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Abstract
Concept Bottleneck Models (CBMs) enhance
the interpretability of neural networks by basing
predictions on human-understandable concepts.
However, current CBMs typically rely on con-
cept sets extracted from large language models
or extensive image corpora, limiting their effec-
tiveness in data-sparse scenarios. We propose
Data-efficient CBMs (DCBMs), which reduce the
need for large sample sizes during concept gener-
ation while preserving interpretability. DCBMs
define concepts as image regions detected by seg-
mentation or detection foundation models, allow-
ing each image to generate multiple concepts
across different granularities. Exclusively con-
taining dataset-specific concepts, DCBMs are
well suited for fine-grained classification and out-
of-distribution tasks. Attribution analysis using
Grad-CAM demonstrates that DCBMs deliver vi-
sual concepts that can be localized in test images.
By leveraging dataset-specific concepts instead
of predefined or general ones, DCBMs enhance
adaptability to new domains. The code is avail-
able at: https://github.com/KathPra/
DCBM.

1. Introduction
Deep neural networks (DNNs) achieve state-of-the-art per-
formance across various domains, yet their opaque nature
limits trust, particularly in safety-critical applications. To ad-
dress this, Explainable Artificial Intelligence (XAI) strives
to make model decisions more transparent and interpretable.
Concept Bottleneck Models (CBMs) (Koh et al., 2020) are
an inherently interpretable framework, as they base predic-
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Figure 1. DCBMs extract image regions as concepts. Using
vision foundation models, we use crop image regions as concepts
for CBM training. Based on few concept samples (50 imgs / class),
DCBMs offer interpretability even for fine-grained classification.

tions on a weighted combination of human-understandable
concepts. While early CBMs employ manually crafted con-
cepts (Koh et al., 2020), recent advances in vision-language
models have enabled text-aligned CBMs, which leverage
textual descriptions for concept selection and interpretabil-
ity (Menon & Vondrick, 2023; Oikarinen et al., 2023; Yang
et al., 2023). Given that precise class descriptions are avail-
able, text alignment can effectively guide the concept se-
lection towards representative semantic concepts. However,
recent works highlight that CBMs benefit from concepts
extracted in the visual domain (Kowal et al., 2024; Rao
et al., 2024; Sun et al., 2024; Wang et al., 2023; Zhang et al.,
2024a). This also increases their faithfulness against the
reported image-text misalignment in the CLIP embedding
space (Liang et al., 2022; Roth et al., 2023). Learning con-
cepts (Rao et al., 2024) from large-scale datasets performs
well for ImageNet classification, but is less suitable for fine-
grained classification, where concepts must be defined at
a specific granularity. Ideally, concepts can be recognized
under domain shifts in order to increase their applicability
in real-life use cases.

We propose Data-efficient Visual CBMs (DCBM) to im-
prove interpretability in data-scarce domains. DCBMs use
segmentation and detection foundation models to extract
image regions as visual concept proposals. This approach
generates multiple concepts at different levels of granular-
ity from a single image, allowing to create a meaningful
concept bank even in data-scarce settings. Our design en-
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ables flexible adaptation to novel datasets while exclusively
containing dataset-specific concepts. For wide applicabil-
ity, DCBMs leverage the popular CLIP embedding space
e.g. (Rao et al., 2024; Yang et al., 2023). By extracting
concepts in the visual domain, we avoid bridging the gap
between the modalities (Liang et al., 2022), while being
able to name our generated concepts using the image-text
alignment. DCBMs enable fine-grained concept differen-
tiation and maintain interpretability in out-of-distribution
(OOD) settings.

Our main contributions can be summarized as follows:

• With DCBMs, we introduce a simple and data-efficient
framework that can easily be adapted to novel datasets.

• We create concepts using segmentation and detection
models which are inherently dataset-specific and offer
multiple concept granularities. We generate concepts
in the visual domain to avoid modality gaps and to be
independent of textual descriptions.

• We extensively evaluate the DCBM framework across
concept proposal generation methods and datasets. To
ensure its usefulness for real-life applications, we as-
sess the transferability of DCBMs to out-of-domain
(OOD) settings and verify the localization of the im-
portant concepts.

2. Related work
Explainable artificial intelligence offers numerous ap-
proaches to making model decisions interpretable. Post
hoc methods create an explanation on top of an existing
model based on the given model prediction. By leveraging
activations (Selvaraju et al., 2019), the relevant image area is
highlighted or model embeddings (Yuksekgonul et al., 2023)
are used to show concept activations. Their interpretability
is limited, as one cannot be sure that their explanations are
inherent to the model. Ante hoc methods, however, are
inherently interpretable and provide predictions along with
explanations, e.g. (Chefer et al., 2021; Menon & Vondrick,
2023; Oikarinen et al., 2023; Rao et al., 2024; Yang et al.,
2023). They include single-layer linear neural networks
(CBMs), e.g. (Koh et al., 2020), decision trees, e.g. (Mah-
booba et al., 2021), and self-explaining networks, e.g. DEAL
(Li et al., 2025), BCOS-networks (Böhle et al., 2022), and
VLMs such as LLaVA-NeXT (Li et al., 2024b). While other
data-efficient methods exist, e.g., prompt-tuned CLIP, we
focus exclusively on interpretable models.

2.1. Concept bottleneck models

This family of models predicts image classes based on
weighted linear combinations of concepts (Koh et al., 2020).
CBMs mainly differ in the way they extract concepts.

Menon & Vondrick (2023) generate GPT-3 descriptions
of class-specific concepts, providing insights into the visual
attributes associated with each category (DCLIP). Similarly,
Oikarinen et al. (2023) generate concept sets for CBMs
using GPT-3 for training their label-free CBM (LF-CBM).
Panousis et al. (2023) extend LF-CBM by incorporating
a concept discovery module (CDM) that encourages spar-
sity by learning which subset of concepts is relevant for
a given image. Language-guided CBM (LaBo) employs
GPT-3 for concept creation, but it stands out by using a
submodular function to select concepts from candidate sets
with the goal of retaining the most discriminative and least
overlapping concepts (Yang et al., 2023). All aforemen-
tioned methods incorporate text in their concept discovery
process. We argue that multi-modality concept discovery
adds nuances to image classification interpretability, which
are not inherently there, in pure image classification mod-
els. Given that images and texts occupy distinct areas of
the CLIP embedding space (Liang et al., 2022), we argue
that only image-level concepts allow for true interpretabil-
ity. Following the same line of argumentation, Rao et al.
(2024) introduce Discover-then-Name (DN-CBM), which
employs sparse autoencoders for image-level concept gener-
ation. These concepts are mapped to names derived from
a corpus of broad textual descriptions, and the resulting
mapped concepts are used to train a CBM. Parallel work
by Schrodi et al. (2024) understands concepts as low-rank
approximations of model activations, which they learn us-
ing non-negative matrix factorization on image embeddings.
Moreover, self-supervision can be used to learn concepts
from data (Alvarez Melis & Jaakkola, 2018; Wang et al.,
2023). Following the same motivation, we and parallel
works have employed foundation models to propose visual
concepts from data (Kowal et al., 2024; Sun et al., 2024;
Zhu et al., 2024). We argue that concepts should have high
granularity and be dataset-specific to allow adaptation to
varying target domains. We use CBMs in their original form
- a single linear layer - while there exist variants learning
residuals (Zabounidis et al., 2023), investigating locality
(Raman et al., 2023), and assessing concept correlations
(Heidemann et al., 2023).

2.2. Visual concept generation

CBMs typically contains autoencoders (Huben et al., 2024;
Rao et al., 2024), non-negative matrix factorization (Fel
et al., 2023; Schrodi et al., 2024; Zhang et al., 2021), K-
Means (Ghorbani et al., 2019), or PCA (Zhang et al., 2021;
Zou et al., 2023). Panousis et al. (2024) share our convic-
tion that multi-level concepts enhance the expressiveness of
CBMs. In contrast to their 2-level approach, our DCBM can
detect multi-level concepts. Following other XAI methods,
we generate concept proposals in an unsupervised manner
using segmentation foundation models (Kowal et al., 2024;
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Sun et al., 2024; Zhu et al., 2024). Specifically, we extract
image crops using segmentation (Carion et al., 2020; He
et al., 2017; Kirillov et al., 2023; Li et al., 2024a; Ravi et al.,
2025) and detection foundation models (Liu et al., 2024),
with hyperparameters tuned to capture both part-level and
instance-level concepts. We can steer promptable detection
methods more than generic models and expect to return
fewer and more class-relevant concepts. To minimize re-
dundancy, we cluster the generated concept proposals. In
contrast to BotCL (Wang et al., 2023), we create visual
concepts instead of learning them. We evaluate the cor-
rect localization of concepts using the Grid Pointing Game
(Bohle et al., 2021). In comparing concept activations of
the corresponding class to activations of three random other
classes, we evaluate whether the concepts are class-specific.

2.3. Image-level interpretability

Besides CBMs, part-based classifiers (Chen et al., 2019;
Donnelly et al., 2022; Nauta et al., 2021; Pham et al., 2024;
Wang et al., 2021; Xue et al., 2024) and attribution meth-
ods (Bohle et al., 2021; Knab et al., 2025; Ribeiro et al.,
2016; Selvaraju et al., 2019; Zhang et al., 2018) offer inter-
pretability in the visual domain. In contrast to CBMs, part-
based classifiers are often trained end-to-end (Chen et al.,
2019). While their prototypes have visual similarities with
DCBM concepts and their explanations share similarities
with CBMs, the fact that prototypes are learned in a super-
vised manner, e.g. (Chen et al., 2019; Pham et al., 2024),
sets them apart. BotCL (Wang et al., 2023) learns concepts
in a self-supervised manner and requires the number of con-
cepts to learn as a hyperparameter. Given that prototypes
are generated during training time, attribution methods can
be used to highlight relevant image areas during inference
(Chen et al., 2019).

Attribution methods trace model decisions back to the image
plane, e.g. (Bohle et al., 2021; Knab et al., 2025; Ribeiro
et al., 2016; Selvaraju et al., 2019). They determine the
relevant image region by using, e.g., gradients, activations,
occlusions, or perturbations. Grad-CAM (Selvaraju et al.,
2019), for instance, visualizes the activations of the net-
work’s final layer, while Local Interpretable Model-agnostic
Explanations (LIME) (Knab et al., 2025; Ribeiro et al.,
2016) uses perturbation-based surrogates to approximate
interpretable models. For DCBM, we evaluate the localiza-
tion of concepts using the Grid Pointing Game to validate
the concepts in the test images, following the same intuition
as Wang et al. (2023).

3. Data-efficient concepts for CBMs (DCBM)
The design of DCBM is driven by the focus on data-
efficiency, simplicity, and step-wise inspectability. To this
end, we define concepts as image regions that we generate

using segmentation or detection foundation models. The
initial concept set is clustered to reduce redundancies. In
line with the main idea of CBMs, we select simple methods
(k-means) to achieve maximum interpretability. DCBMs
can be inspected at every step, (1) foundation model concept
proposals, (2) cluster centroids, and (3) CBM explanations.
On top of that, attribution methods visualize inference-time
concept activations to provide interpretations grounded in
the image plane. Figure 2 illustrates the framework that de-
rives visual concepts, which are subsequently named using
the CLIP space.

3.1. Concept proposal generation

We use foundation models for segmentation and detection
to facilitate data-efficient concept generation and extract
multiple concepts from the same image. Our choices are
the foundation models Segment Anything 1 & 2 (Kirillov
et al., 2023; Ravi et al., 2025), GroundingDino (Liu et al.,
2024), MaskRCNN (He et al., 2017), and DETR (Carion
et al., 2020). We compare the segmentation models, which
require no input, to the open-set detection method Ground-
ingDino, in which we use various concept sets from the
literature as input. We construct a concept proposal subset
by selecting as few as 50 random training images per class.
This has the goal of mitigating the risk of overfitting while
increasing efficiency since not all training images are used
for concept generation. Drastically reducing the number of
images needed for concept generation makes DCBM highly
data-efficient, i.e., for ImageNet, DCBM uses (-96%) of
training images for concept generation compared to other
data-driven CBMs. Further discussions on data-efficiency
can be found in Appendix A.1.

Selecting 50 images is a hyperparameter, for CUB, which
contains fewer samples, we include all available images in
the concept generation set D. Especially for large datasets
such as ImageNet and Places365, this reduces the number
of images considered during concept extraction by 96%
and 99%, respectively, compared to other methods (Schrodi
et al., 2024). Task-agnostic pre-training (Rao et al., 2024)
requires large-scale datasets such as CC3M (Sharma et al.,
2018). Efficiency can be increased by using fewer train-
ing samples at the cost of slight performance degradations,
as shown in Appendix E.1. After receiving the foundation
model segmentation or detection results, we crop the images
in D according to the bounding box and add the resulting
sub-image to the concept proposal set S. For each image
in D, multiple sub-images can be created, thus |D| ≤ |S|.
The removal of background information is ablated in Ap-
pendix D.1. To refine the concept proposals, concepts that
are below or above a given size threshold can be excluded
from S, as evaluated in Appendix E.2.
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Figure 2. DCBM framework. The DCBM framework generates concept proposals through foundation models (Step 1). These proposals
are then clustered, each represented by its centroid (Step 2). Finally, the unique concepts are utilized to train a sparse CBM, effectively
(Step 3). We leverage the image-text alignment to map the visual concept to the corresponding textual concept (Step 4). We can remove
undesired concepts after Step 2.

