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ABSTRACT

In variational autoencoders (VAEs), the variational posterior often aligns closely
with the prior, known as posterior collapse, which leads to poor representation
learning quality. An adjustable hyperparameter beta has been introduced in VAE
to address this issue. This study sharply evaluates the conditions under which
the posterior collapse occurs with respect to beta and dataset size by analyzing a
minimal VAE in a high-dimensional limit. Additionally, this setting enables the
evaluation of the rate-distortion curve in the VAE. This result shows that, unlike
typical regularization parameters, VAEs face “inevitable posterior collapse” beyond
a certain beta threshold, regardless of dataset size. The dataset-size dependence
of the derived rate-distortion curve also suggests that relatively large datasets are
required to achieve a rate-distortion curve with high rates. These results robustly
explain generalization behavior across various real datasets with highly non-linear
VAEs.

1 INTRODUCTION

Deep latent variable models are generative models that use a neural network to convert latent
variables generated from a prior distribution into samples that closely resemble the data. Variational
autoencoders (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014), a type of the deep latent
variable models, have been applied in various fields such as image generation (Child, 2020; Vahdat
& Kautz, 2020), clustering (Jiang et al., 2016), dimensionality reduction (Akkari et al., 2022), and
anomaly detection (An & Cho, 2015; Park et al., 2022). In VAEs, directly maximizing the likelihood
is intractable owing to the marginalization of latent variables. Therefore, VAE often employs the
evidence lower bounds (ELBOs), which serve as computable lower bounds for the log-likelihood.

From an informational-theoretical perspective, several studies (Alemi et al., 2018; Huang et al.,
2020; Nakagawa et al., 2021) have interpreted ELBO as decomposing into two terms that represent
a trade-off. Based on the analogy from the rate-distortion (RD) theory, these terms can be likened
to rate and distortion (Alemi et al., 2018). Furthermore, these studies suggest that during training
with ELBO, the variational posterior of the latent variables tends to align with their prior, hindering
effective representation learning. This phenomenon is commonly referred to as “posterior collapse”.

To address the posterior collapse, an additional regularization parameter, denoted as βVAE, is intro-
duced to control the trade-off between rate and distortion (Higgins et al., 2016). Although models
with a small βVAE can reconstruct the data points effectively, achieving low distortion, they may
generate inauthentic data due to significant mismatches between the variational posterior and the prior
(Alemi et al., 2018). In contrast, while models with a large βVAE align their variational distributions
closely with the prior, resulting in a low rate, they may ignore the important encoding information.
Thus, careful tuning of βVAE in beta-VAEs is important for various applications (Kohl et al., 2018;
Castrejon et al., 2019). In addition to simply enhancing the data generation capability, βVAE is crucial
for achieving better disentanglement (Higgins et al., 2016) and obtaining the RD curve (Alemi et al.,
2018). However, theoretical understanding of the relationship between βVAE, the posterior collapse,
and the RD curve remains limited. Particularly, the dataset-size dependence of these matters remains
theoretically unexplored, even for linear VAE (Lucas et al., 2019).
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Contributions This study advances the theory regarding dataset and βVAE dependence of the
conditions leading to the posterior collapse and the RD curve, using a minimal model, referred to as
the linear VAE (Lucas et al., 2019), which captures the core behavior of beta-VAEs even for more
complex deep models (Bae et al., 2022). Throughout the manuscript, this study considers a high-
dimensional limit, where both the number of training data n and dimension d are large (n, d→ ∞)
while remaining comparable, i.e., α =∆ n/d = Θ(n0). Our main contributions are:

• The dataset-size dependence of generalization properties, RD curve, and posterior-collapse
metric in the VAE is sharply characterized by a small finite number of summary statistics,
derived using high-dimensional asymptotic theory. Using these summary statistics, three
distinct phases are characterized, pinpointing the boundary of the posterior collapse.

• A phenomenon where the generalization error peaks at a certain sample complexity α for a
small βVAE is observed. As βVAE increases, the peak gradually diminishes, which is similar
to the interpolation peak in supervised regression for the regularization parameter.

• Our analysis reveals “inevitable posterior collapse”. A long plateau in the signal recovery
error exists with respect to the sample complexity α for a large βVAE. As βVAE increases,
the plateau extends and eventually becomes infinite, regardless of the value of the sample
complexity. These results are experimentally robust for real datasets with nonlinear VAEs.

• With an infinite dataset size limit, the RD curve, introduced from the analogy of the RD
theory, is confirmed to coincide exactly with that of the Gaussian sources. Furthermore, the
RD curve is evaluated for various sample complexities, revealing that a larger dataset is
required to achieve an optimal RD curve in the high-rate and low-distortion regions.

The code used in this manuscript is submitted as supplemental material along with this manuscript.

Notation Here, we summarize the notations used in this study. The expression ∥ · ∥F denotes
the Frobenius norm. The notation ⊕ denotes the concatenation of vectors; for vectors a ∈ Rd and
b ∈ Rk, a ⊕ b = (a1, . . . , ad, b1, . . . , bk)

⊤ ∈ Rd+k. Id ∈ Rd×d denotes an d × d identity matrix,
and 1d denotes the vector (1, . . . , 1)⊤ ∈ Rd and 0d denotes the vector (0, . . . , 0)⊤ ∈ Rd. DKL[·∥·]
denotes the Kullback–Leibler (KL) divergence. For the matrix A = (Aij) ∈ Rd×k and a vector
a = (ai) ∈ Rd, we use the shorthand expressions dA =∆

∏d
i=1

∏k
j=1 dAij and da =∆

∏d
i=1 dai,

respectively. For vector a ∈ Rd, we also use the expression a:k = (a1, . . . , ak) ∈ Rk where k ≤ d.

2 RELATED WORK

Linear VAEs The linear VAE is a simple model in which both the encoder and decoder are
constrained to be affine transformations (Lucas et al., 2019). Although deriving analytical results
for deep latent models is intractable, linear VAEs can provide analytical results, facilitating a deeper
understanding of VAEs. Indeed, despite their simplicity, the results in linear VAEs sufficiently
explain the behavior of more complex VAEs (Lucas et al., 2019; Bae et al., 2022). Moreover, an
algorithm proven effective for linear VAEs has been successfully applied to deeper models (Bae et al.,
2022). In addition, various theoretical results have been obtained. Dai et al. (2018) demonstrated
the connections between linear VAE, probabilistic principal component analysis (PCA) (Tipping &
Bishop, 1999), and robust PCA (Candès et al., 2011; Chandrasekaran et al., 2011). Simultaneously,
Lucas et al. (2019) and Wang & Ziyin (2022) employ linear VAEs to explore the origins of posterior
collapse. However, these analyses did not address the dataset-size dependence of the generalization,
RD curve, and robustness against the background noise, which is a focus of our study. Additionally,
these analyses did not examine the behavior of the RD curve, which can be obtained by varying βVAE

with a fixed decoder variance.

High-dimensional asymptotics from replica method The replica method, mainly used as an
analytical tool in our study, is a non-rigorous but powerful heuristic in statistical physics (Mézard
et al., 1987; Mezard & Montanari, 2009; Edwards & Anderson, 1975). This method has proven
invaluable in solving high-dimensional machine-learning problems. Previous studies have addressed
the dataset-size dependence of the generalization error in supervised learning including single-layer
(Gardner & Derrida, 1988; Opper & Haussler, 1991; Barbier et al., 2019; Aubin et al., 2020) and
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multi-layer (Aubin et al., 2018) neural networks, as well as kernel methods(Dietrich et al., 1999;
Bordelon et al., 2020; Gerace et al., 2020). In unsupervised learning, this includes dimensionality
reduction techniques such as the PCA (Biehl & Mietzner, 1993; Hoyle & Rattray, 2004; Ipsen &
Hansen, 2019), and generative models such as energy-based models (Decelle et al., 2018; Ichikawa &
Hukushima, 2022) and denoising autoencoders (Cui & Zdeborová, 2023). However, the dataset-size
dependence of VAEs has yet to be previously analyzed; therefore, this study aims to examine this
dependence. Efforts have been made to confirm the non-rigorous results of the replica method using
other rigorous analytical techniques. For convex optimization problems, the Gaussian min-max
theorem (Gordon, 1985; Mignacco et al., 2020) can be used in the analysis, which provides rigorous
results consistent with those of the replica method (Thrampoulidis et al., 2018).

