534

predictive value of entropy from the larger model.535

5.2 Contribution of angular similarity536

After obtaining the final LMEMs from each of the537

Qwen models in Section 5.1, we tested whether538

adding angular similarity between homonym repre-539

sentations can significantly improve model fit. For540

each layer, we conducted likelihood ratio tests by541

comparing nested models with and without the an-542

gular similarity. The chi-square statistic quantifies543

the improvement in model fit based on the differ-544

ence in log-likelihoods between the two models.545

As shown in Figure 4, angular similarity from546

both Qwen3-4B-Base and Qwen3-8B-Base signifi-547

cantly improved reaction time prediction beginning548

after layer 19, with contributions peaking in the549

late middle layers. It revealed that the angular 550

similarity between contextual representations of 551

the homonyms in different sentences contributed 552

unique variance to reaction time prediction, with 553

this effect emerging in middle layers. This suggests 554

that these layers encode critical semantic informa- 555

tion relevant to human processing. 556

Importantly, angular similarity contributed 557

unique variance complementing surprisal (4B) and 558

entropy (8B), indicating that reaction times reflect 559

both expectation-based processing and semantic in- 560

tegration. Whereas surprisal and entropy may cap- 561

ture the cost of updating predictions when encoun- 562

tering unexpected input, angular similarity may 563

reflect the cognitive effort required for resolving 564

lexical ambiguity. Incorporating both types of met- 565

rics thus provides a more complete account of the 566

cognitive processes underlying homonym disam- 567

biguation. 568

6 Conclusion 569

We presented a comparative study of Chinese 570

homonym disambiguation in humans and lan- 571

guage models, collecting their responses toward 572

a homonym judgment task. Our expert-curated 573

sentence pairs allowed us to systematically exam- 574

ine how context similarity and POS information 575

modulate responses. We found that context simi- 576

larity had similar effects on both humans and mod- 577

els. However, only humans leveraged POS infor- 578

mation during homonym disambiguation, which 579

may account for the models’ relatively poorer per- 580

formance. Model-derived metrics such as sur- 581

prisal and entropy had significant predictive power 582

while modeling human behavioural responses (re- 583

action time). On top of these expectation-based 584

metrics, incorporating angular similarity between 585

homonyms in sentence pairs contributes unique 586

variance in predicting reaction time, highlight- 587

ing that human responses are predicted by both 588

expectation-based and semantic information. Fur- 589

thermore, psycholinguistic properties like AoA in- 590

fluenced human, but not model, response, under- 591

scoring fundamental differences in language acqui- 592

sition mechanisms. Together, these findings put 593

context and POS in action, highlighting how the 594

interplay of contextual and syntactic cues shapes 595

human homonym resolution and revealing the cur- 596

rent limitations of language models in capturing 597

these nuanced processes. 598
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7 Limitations599

This study has several limitations that should be600

acknowledged. First, although we manually as-601

sessed the naturalness of our curated sentences,602

some may still be unnatural, particularly those in-603

volving rarely used homonyms. This ecological604

issue, to some extent, could affect both human and605

model performance. Also, we only adopted the606

next-token probabilities to evaluate models’ perfor-607

mances, which maybe suboptimal for instruction-608

tuned model as reported in existing studies (Wang609

et al., 2024b).610

Second, while we observed differences in AoA611

effect between human and models, AoA and other612

potential confounding variables were not explicitly613

controlled during experimental design. Further-614

more, our AoA measures pertain to the homonym615

as a whole, rather than to the specific senses of the616

homonym, which may not directly reflect sense-617

specific acquisition. Future studies should aim to618

control for these factors and, where possible, col-619

lect sense-level AoA data.620

Third, we found evidence of dichotomous pat-621

terns in both human participants and models, see622

in Appendix A.5. However, due to the lack of indi-623

vidual difference data, such as cognitive ability and624

language history, in our human sample, it remains625

unclear what underlies these dichotomies and how626

they relate across humans and LLMs. Collecting627

more detailed participant profiles will be important628

for understanding these patterns in future research.629
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A Appendix924