3.2. Concept generation

We embed the concept proposal set S using a frozen im-
age encoder with backbone architecture f such that Sdenc =
f(S) = (f(Si))di=1 ∈ Rd×m, where m denotes the embed-
ding space’s dimensionality and d the number of concept
proposals in S. To reduce redundancy while maintaining
high variance of concepts, we cluster the concept proposal
embeddings Sdenc. In Appendix D.3, we ablate the choice
of clustering algorithm by comparing centroid-based K-
Means with agglomerative clustering. Additionally, in Ap-
pendix D.5, we analyze the impact of varying the number
of clusters in K-Means. We select a rather large number of
clusters, since we aim to create concise concepts. For each
cluster, we define its centroid cj as a concept, thus obtaining
C = {cj}kj=1 ∈ Rk×m in the embedding space. We ablate
two approaches for determining the centroid cj of cluster j:
the mean and the median of the clustered embeddings, as
reported in Appendix D.4. The concept set C constitutes the
final concept set employed for training the CBM model.

Concept Removal. DCBM allows a targeted removal of
specific, undesired concepts after the concept generation
phase (Step 2 in Figure 2). Leveraging CLIP’s multimodal
capabilities, we specify the concept to be removed using a
textual prompt. For example, to exclude the concept “stone”,
we compute its text embedding and remove all visual con-
cepts with cosine similarity above the threshold. This capa-
bility allows for fine-grained control to exclude concepts,
allowing users to suppress spurious correlations or explic-
itly highlight desired causal factors (see Appendix G.2 for
further details).

3.3. Concept bottleneck model

The CBM learns a linear mapping function h(·) that trans-
forms the concept activations into corresponding class label
predictions such that

t(xi) = h(a(xi)) = ω⊤a(xi), (1)

where t(xi) denotes the predicted label for input xi, a(xi) ∈
Rk represents the concepts associated with xi, and ω ∈ Rk

are the parameters of the linear model. To construct a(xi),
we compute the projection of the embedding f(xi) onto
each cluster centroid cj , normalized by its squared L2-norm
as done by Yuksekgonul et al. (2023).

a(xi) =
⟨f(xi), cj⟩
∥cj∥22

, for j = 1, . . . , k (2)

We train the model using the cross-entropy loss, in line with
previous work (Rao et al., 2024). Additionally, we apply
an L1 regularization term on the parameters ω to promote
sparsity in the learned weights,

Ltrain(xi) = CE(t(xi), yi) + λ∥ω∥1, (3)

where CE represents the cross-entropy loss, λ is the sparsity
hyperparameter that controls the influence of the regulariza-
tion term, and ω are the parameters of the linear mapping.

3.4. Concept naming

An additional feature of DCBM is the naming of the con-
cept set C. Given that the backbone architecture f is text-
image aligned, we can embed a corpus of texts T into the
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same embedding space as the images. Specifically, we de-
fine T d

enc = ftext(T ) = (ftext(Ti))li=1 ∈ Rl×m, where l
represents the number of textual concepts within T . It is
important to note that l may differ from d, because we uti-
lize an open text corpus for this task. Each visual concept
is assigned to the nearest textual feature based on cosine
similarity. In line with previous work (Rao et al., 2024),
we select T as common English words (Kaufman, 2012).
The DCBM framework is further detailed in Algorithm 1 in
Appendix A.

4. Evaluation
DCBMs exclusively incorporate dataset-intrinsic visual con-
cepts, with additional benefits in data-efficiency and appli-
cability to fine-grained classification tasks. We first outline
the experimental setup (Section 4.1), followed by a quantita-
tive performance assessment (Section 4.2), and a qualitative
assessment of DCBM-generated explanations in Section 4.3.
Lastly, we evaluate concept quality based on localization
within the test images using Grid Pointing Game (Bohle
et al., 2021) in Section 4.4.

4.1. Experimental setup

Backbones. The evaluation is conducted in the CLIP (Rad-
ford et al., 2021) embedding space with ResNet-50, ViT
B/16, and ViT L/14 backbones. We compare different
concept proposal methods: generic segmentation models,
i.e., SAM2 (Ravi et al., 2025), SAM (Kirillov et al., 2023),
DETR (Carion et al., 2020), Mask-RCNN (He et al., 2017),
and Semantic-SAM (Li et al., 2024a), which segment the
entire image, including background objects, and return con-
cept proposals of the whole scene. Additionally, we employ
a promptable detection model, i.e., GroundingDINO (Liu
et al., 2024), in which we steer the concept generation to-
ward relevant image regions. To this end, we use prominent
part labels from the literature as detection prompts. This
includes the CUB labels for bird parts (Wah et al., 2011),
the sun attributes (Patterson et al., 2014), the animal at-
tribute labels employed in AWA (Lampert et al., 2009), part-
Imagenet labels (He et al., 2022), and Pascal parts labels
(Chen et al., 2014). We ablate the prompts in combination
with all datasets Appendix D.

Datasets. We evaluate DCBMs on the five commonly used
datasets in the CBM community. For general image clas-
sification, we employ CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), and ImageNet (Deng et al., 2009), as they
offer a wide range of classes. For domain-specific tasks,
we use CUB (Wah et al., 2011) and Places365 (Zhou et al.,
2017), which provide targeted, domain-specific categories.
Additionally, we ablate DCBMs on ImageNette (Howard,
2019a) and the fine-grained dog classification dataset Im-
ageWoof (Howard, 2019b). Moreover, we evaluate on awa2

(Xian et al., 2018), CelebA (Liu et al., 2015), and a subset
of ImageNet (i.e. first 200 classes) to compare against other
CBMs and to exemplify its applicability to diverse datasets.
We further evaluate it on two novel datasets for the XAI
community, the social-media dataset ClimateTV (Prasse
et al., 2023) and MiT-States (Isola et al., 2015), as inspired
by (Yun et al., 2023). We also evaluate on ImageNet-R
(Hendrycks et al., 2021) to assess CBM performance under
complete domain shifts. See Appendix B for a detailed
dataset overview.

Hyperparameters. We ablate all hyperparameters on a
held-out validation set. In case this does not exist, we
construct it to comprise 10% randomly-selected, class-
balanced training samples. Using this setting, we ab-
late on the CUB, ImageNette and ImageWoof datasets
to find suitable hyperparameters. The search space com-
prises a learning rate lr = {1e−4, 1e−3, 1e−2}, sparsity-
parameter λ = {1e−4, 1e−3, 1e−2} number of clusters
k = {128, 256, 512, 1024, 2048, 4096}, and concept pro-
posal models. For all datasets and concept proposal genera-
tion methods, lr = 1e−4 and sparsity parameter λ = 1e−4

were found to be optimal. The number of clusters k de-
pends on the size of the concept proposal set S, but we
observed a tendency regarding greater values of k, and stick
to k = 2048 if not mentioned otherwise. We train each
DCBM model for 200 epochs with a batch size of 512
(Places365 & ImageNet) or 32 (all remaining). Concept
clustering and CBM training takes five minutes for small
datasets and up to two hours for large datasets on a single
RTX A6000 (more in Appendix E.1).

4.2. DCBM performance

We benchmark DCBM on standard CBM datasets and assess
the generalization capabilities of its visual concepts on the
out-of-distribution dataset ImageNet-R. Moreover, we eval-
uate it on two uncommon datasets for XAI, MiT-States and
ClimateTV, and the less common awa2 and CelebA datasets.
Performance differences between datasets are marginal, ex-
emplifying that DCBMs can be adapted to novel datasets.

4.2.1. COMPARISON ON BENCHMARK DATASETS

In Table 1, we report a quantitative evaluation of DCBM’s
performance (top-1 accuracy) compared to recent CBM
approaches, all of which leverage the text-image aligned
backbones of CLIP. For each experiment, we include linear
probe and zero-shot accuracy, with an asterisk (*) indicat-
ing performances reported in prior literature, and a dash
(-) indicating no reported accuracies. As a standard, we
choose 2048 concepts; ablations have shown that 4096 clus-
ters improve ImageNet accuracy while CIFAR-10 accuracy
increases with fewer clusters (256). This indicates that the
number of concepts and the number of classes are related.
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Table 1. CBM benchmark. Top-1 accuracy comparison across
CBM models (CLIP ViT L/14). The highest accuracies are bolt.
DNCB excels in fine-grained classification, while text-aligned and
large-scale vision CBMs prevail on general datasets.

Model CLIP ViT L/14

IMN Places CUB Cif10 Cif100

Linear Probe ↑ 83.9* 55.4 85.7 98.0* 87.5*
Zero-Shot ↑ 75.3* 40.0 0.7 96.2* 77.9*

LF-CBM (Oikarinen et al., 2023) ↑ - 49.4 80.1 97.2 83.9
LaBo (Yang et al., 2023) ↑ 84.0* - - 97.8* 86.0*
CDM (Panousis et al., 2023) ↑ 83.4* 55.2* - 95.9 82.2
DCLIP (Menon & Vondrick, 2023) ↑ 75.0* 40.5* 63.5* - -
DN-CBM (Rao et al., 2024) ↑ 83.6* 55.6* - 98.1* 86.0*

DCBM-SAM2 (Ours) ↑ 77.9 52.1 81.8 97.7 85.4
DCBM-GDINO (Ours) ↑ 77.4 52.2 81.3 97.5 85.3
DCBM-MASK-RCNN (Ours) ↑ 77.8 52.1 82.4 97.7 85.6

DCBMs perform within 6% of the linear probe for all
datasets, with superior performance on the fine-grained bird
classification dataset CUB (Wah et al., 2011). While CIFAR-
10 and CIFAR-100 performance is comparable between
CBM approaches, DCBM performance on the large-scale
dataset ImageNet and Places365 is slightly subpar com-
pared to other methods. For all concept proposal generation
methods (SAM2, GDINO, and MASK-RCNN), DCBM’s
performance is comparable, indicating that the foundation
model can be chosen in accordance with the given applica-
tion. Appendix F contains results for other CLIP backbones.

4.2.2. GENERALIZATION OF DCBM CONCEPTS

We evaluate trained CBM models to understand its gener-
alization capabilities in out-of-distribution domains (ood).
To this end, we evaluate CBM models, ours and DN-CBM
(Rao et al., 2024), trained on ImageNet on ImageNet-R
(Hendrycks et al., 2021) which contains 200 ImageNet
classes in various renditions (e.g., embroidery, painting,
comic). To ensure a fair comparison, we report the error
rates on the same classes within ImageNet (IN-200). Ta-
ble 2 shows superior ood generalization capabilities of the
DCBM model compared to DN-CBM. In contrast to stan-
dard IN-R evaluations (Hendrycks et al., 2021), which train
the model exclusively on the classes evaluated in IN-R, we
re-use the DCBM trained on all 1,000 ImageNet classes.
DCBMs trained exclusively on concepts of the 200 IN-R
classes are expected to perform even better, given that the
generated concepts would better match the target classes
and avoid confusion with the 600 classes not contained in
ImageNet-R.

Our ood evaluation shows that DCBM exhibits consistently
lower error rates on IN-R and a lower gap between IID and
OOD in comparison to the task-agnostic DN-CBM (Rao
et al., 2024). In Section 4.4, we further validate DCBM’s in-
terpretability by analyzing concept activations in test images

Table 2. Ood performance. Error rate changes compared between
visual CBMs (CLIP ViT-L/14) on ImageNet-R classes (and a base-
line). DCBM loses less performance when moving from iid to ood
evaluations, compared to the task-agnostic DN-CBM.

IN-200 IN-R Gap(%)

DN-CBM (Rao et al., 2024) ↓ 16.4 55.2 38.8

DCBM-SAM2 (Ours) ↓ 21.1 48.5 27.4
DCBM-GDINO (Ours) ↓ 22.6 47.2 24.6
DCBM-MASK-RCNN (Ours) ↓ 22.2 44.6 22.4

using GradCAM.

Table 3. Adaptation to other domains. Top-1 accuracy reported
for MiT-States and ClimateTV (CLIP ViT L/14). DCBMs perform
superior to the linear probe when classifying objects in different
states. Social media classification performance differs between
DCBM concept generation methods.