3 BACKGROUND

3.1 VARIATIONAL AUTOENCODERS

The VAE (Kingma & Welling, 2013) is a latent generative model. Let D = {xµ}nµ=1 be the training
data, where xµ ∈ Rd and pD(x) is the empirical distribution of the training dataset. In practical
applications, VAEs are typically trained using beta-VAE objective (Higgins et al., 2016) given by

EpD
[
Eqϕ [− log pθ(x|z)] + βVAEDKL[qϕ(z|x)∥p(z)]

]
=∆ EpD [L(θ, ϕ;x, βVAE)], (1)

where z ∈ Rk is the latent variables and p(z) is a prior for the variables, and the parameter βVAE ≥ 0
is introduced to control the trade-off between the first and second terms. pθ(x|z), parameterized by
parameters θ, and qϕ(z|x), parameterized by ϕ, are commonly referred to as decoder and encoder,
respectively. Subsequently, VAEs optimize the encoder parameters ϕ and decoder parameters θ by
minimizing the objective of Eq. (1). Note that when βVAE = 0, the objective is a deterministic
autoencoder that focuses only on minimizing the first term, which is referred to as the reconstruction
error.

3.2 INFORMATION-THEORETIC INTERPRETATION OF VAES

Alemi et al. (2018); Huang et al. (2020); Park et al. (2022) demonstrate that VAEs can be interpreted
based on the RD theory (Davisson, 1972; Cover, 1999), which has been successfully applied to data
compression. The primary focus has been on the curve where the distortion achieves its minimum
value for a given rate, or conversely; see Appendix B for a detailed explanation. Based on an analogy
from the RD theory, Alemi et al. (2018) decomposed the beta-VAE objective in Eq. (1) into rate R
and distortion D as follows:

R(ϕ) = EpD [DKL[qϕ(z|x)∥p(z)]], D(θ, ϕ) = EpD [Eqϕ [− log pθ(x|z)]]. (2)

According to Alemi et al. (2018), a trade-off exists between the rate and distortion, as in the RD
theory, especially when the encoder and decoder have infinite capacities. This relationship is derived
from the following:

H = −EpDDKL[qϕ(z|x)∥pθ(z|x)] +R(ϕ) +D(θ, ϕ),

where H is the negative log-likelihood, defined as H = −EpD log pθ(x). From the non-negativity of
the KL divergence, it follows that H ≤ R(ϕ) +D(θ, ϕ), where the equality holds if and only if the
variational posterior and true posterior coincide, i.e., ∀x, qϕ(z|x) = pθ(z|x).
While this equality holds when the encoder and decoder with infinite capabilities satisfy the optimality
conditions, the limitation of finite parameters makes this situation unfeasible. Therefore, the goal is to
determine an approximate optimal distortion at a given rate R∗ by solving the optimization problem:

D̂(R∗) = min
θ,ϕ

D(ϕ, θ) s.t. R(ϕ) ≤ R∗. (3)

For optimization without explicitly considering R∗, the Lagrangian function with the Lagrange
multiplier βVAE ≥ 0 can be utilized as follows:

min
θ,ϕ

D(θ, ϕ) + βVAER(ϕ).

This formulation is identical to the beta-VAE objective expressed in Eq. (1). Thus, training various
VAEs with different βVAE corresponds to obtaining distinct points on the RD curve.
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Figure 1: The architectures of lin-
ear SCM (a) and VAE (c). The
spectrum of the covariance matrix
of the MNIST dataset (b) (Deng,
2012), which can be divided into a
bulk and a finite number of spikes
as in SCM.

Data model We derive our theoretical results for dataset D =
{xµ}nµ=1 drawn from spiked covariance model (SCM) (Wishart,
1928; Potters & Bouchaud, 2020), which has been widely studied
in statistics to analyze the performance of unsupervised learning
methods such as PCA (Ipsen & Hansen, 2019; Biehl & Mietzner,
1993; Hoyle & Rattray, 2004), sparse PCA (Lesieur et al., 2015),
and deterministic autoencoders (Refinetti & Goldt, 2022). The
datasets are sampled according to

xµ =

√
ρ

d
W ∗cµ +

√
ηnµ, ∀µ = 1, . . . , n, (4)

where W ∗ ∈ Rd×k∗ is a deterministic unknown k∗ feature ma-
trix, cµ ∈ Rk∗ is a random vector drawn from some distribution
p(c), nµ is a background noise vector whose components are
i.i.d from the standard Gaussian distribution and ρ ∈ R and
η ∈ R are scalar values to control the strength of the noise and
signal, respectively. Different choices for W ∗ and the distribu-
tion of c allow the modeling of Gaussian mixtures, sparse codes,
and non-negative sparse coding. Note that, despiteW ∗ not being
orthogonal, W ∗cµ can be rewritten as (W ∗R)(R−1c), where R
is a matrix that orthogonalizes and normalizes the columns of
W ∗. This can be considered as an equivalent system in which
the new feature vector is R−1c. Therefore, without the loss of
generality, we assume that (W ∗)⊤W ∗ = Ik∗ .

Spectrum of the covariance matrix of the dataset The spectrum of the empirical covariance
matrix of D is characterized by W ∗ and c. When cµ = 0, the dataset are Gaussian vectors, whose
empirical covariance matrix, with n = O(d) samples, follows a Marchenko-Pastur distribution
characterized by the noise strength η (Marchenko & Pastur, 1967). In contrast, by sampling c ∼ p(c),
the covariance matrix has k∗ eigenvalues, i.e., spike, with the columns of W ∗ as the corresponding
eigenvectors. The remaining d− k∗ eigenvalues, i.e., bulk, of the empirical covariance matrix still
follow the Marchenko-Pastur distribution. This Spectrum is similar to that of the empirical covariance
matrix of real datasets such as CIFAR10 (Krizhevsky et al.) and MNIST (Deng, 2012), as in Fig. 1
and further explained in Refinetti & Goldt (2022). Moreover, the validity of the assumption of SCM
as a realistic data distribution has been supported by Gaussian universality, which indicates that the
learning dynamics with real data, irrespective of the machine learning models, closely agree with
those with the Gaussian model with the empirical covariance matrix of the data (Liao & Couillet,
2018; Mei & Montanari, 2022; Hu & Lu, 2022; Goldt et al., 2022).

VAE model In this study, we analyze the following two-layer VAE model:

pW (x|z) = N
(
x;
Wz√
d
, σ2Id

)
, qV,D(z|x) = N

(
z;
V ⊤x√
d
,D

)
, p(z) = N (z;0k, Ik). (5)

The VAE in Eq. (5) is parameterized by the diagonal covariance matrix D ∈ Rk×k, and the weights
W ∈ Rd×k and V ∈ Rd×k, as shown in Fig. 1 (c). This model is called a linear VAE (Dai et al.,
2018; Lucas et al., 2019; Sicks et al., 2021). In this study, we focus on the behavior of linear VAEs
with a fixed covariance matrix σ2Id and a varying βVAE, following the common practical approach
in Higgins et al. (2016), to explore how the RD curve depends on the dataset size. As noted in
(Rybkin et al., 2021), when σ2 = βVAE/2, beta-VAE (Higgins et al., 2016) and σ-VAE are equivalent
in optimization. Extending this analysis to cases where σ is parametrized by learnable parameters, as
in Rybkin et al. (2021), remains an important direction for future work. Note that, unlike the analysis
of autoencoder (Nguyen, 2021), this study does not assume tied weights, i.e., V ⊤ =W⊤, which is a
non-general constraint in VAEs.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Training algorithm The VAE is trained by the following optimization problem:

(Ŵ (D), V̂ (D), D̂(D)) = argmin
W,V,D

R(W,V,D;D, βVAE, λ), (6)

R(W,V,D;D, βVAE, λ) =
∆

n∑
µ=1

L(W,V,D;xµ, βVAE) + λg(W,V ), (7)

where L(W,V,D;x, βVAE) is defined by Eq. (1), and g : Rd×2k → R+ is an arbitrary convex regu-
larizing function, corresponding to weight decay, which regulates the magnitudes of the parameters
W and V with λ ∈ R+ being a regularization parameter. Many practitioners often include a weight
decay term in VAE training (Kingma & Welling, 2013; Louizos et al., 2017). This study broadens
the theoretical framework to cover these cases. Note that the following theoretical results are also
applicable to scenarios without weight decay by setting λ = 0; see Appendix F.1.