A.1 Prompt example for eliciting LLMs’925

judgments on homonyms926

Aligning with the experimental requirements and927

instructions for human participants, we created the928

following prompt template, using “风化” as an929

example, to elicit judgments about the two senses930

of target homonyms.931

"You are a university student whose major is932

not related to linguistics or psychology, and your933

native language is Mandarin Chinese. You are934

now participating in a language experiment. In935

this experiment, you are asked to use intuition to936

judge whether a word has the same meaning in two937

sentences. If the meanings are exactly the same,938

please choose 7; if they are completely different,939

please choose 1; if they are somewhere in between,940

please choose 2, 3, 4, 5, or 6.941

Please judge whether the meaning of “风化” is942

the same in the following two sentences:943

(1) “发达国家的风化水平往往体现了其文明944

程度。”945

(2) “风化习俗的传承有助于增强民族的凝聚946

力。”947

Please answer directly with a number. Your948

choice is:"949

A.2 Homonym stimuli list950

Table 3 shows the the 64 homonyms included in the951

rating experiment, along with their part-of-speech952

(POS) categories and ten other age of acquisition953

(AoA) and word frequency-related psychological954

properties.955

A.3 Statistical results956

Table 4, 5, 6 correspond the Type-III ANOVA re-957

sults of the models fitted in Section 4.3 and 4.4.958

Table 7, 8 show the post-hoc tests examining the in-959

teraction between POS and Context, corresponding960

to Section 4.5 and Figure 3. Table 9, 10 correspond961

to the Type-III ANOVA results of the models fitted962

in Section 5.1.963

A.4 AoA effect on human reaction time 964

Figure 5 shows the relationship between Age of 965

Acquisition (AoA) and log-transformed reaction 966

time (log RT). 967

A.5 Divergent response patterns in both 968

human and models 969

We observed that the 4B and 8B models yielded 970

different results, including different sets of inde- 971

pendent variables for modeling model responses 972

(Section 4) and differential contributions of sur- 973

prisal and entropy (Section 5). Given that their 974

overall accuracies were very similar, it is intriguing 975

to see such divergent outcomes in more detailed 976

analyses. We then visualized the response patterns 977

of both models by condition, as shown in Figures 978

6A and 6C. The most notable difference between 979

the two language models is their responses in the 980

diff-context condition: the 4B model performed 981

much better in the same-sense than the diff-sense 982

condition, while the 8B model performed much bet- 983

ter in the diff-sense than the same-sense condition. 984

Moreover, in the same-context condition, the 8B 985

model showed comparable performance between 986

same-sense and diff-sense conditions, whereas the 987

4B model showed drastically better performance 988

only in the same-sense, but not the diff-sense, con- 989

dition. These two figures indicate that both models 990

are biased toward certain response options. 991

Motivated by these dichotomous patterns, we 992

computed the accuracy of human participants by 993

condition and compared its distribution to those of 994

the 4B and 8B models using Earth mover’s distance 995

(also known as Wasserstein distance; Dobrushin, 996

1970), computed via the R package emdist. Our 997

analyses revealed substantial individual differences 998

in response patterns, mirroring those observed in 999

the LLMs: some participants were closer to the 1000

4B model (Figure 6B), while others resembled the 1001

8B model (Figure 6D). However, due to the ab- 1002

sence of cognitive ability and language history mea- 1003

surements from participants, it is difficult to draw 1004

definitive conclusions regarding the source of these 1005

differences. Future research should consider in- 1006

cluding such measures to better interpret individual 1007

variability. 1008
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Figure 5: Scatter plot showing the relationship between Age of Acquisition (AoA) and log-transformed reaction
time (log RT). Each point represents an individual homonym. The positive slope of the regression line indicates
that words acquired later in life tend to elicit longer reaction times, suggesting slower processing for later-acquired
words.
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Word POSWord AoA Word_logW Word_logW_CD Word_W_million CLD_Frequency PMI PSPMI TScore PSTScore EntropyCharacterFrequencies