Method MiT-States ClimateTV

Linear Probe ↑ 37.3 84.5
Zero-Shot ↑ 48.1 69.7

DCBM-SAM2 (Ours) ↑ 42.8 85.6
DCBM-GDINO (Ours) ↑ 43.3 81.8
DCBM-MASK-RCNN (Ours) ↑ 43.2 87.9

We have designed DCBMs to be data efficient and evalu-
ate their performance on novel dataset. In Section 4.1, we
introduced MiT-States (Isola et al., 2015) and ClimateTV
(Prasse et al., 2023), on which we evaluate the generaliza-
tion of DCBMs. Table 3 presents the top-1 accuracy of the
DCBM prediction, linear probe, and zero-shot classifica-
tion, all trained on the CLIP ViT L/14 backbone. On both
datasets, DCBMs outperform the linear probes. Surpris-
ingly, the zero-shot classification on MiT-States achieves
the highest accuracy. The prediction of classes independent
of their state appears to be a challenging task. While the dif-
ferent DCBM approaches perform similarly on MiT-States,
their performance differs greatly on ClimateTV, with seg-
mentation models’ concepts achieving the highest accuracy.
Results for awa2 and CelebA can be found in Appendix F.2
along with results for BotCL’s subset of ImageNet. We
demonstrate that DCBM can capture diverse and complex
visual and semantic relationships, showing that it can effec-
tively be applied to other datasets.

4.3. DCBM interpretability

We designed DCBMs to provide visual insights into model
decision-making. In this section, we qualitatively analyze
and interpret the various explanations generated for Ima-
geNet, Places365, and CUB predictions. These evaluations
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Places365 Thirds Epoxy Stick Thirds Sktes

Input x

CUB Rocks Gull Clicking Knot Blu

Input x Top 5 Concepts

Top 5 Concepts

Class: Herring Gull

Class: Hockey

Input x Top 5 Concepts Class: Ambulance

ImageNet

Input x Top 5 Concepts Class: Aircraft Carrier

Carrier MSC Airfare MarinerShield

Figure 3. DCBM correct predictions. Concepts provide insights
into the model’s embedding space, as it returns visually and/or
semantically aligned concepts (SAM2 and CLIP ViT L/14).

are conducted on the CLIP ViT L/14 backbone, with SAM2
concept proposals. For each instance, we show the input
image along with the five most important concepts. Each
concept is displayed alongside its name(as detailed in Sec-
tion 3.4). We divide this investigation into two parts: in
Figure 3, we analyze correct predictions, and in Figure 4,
we examine challenging predictions.

The examples demonstrate the correct predictions and show-
case concepts from each dataset that closely align with the
semantics of the input image (see Section 3.3). The ma-
jority of concepts are visually and semantically aligned, as
the hockey (Place365) image’s most important concepts are
ice, (hockey) stick, sk(a)tes, the same holds for the CUB and
ImageNet example. Overall, the visual concepts provide suf-
ficient interpretability for the trained CBM’s classification,
making it applicable to domains that lack textual concepts
or rely solely on a vision encoder. Moreover, these expla-
nations highlight the quality of concept naming when in-
corporated into our framework. For example, in Places365,
the concept name thirds corresponds to hockey, where the
game is played in three periods of 20 minutes. Given that
DCBMs use visual concepts that have been named, the im-
age should always be attributed more weight than the text,
as the image-text alignment may be imperfect.

Figure 4 illustrates two examples of challenges arising when
using DCBM. The first image is correctly classified using
concepts not contained in the image, whereas the second one
is incorrectly classified even though the important concepts
are contained in the image. For instance, in the case of the
ambulance image from ImageNet, concepts such as med,
police, kit, or injection are not explicitly visible in the input
image. This provides insights into the model’s embedding
space, where a stethoscope is so similar to an ambulance

ImageNet

Input x Top 5 Concepts

iBook Mouse Screenshot Wardrobe Keyboard

Class: Desk
 Pred.: Desktop Computer

ImageNet

Input x Top 5 Concepts

Ambulance Med Police Kit Injection

Class: Ambulance

Figure 4. DCBM ambiguous concepts/classes. Complex visual
classes with ambiguous concepts or ambiguous class labels (SAM2
and CLIP ViT L/14).

that it is the second most important concept. In contrast,
while the visual concepts for the second instance can be
traced back to the input, the predicted class differs from
the ground truth, highlighting the inherent ambiguity of the
class definition. Further qualitative examples can be found
in Appendix G.

4.4. DCBM concept investigation

4.4.1. CONCEPT CLUSTERING

We evaluate whether concept proposals form cohesive clus-
ters to validate cluster centroid as a visual concept. As
shown in Figure 5, different visual representations of the
same concept are consistently grouped together. The sample
images illustrate strong semantic coherence within clusters
across all three datasets, reinforcing the interpretability of
the learned concepts. Additionally, the plot illustrates the
diversity of concepts captured within each dataset; for in-
stance, ImageNet spans a wide range of object-centered
categories, from animals to objects. Depending on the ob-
ject’s complexity, these objects appear as whole instances or
parts. In contrast, Places365’s scenes are more cluttered and
less object-centric. Hence, its concepts include mountain
range formations and vegetation. The highly specific CUB
dataset contains sub-parts (legs) as well as complex clusters
(bird on a tree trunk, vertically). This confirms that founda-
tion models can generate dataset-specific concept proposals
suitable for CBM training.

4.4.2. CONCEPT LOCALIZATION

To validate DCBM concepts, we measure how well concepts
in an explanation can be traced back to the input image using
Grad-CAM (Selvaraju et al., 2019) attributions. We employ
the Grid Pointing Game (GPG) (Bohle et al., 2021) to as-
sess whether a given class corresponds to the original image
when placed in a grid with randomly selected images of
different, other classes. Specifically, we include the original
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ImageNet CUBPlaces365

Figure 5. Clustered proposals as concepts. We show four concept clusters for ImageNet, Places365, and CUB, illustrating that clustering
concept proposal embeddings produce semantically coherent clusters across datasets. The center image (orange border) represents the
final concept (median image) for each cluster of concept proposals (SAM2 and CLIP ViT L/14).

Input x
Visual Concept 

Grid Pointing Game

Figure 6. Grid pointing game. GPG applied to an ImageNet-R
instance using a visual concept from ImageNet to demonstrate the
effectiveness of our approach in ood (SAM2 and ResNet-50).

test image in a 2×2 grid with three randomly chosen images
from the same dataset (see Figure 6). We then select the
top five visual concepts as classes for Grad-CAM and apply
them to each visual concept within the composite 2×2 grid
image, analyzing whether activation maps align with the
original image’s quadrant. This evaluation is conducted on
CUB and Places365 test sets using the ResNet-50 backbone.
In Table 4, we compute the mean over the entire test set for
each of the three metrics: (1) Gini Index, which measures
the attribution score dispersion across the grid, (2) relative
percentage, which measures how much normalized attribu-
tion overlaps with the correct quadrant, and (3) maximum
score, which measures whether the highest attribution score
is in the correct quadrant. For all metrics, higher values
indicate a better localization within the specific test image.
The GINI index is defined within [0,1], where 0 stands for
equal attributions in the entire group and 1 indicates per-
fect localizability. Percentage and absolute scores are lower
bounded at 0.25, where the attributions would be randomly
divided between the 4 images in the grid.

The results validate that DCBM concepts can be localized
within test images. While Places365 shows higher attribu-

Table 4. Grid pointing game - metrics. Mean values for different
metrics are reported for Places365 and CUB (SAM2 and CLIP
RN-50).

Metric Places365 CUB

Gini ↑ 0.4701 0.3608
Percentage ↑ 0.6519 0.3402
Abs ↑ 0.6551 0.3445

tion alignment (e.g., Gini: 0.4701 vs. 0.3608, Abs: 0.7028
vs. 0.4988), CUB also demonstrates better than random
coherence. Overall, the lower numbers in CUB, a dataset
for fine-grained classification, are also to be expected since
several concepts are usually shared between classes (e.g.,
different bird species have similar beaks) and are thus acti-
vated along with the other class. The consistent performance
across metrics validates our method’s ability to map visual
concepts to relevant image regions.

5. Discussion
With DCBMs, we create a simple and data-efficient frame-
work for model interpretability, which can easily be adapted
to new datasets. Using segmentation and detection founda-
tion models, we retrieve image-inherent concepts in the vi-
sual domain. For any prediction, we can trace their concepts’
activations back to the test image. DCBM’s accuracy is in all
experiments within 5% of the linear probe, indicating that its
interpretable predictions are comparable between common
and uncommon CBM datasets. Based on these findings, we
expect to see similar behavior for other datasets. DCBM’s
applicability is limited by two factors, the suitability of a
segmentation foundation model and the expressiveness of

8



Data-Efficient Visual Concept Bottleneck Models

the CLIP embedding space for a given use case. Further
advances in vision-language models, segmentation, and de-
tection models can enhance results, as new methods can
easily be integrated into the DCBM framework.

In comparison to other CBMs, we achieve the highest perfor-
mance on CUB (Wah et al., 2011). The task-specific nature
of our concepts appears well-suited for fine-grained classifi-
cation. The task-agnostic DN-CBM (Rao et al., 2024) does
not report their CUB performance, but their outlook pro-
poses pre-training on larger datasets to enhance fine-grained
classification. As of now, we steer the concept genera-
tion process solely by clustering similar concept proposals
into a single cluster. Our ablations of removing small or
large concepts show a small influence on CBM performance.
Moreover, concept proposal steering using the promptable
GroundingDino results in a lower number of concept pro-
posals. Given that accuracy is comparable to steering-free
methods such as SAM2, we can assume that the steered
concept set contains equally relevant concepts. Additionally,
DCBMs allow the removal of undesired concepts using a
text interface, making it adjustable to spurious correlations
within a dataset’s context.

Qualitative concept analysis (Section 4.3) shows that
DCBMs’ concepts contain image- and part-level concepts
of the dataset’s classes. DCBM’s interpretations highlight
spurious correlations within the CLIP embedding space by
basing decisions on semantically close concepts that are not
present in the test image. While spurious correlations can
be observed in all CLIP CBMs (Menon & Vondrick, 2023;
Oikarinen et al., 2023; Panousis et al., 2023; Rao et al., 2024;
Yang et al., 2023), DCBMs allow for the investigation of
visual spurious correlation within dataset-specific concepts.
Attribution methods such as GradCAM can visualize these
semantic similarities between visually different concepts.
We utilize DCBM as an inspection tool and can exclude
undesired concepts from CBM training. Ensuring concept
grounding using slot attention as in(Wang et al., 2023) or
an image tagging model such as RAM (Zhang et al., 2024b)
can be an automated measure against spurious correlations.

The current concept set contains the clustered crops of seg-
ments or object detections, a simple and efficient approach.
Regularization the concept selection can incorporate con-
cept diversity concerning hierarchy. Previous works have
defined a threshold for image coverage (Zhu et al., 2024) to
determine the number of concepts. We believe that detailed
investigations can reduce the number of clusters without re-
stricting their diversity and granularity. Additionally, other
embedding spaces can be evaluated to discuss inter-model
differences. CBM sparsity can be further increased to in-
crease model interpretability (Schrodi et al., 2024).

A possible next step can be the extension of DCBMs to have
post-hoc interpretability by learning a mapping from model

features to concepts. Besides image-concept similarity, we
argue for integrating the GPG results into the mapping to
ensure having the most suitable concept for each object in
the image. In all cases, we strongly argue for employing
a single model at a time to maintain model-specific inter-
pretability. Moreover, we believe it would be interesting
to extend DCBMs or CBMs in general to tasks beyond
classification. Interpretable regression could be learned by
integrating GPG into the prediction pipeline, assuming that
the concept represents the largest extent of a given concept
and that concept activations would be less when the extent
is less. One use case for interpretable regression would be
severity prediction for skin lesions.

Lastly, efficiency is a strength of DCBMs since they do
not require general (Rao et al., 2024) or dataset-specific
pre-training (Schrodi et al., 2024). Moreover, the concept
proposal set is created using only 50 images per class; fewer
images may be used as a trade-off for accuracy.

6. Conclusion
In this work, we present DCBM, a novel approach to CBMs
that uses data-efficient concepts entirely in the visual do-
main. DCBMs employ a simple and intuitive approach
to deriving concepts by using segmentation or detection
foundation models. Clustering concept proposals, reduces
the different representations of concepts to a single pro-
totypical one, which is used for CBM training and evalu-
ation. DCBM’s efficient and unrestricted adaptability to
other datasets highlights its potential as a CBM framework
for any dataset. Our approach generalizes well across do-
mains and datasets, demonstrating versatility with respect
to concept proposal methods like SAM2, GroundingDINO,
and MASK-RCNN. Given that no pre-training is required,
DCBMs can provide interpretations for a new dataset in
under one hour (depending on dataset size).

Impact Statement
This paper presents research that aims to ease the access to
classification interpretability. Moreover, we want to high-
light that misleading classifications may reduce trust in AI
applications rather than increase it. These impacts can be
observed within any CBM and are not specific to DCBM.
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A. Framework
We describe the DCBM framework in the main paper. For better understanding, we provide the framework with pseudocode
in Algorithm 1 and introduce notation to this end.

An object O can be represented as a combination of concepts from a global concept pool C. Let Ci ∈ C denote individual
concepts, and let each object be characterized by a subset of these concepts with corresponding weights.