Evaluation metrics We use two evaluation metrics to investigate the behavior of linear VAEs.
Following Lucas et al. (2019), we evaluate the rate to examine posterior collapse in the VAE:

R = EpDDKL[qV̂ ,D̂(z|x)∥p(z)]. (8)

We define posterior collapse as occurring when this rate equals zero, R = 0. This metric corresponds
to the special case of the (0, 0)-collapsed condition discussed in Lucas et al. (2019). Further details
on this correspondence are provided in Appendix C.

In addition, following the analysis of autoencoders (Refinetti & Goldt, 2022; Nguyen, 2021), we
evaluate the signal recovery error to assess how well the decoder reconstructs the true distribution
rather than focusing on the latent space. The signal recovery error is defined as

εg(W,W
∗) =

1

d
EpDEc

∥∥∥∥∥√ρ
k∗∑
l∗=1

wl∗cl∗ −
k∑
l=1

ŵlcl

∥∥∥∥∥
2

. (9)

where wl∗ and ŵl are column vectors of W ∗ and Ŵ (D), respectively, and Ec[·] denotes the ex-
pectation over p(c) = N

(
0max[k,k∗], Imax[k,k∗]

)
. The signal recovery error measures the extent of

the signal recovery from the training data. Note that the distortion is defined as the squared error
when data is encoded by the encoder qV,D and subsequently reconstructed by the decoder pW , and is
formally expressed as EpDEqV,D

[− log pW (x|z)]. In contrast, the signal recovery error quantifies
how closely the data generated by decoding latent variables sampled from a multivariate standard
Gaussian distribution approximates the true distribution, rather than the compression performance.

High-dimensional limit We analyze the optimization problem in Eq. (6) in the high-dimensional
limit where the input dimension d and number of training data n simultaneously tend to infinity,
while their ratio α = n/d = Θ(d0), referred to as the sample complexity. The hidden layer widths k
and k∗, the signal and noise level ρ and η, are also assumed to remain Θ(d0). This corresponds to a
rich limit, where the number of VAE parameters is comparable to the number of samples, and the
model cannot trivially fit or memorize the training dataset. Therefore, this limit allows us to study the
effect of finite dataset-size dependence in the VAE.

5 ASYMPTOTIC FORMULAE

In this section, we show the main results of this study, namely the asymptotic formulae for linear
VAEs trained with the objective function Eq. (7). These results are obtained by converting the
optimization problem of Eq. (6) into an analysis of a corresponding Boltzmann measure, which is
then analyzed using the replica method; For further details on the explanation and derivation, refer to
Appendix D.

We discuss the main result in the high dimensional limit under the following assumption:

Assumption 5.1 g(W,V ) is l2 regularizer, i.e., g(W,V ) = 1/2(∥W∥2F + ∥V ∥2F ).

Under this assumption, we present the main claim regarding the signal recovery error εg .
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Claim 5.2 (Asymptotics for VAE trained with Eq. (6)) In the high-dimensional limit d, n → ∞
with a fixed ratio α = n/d = Θ(d0), the signal recovery error εg is given by

εg = k∗ρ− 2

k∗∑
l∗=1

k∑
l=1

mll∗ +

k∑
l=1

k∑
s=1

qls, (10)

where we introduce the summary statistics:

Q = (qls) = lim
d→∞

ED

[
1

d
Ŵ⊤Ŵ

]
, m = (mll∗) = lim

d→∞
ED

[
1

d
Ŵ⊤W ∗

]
. (11)

The summary statistics Q and m can be determined as solutions of the following extremum operation:

f =
1

2
extr
G,g,ψ

Ĝ,ĝ,ψ̂

{
tr
[
gĝ + 2ψψ̂ −GĜ

]
− tr

[
(Ĝ+ λ)−1ĝ

]
− 1⊤

k∗ ψ̂
⊤(Ĝ+ λ)−1ψ̂1k∗

+
α

σ2

(
tr

[
AG−

√
ρ

η
ψ⊤B + (I2k −Ag)−1(AGA+BB⊤)g

]
+σ2

k∑
l=1

log
e(Qll + βVAE)

βVAE

)}
,

(12)

where extr indicates taking the extremum with respect to Θ and

G =

(
Q R
R E

)
, g =

(
χ ω
ω ζ

)
, ψ =

(
m
b

)
, Ĝ =

(
Q̂ R̂

R̂ Ê

)
, ĝ =

(
χ̂ ω̂

ω̂ ζ̂

)
, ψ̂ =

(
m̂

b̂

)
A = η

(
0k×k Ik
Ik −(Q+ σ2βVAEIk)

)
, B =

√
ρη

(
−b

−m+ (Q+ σ2βVAEIk)b

)
.

The summary statistics m corresponds to the overlap of the signal W ∗ and decoder parameter W ;
while mll∗ ̸= 0 indicates that the VAE recovers the signal wl∗ , when mll∗ = 0, the VAE does not
learn the signal wl∗ . The summary statistics Q represents the norm of the decoder weights W , which
measures the freedom of the parameter; a smaller Q indicates a stronger regularization, yielding
a smaller effective feasible region of the parameter (and vice versa). Additionally, the rate R and
distortion D can be evaluated through these summary statistics.

Claim 5.3 In the high-dimensional limit d, n→ ∞, the rate R(V̂ , D̂) and distortion D(Ŵ , V̂ , D̂)
are also expressed as functions of G, g, and ψ, determined by the extremum problem Eq. (12).

The details are in Appendix D. Claim 5.2 provides the asymptotic properties of the model at the
global optimum of the objective function in Eq. (6). Eq. (12) provides the summary statistics Eq. (11),
derived from the solutions of the low-dimensional optimization problem in Eq. (12). The high-
dimensional optimization problem Eq. (6) and the high-dimensional average over the training dataset
D are reduced to a simpler tractable system of optimization problem over 2k(8k + 2k∗) variables
Eq. (15) in Appendix D, which can be easily solved numerically. It is important to note that all the
summary statistics involved in Eq. (12) are finite-dimensional as d, n→ +∞, meaning that Claim
5.2 provides a fully asymptotic characterization, as it does not involve any high-dimensional variables.
Finally, let us stress once more that the replica method employed in the derivation of these results
should be viewed as a strong heuristic but does not constitute rigorous proof; thus, the results are
presented here as a claim. Furthermore, Assumption 5.1 can be relaxed to address arbitrary convex
regularizer g(·, ·), but the free energy becomes more intricate formulae. For this reason, l2 regularizer
is chosen.

6 RESULTS

We now analyze how the signal recovery error εg and RD curve are influenced by α and βVAE using
Claim 5.2. While Claim 5.2 is stated in full generality, for definiteness in the rest of the manuscript,
we focus on a minimal setting k = 1 and k∗ = 1 to comprehend posterior collapse. This minimal
setting is found to already display meaningful results even for more realistic datasets and complicated
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Figure 2: (Left) signal recovery error as a function of sample complexity α for fixed parameters
βVAE = 1 and varying λ. (Middle) signal recovery error for different βVAE with fixed parameter
λ = 1. (Right) KL divergence between the true and variational posterior with fixed parameter λ = 1
for different βVAE. Each data point in all the plots represents the average result of five different
numerical simulations at d = 5,000 using gradient descent; the error bars represent the standard
deviations of the results.

non-linear VAE, as discussed in Section 6.5. We leave the thorough exploration of settings with k > 1
and k∗ > 1 for future work. When σ2 is not a learnable parameter, adjusting βVAE while keeping σ2

fixed is equivalent to adjusting σ2 while keeping βVAE fixed are equivalent in optimization. Thus, we
fix σ2 = 1 and focus on investigating the dependence on βVAE. In addition, numerical experiments
are conducted to verify the consistency of our theory, which are implemented with Pytorch of
Adam optimizer (Kingma & Ba, 2014).