内心 Same 11.125 3.1596 3.0082 43.04 106.338 4.2085 5.2797 41.9416 62.6172 0.5404
开播 Same 11.9565 1.6532 1.6021 1.34 3.6101 0.8778 1.695 1.174 2.3629 0.3432
自重 Different 12.5789 1.4314 1.3802 0.8 2.4759 -2.3084 -0.2295 -2.795 -0.2506 0.7709
口服 Same 7.7895 0.9542 0.9031 0.27 1.7346 0.742 2.7612 0.6849 2.9235 0.9993
下手 Different 11.8333 2.8319 2.7143 20.24 13.699 -0.9587 1.4823 -2.5051 3.9723 0.8739
站台 Different 10.7826 2.1847 1.9031 4.56 4.2995 5.0736 8.5102 11.6752 39.485 0.9933
开口 Same 8.05 3.0245 2.9165 31.54 20.9118 2.0228 2.9363 6.9501 10.9991 0.6722
下线 Different 14.3333 1 0.9031 0.3 2.5278 -0.3804 1.1514 -0.4205 1.3028 0.3552
偏食 Different 10.65 0 0 0.03 0.7339 3.7022 4.7977 2.8531 4.3554 0.5578
赛会 Same 13.9474 1 0.8451 0.3 0.2669 -1.9853 0.8279 -0.7683 0.3005 0.3138
跑车 Different 9.8235 2.1959 2.0969 4.68 5.1223 4.9418 6.6793 12.139 22.6889 0.6511
名家 Same 12.5714 1.0414 1 0.33 1.5715 -2.9003 -1.2307 -2.9665 -1.1022 0.77
上任 Different 12.2857 1.9494 1.8751 2.65 1.4455 -2.3323 0.967 -2.1624 0.8211 0.4984
风化 Different 13.3333 1.2553 1.1761 0.54 0.6597 -0.3528 0.6328 -0.1991 0.3591 0.9602
抽水 Same 11.6316 1.2041 1.0414 0.48 0.4003 0.9925 1.9126 0.4439 0.9015 0.8034
人流 Same 13.7368 1.5051 1.3802 0.95 3.9807 -0.852 2.3293 -1.1954 3.5827 0.2832
积分 Different 12.4375 1.7076 1.5441 1.52 60.5411 5.5038 8.2162 51.2572 133.7279 0.2527
作为 Different 12.9474 3.7682 3.4891 174.8 107.9911 3.27 5.0709 28.9298 58.4561 0.7671
抽风 Same 13.5455 1.1139 1.1139 0.39 4.255 4.0924 5.7494 8.0201 14.848 0.8672
光盘 Different 11.8182 1.5682 1.4472 1.1 2.854 3.5315 5.866 5.248 12.6805 0.8248
生气 Different 5.95 3.583 3.3456 114.11 88.5322 2.5563 3.9784 18.9402 34.9853 0.8092
空门 Same 15.0625 1.1139 1.0792 0.39 0.5634 -0.9768 0.012 -0.518 0.0062 0.9822
大气 Same 11.2105 2.0934 1.8573 3.7 10.5486 -0.446 0.0528 -1.0079 0.1188 0.6475
会意 Different 12.6818 0.4771 0.4771 0.09 0.2372 -4.8948 -1.1785 -2.5672 -0.409 0.8305
应变 Different 12.4737 1.1761 1.1461 0.45 1.4974 -0.2429 1.5205 -0.2063 1.3502 0.9989
粉丝 Same 11.85 2.9974 2.6693 29.63 105.0482 10.2615 10.8692 358.8025 443.044 0.9768
上手 Different 13.6667 1.7709 1.7076 1.76 4.9741 -1.889 0.464 -3.1333 0.7204 0.8583
枪手 Same 13 2.4771 2.233 8.94 4.6924 3.2399 5.842 5.9534 16.1198 0.3917
开展 Same 9.9545 2.0043 1.959 3.01 6.8718 1.6045 2.8801 3.068 6.1464 0.342
火花 Same 8.0952 2.4378 2.2695 8.17 5.1223 2.6881 4.1054 4.8539 8.8443 0.963
转机 Different 12.5652 2.1173 2.0334 3.91 4.3069 0.3845 1.3245 0.5547 1.9729 0.8579
效力 Different 13.2778 2.356 2.2718 6.77 2.5797 1.64 2.7533 1.9257 3.552 0.4846
配方 Same 10.7647 2.3945 2.0645 7.39 4.8184 2.9721 4.6081 5.3653 10.3959 0.6476
关门 Different 5.6316 2.934 2.8014 25.61 19.0808 2.9539 3.448 10.59 13.1082 0.9751
金星 Same 14.5714 1.5563 1.4472 1.07 2.5204 1.1606 2.8665 1.3119 3.6994 0.9999
上报 Same 13.2105 2.1703 2.0682 4.41 1.7569 -1.3754 1.0725 -1.312 1.0082 0.3869
下场 Different 12.875 2.4928 2.4548 9.27 8.8807 -0.1733 1.1935 -0.3582 2.5363 0.621
蘑菇 Different 7.3 2.3502 2.1239 6.68 11.8681 13.9613 13.9658 435.053 435.7319 0.8858
抄袭 Same 10.95 1.5185 1.4314 0.98 5.2261 12.1359 13.4931 153.3326 245.4549 0.8768
点播 Same 12.35 1.4472 1.3802 0.83 1.5641 0.6964 3.8494 0.6096 4.4188 0.3573
上身 Different 9.9375 2.2175 2.1271 4.92 7.361 -0.9112 1.8247 -1.7423 3.6647 0.7226
满月 Different 7.3182 1.8451 1.6902 2.09 3.788 3.4833 4.7223 5.9267 9.6209 0.9462
花红 Same 10.4783 0.699 0.6021 0.15 0.4522 -1.0758 2.2583 -0.5131 1.1634 0.9931
印花 Different 14.8 1.4314 1.3222 0.8 5.2557 4.9225 5.9346 12.2086 17.636 0.5195
地头 Same 13.65 1.301 1.2553 0.6 0.4893 -3.7659 -2.9014 -2.3902 -1.656 0.921
参见 Same 11.7037 1.7243 1.6335 1.58 0.8821 -1.4986 -0.9256 -1.0201 -0.613 0.9212
相机 Different 8.7 2.7388 2.5079 16.34 32.8095 2.196 3.1572 9.5851 15.1906 0.9672
制服 Different 12.4762 2.9425 2.7745 26.11 10.5337 3.8721 5.7844 11.571 23.6581 0.9693
改编 Same 13.4286 2.2788 2.1931 5.66 4.7517 5.9949 8.1197 17.135 36.2245 0.6643
大作 Different 13.6316 1.8195 1.7709 1.97 2.7428 -2.4409 -1.6329 -3.1484 -1.9762 0.6384
家居 Different 13.25 1.7324 1.6902 1.61 12.209 1.3624 6.1013 3.4236 28.5306 0.3979
点子 Same 9.8 2.7789 2.5922 17.92 6.4047 -1.5556 1.1637 -2.863 2.0971 0.9888
编制 Different 17.8 1.5315 1.4624 1.01 1.401 4.2677 5.2657 4.9252 7.1509 0.6321
分数 Same 8.8947 2.3945 2.2148 7.39 9.103 1.1784 2.2864 2.5335 5.298 0.5721
命题 Different 11.15 1.301 1 0.6 1.5789 -0.1102 2.2289 -0.096 2.1402 0.9698
做工 Different 11.4 1.6628 1.5051 1.37 2.8688 1.203 3.4898 1.4537 5.1717 0.8813
火星 Same 10.45 2.5302 2.2095 10.11 21.9051 4.4799 6.0872 21.1176 38.023 0.9829
虎口 Same 11.5556 1.5051 1.4624 0.95 1.6605 4.8548 7.789 6.692 19.0768 0.6947
调剂 Same 13.5556 1.2041 1.1461 0.48 1.1119 7.1228 8.3983 12.3595 19.3117 0.4765
上天 Different 10.7222 2.1173 2.0969 3.91 17.2128 -1.3964 0.1337 -4.1744 0.3846 0.9952
台风 Same 10.05 2.0043 1.6812 3.01 3.4322 2.4836 5.2424 3.5979 11.0974 0.9562
弹奏 Same 9.0526 2.0531 1.8865 3.37 2.1349 7.1317 8.8493 17.1797 31.3116 0.7435
农家 Same 9.9333 1.2553 1.2041 0.54 3.7361 1.8838 2.2737 2.707 3.3715 0.1537
燃点 Different 13.3704 0.7782 0.699 0.18 0.1408 -0.5096 0.0848 -0.1332 0.0221 0.1071