O =

|C|∑
i=1

wiCi, wi ≥ 0

where: Ci ∈ C represents a concept from the global pool, wi denotes the contribution of concept Ci to the image, Ci is
located in the image I , Ri ⊆ I is the region of the image where concept Ci is present,

Further, we assume visual concepts to be spatially localized in images and therefore conjecture that data efficient concept
extraction should build upon image segments or regions rather than entire images. Therefore, we generate the global concept
pool C by segmentation or detection foundation models, which are then cropped out and used as concept proposals si. All
si ∈ S are then clustered into the global concept set C.

Algorithm 1 DCBM Framework

1: Input: D (Training dataset), T (Text corpus), n (Number of images per class), Ω (Segmentation model), f (Vision
encoder), ftext (Text encoder), k (Number of clusters), amin and amax (Minimum and maximum area thresholds for
segmentation).

2: 1. Concept Proposal Generation
3: Dn ← {randomly select n images from each class in D}
4: S ← {Ω(x) | x ∈ Dn} {Apply segmentation to each image}
5: S ← {crop(x, sli) | x ∈ Dn, s

l
i ∈ S} {Extract bounding boxes based on segmentation}

6: S ← {sli ∈ S | area(sli) ∈ [amin, amax]} {Filter segments by area}
7: 2. Concept Creation
8: Sdenc ← f(S) {Encode segmented concepts with vision encoder}
9: Dd

enc ← f(D) {Encode entire dataset}
10: T d

enc ← ftext(T ) {Encode text corpus}
11: ids← cluster(Sdenc, k) {Cluster encoded segments into k clusters}
12: C ← {centroid(Sdenc, ids = i) | i = 1, . . . , k} {Compute centroids for each cluster}
13: 3. Concept Bottleneck Model
14: A← ⟨Dd

enc,cj⟩
∥cj∥2

2
, for j = 1, . . . , k {A represents the activation of concepts in D}

15: DCBM← fit(A, y | y ∈ D) {Train linear model with ground truth}
16: 4. Concept Naming (optional)
17: sim← cos sim(T d

enc, C) {Compute similarity between textual and visual concepts}
18: t← zeros(|T d

enc|) {Initialize t as a zero vector with the same length as C}
19: for cj ∈ C do
20: tj ← argmax(simj) {Get the index of the maximum similarity in the j-th row}
21: end for
22: Cnamed ← {T [tj ] | tj ∈ {1, 2, . . . , |T |}} {Named concepts with descriptions}
23: Output:
24: DCBM, C, Cnamed

The underlying feature extraction method is denoted by Ω with the hyperparameter settings as hp. Possible choices are the
foundation models Segment Anything 1 & 2 (Kirillov et al., 2023; Ravi et al., 2025), GroundingDino (Liu et al., 2024),
MaskRCNN (He et al., 2017), and DETR (Carion et al., 2020). We compare the segmentation models, which require no
input, to the open-set detection method GroundingDino, in which we use various concept sets from the literature as input.
We construct a concept proposal subset, D, by selecting a configurable number n of random training images per class.
This has the goal of mitigating the risk of overfitting while increasing efficiency since not all training images are used for
training. We set n = 50 for the main paper, for CUB, which contains fewer samples, we include all available images in D.
In Appendix A.1 we discuss DCBM’s data-efficiency in detail.
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Each image i in the subset D is segmented by Ω into l concept proposals, denoted as sli. The number of concept proposals
varies between images and is determined by the hyperparameter settings hp.We crop the concept proposal’s bounding
box and add the resulting sub-image to concept proposal set as S.The removal of background information is ablated in
Appendix D.1. To refine the concept proposals, image parts that are below or above a given size threshold can be excluded
from S, as evaluated in Appendix E.2.

A.1. Data-efficiency

DCBM is highly data-efficient in the concept generation phase and equally efficient as other models in the CBM training
phase.

In Table 5 we show the differences to another data-driven CBM, i.e., DN-CBM (Rao et al., 2024). DCBM does not require
general pre-training, but it can be directly employed for the dataset in question. This makes DCBM an effective tool in
single-dataset settings.

DN-CBM DCBM - ImageNet

Dataset size 3,300k image-caption pairs (CC3M) 50k images (50 imgs/class)
Add. memory capacity 850 GB (assuming 256x256px) 6 GB
No extra data required × ✓

Table 5. CBM training preparation: DN-CBM (Rao et al., 2024) vs DCBM (ours).

We have set n = 50, i.e., selected only 50 images per class for the concept proposal generation. This subset is sufficiently
large and diverse, as Table 6 shows. Using an alternative subset or the combination of the existing and new subset does not
have an impact on the CBM accuracy. CUB is not included in the table as it has less than 50 images per class and thus the
entire dataset is used for concept proposal generation.

# imgs / class ImageNet Places365 Cifar10 Cifar100

s1 (main paper) 50 77.4 52.2 97.5 85.3
s2 (new) 50 77.5 52.2 97.6 85.4
s1+s2 100 77.1 52.1 97.7 85.5

Table 6. Performance evaluation of subset selection

Data-efficiency can be further increased by using fewer training samples at the cost of slight performance degradation, as
shown in Appendix E.1. Moreover, reducing the number of training data points for CBMs is feasible and results in only a
modest performance degradation, as shown in Table 7. This relatively minor trade-off highlights the potential applicability
of DCBMs in data-scarce environments.

# imgs / class ImageNet Places365 Cifar10 Cifar100

all 77.4 52.2 97.5 85.3
50 imgs / class (SAM2) 75.5 46.1 91.2 79.1
50 imgs / class (GDINO) 75.0 46.2 93.1 79.4
50 imgs / class (MASK-RCNN) 75.5 46.5 94.8 80.3

Table 7. Performance evaluation when reducing the number of training samples to 50 images per class (ViT-L/14).
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B. Dataset overview and details
B.1. Ablations

We ablate on three datasets: ImageNette (Howard, 2019a), ImageWoof (Howard, 2019b), and CUB (Wah et al., 2011). The
first two datasets are both subsets of ImageNet (Deng et al., 2009). ImageNette contains easier-to-classify categories like
tench, English springer, and church. ImageWoof images focus on dog breeds, curated for fine-grained classification tasks.
The Caltech-UCSD Birds 200 dataset is designed to identify fine-grained bird species with detailed annotations. For the
datasets which do not have a test split, we use the validation split for testing and create a new split, i.e., , 10% of train set, for
validation. Consequently, the train split comprises only 90% of the original train images (see Table 8).

Table 8. Ablation datasets. Overview of the datasets used for ablation (ImageWoof, ImageNette, and CUB-200-2011).

Dataset Classes Images
%(train / val / test)

ImageNette 10 13,000 (70 / 30 / 0)
ImageWoof 10 12,000 (70 / 30 / 0)
CUB-200-2011 200 11,788 (50 / 50 / 0)

B.2. Benchmark analysis

For the primary analysis, we compare five datasets: Imagenet (Deng et al., 2009), Places365 (Zhou et al., 2017), CUB (Wah
et al., 2011), cifar10 and cifar100 (Krizhevsky et al., 2009). For ImageNet, we report on the validation split. Thus, we use it
as our test set. Again, we create a small validation set to select the hyperparameters on an independent dataset in situations
where we cannot access three labeled splits (see Table 9).

Table 9. Main datasets. Overview of the datasets used for benchmark experiments.

Dataset Classes Images
(train / val / test)

ImageNet 1,000 1,431,167 (90 / 3 / 7)
Places365 365 1,839,960 (98 / 2 / 0)
CUB-200-2011 200 11,788 (50 / 50 / 0)
CIFAR-10 10 60,000 (83 / 0 / 17)
CIFAR-100 100 60,000 (83 / 0 / 17)

B.3. Additional datasets

We use five datasets which are novel or rare to the CBM research and summarize them in Table 10: MiT-States (Isola
et al., 2015), Climate-TV (Prasse et al., 2023), ImageNet-R (Hendrycks et al., 2021), awa2 (Xian et al., 2018), and CelebA
(Liu et al., 2015). MiT-States contains images of 245 object classes in combination with 115 attributes. This allows
the assessment of concept recognition in previously unseen shapes or forms, as the test set contains 50% seen and 50%
unseen versions of objects, e.g., ripe tomato, unripe tomato, moldy tomato. We evaluate the accuracy of the object class.
Thus, we use this dataset to assess whether we can detect an object independent of its state. We use the train-val-test split
(30k-10k-13k) introduced by (Purushwalkam et al., 2019). ClimateTV contains social media images of climate change and
includes a diverse range of images. We have created a balanced set for the animals-superclass, which contains 11 animal
classes, including ”no animals”. This allows the assessment of real-life images, which are, by design, messier than curated
datasets. We employ animals with attributes in the drop-in version 2 (Xian et al., 2018) consisting of animal images labeled
with 85 numeric attributes. We have run DCBM on AwA using the standard 50:50 train and test split. We created the val set
by randomly selecting 10% of train samples. Lastly, we employ CelebA (Liu et al., 2015), which contains face photographs
of 10,177 celebrities, in which 5 landmark locations and 40 binary attribute annotations are provided for each image. This
dataset is designed for face landmark detection and is transformed as described by Zhang et al. (2024a), using a 70 : 10 : 20
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(train:val:test) split. We randomly sample every 12th image as done by past research (Zhang et al., 2024a). In order to move
towards a classification datasets, the 8 most balanced attributes are taken and all possible combinations are used as class
labels, thus resulting into 256 possible classes. The most balanced attributes are: Attractive, Mouth Slightly Open, Smiling,
Wearing Lipstick, High Cheekbones, Male, Heavy Makeup, and Wavy Hair. Given that some combinations of attributes are
highly unlikely, we exclude classes with less than 10 samples, thus resulting in 110 actual classes.

Table 10. Additional datasets. Overview of the additional dataset (MiT-States, ClimateTV, and ImageNet-R).

Dataset Classes Images
%(train / val / test)

MiT-States 245 53,743 (57 / 19 / 24)
ClimateTV 11 660 (80 / 0 / 20)
AWA2 50 37,322 (16,789/ 1,863/ 18,670)
CelebA 110 16,651 (11,603 / 1,602 / 3,446)
ImageNet-R 200 30,000 (0 / 100 / 0)

ImageNet-R consists of 200 ImageNet classes and is generally used to evaluate ood performance of a model trained on
ImageNet. The ”R” stands for renditions of which the dataset contains cartoons, graffiti, embroidery, graphics, origami,
paintings, and many more (Hendrycks et al., 2021). This task is simplified by training the model exclusively on the 200
classes of ImageNet-R. In our case, however, we report the model’s performance when trained on all ImageNet classes.

C. Concept proposal generation
We provide the code for all segmentation methods employed and make it publicly available. Table 11 provides an overview
of the segmentation models’ hyperparameters, which are unchanged for MaskRCNN and DETR compared to the pre-trained
models. Hyperparameters were set to retrieve concept proposals that break the image into sub-parts. For GroundingDino,
we evaluated two thresholds to compare whether more, noisier or fewer, cleaner concept proposals performed better.

Table 11. Hyperparameters of segmentation models. We only report model hyperparameters if changed compared to standard setting.

Segmentation model Hyperparameters

SAM points per side = 64,
pred iou thresh = 0.88,

stability score thresh = 0.95,
box nms thresh = 0.5,

min mask region area = 500

SAM2 points per side = 64,
pred iou thresh = 0.88,

stability score thresh = 0.95,
box nms thresh = 0.5,

min mask region area = 500

GDINO box threshold = [0.35, 0.25],
text threshold = 0.25

C.1. Prompts

For the promptable GroundingDINO model, we assess the efficacy of several prompts w.r.t. CBM performance. To this end,
we use attribute or part labels, which have been published in other contexts, thus avoiding manual or LLM-based concept set
generation. We use the part annotations for CUB (Wah et al., 2011), the attributes for Animals with Attributes (GDINO
Awa) (Lampert et al., 2009), and standard part-labels from Part-ImageNet (He et al., 2022) and GDINO Pascal-PARTS
(Chen et al., 2014).
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D. Ablations
We conduct ablation studies to evaluate DCBM’s performance under various hyperparameters and configurations. These
studies are performed on the ImageNette, ImageWoof, and CUB to identify settings that yield strong performance across
all three datasets. The identified configurations are used for the main experiments presented in Section 4. Each DCBM
was trained with 1024 clusters, using K-Means clustering with the median of each cluster as a concept, a learning rate of
1e−4, and sparsity regularization set to 1e−4. We explore a broader range of segmentation and object detection models
beyond those discussed in the main paper, such as SAM and extended prompts for GDINO. The ”Low” label indicates a low
threshold for the corresponding object detection configuration. What differentiates these experiments from those in the main
paper is the use of PCA, reducing the dimensionality of concept proposals to 100. This approach accelerates clustering and
enables more efficient experimentation. Additionally, we investigate the impact of PCA on the performance of DCBM.

D.1. Background removal

The background influences embedding the image regions used as concepts for the segmentation methods employed. To
assess this effect, we examine accuracies in Table 12 using three different CLIP embeddings: ResNet-50, ViT B/16, and ViT
L/14 — while excluding the background concept, based on ImageNette, ImageWoof, and CUB. We report SAM, SAM2,
Mask R-CNN, and DETR results. Each model was trained with a learning rate of 1e−4, a sparsity parameter λ of 1e−4,
128 clusters using median and k-means, and 50 images per class within the DCBM framework.