6.1 LEARNING CURVE OF SIGNAL RECOVERY ERROR

First, we clarify the relationship between the signal recovery error and βVAE. The signal recovery
error and KL divergence DKL[pŴ (z|x)∥qV̂ ,D̂(z|x)] evaluated from the solutions of the optimization
problem of Eq. (6) are plotted as the solid lines in Fig. 2 and compared with the numerical simulations
for l2 regularization weight λ = 1.0. The agreement between the theory and simulations is compelling.
Our results can be summarized in three points as follows. In addition, the dependence of signal
recovery error on βVAE and α without weight decay, i.e., λ = 0, is shown in the Appendix F.1. In
this case, the results are qualitatively similar to those described below.

Interpolation peak as in supervised learning We demonstrate that the well-known interpolation
peak in supervised regression (Mignacco et al., 2020; Hastie et al., 2022; Opper & Kinzel, 1996) also
occurs in VAEs in unsupervised scenarios. The interpolation peak in the supervised regression had a
characteristic peak in the signal recovery error at α = 1 with a small ridge regularization parameter,
and the peak gradually decreased as the regularization parameter increased. Fig. 2 demonstrates the
dependence of the signal recovery error εg obtained by the replica method on βVAE and λ, together
with the numerical experimental results with a finite dataset size. The curves for small βVAE and λ
values show a peak at α = 1. This peak tends to disappear smoothly as the increasing βVAE and λ.
This implies that the peak is a universal phenomenon observed in both supervised and unsupervised
settings.

Long plateau in εg with a large beta The middle panel of Fig. 2 demonstrates the α-dependence
of the signal recovery error εg for various βVAE. For a smaller βVAE, the signal recovery error εg
begins decreasing from α = 1. Meanwhile, as βVAE increased, a long plateau appears in the range of
α before the curve begins to decrease. Notably, the length of this plateau increases with increasing
βVAE. Moreover, when the value of βVAE exceeds 2, the decrease in the signal recovery error εg
disappears completely. The exact points at which the signal recovery error begins to decrease and
remains 1 are explained in the following section, with a corresponding description of the phase
diagram.

Optimal beta depends on sample complexity We clarify that the optimal value of βVAE that
minimizes the signal recovery error εg depends on α. Specifically, in the smaller α regime ranging
from approximately α = 1 to α ≈ 2.6, the signal recovery error εg is minimized by βVAE =

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Phase diagram for λ = 1: Learning
phase, overfitting phase, and regularized phase.

Figure 4: RD curve for λ = 1 with various
values of α.

1.5. However, in the larger α regime, the optimal value is βVAE = 1. In addition, the right
panel of Fig. 2 presents the KL divergence between the true posterior and the variational posterior,
DKL[pW (z|x)∥qV,D(z|x)], as a function of α for different values of βVAE. The figure demonstrates
that minimizing the signal recovery error εg does not necessarily bring the true posterior pW (z|x)
closer to the variational posterior qV,D(z|x). In fact, despite the signal recovery error εg being
minimized at βVAE = 1.5, the KL divergence for the βVAE is not minimal in the range between
α = 1 and α ≈ 2.6. Furthermore, unlike the strength of ridge regularization, λ, an improperly
chosen βVAE for a given α can result in significant performance variations. Therefore, βVAE must
be carefully optimized for each specific value of α. This observation offers a crucial insight for
practitioners of VAEs in engineering applications.

6.2 PHASE DIAGRAM

Based on the extreme values of summary statistics m and Q in Eq. (12), we next discuss the phase
diagram in terms of βVAE. The following three distinct phases are identified, as shown in Fig. 3:

• Learning phase (green region, m ̸= 0, Q ̸= 0, R ̸= 0): The VAE recovers the signal and
avoids posterior collapse.

• overfitting phase (red region, m = 0, Q ̸= 0, R = 0): The effects of the rate and ridge
regularizations are small, causing overfitting of the background noise in the data.

• Regularized phase (orange region,m = 0, Q = 0, R = 0): The rate and ridge regularizations
restrict the degrees of freedom of the learnable parameters, leading to posterior collapse.

As noted in the previous section, the boundaries between the overfitting and learning phases, as well
as those between the regularized and learning phases in the phase diagram, precisely correspond to
the point where the signal recovery error begins to decrease. The phase diagram shows that as βVAE

increases, the transition to the learning phase becomes more challenging, even with a sufficiently
large α, indicating the long plateau described above.

6.3 LARGE DATASET LIMIT

The phase diagram presented in the previous section does not provide information on whether it is
possible to reach the learning phase by increasing α for any βVAE. This feasibility is demonstrated
by an analysis in the large α limit. Furthermore, the optimal value of βVAE that minimizes the signal
recovery error in the large α limit is derived. First, we present the following claim:

8
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Figure 5: (Left) βVAE dependence of the signal recovery error εg predicted by Claim 5.2 in linear
VAE. The inset shows the α-dependence of the optimal β∗

VAE. FIDs as a function of βVAE for the
MNIST dataset (Middle) and FashionMNIST (Right) with a nonlinear VAE. Dashed vertical lines
indicate the estimated noise strength η̂. The error bars represent the standard deviations of the results.
Claim 6.1 In a large α limit and for any λ, when βVAE < ρ+ η, the summary statistics m and the
signal recovery error εg are expressed as follows:

R =
1

2
log

(
η + ρ

βVAE

)
, εg = ρ−

√
η + ρ− βVAE(2

√
ρ−

√
η + ρ− βVAE),

respectively, and when βVAE ≥ ρ+ η, R = 0 and εg = ρ, indicating that posterior collapse occurs.

Based on Claim 6.1, once βVAE exceeds the threshold β̂VAE = ρ+ η, the learning phase cannot be
reached despite increasing α, which indicates that the posterior collapse is inevitable. This result
suggests that βVAE can be a risky parameter and that learning can fail regardless of the dataset size.
Furthermore, the extremum calculations of the signal recovery error in Claim 6.1 demonstrate that
the signal recovery error reaches a minimum value at βVAE = η, which implies that the optimal
result is achieved when βVAE equals the background noise strength η. Additionally, Claim 6.1 can
be extended to any k = k∗ = O(d0) under certain assumptions, showing that posterior collapse
consistently occurs at the threshold βVAE = ρ+ η, regardless of the size of the dataset. Therefore,
this result remains robust even when some latent variables exist. The detailed proof can be found in
Appendix D.4.

6.4 RD CURVE

We demonstrate that the RD curve in the large α limit is as follows.

Claim 6.2 In a large α limit, the RD curve R of the linear VAE equals that of a Gaussian source
(Cover, 1999) for any λ ∈ R+:

R =∆ EpDR(V̂ , D̂) =

{
1
2 log

η+ρ
2D 0 ≤ D < ρ+η

2 ,

0 D ≥ ρ+η
2 ,

D =∆ EpDD(Ŵ , V̂ , D̂) =

{βVAE

2 0 ≤ βVAE < ρ+ η,
ρ+η
2 βVAE ≥ ρ+ η.

The detailed derivation can be found in Appendix D.5, and a brief explanation of the RD function for
the Gaussian source is provided in Appendix B. Claim 6.2 suggests that the VAE achieves an optimal
compression rate in a large α limit. Furthermore, the rate introduced by Alemi et al. (2018) is found
to coincide with the rate of discrete quantization of the RD theorem (Cover, 1999) in the large α
limit, indicating that the rate is a truly generalized form of the rate of the discrete quantization in the
RD theory. Fig. 4 shows the RD curve for both the large α limit and finite α, demonstrating that a
relatively large dataset is required to achieve the optimal RD curve in the high-rate and low-distortion
regions. Moreover, when dR(D)/dD = −1, the VAE achieves an optimal signal recovery error with
βVAE = η. In Appendix F.1, we also show that this property of the RD curve is consistent for VAEs
without weight decay, i.e., λ = 0.