Table 3: Sixty-four homonyms were included in the rating experiment, along with their part-of-speech (POS)
categories and ten other age of acquisition (AoA) and word frequency-related psychological properties. CD in
Word-log-WCD refers to the number of film titles in which the word or character appears. CLD-Frequency indicates
the frequency from the Chinese Lexical Database, which is based on a large-scale corpus of simplified Chinese (the
Simplified Chinese Corpus of Webpages). PMI (Pointwise Mutual Information) measures how much more likely
the joint occurrence of two variables is compared to what would be expected if the variables were independent;
it is calculated as the logarithm of the ratio between the observed and expected frequencies. PSPMI refers to
position-specific PMI, meaning that character frequencies are calculated according to their specific positions. TScore
(t-score) provides a measure of the association strength between two characters in a homonym, giving higher
scores to pairs with high co-occurrence frequencies and reflecting the non-randomness of their co-occurrence.
PSTScore refers to a position-specific t-score. EntropyCharacterFrequencies denotes the entropy over the probability
distribution of both characters in a two-character word; values are higher when the frequencies of the two characters
are more similar. For detailed data and explanations of these psychological properties, please see Sun et al. (2018).
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Factor Sum Sq Mean Sq NumDF DenDF F-value p-value
Sense 26.174 26.174 1.000 22,594.020 216.254 < 0.001∗∗∗