Table 12. Background performance influence. Performance comparison with (w/) and without (w/o) background on the ablation
datasets.

Model CLIP ResNet-50 CLIP ViT-B/16 CLIP ViT-L/14

ImageNette ImageWoof CUB ImageNette ImageWoof CUB ImageNette ImageWoof CUB

SAM w/o 98.55 90.96 57.04 99.57 93.66 71.68 99.87 95.42 80.03
SAM w/ 98.50 90.81 57.62 99.54 93.79 73.44 99.80 97.78 79.58

SAM2 w/o 98.73 91.70 59.89 99.52 94.38 73.61 99.87 95.75 80.98
SAM2 w/ 98.78 91.68 61.44 99.57 94.30 75.49 99.85 95.80 82.21

MaskRCNN w/o 98.65 91.93 64.62 99.59 94.38 77.60 99.80 95.70 83.60
MaskRCNN w/ 98.68 91.89 65.46 99.59 94.60 77.61 99.82 95.65 83.32

DETR w/o 98.65 91.80 64.17 99.46 94.45 76.84 99.82 95.75 82.57
DETR w/ 98.73 92.03 61.18 99.54 94.58 76.91 99.80 95.78 82.52

D.2. PCA

To assess the impact of different hyperparameter settings within the DCBM framework, we analyze clustering similarities
across various values of k in K-means and compare these results across different CLIP backbone models in Figure 7. Our
primary focus is on the CUB dataset, as its exclusive focus on bird images introduces ambiguity in clustering compared
to other datasets. Additionally, in Figure 8, we examine the effect of applying PCA with 100 components to the segment
embeddings before clustering to determine whether this transformation yields similar clustering outcomes. For this
evaluation, we use the NMI (Normalized Mutual Information) metric, where an NMI score close to 1 indicates high
similarity, meaning that the two clustering approaches capture comparable groupings or structures. In contrast, a score near
0 suggests minimal alignment, indicating substantially different clustering results.
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Table 13. Impact of PCA on CUB dataset. Accuracy comparison of DCBM with and without PCA (100 components) evaluated on the
CUB dataset.

ResNet-50 CLIP ViT-B/16 CLIP ViT-L/14

DCBM-SAM2 (Ours) w 61.2 75.1 81.9
DCBM-SAM2 (Ours) w/o 61.4 75.3 81.8

DCBM-GDINO (Ours) w 58.9 73.9 81.1
DCBM-GDINO (Ours) w/o 59.0 74.1 81.3

DCBM-MASK-RCNN (Ours) w 64.6 76.8 82.
DCBM-MASK-RCNN (Ours) w/o 64.6 76.7 82.4

As shown in Figure 7, the B16, L14 combination consistently achieves the highest NMI scores. Additionally, as the number
of clusters k increases, the NMI scores improve in all segmentation techniques and backbone combinations, indicating that
larger cluster sizes capture more meaningful distinctions in the data. These results suggest concept clusters remain similar
across different CLIP backbones, with minimal unique variation among specific backbone combinations.

Figure 7. Backbone NMI scores for the CUB dataset. NMI scores for three CLIP model combinations: B16, L14 (blue), B16, RN50
(orange), and L14, RN50 (green), showing clustering performance across different backbones across cluster sizes (128, 256, 512, 1024,
2048).

Similarly, Figure 8 illustrates the impact of PCA on cluster similarity. While PCA reduces dimensionality and speeds up the
clustering process, the clusters formed remain broadly consistent with those generated without PCA. This suggests that
PCA minimally affects the conceptual alignment within CBMs, preserving the overall clustering structure. Furthermore, as
demonstrated in Table 13 for CUB, this limited influence extends to the overall performance of DCBMs.

Figure 8. PCA NMI scores for the CUB dataset. NMI scores illustrate clustering consistency with and without PCA preprocessing (100
components) for each CLIP backbone across varying cluster sizes (128, 256, 512, 1024, 2048).
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D.3. Clustering algorithm

We evaluate two clustering algorithms in the main ablation study: hierarchical clustering and K-means. The results, presented
in Table 14, are based on a consistent configuration where the median centroid is used, and the number of clusters k is fixed
at 1024 across all datasets. While the performance scores of both methods are generally comparable, K-means slightly
outperforms hierarchical clustering in most cases. Consequently, we use K-means for the main experiments.

Table 14. Clustering method comparison. Performance comparison of different clustering algorithms (Hierarchical and K-Means), both
with k set to 1024.

Model Clustering Method CLIP ResNet-50 CLIP ViT-B/16 CLIP ViT-L/14

ImageNette ImageWoof CUB ImageNette ImageWoof CUB ImageNette ImageWoof CUB

SAM Hierarchical 98.60 90.74 61.15 99.52 93.38 73.27 99.82 95.65 82.11
K-means 98.52 90.86 57.62 99.57 93.74 73.44 99.82 95.90 80.03

SAM2 Hierarchical 98.75 92.11 61.15 99.62 94.45 75.39 99.85 95.80 82.12
K-means 98.72 92.19 61.44 99.59 91.60 75.60 99.85 95.70 81.88

DETR Hierarchical 98.73 92.03 63.96 99.54 94.53 76.82 98.77 95.85 82.31
K-means 98.65 92.21 64.27 99.54 94.60 77.01 99.80 95.80 82.64

MaskRCNN Hierarchical 98.68 92.03 65.41 99.57 94.35 77.53 99.85 95.78 83.21
K-means 98.73 91.86 65.46 99.60 94.60 77.70 99.85 95.65 83.33

GDINO Awa Hierarchical 98.57 91.27 58.54 99.41 93.99 74.13 99.87 95.70 81.36
K-means 98.50 91.17 57.97 99.46 94.04 73.63 99.89 95.60 81.12

GDINO Awa Low Hierarchical 98.60 90.81 57.84 99.44 94.15 73.92 99.87 95.62 81.17
K-means 98.57 90.91 65.43 99.41 94.17 77.70 99.87 95.67 83.09

GDINO Partimagenet Hierarchical 98.47 91.30 59.30 99.39 94.12 74.30 99.80 95.54 81.14
K-means 98.47 91.27 59.63 99.44 94.17 74.70 99.82 95.62 81.52

GDINO Partimagenet Low Hierarchical 98.55 90.76 58.99 99.46 94.25 74.44 99.82 95.55 81.14
K-means 98.52 90.99 59.39 99.52 94.17 74.20 99.85 95.83 81.22

GDINO Pascal Hierarchical 98.60 90.81 58.77 99.44 94.15 73.66 99.87 95.62 80.74
K-means 98.57 90.91 58.80 99.41 93.17 73.73 99.87 95.67 81.00

GDINO Pascal Low Hierarchical 98.62 90.84 58.37 99.49 94.10 73.97 99.85 95.75 81.03
K-means 98.62 90.89 58.25 99.52 93.89 73.78 99.85 95.75 81.15

GDINO Sun Hierarchical 98.09 83.10 58.85 99.16 88.90 73.70 99.62 93.40 80.95
K-means 98.16 82.97 58.85 99.18 88.78 73.77 99.62 93.54 81.00

GDINO Sun Low Hierarchical 98.60 90.94 58.94 99.47 93.79 74.42 99.82 95.88 81.36
K-means 98.60 90.94 59.00 99.47 94.46 74.54 99.80 95.88 81.51

Additionally, we tested DBSCAN and HDBSCAN. However, these methods required significant hyperparameter tuning to
achieve meaningful clusters. In contrast, K-means and hierarchical clustering required only the definition of k. We leave this
analysis for future work.

20



Data-Efficient Visual Concept Bottleneck Models

D.4. Centroid selection

After clustering the concept proposals S into k clusters, a centroid is generated for each cluster to represent it. We evaluate
the impact of using two different methods to compute centroids: the mean of the embeddings within a cluster and the median
embedding, as shown in Table 15. This analysis is applied to both integrated clustering techniques while keeping all other
configurations consistent with the standard settings. Overall, the K-means configuration using the median centroid performs
the best across the three datasets. While there are specific scenarios where other combinations yield better results, we adopt
this standard setting for simplicity following this investigation.

Table 15. Centroid selection: mean vs. median. This figure illustrates the comparative analysis of centroid selection methods — mean
and median — on hierarchical and K-means clustering performance.

Model Clustering Method Centroid CLIP ResNet-50 CLIP ViT-B/16 CLIP ViT-L/14

ImageNette ImageWoof CUB ImageNette ImageWoof CUB ImageNette ImageWoof CUB

SAM Hierarchical Mean 98.45 89.62 56.78 99.44 92.95 68.66 99.75 95.39 80.34
Hierarchical Median 98.60 90.74 61.15 99.52 93.38 73.27 99.82 95.65 82.11

K-means Mean 98.42 89.67 48.64 99.46 93.03 69.33 99.77 95.37 76.49
K-means Median 98.52 90.86 57.62 99.57 93.74 73.44 99.82 95.90 80.03

SAM2 Hierarchical Mean 98.73 92.03 56.78 99.57 94.42 73.11 99.85 95.75 80.34
Hierarchical Median 98.75 92.11 61.15 99.62 94.45 75.39 99.85 95.80 82.12

K-means Mean 98.73 92.20 56.63 99.59 91.60 73.30 99.82 95.83 80.19
K-means Median 98.72 92.19 61.44 99.59 91.60 75.60 99.85 95.70 81.88

DETR Hierarchical Mean 98.68 92.11 63.46 99.54 94.50 76.46 99.80 95.75 82.00
Hierarchical Median 98.73 92.03 63.96 99.54 94.53 76.82 98.77 95.85 82.31

K-means Mean 98.68 92.19 63.27 99.54 94.52 76.23 99.80 95.80 81.69
K-means Median 98.65 92.21 64.27 99.54 94.60 77.01 99.80 95.80 82.64

MaskRCNN Hierarchical Mean 98.70 91.65 63.07 99.59 94.48 76.75 99.79 95.62 82.41
Hierarchical Median 98.68 92.03 65.41 99.57 94.35 77.53 99.85 95.78 83.21

K-means Mean 98.75 91.73 63.00 99.59 94.63 77.13 99.82 95.62 82.22
K-means Median 98.73 91.86 65.46 99.60 94.60 77.70 99.85 95.65 83.33

GDINO Awa Hierarchical Mean 98.57 91.14 52.54 99.44 94.02 70.59 99.85 95.78 78.60
Hierarchical Median 98.57 91.27 58.54 99.41 93.99 74.13 99.87 95.70 81.36

K-means Mean 98.62 91.07 53.00 99.41 93.97 70.92 99.87 95.70 79.00
K-means Median 98.50 91.17 57.97 99.46 94.04 73.63 99.89 95.60 81.12

GDINO Awa Low Hierarchical Mean 98.60 90.61 50.31 99.44 93.87 69.95 99.87 95.83 78.25
Hierarchical Median 98.60 90.81 57.84 99.44 94.15 73.92 99.87 95.62 81.17

K-means Mean 98.52 90.79 63.00 99.39 93.94 77.13 99.90 95.57 82.22
K-means Median 98.57 90.91 65.43 99.41 94.17 77.70 99.87 95.67 83.09

GDINO Partimagenet Hierarchical Mean 98.44 90.99 53.57 99.41 94.17 71.35 99.80 95.57 79.01
Hierarchical Median 98.47 91.30 59.30 99.39 94.12 74.30 99.80 95.54 81.14

K-means Mean 98.47 91.19 53.92 99.39 94.10 71.54 99.82 95.57 78.79
K-means Median 98.47 91.27 59.63 99.44 94.17 74.70 99.82 95.62 81.52

GDINO Partimagenet Low Hierarchical Mean 98.42 90.63 52.42 99.46 94.20 70.66 99.85 95.60 78.20
Hierarchical Median 98.55 90.76 58.99 99.46 94.25 74.44 99.82 95.55 81.14

K-means Mean 98.42 90.68 51.97 99.49 94.30 70.56 99.84 95.62 78.12
K-means Median 98.52 90.99 59.39 99.52 94.17 74.20 99.85 95.83 81.22

GDINO Pascal Hierarchical Mean 98.60 90.60 51.00 99.44 93.86 70.02 99.87 95.82 77.99
Hierarchical Median 98.60 90.81 58.77 99.44 94.15 73.66 99.87 95.62 80.74

K-means Mean 98.52 90.79 50.95 99.39 93.94 70.26 99.90 95.57 77.93
K-means Median 98.57 90.91 58.80 99.41 93.17 73.73 99.87 95.67 81.00

GDINO Pascal Low Hierarchical Mean 98.62 90.43 50.17 99.46 93.84 69.66 99.87 95.90 77.61
Hierarchical Median 98.62 90.84 58.37 99.49 94.10 73.97 99.85 95.75 81.03

K-means Mean 98.60 90.58 50.48 99.49 93.99 69.64 99.85 95.80 77.51
K-means Median 98.62 90.89 58.25 99.52 93.89 73.78 99.85 95.75 81.15

GDINO Sun Hierarchical Mean 98.11 82.77 58.53 99.13 88.52 73.71 99.62 93.33 80.91
Hierarchical Median 98.09 83.10 58.85 99.16 88.90 73.70 99.62 93.40 80.95

K-means Mean 98.09 83.13 58.72 99.13 88.62 73.66 99.57 93.54 80.84
K-means Median 98.16 82.97 58.85 99.18 88.78 73.77 99.62 93.54 81.00

GDINO Sun Low Hierarchical Mean 98.50 90.94 54.49 99.49 93.71 72.39 99.82 95.69 79.43
Hierarchical Median 98.60 90.94 58.94 99.47 93.79 74.42 99.82 95.88 81.36

K-means Mean 98.55 90.91 54.80 99.49 93.43 72.61 99.80 95.75 80.00
K-means Median 98.60 90.94 59.00 99.47 94.46 74.54 99.80 95.88 81.51
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D.5. Number of clusters

As described in Section 3, we cluster the concept proposal set S into k clusters. The choice of k determines the granularity
of the concepts used in the DCBM method. To analyze this, we test various values of k within the K-Means algorithm,
as shown in Table 16, presenting an ablation study of k. We do not impose the 50-images-per-class limitation in these
experiments due to the generally smaller number of images available per dataset and class. As the table illustrates, increasing
the number of clusters leads to a corresponding improvement in accuracy scores, highlighting the benefit of finer-grained
concept representations.