6.5 ROBUSTNESS OF REPLICA PREDICTION AGAINST REAL DATA

It is reasonable to question whether the theoretical analysis can explain the phenomena observed
in more complex real-world datasets with nonlinear VAEs. The answer is empirically positive, as

9
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described below. Specifically, we investigate whether the existence of the posterior collapse threshold
and the dependency of generalization performance on βVAE and α predicted by Claim 5.2 in the
Linear VAE, remain consistent when applied to real-world datasets with nonlinear VAEs. We compare
the generalization properties predicted by the theoretical analysis with those observed in Fashion
MNIST (Deng, 2012) and MNIST (Deng, 2012) using a 3-layer MLP for the encoder and decoder.
For these datasets, we calculated βVAE dependence of Fréchet Inception Distance (FID) (Heusel
et al., 2017), one of the most widely used generalization metrics for generated images, instead of
the signal recovery error in Eq. (9). Here, η̂ represents a noise strength in Eq. (4), estimated by the
empirical standard deviation of the bulk, consisting of the eigenmodes of the empirical covariance
matrix, under an 80% cumulative contribution rate. The result remains consistent even when the rate
is set to 90% or 70%. Details of the experimental settings can be found in Appendix E.1.

Fig. 5 shows that the FID values for both Fashion MNIST and MNIST qualitatively match the
theoretical predictions. Inevitable posterior collapse occurs as βVAE increases, and the threshold
shifts towards higher βVAE as the sample complexity α increases, which is consistent with the
theoretical results. Additionally, the optimal β∗

VAE approaches the estimated value η̂ as α increases.
The correction from the optimal limα→∞ β∗

VAE(α) is positive in the direction of βVAE, which is also
consistent with theoretical results. These observations suggest that the generalization behavior of real
datasets is well captured by the SCM model, indicating the presence of Gaussian universality (Hu
& Lu, 2022; Montanari & Saeed, 2022; Loureiro et al., 2021). This opens new avenues for future
research, as Gaussian universality has been explored in classification and regression. The qualitative
behavior remains consistent when applied to the CIFAR10 dataset (Krizhevsky, 2009), which consists
of color images and a convolutional neural network (CNN). The experimental results are provided in
Appendix F.2.

7 CONCLUSION

We provide a high-dimensional asymptotic characterization of trained linear VAEs, clarifying the
relationship between dataset size, βVAE, posterior collapse, and RD curve. Specifically, these results
show an “inevitable posterior collapse” regardless of the dataset size beyond a certain beta threshold
and the dataset-size dependence of the RD curve, indicating that relatively large datasets are required
in high-rate regions. These findings also explain the qualitative behavior for realistic datasets and
nonlinear VAEs, providing theoretical insights that support longstanding practical intuitions about
VAEs.

Finally, building on our analysis, we present insights for the engineering applications of VAEs. This
study reveals that the parameter βVAE, unlike the conventional ridge regularization coefficient λ,
requires careful tuning based on dataset size. Inappropriate tuning leads to significant degradation in
generalization performance. In particular, an excessively large βVAE induces a “plateau phenomenon”
that persists despite increases in dataset size, hindering further performance improvements and
eventually causing inevitable posterior collapse. These findings underscore that βVAE is a highly
sensitive and potentially risky parameter requiring meticulous adjustment. This study also reveals that
in the limit of large dataset sizes, the optimal value of βVAE corresponds to the strength of background
noise in the data. In contrast, for finite datasets, the optimal value of βVAE tends to shift to higher
values. This tendency consistently holds in our numerical experiments across real-world datasets and
VAEs with nonlinear structures, demonstrating its robustness. This directional adjustment offers a
critical guideline for effectively tuning βVAE. By quantitatively examining the conventional claim
that “a large βVAE induces posterior collapse” through a minimal model based on a linear VAE, we
not only clarified the underlying mechanism but also provided practical guidelines for parameter
tuning.
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results for the paper High-dimensional Asymptotics of VAEs: Threshold of Posterior Collapse and
Dataset-Size Dependence of Rate-Distortion Curve.
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B REVIEW OF RATE DISTORTION THEORY

The rate-distortion theory was introduced by Shannon et al. (1959) and then further developed by
Berger et al. (1975); Berger & Gibson (1998). This theoretical framework describes the minimum bit
rate (rate) required for encoding a source, subject to a given distortion measure. In recent years, it has
been used to understand machine learning (Gao et al., 2019; Alemi et al., 2018; Theis et al., 2022;
Brekelmans et al., 2019; Isik et al., 2022).

Let XP = {X1, . . . , XP } ∈ XP be i.i.d random variables from the distribution P (x). An encoder
fP : XP → {1, 2, . . . , 2P×R} maps the input XP into a quantized vector, and a decoder gP :

{1, 2, . . . , 2P×R} → XP reconstructs the input by a decoded input X̂P from the quantized vector.
To measure the discrepancy between the original and decoded inputs, a distortion function d :

X × X → R+ is introduced. The distortion for the input XP and decoded input X̂P is defined as
the average distortion between each pair Xi and X̂i. Commonly used distortion functions are the
Hamming distortion function defined as d(x, x̂) = I[x ̸= x̂] for X = {0, 1} where I is the indicator
function, and the squared error distortion function defined as d(x, x̂) = (x− x̂)2 for X = R. We are
ready to define the RD function.

Definition B.1 A rate-distortion pair (R,D) is achievable if there exists a (probabilistic) encoder-
decoder (fP , gP ) such that the quantized vector has size 2P×R and the expected distortion
limP→∞[d(XP , gP (fP (X

P ))] ≤ D.

Definition B.2 The RD function R(D) is the infimum of rates R such that the RD pair (R,D) is
achievable.

The main theorem of the RD theory (Cover, 1999) states as follows,

Theorem B.3 Given an upper bound of distortion D, the following equation holds:

R(D) = min
P (X̂|X):E[d(X,X̂)]≤D

I(X; X̂) (13)

The RD theorem provides the fundamental limit of data compression, i.e., how many minimum bits
are needed to compress the input, given the quality of the reconstructed input.

B.1 RD OF GAUSSIAN SOURCE.

We give an example of the RD function for Gaussian input.

Proposition B.4 If X ∼ N (0, σ2), the RD function is given by

R(D) =

{
1
2 log2

σ2

D D ≤ σ2

0 D > σ2
.

If the required distortion is larger than the variance of the Gaussian variable σ2, we simply transmit
X̂ = 0; otherwise, we transmit X̂ such that X̂ ∼ N (0, σ2 −D), X − X̂ ∼ N (0, D) where X̂ and
X − X̂ are independent.

C EVALUATION METRIC OF POSTERIOR COLLAPSE

To evaluate the degree of posterior collapse, Lucas et al. (2019) defined a latent variable dimension zi
as being (ϵ, δ)-collapsed if it satisfies PD[DKL(qV̂ ,D̂(zi|x)∥p(zi)) < ε] ≥ 1− δ. While this can also
be evaluated using the summary statistic in Claim 5.2, for simplicity, we consider posterior collapse
to occur when R =

∑
i ED[DKL(qV̂ ,D̂(zi|x)∥p(zi))] = 0. As δ → 0 and ε → 0, this implies that

almost surely under pD,DKL(qV̂ ,D̂(zi|x)∥p(zi)) = 0, leading to EpD [DKL(qV̂ ,D̂(zi|x)∥p(zi))] = 0.
Therefore, our definition of R =

∑
i ED[DKL(qV̂ ,D̂(zi|x)∥p(zi))] is consistent with all latent

variables z being (0, 0)-collapsed.
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D DERIVATION OF CLAIMS

Here, we present the detailed derivation of Claims 5.2, 5.3, 6.1, 6.2.

D.1 REPLICA FORMULATION

The Boltzmann distribution is defined as follows:

p(W,V,D;D, γ) =∆ 1

Z(D, γ)
e−γR(W,V,D;D,βVAE,λ) (14)

where Z(D, γ) is the normalization constant known as the partition function in statistical me-
chanics. Note that in the limit γ → ∞, Eq. (14) converges to a distribution concentrated on the
(Ŵ (D), V̂ (D), D̂(D)). Thus, the expectation of any function ψ(Ŵ (D), V̂ (D), D̂(D)), which in-
cludes signal recovery error εg, rate and distortion, over the dataset can be expressed as an average
over a limiting distribution as follows:

EDψ(Ŵ (D), V̂ (D), D̂(D)) = lim
γ→∞

ED

∫
dWdV dDψ(W,V,D)p(W,V,D;D, γ).