Context 1.398 1.398 1.000 22,550.642 11.552 0.001∗∗∗

POSWord 0.282 0.282 1.000 60.116 2.328 0.132
Trial 176.215 176.215 1.000 22,546.701 1,455.893 < 0.001∗∗∗

AoA 0.828 0.828 1.000 60.128 6.839 0.011∗

PSPMI 0.939 0.939 1.000 59.748 7.761 0.007∗∗

Sense:Context 62.869 62.869 1.000 22,552.566 519.424 < 0.001∗∗∗

Sense:POSWord 0.538 0.538 1.000 22,591.785 4.443 0.035∗

Context:POSWord 1.242 1.242 1.000 22,550.085 10.261 0.001∗∗

Sense:Context:POSWord 0.544 0.544 1.000 22,551.996 4.497 0.034∗

Table 4: Type III ANOVA results of the final model fitted on human reaction time.

Factor Sum Sq Df F-value p-value

(Intercept) 0.816 1.000 31.701 < 0.001∗∗∗

Sense 2.313 1.000 89.876 < 0.001∗∗∗

Context 1.337 1.000 51.931 < 0.001∗∗∗

Word_logW_CD 0.141 1.000 5.484 0.020∗

PMI 0.142 1.000 5.535 0.019∗

PSPMI 0.115 1.000 4.478 0.035∗

Sense:Context 0.333 1.000 12.943 < 0.001∗∗∗

Table 5: Type III ANOVA results of the final model fitted on surprisal computed from Qwen3-4B-Base.

Factor Sum Sq Df F-value p-value

(Intercept) 5.033 1.000 146.362 < 0.001∗∗∗

Sense 0.947 1.000 27.550 < 0.001∗∗∗

Context 1.822 1.000 52.975 < 0.001∗∗∗

POSWord 0.109 1.000 3.167 0.076
EntropyCharacterFrequencies 0.562 1.000 16.340 < 0.001∗∗∗

Sense:Context 2.456 1.000 71.436 < 0.001∗∗∗

Sense:POSWord 0.047 1.000 1.355 0.245
Context:POSWord 0.214 1.000 6.217 0.013∗

Sense:Context:POSWord 0.161 1.000 4.691 0.031∗

Table 6: Type III ANOVA results of the final model fitted on surprisal computed from Qwen3-8B-Base.