Table 16. Number of clusters. Here we ablate the impact of different values of k for K-Means within DCBM.

Model Clusters CLIP ResNet-50 CLIP ViT-B/16 CLIP ViT-L/14

ImageNette ImageWoof CUB ImageNette ImageWoof CUB ImageNette ImageWoof CUB

SAM 128 97.73 82.29 37.40 99.13 89.41 59.82 99.64 93.05 71.35
256 98.27 86.77 46.58 99.31 92.08 68.61 99.80 95.06 76.61
512 98.60 89.57 53.38 99.46 93.51 72.11 99.82 95.65 78.94

1024 98.50 90.81 57.62 99.54 93.79 73.44 99.80 97.78 79.58
2048 – – 59.16 – – 73.85 – – 80.44

SAM2 128 98.22 87.02 44.68 99.36 92.19 65.29 99.80 95.50 75.56
256 98.42 89.69 51.28 99.46 93.84 71.92 99.75 95.60 59.38
512 98.62 91.14 57.21 99.35 94.35 74.70 99.80 95.78 81.55

1024 98.78 91.68 61.44 99.57 94.30 75.49 99.85 95.80 82.21
2048 – – 62.98 – – 75.80 – – 82.27

DETR 128 98.42 89.62 52.07 99.23 93.66 70.62 99.75 95.42 78.03
256 98.83 90.81 59.20 99.42 94.30 74.59 99.77 95.62 80.62
512 98.58 91.81 63.48 99.47 94.50 76.41 99.77 95.67 82.24

1024 98.73 92.03 61.18 99.54 94.58 76.91 99.80 95.78 82.52
2048 – – 64.27 – – 76.67 – – 82.65

MaskRCNN 128 98.37 88.67 54.95 99.44 93.41 74.18 99.80 95.34 80.07
256 98.56 90.38 61.86 99.41 94.17 76.79 99.80 95.70 82.31
512 98.57 91.48 62.50 99.52 94.45 77.84 99.82 95.57 83.28

1024 98.68 91.89 65.46 99.59 94.60 77.61 99.82 95.65 83.32
2048 98.80 92.11 65.71 99.62 94.53 77.39 99.87 95.60 83.34

GDINO Awa 128 98.19 85.52 40.94 99.34 91.19 64.95 99.64 94.02 74.20
256 98.19 89.08 49.74 99.39 93.48 70.66 99.82 95.39 79.25
512 98.42 90.58 55.13 99.34 93.94 73.00 99.82 95.34 80.31

1024 – 91.17 58.60 – 94.04 73.63 – 95.72 81.20
2048 – – 60.18 – – 74.68 – – 81.53

GDINO Awa Low 128 98.19 84.37 39.23 99.34 90.81 62.43 99.72 94.40 72.37
256 98.19 88.19 47.76 99.29 92.90 69.55 99.82 95.01 78.48
512 98.39 90.18 54.06 99.31 93.82 72.44 99.87 95.62 80.67

1024 98.50 91.22 57.82 99.47 94.02 74.00 99.90 95.72 81.41
2048 – – 59.58 – – 74.32 – – 81.62

GDINO Partimagenet 128 97.91 86.97 41.91 99.36 91.09 66.32 99.75 94.42 75.20
256 98.29 89.64 50.50 99.31 93.33 71.33 99.70 95.19 79.03
512 98.39 90.38 56.42 99.43 93.89 73.80 99.82 95.47 80.43

1024 98.52 91.20 59.63 99.43 94.14 74.70 99.80 95.62 81.51
2048 – – 60.36 – – 74.88 – – 81.91

GDINO Partimagenet Low 128 97.99 84.55 43.17 99.36 91.02 65.98 99.75 94.25 74.87
256 98.17 88.34 50.64 99.39 93.33 70.52 99.77 95.39 78.65
512 98.45 90.25 56.08 99.47 93.63 73.25 99.82 95.62 80.41

1024 98.52 90.99 59.39 99.49 94.17 74.20 99.85 95.60 81.22
2048 – – 60.04 – – 74.59 – – 81.72

GDINO Pascal 128 98.04 84.23 39.56 99.16 91.52 63.43 99.67 93.82 73.77
256 98.45 88.70 48.33 99.29 93.13 69.04 99.82 95.24 77.91
512 98.47 90.48 54.35 99.41 93.82 72.54 99.80 95.39 80.29

1024 – 91.02 58.27 – 93.84 73.71 – 95.78 81.00
2048 – – 59.37 – – 74.20 – – 81.38

GDINO Pascal Low 128 98.27 84.58 40.75 99.29 90.43 65.15 99.77 93.66 73.16
256 98.24 88.55 49.50 99.41 93.00 70.21 99.82 95.14 78.49
512 98.50 90.25 54.71 99.43 93.64 72.47 99.85 95.32 80.27

1024 98.60 90.91 58.25 99.52 94.04 73.89 99.85 95.67 81.15
2048 – – 59.84 – – 74.04 – – 81.69

GDINO Sun 128 98.11 82.99 43.04 99.18 88.85 66.76 99.62 93.56 74.94
256 – – 52.64 – – 71.26 – – 78.81
512 – – 56.92 – – 73.52 – – 80.55

1024 – – 58.66 – – 73.75 – – 81.00

GDINO Sun Low 128 97.99 84.81 42.37 99.23 90.91 66.17 99.72 93.92 75.06
256 98.29 88.34 49.64 99.42 92.84 71.73 99.75 95.09 79.08
512 98.57 90.22 55.87 99.44 93.69 73.30 99.82 95.55 80.29

1024 98.60 90.99 58.94 99.49 93.48 74.59 99.80 95.85 81.34
2048 – – 60.03 – – 75.08 – – 81.58
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D.6. Sparsity parameter λ and learning rate

Table 17. Part 1: learning rates and sparsity. Performance across CLIP ResNet-50, ViT-B/16, and ViT-L/14 on the ImageNette,
ImageWoof, and CUB datasets with varying learning rates and sparsity parameters for segmentation models.

Model Configuration CLIP ResNet-50 CLIP ViT-B/16 CLIP ViT-L/14

Learning Rate Sparsity ImageNette ImageWoof CUB ImageNette ImageWoof CUB ImageNette ImageWoof CUB

SAM 1e-4 1e-4 98.50 90.81 57.71 99.72 93.74 73.14 99.87 95.67 79.73
1e-3 1e-4 98.24 89.41 43.23 99.31 92.54 66.38 99.75 95.19 74.68
1e-2 1e-4 97.68 80.73 6.18 99.08 86.03 12.01 99.77 91.62 14.58
1e-4 1e-3 98.57 91.09 54.59 99.44 93.87 69.38 99.77 95.72 76.46
1e-4 1e-2 98.45 89.49 47.38 99.44 93.15 63.05 99.77 95.42 69.62
1e-3 1e-3 98.14 89.18 38.06 99.29 92.52 58.50 99.72 94.99 68.43
1e-2 1e-2 97.25 68.41 3.37 98.88 82.44 6.77 99.54 90.22 10.44

SAM2 1e-4 1e-4 98.75 91.60 61.44 99.51 94.32 75.49 99.90 95.75 82.21
1e-3 1e-4 98.55 90.66 49.86 99.59 93.84 70.33 99.80 95.72 77.55
1e-2 1e-4 97.76 85.01 6.99 99.44 90.38 14.07 99.69 93.94 21.45
1e-4 1e-3 98.78 91.50 58.15 99.49 94.02 71.97 99.90 95.39 78.91
1e-4 1e-2 98.62 90.02 51.19 99.49 93.00 64.81 99.85 96.60 72.04
1e-3 1e-3 98.50 90.23 43.94 99.57 93.71 62.05 99.80 95.57 70.54
1e-2 1e-2 97.22 77.07 4.38 99.06 83.66 10.30 99.70 91.19 15.74

DETR 1e-4 1e-4 98.75 92.03 65.20 99.52 94.58 76.91 99.79 95.80 82.64
1e-3 1e-4 98.55 91.11 56.32 99.46 94.19 72.92 99.77 95.72 78.63
1e-2 1e-4 97.96 84.55 10.80 99.31 91.70 16.95 99.69 94.53 17.69
1e-4 1e-3 91.75 91.75 60.04 99.49 94.25 72.66 99.80 95.75 79.50
1e-4 1e-2 90.40 90.40 54.16 99.49 93.31 66.95 99.77 95.27 72.97
1e-3 1e-3 98.62 90.48 50.41 99.39 93.89 75.74 99.77 95.55 72.71
1e-2 1e-2 97.27 83.69 6.51 98.77 86.92 10.08 99.44 92.44 13.36

MaskRCNN 1e-4 1e-4 98.73 91.93 65.46 99.61 94.60 77.61 99.85 95.72 83.33
1e-3 1e-4 98.47 90.96 58.72 99.51 94.25 74.63 99.77 95.65 81.08
1e-2 1e-4 97.91 85.39 13.69 99.26 91.70 31.05 99.69 95.43 50.38
1e-4 1e-3 98.70 90.25 61.48 99.52 94.17 73.73 99.82 95.55 80.19
1e-4 1e-2 98.57 89.92 55.75 99.46 93.26 68.52 99.85 92.19 75.80
1e-3 1e-3 98.50 90.25 52.19 99.41 93.84 67.83 99.77 95.39 74.94
1e-2 1e-2 97.22 78.01 8.70 98.75 84.96 16.88 99.57 92.19 28.55

In Table 17 and Table 18, we analyze the impact of different hyperparameters for sparsity (λ) in Equation (3) and the
learning rate. To provide a more transparent overview, we present the results in two separate tables: Table 17 focuses
on segmentation models, while Table 18 covers object detection models. All other configurations remain consistent with
the settings reported earlier. From the results, the optimal configuration across the three datasets and various concept
creation modules is a learning rate of 1e−4 combined with a sparsity of 1e−4. Although specific configurations demonstrate
improved performance with alternative values, we aim to identify a baseline configuration that performs robustly across
diverse scenarios.
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Table 18. Part 2: learning rates and sparsity. Performance across CLIP ResNet-50, ViT-B/16, and ViT-L/14 on the ImageNette,
ImageWoof, and CUB datasets with varying learning rates and sparsity parameters for object detection models.