The idea of the replica method (Mézard et al., 1987; Mezard & Montanari, 2009; Edwards & Anderson,
1975) is to compute the moment generating function (also known as the free-energy density) as
follows:

f = − lim
γ→∞

1

γd
ED logZ(D, γ). (15)

Although Eq. (15) is difficult to calculate in a straightforward manner, this can be resolved by using
the replica method (Mézard et al., 1987; Mezard & Montanari, 2009; Edwards & Anderson, 1975),
which is based on the following equality:

ED logZ(D, γ) = lim
p→+0

logEDZ
p(D, γ)
p

. (16)

Instead of directly handling the cumbersome log expression in Eq. (15), we can calculate the average
of the n-th power of Z(D, γ) for p ∈ N, analytically continue this expression to p ∈ R, and finally
takes the limit p→ +0. Based on this replica trick, it is sufficient to calculate the following:

EDZ
p(D, γ) = ED

∫ p∏
ν=1

dW νdV νdDν

p∏
ν=1

e−γR(W ν ,V ν ,Dν ;D,βVAE,λ) (17)

up to the first order of p to take the p→ +0 limit on the right-hand side of Eq. (16).

D.2 REPLICATED PARTITION FUNCTION

To calculate free-energy density, it is sufficient to calculate the replicated partition function, as
mentioned in Section 4.1. The replicated partition function is expressed as

EDZ
p(D, γ)

= ED

∫ p∏
ν=1

dW νdV νdDν

p∏
ν=1

e−γR(W ν ,V ν ,Dν ;D,βVAE,λ)

= ED

∫ p∏
ν=1

dW νdV νdDνe−
γλ
2

∑p
ν=1(∥W

ν∥2
F+∥V ν∥2

F )
p∏
ν=1

(
e−γ

∑n
µ=1 L(W ν ,V ν ,Dν ;xµ,βVAE)

)
=

∫ p∏
ν=1

dW νdV νdDνe−
γλ
2

∑p
ν=1(∥W

ν∥2
F+∥V ν∥2

F )
n∏
µ=1

Ecµ,nµ

p∏
ν=1

e−γ
∑n

µ=1 L(W ν ,V ν ,Dν ;cµ,nµβVAE)

=

∫ p∏
ν=1

dW νdV νdDνe−
γλ
2

∑p
ν=1(∥W

ν∥2
F+∥V ν∥2

F )
(
Ec,n

[
e−γ

∑p
ν=1 L(W ν ,V ν ,Dν ;c,n,βVAE)

])n
,
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where L(W ν , V ν , Dν ; c,n, βVAE) is given by

L(W ν , V ν , Dν ; c,n, βVAE)

=
1

2σ2

(∥∥∥∥√ρ

d
W ∗c+

√
ηn

∥∥∥∥2−2

(√
ρ

d
(W ν)⊤W ∗c+

√
η

d
(W ν)⊤n

)⊤(√
ρ

d
(V ν)⊤W ∗c+

√
η

d
(V ν)⊤n

)

+

(√
ρ

d
(V ν)⊤W ∗c+

√
η

d
(V ν)⊤n

)⊤
(W ν)⊤W ν

d

(√
ρ

d
(V ν)⊤W ∗c+

√
η

d
(V ν)⊤n

)
+
1

d
(W ν)⊤W νDν

+ βVAE

(∥∥∥∥√ρd (V ν)⊤W ∗c+

√
η

d
(V ν)⊤n

∥∥∥∥2 + tr(Dν)− tr(logDν)

))
.

To perform the average over n, we notice that, since n follows a multivariate normal distribution
N (0d, Id), h =∆ ⊕pν=1(u

ν ⊕ ũν) ∈ R2kd with

uν =∆
1√
d
(W ν)⊤nµ ∈ Rk, ũν =∆

1√
d
(V ν)⊤nµ ∈ Rk

follows a Gaussian multivariate distribution, p(h) = N (h;02kp,Σ), where

Enh(h)
⊤ = Σ, Σνκ =

(
Qνκ Rνκ

Rνκ Eνκ

)
, Qνκ =

1

d
(W ν)⊤Wκ, Eνκ =

1

d
(V ν)⊤V κ, Rνκ =

1

d
(W ν)⊤V κ.

By introducing the auxiliary variables through the trivial identities as follows:

1 =
∏

(ν,l);(κ,s)

d

∫
δ
(
Qνκls d− (wν

l )
⊤wκ

s

)
dQ,

1 =
∏

(ν,l);(κ,s)

d

∫
δ
(
Eνκls d− (vνl )

⊤vκs
)
dE,

1 =
∏

(ν,l);(κ,s)

d

∫
δ
(
Rνκls d− (wν

l )
⊤vκs

)
dR,

1 =
∏

(ν,s);(ν,l∗)

d

∫
δ
(
mν
sl∗d− (wν

s )
⊤w∗

l∗
)
dm,

1 =
∏

(ν,s);(ν,l∗)

d

∫
δ
(
bνsl∗d− (vνs )

⊤w∗
l∗
)
db,

the replicated partition function is further expressed as

EDZ
p(D, γ) =

∫
dQdEdRdmdb (S × E) ,

S =∆
∫ p∏

ν=1

dW νdV ν
∏
ν,κ

∏
s,l

dδ
(
Qνκsl d− (wν

s )
⊤wκ

l

)
dδ
(
Eνκsl d− (vνs )

⊤vκl
)
dδ
(
Rνκsl d− (wν

s )
⊤vκl

)
∏
ν

∏
s,l

dδ
(
mν
sl∗d− (wν

s )
⊤w∗

l∗
)
dδ
(
bνsl∗ − (vνs )

⊤w∗
l

)
× e−

γλ
2

∑
ν(∥W

ν∥2
F+∥V ν∥2

F ),

E =∆
∫ ∏

ν

dDν

(∫
Dc

∫
dhN (h,02kp,Σ)× e−γ

∑
ν L(Q,E,R,m,d;h,c,βVAE,λ)

)n
,

where w∗
l∗ ,wν

l and vνl are column vectors of W ∗, W ν , and V ν , respectively. Assuming the replica
symmetric (RS) ansatz, one reads

Qννls = Qls, E
νν
ls = Els, R

νν
ls = Rls, m

ν
sl∗ = msl∗ , b

ν
sl∗ = bsl∗ , (18)

Qνκls = Qls −
χls
γ
, Eνκls = Els −

ζls
γ
, Rνκls = Rls −

ωls
γ
, (19)
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where all parameters are denoted as Θ =∆ (Q,E,R,m, b, χ, ζ, ω) ∈ Rk(6k+2k∗). This RS ansatz
restricts the integration of the replicated weight parameters {Wν , Vν} across the entire Rp(2k×d) to
a subspace that satisfies the constraints in Eq. 18 and 19. Using the Fourier transform of the delta
functions, S is expanded as

S =

∫
dΘ̂
∏
ν

dW νdV ν e
1
2

∑
ls,ν(γQ̂ls−γ2χ̂ls)(dQls−wν

l w
ν
s )− 1

2

∑
ls

∑
ν ̸=κ γ

2χ̂(Qls−
χls
γ −wν

l w
κ
s )

× e
1
2

∑
ls,ν(γÊls−γ2ζ̂ls)(dEls−vν

l v
ν
s )− 1

2

∑
ls

∑
ν ̸=κ γ

2ζ̂
(
Els−

ζls
γ −vν

l v
κ
s

)
× e

∑
ls,ν(γR̂ls−γ2ω̂ls)(dRls−wν

l v
ν
s )−

∑
ls

∑
ν ̸=κ γ

2ω̂(Rls−
ωls
γ −wν

l v
κ
s )

× e−
∑

ls

∑
ν γm̂sl∗ (dmsl∗−wν

sw
∗
l∗ )−

∑
ls

∑
ν γb̂sl∗ (dbsl∗−vν

sw
∗
l∗ )e−

γλ
2

∑
ν(∥Wν∥2

F+∥V ν∥2
F )

=

∫
dΘ̂e

pγd
2 (tr(Q̂Q+(p−1)χ̂χ−pγQχ̂)+tr(ÊE+(p−1)ζ̂ζ−pγEζ̂)+2tr(R̂R+(p−1)ω̂ω−pγRω̂)−2tr(m̂⊤m)−2tr(b̂⊤b))