Agent Context effect POSWord Sense estimate SE df t.ratio p.value
Human Same - Different Same Same 0.095 0.009 22,547.185 10.662 < 0.001∗∗∗

Human Same - Different Different Same 0.085 0.009 22,546.864 9.498 < 0.001∗∗∗

Human Same - Different Same Different 0.097 0.010 22,550.048 10.088 < 0.001∗∗∗

Human Same - Different Different Different 0.147 0.010 22,559.439 15.195 < 0.001∗∗∗

Qwen3-8B-Base Same - Different Same Same 0.355 0.049 344.000 7.278 < 0.001∗∗∗

Qwen3-8B-Base Same - Different Different Same 0.185 0.048 344.000 3.892 < 0.001∗∗∗

Qwen3-8B-Base Same - Different Same Different 0.158 0.036 344.000 4.380 < 0.001∗∗∗

Qwen3-8B-Base Same - Different Different Different 0.141 0.038 344.000 3.664 < 0.001∗∗∗

Table 7: Post-hoc comparison between same-context and diff-context conditions. Correspond to Figure 3.
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Agent POS effect Context Sense estimate SE df t.ratio p.value

Human Same - Different Same Same 0.024 0.020 79.647 1.184 0.240
Human Same - Different Different Same 0.014 0.021 82.264 0.686 0.495
Human Same - Different Same Different 0.064 0.021 90.678 3.018 0.003∗∗

Human Same - Different Different Different 0.014 0.021 82.347 0.688 0.493

Qwen3-8B-Base Same - Different Same Same 0.066 0.037 344.000 1.779 0.076
Qwen3-8B-Base Same - Different Different Same 0.104 0.057 344.000 1.819 0.070
Qwen3-8B-Base Same - Different Same Different 0.001 0.041 344.000 0.035 0.972
Qwen3-8B-Base Same - Different Different Different 0.018 0.033 344.000 0.549 0.583

Table 8: Post-hoc comparison between same-POS and diff-POS conditions. Correspond to Figure 3.

Factor Sum Sq Mean Sq NumDF DenDF F-value p-value

Sense 1.796 1.796 1.000 22,369.455 14.891 < 0.001∗∗∗

Context 0.378 0.378 1.000 22,565.927 3.132 0.077
POSWord 0.251 0.251 1.000 59.877 2.077 0.155
Trial 177.773 177.773 1.000 22,545.570 1,473.910 < 0.001∗∗∗

AoA 0.946 0.946 1.000 59.853 7.843 0.007∗∗

PSPMI 0.950 0.950 1.000 59.457 7.876 0.007∗∗

surprisal 10.518 10.518 1.000 21,816.065 87.200 < 0.001∗∗∗

Sense:Context 40.025 40.025 1.000 22,599.685 331.847 < 0.001∗∗∗

Sense:POSWord 0.434 0.434 1.000 22,594.006 3.599 0.058
Context:POSWord 0.905 0.905 1.000 22,551.405 7.500 0.006∗∗

Sense:Context:POSWord 0.604 0.604 1.000 22,551.776 5.007 0.025∗

Table 9: Type III ANOVA results of the final model fitted on human reaction time with model-derived metrics from
Qwen3-4B-Base.

Factor Sum Sq Mean Sq NumDF DenDF F-value p-value

Sense 26.222 26.222 1.000 22,593.151 216.677 < 0.001∗∗∗

Context 1.352 1.352 1.000 22,549.860 11.174 0.001∗∗∗

POSWord 0.282 0.282 1.000 60.075 2.330 0.132
Trial 176.340 176.340 1.000 22,545.598 1,457.125 < 0.001∗∗∗

AoA 0.843 0.843 1.000 60.090 6.969 0.011∗

PSPMI 0.931 0.931 1.000 59.719 7.694 0.007∗∗

entropyz 0.582 0.582 1.000 22,081.381 4.813 0.028∗

Sense:Context 62.260 62.260 1.000 22,552.424 514.468 < 0.001∗∗∗

Sense:POSWord 0.512 0.512 1.000 22,590.680 4.233 0.040∗

Context:POSWord 1.256 1.256 1.000 22,549.355 10.378 0.001∗∗

Sense:Context:POSWord 0.544 0.544 1.000 22,551.065 4.497 0.034∗

Table 10: Type III ANOVA results of the final model fitted on human reaction time with model-derived metrics
from Qwen3-8B-Base.
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Figure 6: The accuracy of the homonym judgment tasks by humans and models. A: Qwen3-4B-Base. B: Subject 52,
whose response pattern is closer to 4B than 8B model. C: Qwen3-8B-Base. D: Subject 21 whose response pattern is
closer to 4B than 8B model.
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