Model Configuration CLIP ResNet-50 CLIP ViT-B/16 CLIP ViT-L/14

Learning Rate Sparsity ImageNette ImageWoof CUB ImageNette ImageWoof CUB ImageNette ImageWoof CUB

GDINO Awa 1e-4 1e-4 98.49 91.27 58.44 99.46 94.94 73.63 99.82 95.67 81.20
1e-3 1e-4 98.29 89.31 46.88 99.44 93.36 68.23 99.77 95.75 76.34
1e-2 1e-4 97.53 81.65 7.37 99.26 87.25 14.72 99.64 93.33 17.67
1e-4 1e-3 98.62 91.14 55.21 99.41 93.64 69.68 99.80 95.75 77.74
1e-4 1e-2 98.44 89.28 48.43 99.44 93.13 63.41 99.77 94.33 71.63
1e-3 1e-3 98.32 89.31 41.04 99.39 93.08 61.18 99.77 95.50 70.31
1e-2 1e-2 96.56 70.71 4.25 98.93 79.13 7.46 99.49 88.83 11.66

GDINO Awa Low 1e-4 1e-4 98.55 91.22 57.97 99.47 94.02 73.63 99.89 95.72 81.11
1e-3 1e-4 98.32 89.44 46.29 99.36 93.31 68.19 99.82 95.80 76.61
1e-2 1e-4 97.61 80.63 7.13 99.13 88.09 13.46 99.67 93.38 17.74
1e-4 1e-3 98.60 91.27 55.04 99.44 93.74 69.45 99.92 95.52 77.65
1e-4 1e-2 98.42 88.95 48.55 99.36 92.72 63.39 99.89 95.04 70.59
1e-3 1e-3 98.34 89.13 40.01 99.36 93.20 99.36 99.85 95.52 69.49
1e-2 1e-2 96.51 69.89 4.16 98.95 90.10 6.97 99.67 89.03 10.99

GDINO Partimagenet 1e-4 1e-4 98.52 91.14 59.32 99.43 94.17 74.70 99.82 95.60 81.52
1e-3 1e-4 98.06 89.92 49.72 99.31 93.54 69.19 99.69 95.67 77.56
1e-2 1e-4 97.04 81.75 8.92 99.08 89.28 14.88 99.36 93.20 20.78
1e-4 1e-3 98.47 91.30 56.33 99.45 93.84 70.88 99.80 95.42 78.39
1e-4 1e-2 98.32 89.39 49.84 99.36 92.62 64.36 99.72 94.63 72.30
1e-3 1e-3 98.04 89.39 43.27 99.34 93.64 62.05 99.71 95.27 71.73
1e-2 1e-2 95.95 70.30 4.49 98.98 80.99 5.53 – – 13.39

GDINO Partimagenet Low 1e-4 1e-4 98.52 90.99 59.39 99.49 94.22 74.20 99.85 95.78 81.22
1e-3 1e-4 98.34 89.92 48.07 99.38 93.61 69.16 99.80 95.67 77.29
1e-2 1e-4 97.35 81.01 7.73 99.18 88.78 15.59 99.64 93.10 17.93
1e-4 1e-3 98.77 91.09 56.14 99.41 93.79 70.19 99.82 95.44 78.05
1e-4 1e-2 98.39 89.16 49.07 99.36 92.92 64.38 99.80 94.88 74.07
1e-3 1e-3 98.27 89.92 42.03 99.41 93.33 61.70 99.82 95.67 77.29
1e-2 1e-2 96.36 72.82 4.26 99.21 80.55 7.82 99.72 89.82 12.02

GDINO Pascal 1e-4 1e-4 98.42 91.09 58.80 99.41 93.76 73.71 99.82 95.75 80.77
1e-3 1e-4 98.04 89.67 46.70 99.18 93.03 68.47 99.67 95.78 76.39
1e-2 1e-4 96.82 80.76 7.49 98.50 87.12 12.84 99.29 92.95 18.31
1e-4 1e-3 98.50 91.32 55.71 99.46 93.66 69.74 99.80 95.09 77.52
1e-4 1e-2 98.37 88.98 48.58 99.31 93.00 63.62 99.77 94.45 71.33
1e-3 1e-3 98.14 89.03 42.47 99.21 92.85 60.54 99.69 95.44 69.42
1e-2 1e-2 96.64 69.41 4.38 98.60 82.90 7.66 99.39 88.72 10.56

GDINO Pascal Low 1e-4 1e-4 98.88 90.91 58.25 99.46 94.20 73.78 99.85 95.75 81.89
1e-3 1e-4 98.40 89.69 46.59 99.46 93.56 67.97 99.77 95.72 76.73
1e-2 1e-4 97.55 81.88 8.84 99.11 89.36 15.03 99.64 93.66 17.60
1e-4 1e-3 98.57 91.11 55.32 99.52 93.79 69.88 99.85 95.44 77.89
1e-4 1e-2 98.42 89.69 48.71 99.34 93.05 63.31 99.85 94.50 71.19
1e-3 1e-3 98.57 89.20 40.85 99.41 93.05 60.41 99.77 95.29 70.83
1e-2 1e-2 98.42 70.20 4.11 98.90 81.14 7.75 99.72 88.47 10.75

GDINO Sun 1e-4 1e-4 98.09 82.97 58.66 99.18 88.62 73.66 99.59 93.63 81.03
1e-3 1e-4 97.81 81.47 48.38 98.96 88.14 69.05 99.52 92.90 77.22
1e-2 1e-4 95.46 70.04 8.42 98.04 77.65 13.94 98.90 86.84 19.28
1e-4 1e-3 98.39 87.10 55.42 99.24 90.58 70.26 99.67 94.38 77.72
1e-4 1e-2 98.24 87.02 49.31 99.24 90.26 63.29 99.62 93.74 70.64
1e-3 1e-3 97.94 84.45 42.22 99.01 89.06 61.53 99.59 93.33 71.28
1e-2 1e-2 95.75 68.49 4.99 98.17 76.43 7.92 99.03 86.82 12.36

GDINO Sun Low 1e-4 1e-4 98.57 90.94 58.63 99.49 93.46 74.59 99.82 95.88 81.33
1e-3 1e-4 98.37 89.62 48.29 99.49 92.14 69.54 99.77 95.06 77.55
1e-2 1e-4 97.58 80.71 9.04 99.18 83.10 15.78 99.69 90.91 18.97
1e-4 1e-3 98.57 91.17 55.85 99.44 93.67 70.42 99.79 95.55 77.84
1e-4 1e-2 98.42 88.78 49.57 99.41 92.77 64.64 99.80 95.09 70.90
1e-3 1e-3 98.32 89.03 42.58 99.36 92.21 61.98 99.77 94.99 71.71
1e-2 1e-2 96.33 69.71 4.76 98.96 77.60 8.37 99.67 87.78 11.91
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D.7. Number of images per class

DCBM does not require using all images in a dataset to generate meaningful concepts. In this section, we evaluate the impact
of varying the number of images per class (5, 10, 25, and 50) on the resulting accuracy using the standard configurations
from the ablation study. The accuracy scores are presented in Table 19. Increasing the number of images per class most
often leads to improved accuracy. However, the improvements become marginal beyond 25 images, with the difference
between 25 and 50 being minimal. Consequently, we limited our investigation to 50 images per class to balance accuracy
with computational efficiency, as a higher number of images requires more segmentation and object detection, significantly
increasing computational costs with diminishing returns.

Table 19. Images per class. Performance comparison across models using k-means clustering (1024 clusters) with varying numbers of
images per class.

Model Images/Cls CLIP ResNet-50 CLIP ViT-B/16 CLIP ViT-L/14

ImageNette ImageWoof CUB ImageNette ImageWoof CUB ImageNette ImageWoof CUB

SAM 5 98.47 91.14 58.78 99.52 93.94 80.26 99.80 95.52 80.26
10 98.73 91.27 57.82 99.54 93.94 74.13 99.80 95.50 80.03
25 98.57 91.07 57.53 99.54 94.07 73.35 99.85 95.50 79.82
50 98.50 90.81 57.71 99.72 93.74 73.14 99.87 95.67 79.73

SAM2 5 98.39 – – 99.46 – – 99.82 – –
10 98.70 86.49 63.86 99.36 92.21 76.60 99.82 94.50 82.57
25 98.68 89.64 63.63 99.54 93.61 76.48 99.85 95.32 82.45
50 98.75 91.93 61.32 99.52 94.45 75.49 99.87 95.80 82.44

DETR 5 98.32 88.88 62.75 99.29 93.79 76.29 99.77 95.37 82.38
10 98.70 91.14 63.88 99.59 94.35 76.84 99.80 95.72 82.60
25 98.62 91.80 63.89 99.41 94.58 76.82 99.80 95.67 82.76
50 98.75 92.03 65.20 99.52 94.58 76.91 99.79 95.80 82.64

MaskRCNN 5 98.47 90.48 65.93 99.46 94.12 83.47 99.82 95.78 77.77
10 98.65 91.27 65.60 99.57 94.32 77.70 99.77 95.75 83.26
25 98.68 91.68 65.27 99.54 94.76 77.84 99.87 95.67 83.40
50 98.73 91.86 65.46 99.60 94.60 77.70 99.85 95.65 83.33

GDINO Awa 5 – 84.78 59.99 – 90.66 74.42 – 93.71 81.69
10 98.34 88.88 59.51 99.28 93.00 74.58 99.75 95.29 81.57
25 98.42 90.56 58.84 99.29 93.82 74.47 99.82 95.55 81.26
50 98.50 91.17 57.97 99.46 94.04 73.63 99.89 95.60 81.12

GDINO Awa Low 5 98.44 88.90 59.65 99.36 93.10 74.44 99.80 95.39 81.86
10 98.57 90.56 58.84 99.31 93.54 74.51 99.85 95.60 81.61
25 98.57 90.99 57.59 99.46 94.02 73.51 99.85 95.67 81.27
50 98.55 91.22 57.97 99.47 94.02 73.63 99.89 95.72 81.11

GDINO Partimagenet 5 97.99 86.33 60.18 99.54 92.16 74.84 98.98 94.94 81.95
10 98.32 89.44 60.17 99.72 93.26 74.75 99.13 95.50 81.81
25 98.32 90.63 59.41 99.80 94.15 73.85 99.31 95.60 81.10
50 98.52 91.14 59.32 99.43 94.17 74.70 99.82 95.60 81.52

GDINO Partimagenet Low 5 98.32 89.16 60.27 99.31 93.33 74.42 99.82 95.55 81.53
10 98.40 90.58 59.82 99.36 93.92 74.44 99.80 95.83 81.46
25 99.37 91.09 58.94 99.47 94.22 74.47 99.80 95.65 81.50
50 98.52 90.99 59.39 99.49 94.22 74.20 99.85 95.78 81.22

GDINO Pascal 5 – 85.42 59.96 – 91.45 74.63 – 94.66 81.53
10 98.99 88.31 59.51 99.08 93.10 74.32 99.69 95.44 81.15
25 98.34 90.99 58.39 99.39 93.97 74.01 99.82 95.55 80.82
50 98.57 90.91 58.80 99.41 93.17 73.73 99.87 95.67 81.00

GDINO Pascal Low 5 98.17 89.03 59.23 99.24 92.98 74.18 99.72 95.44 81.27
10 98.32 90.68 59.42 99.36 93.59 74.56 99.80 95.70 81.31
25 98.57 90.99 58.63 99.52 94.10 73.77 99.80 95.75 81.15
50 98.62 90.89 58.25 99.52 93.89 73.78 99.85 95.75 81.15

GDINO Sun 5 – – – – – – – – –
10 – – – – – – – – –
25 – – – – – – – – –
50 98.09 82.97 58.66 99.18 88.62 73.66 99.59 93.63 81.03

GDINO Sun Low 5 97.99 83.15 60.03 99.21 89.23 74.72 99.67 93.54 81.88
10 98.32 87.48 60.01 99.34 92.42 74.89 99.72 95.22 81.62
25 98.50 90.23 59.48 99.41 93.53 74.40 99.80 95.60 81.36
50 98.60 90.94 59.00 99.47 94.46 74.54 99.80 95.88 81.51
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E. Implementation details
Our implementation is in Python and Pytorch, and our CBM implementation is based on (Rao et al., 2024; Yuksekgonul
et al., 2023). For GradCAM (Selvaraju et al., 2019) calculations, we use the implementation by (Zakka, 2021), which we
adjust to ViT’s and concept instead of text matching based on Gildenblat et al.’s implementation (Gildenblat & contributors,
2021).

E.1. Efficiency and runtimes

The creation of concept proposals is influenced by the number of images per class and the foundation model used to generate
outputs from these images. Consequently, the computational effort required for concept creation is highly dependent on the
input characteristics, similar to other approaches that involve training a sparse autoencoder for concept generation (Rao
et al., 2024), performing non-negative matrix factorization, or utilizing a large language model (Yang et al., 2023). In the
main paper, we provided rough estimations of the computation time required for concept creation within DCBM.

However, once the concepts are generated, we can directly compare the runtime per epoch between our framework and
others on the same dataset. To illustrate this, we measured the runtime for a single epoch ImageNet using DCBM and
DN-CBM, employing a 90/10 train-validation split and adhering to the standard hyperparameters specified in (Rao et al.,
2024) and our work for DCBM. Both methods were evaluated on the same machine using ViT ResNet50 as the backbone.
Our measurements reveal that a single epoch takes an average of 16 seconds for DN-CBM, while for DCBM, the average
runtime per epoch is 9 seconds (with SAM2). This significant reduction in runtime for DCBM is attributed to fewer concepts,
which reduces the input size to the linear model compared to DN-CBM.

E.2. Concept size ablation

We remove the smallest and largest segments to ablate their effect on the CBM performance. To this end, we remove all
concepts which are 1000 pixel or smaller (GT1000) and 1500 pixel or smaller(GT1500). Additionally, we remove all
concepts that contain 200k or more pixels (LT200k).

Table 20. Test accuracy across datasets and segmentation methods. Comparison of test accuracy for different segmentation methods
on CUB, ImageNet, and ClimateTV animals datasets under various ground truth (GT) conditions.