×

(∫ ∏
ν

dw̃νe−
γ
2

∑
ls((Q̂ls+λIk)

∑
ν wν

l w
ν
s+(Êls+λIk)

∑
ν vν

l v
ν
s+2R̂ls

∑
ν wν

l v
ν
s )

× e
γ2

2

∑
ls(χ̂ls

∑
ν wν

s

∑
ν wν

l +ζ̂ls
∑

ν vν
s

∑
ν vν

l +2ω̂ls

∑
ν wν

l

∑
ν vν

s )

× e+γ
∑

l∗s m̂sl∗
∑

ν wν
sw

∗
l∗+γ

∑
l∗s d̂sl∗

∑
ν vν

sw
∗
l∗

)d
,

where dΘ̂ =∆ dQ̂dÊdR̂dχ̂dζ̂dm̂db̂ and w̃ν =∆ (wν1 , . . . , w
ν
k , v

ν
1 , . . . , v

ν
k). This can be derived with

the help of the identity for any symmetric positive matrix M ∈ Rk×k and any vector x ∈ Rk, given
by

e
1
2x

⊤Mx =

∫
Dξke

ξ⊤
k M

1
2 x,

where Dξ2k is the standard Gaussian measure on R2k. Then, we obtain:

S =

∫
dΘ̂e

pγd
2 (tr(Q̂Q+(p−1)χ̂χ−pγQχ̂)+tr(ÊE+(p−1)ζ̂ζ−pγEζ̂)+2tr(R̂R+(p−1)ω̂ω−pγRω̂)−tr(m̂m)−tr(b̂b))

×
(∫

Dξ2k

(∫
dw̃e−

γ
2 w̃

⊤(Ĝ+λI2k)w̃+γ(ξ⊤
2kĝ

1
2 +1⊤

k∗ ϕ̂
⊤)w̃

)p)d
=

∫
dΘ̂e

pγd
2 (tr(Q̂Q+(p−1)χ̂χ−pγQχ̂)+tr(ÊE+(p−1)ζ̂ζ−pγEζ̂)+2tr(R̂R+(n−1)ω̂ω−nγRω̂)−tr(m̂m)−tr(d̂d))

× e
d log

∫
Dξ2k

(∫
dw̃e

− γ
2
w̃⊤(Ĝ+λI2k)w̃+γ(ξ⊤2kĝ

1
2 +1⊤

k∗ ϕ̂⊤)w̃

)n

=

∫
dΘ̂e

nγd
2 (tr(Q̂Q−χ̂χ)+tr(ÊE−ζ̂ζ)+2tr(R̂R−ω̂ω)−tr(m̂m)−tr(d̂d)+O(n))

× e
dn

(∫
Dξ2k log

∫
dw̃e

− γ
2
w̃⊤(Ĝ+λI2k)w̃+γ(ξ⊤2kĝ

1
2 +1⊤

k∗ ϕ̂⊤)w̃
+O(n)

)

=

∫
dΘ̂e

nγd
2 (tr(ĜG−ĝg)−2tr(ϕ̂⊤k)+tr[(Ĝ+λI2k)

−1ĝ]+1⊤
k∗ ϕ̂

⊤(Ĝ+λI2k)
−1ϕ̂1k∗)+o(n,d,γ)

where w̃ =∆ (w1, . . . , wk, v1, . . . , vk) and

Ĝ =∆
(
Q̂ R̂

R̂ Ê

)
∈ R2k×2k, ĝ =∆

(
χ̂ ω̂

ω̂ ζ̂

)
∈ R2k×2k, ψ̂ =∆

(
m̂

b̂

)
∈ R2k×k∗ .

Note that, under the RS ansatz, hν is expressed as follows

hν =
1
√
γ
g1/2zν +G1/2ξ, ∀ν ∈ [p], zν ∼ N (02k, I2k), ξ ∼ N (02k, I2k),
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where

G =∆
(
Q R
R E

)
∈ R2k×2k, g =∆

(
ξ ω
ω ζ

)
∈ R2k×2k, ψ =∆

(
m
b

)
.

E is also expanded as

1

d
log E =

1

d
log

∫ ∏
ν

dDν

(∫
Dc

∫
dhN (h;02kp,Σ)e

−γ
∑

ν L(G,g,ψ;h,c,βVAE)

)n
=
p

d
log

∫
dDe−

γn
2 (tr[(Q+βVAEIk)D]−βVAEtr(logD))

+ α logEc

∫
dhN (h;02pk,Σ)e

−γ
∑

ν L̂(G,g,ψ;h,c,βVAE)

=
p

d
log

∫
dDe−

γn
2 (tr[(Q+βVAEIk)D]−βVAEtr(logD))

+ α logEc,ξ2k

(∫
Dz2ke

−γL̂(G,g,ψ;z2k,ξ2k,c,βVAE)

)p
=
p

d
log

∫
dDe−

γn
2 (tr[(Q+βVAEIk)D]−βVAEtr(logD))

+ αpEc,ξ2k
log

∫
Dz2ke

−γL̂(G,g,ψ;z2k,ξ2k,c,βVAE) + o(p),

where

−L̂(G, g, ψ; z2k, ξ2k, c, βVAE) =
(
√
ρmc+

√
ηu)⊤(

√
ρbc+

√
ηũ)

σ2

−
(
√
ρbc+

√
ηũ)⊤(Q+ σ2βVAEIk)(

√
ρbc+

√
ηũ)

2σ2
.

Then we evaluate the last term as follows:∫
Dck

∫
Dξ2k log

∫
Dz2ke

−γL̂(G,g,ψ;z2k,ξ2k,c,βVAE,λ)

=
γρ

2σ2

∫
Dc(c⊤(2m⊤b− b⊤(Q+ σ2βVAEIk)b)c)

+ Ec,ξ2k
log

∫
Dz2ke

−γ
(
− 1

2σ2

(
g1/2z2k√

γ +G1/2ξ2k

)⊤
A

(
g1/2z2k√

γ +G1/2ξ2k

)
+b⊤

(
g1/2z2k√

γ +G1/2ξ2k

))

=
γρ

2σ2
tr
(
2m⊤b− b⊤(Q+ σ2βVAEIk)d

)
+

γ

σ2
Ec,ξ2k

(
1

2
ξ⊤2kG

1/2AG1/2ξ2k − b⊤G1/2ξ2k

)
+ Ec,ξ2k

log

∫
dz2ke

γ(− 1
2z

⊤
2k(I2k−g

1/2Ag1/2)z2k+(ξ⊤
2kG

1/2A−b⊤)g1/2z2k))

=
γρ

2σ2
tr
(
2b⊤m− b⊤(Q+ σ2βVAEIk)b

)
+

γ

2σ2
tr(AG)

+
γ

2σ2
Ec,ξ2k

(ξ⊤2kG
1/2A− b⊤)g1/2(I2k − g1/2Ag1/2)−1g1/2(AG1/2ξ2k − b) + o(γ)

=
γ

2σ2

(
ρtr
(
2b⊤m− b⊤(Q+ σ2βVAE)b

)
+ tr(AG) + tr

(
(I2k −Ag)−1(AGA+BB⊤)g

))
,

where

A = η

(
0k×k Ik
Ik −(Q+ σ2βVAEIk)

)
, b = Bc, B =

√
ρη

(
−b

−m+ (Q+ σ2βVAEIk)b

)
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Taking the limit γ → ∞, one can obtain

log E =
dpγα

2σ2

(
ρtr
(
2b⊤m− b⊤(Q+ σ2βVAE)b

)
+tr(AG)+tr

(
(I2k −Ag)−1(AGA+BB⊤)g

)
+ σ2

∑
k

log
e(Qkk + βVAE)

βVAE

)
Substituting S and E into the expression of the replicated partition function yields

EDZ
p(D, γ) =

∫
dΘdΘ̂e

pγd
2 (tr(ĜG−ĝg)−2tr(ϕ̂⊤k)+tr[(Ĝ+λI2k)

−1ĝ]+1⊤
k∗ ϕ̂

⊤(Ĝ+λI2k)
−1ϕ̂1k∗)

× e

dpγα

2σ2

(
ρtr(2b⊤m−b⊤(Q+βVAE)b)+tr(AG)+tr((I2k−Ag)−1(AGA+BB⊤)g)+σ2∑

k log
e(Qkk+βVAE)

βVAE

)
In the end, from the identity:

lim
p→+0

logEDZ(D, γ)p

p
,

one obtains

f =
1

2
extr
G,g,ψ

Ĝ,ĝ,ψ̂

{
tr
[
gĝ + 2ψψ̂ −GĜ

]
− tr

[
(Ĝ+ λ)−1ĝ

]
− 1⊤

k∗ ψ̂
⊤(Ĝ+ λ)−1ψ̂1k∗

+ α

(
tr

[
AG−

√
ρ

η
ψ⊤B + (I2k −Ag)−1(AGA+BB⊤)g

]
+

k∑
l=1

log
e(Qll + βVAE)

βVAE

)}
(20)

where extr indicates taking the extremum with respect to Θ. This concludes the whole proof of
Eq. (12).