Dataset Segmentation Test Acc. GT 1000 GT 1500 lt200k

CUB SAM2 82.4 82.7 82.7 82.4
CUB GDINO partimagenet 81.8 81.8 81.4 81.7

ImageNet GDINO partimagenet 77.4 77.4 77.4 77.4
ImageNet SAM2 77.9 77.7 77.9 77.9

ClimateTV animals SAM2 86.4 84.8 87.1 85.6
ClimateTV animals GDINO partimagenet 83.3 82.6 87.1 85.6
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F. Quantitative results
F.1. CLIP backbones

We present the accuracies of additional CLIP backbones, ResNet-50 and ViT B/16, in Table 21. We used the same
hyperparameters as those initially selected for ViT L/14 for consistency. While ViT B/16 performs competitively, ResNet-50
lags behind other CBM techniques. We attribute this disparity to ResNet-50’s limited capacity to capture complex semantic
relationships compared to transformer-based models, better equipped to handle the nuanced contextual understanding
required for this task.

Table 21. Extended CBM benchmark. Performance comparison across different CLIP versions on datasets used for ablation study.
Hyperparameters correspond to the ones reported for ViT L14.

Model CLIP ResNet-50 CLIP ViT-B/16 CLIP ViT-L/14

IMN Places CUB Cif10 Cif100 IMN Places CUB Cif10 Cif100 IMN Places CUB Cif10 Cif100

Linear Probe 73.3* 53.4* 68.9 88.7* 70.3* 80.2* 55.1* 81.0 96.2* 83.1* 83.9* 55.4 85.7 98.0* 87.5*
Zero Shot 59.6* 37.9 0.8 75.6* 41.6* 68.6* 39.5* 0.9 91.6* 68.7* 75.3* 40.0 0.7 96.2* 77.9*

LF-CBM (Oikarinen et al., 2023) 72.0* 46.8 74.3* 86.4* 65.1* 75.4 48.2 74.0 94.7 77.4* – 49.4 80.1 97.2 83.9
LaBo (Yang et al., 2023) 68.9* – – 87.9* 69.1* 78.9* – – 95.7* 81.2* 84.0* – – 97.8* 86.0*
CDM (Panousis et al., 2023) 72.2* 52.7* 72.3* 86.5* 67.6* 79.3* 52.6* 79.5* 95.3* 80.5* 83.4* 55.2* – 95.9 82.2
DCLIP (Menon & Vondrick, 2023) 59.6* 37.9* 49.0 – – 68.0* 40.3* 57.8* – – 75.0* 40.5* 63.5* – –
DN-CBM (Rao et al., 2024) 72.9* 53.5* – 87.6* 67.5* 79.5* 55.1* – 96.0* 82.1* 83.6 55.6 – 98.1 86.0

DCBM-SAM2 (Ours) 58.7 48.0 61.4 84.5 61.8 70.4 50.6 75.3 95.2 79.4 77.9 52.1 81.8 97.7 85.4
DCBM-GDINO (Ours) 58.7 47.8 59.0 83.9 61.2 69.7 50.7 74.1 95.1 79.6 77.4 52.2 81.3 97.5 85.3
DCBM-MASKRCNN (Ours) 58.7 48.2 64.6 84.5 62.7 70.5 50.9 76.7 95.2 79.6 77.8 52.1 82.4 97.7 85.6

F.2. Additional datasets

AWA2 performance of DCBM is on par with the linear probe for all embeddings, as shown in Table 22.

ResNet-50 ViT-B/16 ViT-L/14

Zero shot 88.94 94.00 95.94
Linear probe 93.72 96.51 97.68
DCBM 93.13 96.43 97.71

Table 22. DCBM performance on AwA2 using GDINO (w/ partimagenet labels) as concept proposal method

CelebA performance of DCBM is superior to other methods reported by (Xu et al., 2024) as shown in Table 23. Given the
label generation process, we believe that this is not the most suitable labeling scheme. We advocate for future research to
devise more distinct, independent, and objective labels.

CBM Model Acc

CBM 0.246
ProbCBM 0.299
PCBM 0.150
CEM 0.330
ECBM 0.343
DCBM w/ GDINO (ours) 0.354
DCBM w/ MaskRCNN (ours) 0.363
DCBM w/ SAM2 (ours) 0.356

Table 23. DCBM performance on CelebA using GDINO (w/ partimagenet labels) as concept proposal method (CLIP ViT-L/14)

BotCL. We conducted experiments on the first 200 classes of ImageNet, analogous to BotCL (Wang et al., 2023). DCBM
achieved a test accuracy of 84.7% using CLIP ViT-L/14 and GroundingDINO (partimagenet). BotCL achieves 79.5%
accuracy for this task. When comparing DCBM to BotCL, one has to bear in mind that the models have different backbones,
limiting comparability.
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G. Qualitative results
In the following, we provide additional explanations in Figure 9, similar to those discussed in Section 4.3, focusing on
the ablation datasets ImageWoof and ImageNette. These examples further highlight the effectiveness of DCBM on these
specific datasets. Since both datasets consist of only ten classes each, the limited variety of concepts is likely a result of the
reduced range of distinct concept proposals. This occurs because the datasets contain similar images representing closely
related classes, leading to overlapping or redundant concept representations.

ImageWoof

Input x Top 5 Concepts

ImageNette

Input x Top 5 Concepts

Cordless Ivtools Logging Saw Saw

Class: Chain Saw

Retriever Axle Blu Retriever Labrador

Class: Golden Retriever

Places365

Input x Top 5 Concepts

Tomatoes Aaa Shrubs Crop Lilac

Class: Botanical Garden 
Pred.: Vegetable Garden 

Figure 9. DCBM ablations. Our technique DCBM was applied to ImageWoof and ImageNette (SAM2 and ViT L/14).

G.1. DCBM concept comparison

GDINO

Mask-RCNN

SAM2 Faucet Toilet Floors Closet Towel

Shower Ankle Condosaver Tiles Faucets

Shower Jacuzzi Sink Baths Plaster

Input x Top 5 Concepts

Input x Top 5 Concepts

Input x Top 5 Concepts

Figure 10. Diverse concept proposals. Concept sets differ in terms of granularity depending on the segmentation or detection method
employed, shown on shower (Places365).

The choice of the concept proposal model determines the retrieved concept set. The generic SAM2 model creates a large
number of concept proposals of all image elements, while Mask-RCNN returns object-centric concepts. In contrast, the
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promptable GroundingDINO is specifically steered to detect common object parts. While the different concept sets only
differ marginally in terms of accuracy, as shown in Table 1 and Table 2, the interpretability is highly influenced. Here, we
examine on Places365 with CLIP ViT L/14 the top five image concepts in Figure 10. The figure displays interpretations
for the same input image, correctly classified as shower by all three models, with each concept image accompanied by the
closest matching textual label (g20k name space). The image consistently activates concepts that exhibit semantic alignment
with the class shower or the larger context of the bathroom, where towels, faucets, sinks, and bath (tubs) can commonly be
found. In particular, GroundingDINO (GDINO) and Mask-RCNN produce top concepts that closely match CLIP’s textual
embedding for the shower, even though both concepts appear quite different, as the Mask-RCNN concept resembles a
shower, while GDINO’s concept corresponds to an image of a door.

G.2. Concept intervention

DCBM allows for the removal of specific, undesired concepts before its training. This is achieved by leveraging CLIP’s
multimodal capabilities: given a textual prompt, we identify and exclude visual concepts that are highly similar to the
specified concept in the embedding space. For instance, in Figure 11 we remove exemplary concepts by computing the
embedding of the word and discarding all visual concepts with high cosine similarity.

CUB Rocks Gull Clicking Knot Blu

Input x Top 5 Concepts Class: Herring Gull

CUB Migrant Avian Crop Gull Gull

Input x

Top 5 Concepts Class: Herring Gull

Top 5 Concepts after removal of ‘stone’ Class: Herring Gull

CUB Crop Everquest Banner Stylus

Input x

Top 5 Concepts after removal of ‘gull’ Class: Herring Gull

Long

Figure 11. Concept intervention in CUB. The first instance shows the top five concepts of a gull without concept intervention. The
second one shows the same instance, but with a trained DCBM with the removal of ’stone’ concepts. The third one is a DCBM with the
removal of the concept ’gull’.

The CBM trained with the included stone concept achieves 81.8% classification accuracy. After retraining the model without
the stone-related the accuracy remains unchanged and even improves by 0.4 % with the removal of the gull-related concepts.
For both examples, the explanations for the class gull no longer reference the concepts removed, demonstrating that we
successfully intervened in the model concept space.
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G.3. Concept visualizations

We compare the concept-based explanations for examples from the Places365 dataset—originally used in (Rao et al.,
2024)—in Figure 12 and Figure 13.

In Figure 12, two images are shown alongside explanations generated by CDM (Panousis et al., 2023), LF-CBM (Oikarinen
et al., 2023), DNCBM (Rao et al., 2024), and our DCBM, which additionally includes visual explanations. For our method,
we also present outputs for each of the CLIP backbones used in this study.

In the left example, labeled as “raft,” all CBMs correctly classify the image, though the visual explanations from our DCBM
vary depending on the backbone, offering different perspectives on the relevant concepts. In contrast, the right image,
labeled “swimming hole,” is misclassified by our model as “creek” or “river.” However, the visual concept attributions
provide insight into this decision, revealing that the confusion can be attributed to the high semantic similarity between
these classes. As stated before, DCBM concepts are visual, thus more attention should be paid to the visual concept than to
its textual description. We have discussed this figure in the review phase and have described there the concepts proposed by
DCBM with a VIT-B/16 backbone.

DCBM B/16
swaziland

canoeing

wastewater

+4.54

+2.00

+1.33

+1.32

+0.56 Predicted Class: raft

DCBM B/16
upstream

guess

caves

purple

stormwater

+1.26

+0.76

+0.76.

+0.66

+0.54 Predicted Class: creek

DNCBM LF-CBM CDMTrue Class: raft DNCBM LF-CBM CDMTrue Class: swimming hole 

DCBM RN50
tent

swaziland

rapids

niagara

+1.84

+1.33

+1.24

+1.04

+0.74 Predicted Class: raft

DCBM RN50
torrent

streams

guess

guess

sulfur

+1.77

+1.37

+1.18

+0.88

+0.80 Predicted Class: creek

DCBM L/14
botswana

floods

floods

floods

floods

+3.08

+1.64

+1.43

+1.22

+1.20 Predicted Class: raft

DCBM L/14
iriver

swamp

gprs

gprs

gprs

+0.60

+0.56

+0.38

+0.37

+0.35

Predicted Class: river

rapids

banner

cleaners

Figure 12. Comparison of concept explanations across CBMs. This figure shows concept-based explanations for two images from the
Places365 dataset, as generated by four different CBMs: CDM (Panousis et al., 2023), LF-CBM (Oikarinen et al., 2023), DNCBM (Rao
et al., 2024), and our proposed DCBM. The examples for CDM, LF-CBM, and DNCBM are adapted from (Rao et al., 2024).
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In Figure 13, we again present examples originally shown in (Rao et al., 2024), but this time the comparison is limited to
DNCBM and our DCBM. The left image, labeled as “trench” is correctly classified by both models. Interestingly, while
DCBM assigns different weights to visual concepts depending on the CLIP backbone, the attributions remain meaningful
for interpretability.

In contrast, the right image, labeled as “raceway,” is misclassified by both DNCBM and most DCBM variants—except
for the ResNet-50 backbone, which correctly identifies the class. In particular, ResNet-50 exhibits the lowest overall
classification accuracy in the Places365 data set, but is successful in this case. The incorrect predictions, such as ”auto
showroom” and ”auto factory”, are semantically similar to ”raceway”, highlighting the inherent challenge of distinguishing
such closely related categories. Once more, the visual concepts provide valuable insight into the semantic features each
model emphasizes in its decision-making process.

DCBM B/16
petrol

shelby

+1.44

+1.33

+1.23

+0.89

+0.69 Predicted Class: auto showroom

DCBM B/16
stormwater

paving

stormwater

tunnel

turf

+1.31

+1.20

+1.00

+0.88

+0.80 Predicted Class: trench 

True Class: trench DNCBM
chevelle

garage

corvette

mustang

lowered

+1.61

+0.98

+0.60

+0.55

+0.52

DNCBM
pathway

rocks

mud

forest

infantry

+0.89

+0.89

+0.88

+0.58

+0.50

True Class: raceway 

Predicted Class: trench Predicted Class: auto showroom 

DCBM RN50
ramp

golf

cars

secretariat

guess

+2.62

+2.61

+2.03

+0.90

+0.62
Predicted Class: raceway

DCBM RN50
compost

phosphate

+1.33

+0.74

+0.53

+0.36

+0.33

Predicted Class: trench 

stormwater

steps

archeological

DCBM L/14
decomposition

aiming

stormwater

stormwater

gap

+1.37

+0.64

+0.58

+0.58

+0.57 Predicted Class: trench 

DCBM L/14
modifying

splitter

splitter

splitter

chevrolet

+2.09

+1.07

+1.00

+0.83

+0.73
Predicted Class: auto factory

hatchback

petrol

rims

Figure 13. Concept explanations from DCBM and DNCBM. This figure presents a comparison of concept explanations for two images
from the Places365 dataset, illustrating outputs from DNCBM (Rao et al., 2024) and our DCBM. For each DCBM example, we show the
concept attribution across the three CLIP backbone variants used in our study.
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