D.3 FREE-ENERGY DENSITY k = k∗ = 1

When k = k∗ = 1, a part of the exponential function of Eq. (12) can be reduced as

− 1

2

(
tr[(Ĝ+ λ)−1ĝ] + 1⊤

k∗ ψ̂
⊤(Ĝ+ λ)−1ψ̂1k∗

)
= − (λ+ Ê)(m̂2 + χ̂) + (λ+ Q̂)(b̂2 + ζ̂)− 2R̂(m̂b̂+ ω̂)

2((Q̂+ λ)(Ê + λ)− R̂2)
. (21)

Next, we evaluate the energy term. Initially, when k = k∗ = 1, the following expression holds:

G
1
2 =

1√
Q+ E + 2

√
QE −R2

(
Q+

√
QE −R2 R

R E +
√
QE −R2

)
,

(I2k +Ag)−1 =
1

ηζ(Q− ηχ+ βVAE) + (ηω − 1)2

(
ηζ(Q+ βVAE) + 1− ηω ηζ
η(χ− (Q+ βVAE)ω) 1− ηω

)
.

By substituting these into the formula for energy term in Eq. (12), the following free energy can be
derived:

f = extr
Θ

{
− 1

2
(ĜG− gĝ) + ψ̂⊤ψ +

(λ+ Ê)(m̂2 + χ̂) + (λ+ Q̂)(b̂2 + ζ̂)− 2R̂(m̂m̂+ ω̂)

2Ĝ

− α

2

(
(Q− ηχ+ βVAE)(ρb

2 + ηE)− ηζ(ρm2 + ηQ)

G

+
2(ηω − 1)(ρmb+ ηr)

G
+ βVAE log

e(Q+ βVAE)

βVAE

)}
. (22)
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From the free-energy gradient, the extremum conditions are explicitly given by

Q =
(Ê + λ)Ĥ

Ĝ2
− b̂2 + ζ̂

Ĝ
, E =

(Q̂+ λ)Ĥ

Ĝ2
− m̂2 + χ̂

Ĝ
,

R = − R̂Ĥ
Ĝ2

+
m̂b̂+ ω̂

Ĝ
,

m =
m̂(Ê + λ)− b̂R̂

Ĝ
, m̃ =

m̂(Ê + λ)− m̂R̂

Ĝ
,

χ =
Ê + λ

Ĝ
, χ̃ =

Q̂+ λ

Ĝ
, ω = − R̂

Ĝ
,

Q̂ = α

(
βVAE

Q+ βVAE
+
ηQ+ b2ρ− η2χ

G
− ηζH

G2

)
,

Ê = αη

(
Q− ηχ+ βVAE

G

)
, R̂ = αη

(
ηω − 1

G

)
,

χ̂ = αη

(
G(ηE + b2ρ)− ηζH

G2

)
,

ζ̂ = αη

(
G(ηQ+m2ρ)− ηχH

G2

)
,

ω̂ = αη

(
−G(ηR+mbρ) + (ηω − 1)H

G2

)
,

m̂ = αρ

(
ηmχ− b(ηω − 1)

G

)
,

d̂ = −αρ
(
d(Q− ηχ+ βVAE) +m(ηω − 1)

G

)
,

where

Ĝ = (Q̂+ λ)(Ê + λ)− R̂2

G = ηζ(Q− ηχ+ βVAE) + (ηω − 1)2

Ĥ = (λ+ Ê)(m̂2 + λ) + (λ+ Q̂)(d̂2 + ζ̂)− 2R̂(m̂d̂+ ω̂),

H = (d2ρ+ ηE)(Q− ηχ+ βVAE)− ηζ(m2ρ+ ηQ) + 2(ηR+mdρ)(ρω − 1).

Thus, the signal recovery error and other summary statistics can be evaluated by numerically solving
the self-consistent equations.

D.4 DERIVATION OF CLAIM 6.1

Case: k = k∗ = 1. From the expansion in the first order term with respect to α, one obtains the
following solution from Eq. (12):

Q = E = R = χ = ζ = ω = m = b = 0 (ρ+ η ≤ βVAE), (23)

Q = η + ρ− βVAE, E =
η + ρ− βVAE

(η + ρ)2
, χ = ζ = ω = 0, (24)

m =
√
η + ρ− βVAE, b =

η + ρ− βVAE

η + ρ
(ρ+ η > βVAE). (25)

Note that one can evaluate limγ→∞ EDEp(W,V,D;D,γ)εg(W,W
∗) as ρ − 2

√
ρm + Q. Thus, one

obtains

ϵg =

{
ρ−

√
η + ρ− βVAE(2

√
ρ−

√
η + ρ− βVAE) (ρ+ η ≤ βVAE)

ρ (ρ+ η > βVAE)
. (26)

The optimal condition for βVAE yields optimal value β∗
VAE = η.
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Case: General k = k∗. We next prove the generalization of the case k = k∗ > 1. The saddle-point
equations from Eq. (12) are expanded in the limit α→ ∞, yielding the following relationships:

(ψ)ls = O(α0), ∀l, s ∈ [k],

(G)ls = O(α0), ∀l, s ∈ [k],

(g)ls = O(α−1), ∀l, s ∈ [k],

(ĝ)ls = O(α−1), ∀l, s ∈ [k].

From these equations, we find that g = 0k×k and ĝ = 0k×k. Moreover, in this limit, the contribution
from regularization becomes negligible. Therefore, by setting λ = 0, the free-energy density can be
expressed as follows:

f =
1

2
extr

G,ψ,Ĝ,ψ̂

{
tr(GĜ)− 2tr(ψψ̂) + 1⊤

k ψ̂
⊤Ĝ−1ψ̂1k

+ α

(
tr
[
AG+ ρ

(
2b⊤m− b⊤(Q+ βVAE)b

)]
+
∑
l

log
e(Qll + βVAE)

βVAE

)}
.

From the saddle-point equations, the following relations are derived:

ψ = Ĝ−1ψ̂1k1
⊤
k , G = Ĝ−1ψ̂1k1

⊤
k ψ̂

⊤Ĝ−1, Ĝ = −αA,
From the relations, we find G = ψψ⊤. Using these relations, the free-energy density can be
represented as an extremum with respect to m and b:

f =
1

2
extr

m,b,m̂,b̂

{
− 2tr(mm̂⊤ + bb̂)− 1

αη
1⊤
k

(
m̂⊤(mm⊤ + βVAEIk)m̂+ 2b̂⊤m̂

)
1k

+ α

(
tr
[
ρ(2b⊤m− b⊤(mm⊤ + βVAE)b)

]
+
∑
l

log
e(m2

ll + βVAE)

βVAE

)}
.

From the saddle-point condition, the following relations are derived:

m̂ = − 1

αη
mm⊤m̂1k1

⊤
k + αρb(b⊤m− 1) + αdiag

({
mll

m2
ll + βVAE

})
,

b̂ = αρ((mm⊤ + βVAEIk)b−m),

m = − 1

αη

(
mm⊤ + βVAEIk

)
m̂1k1

⊤
k ,

b = − 1

αη
m̂1k1

⊤
k .

Considering the fact that in the data generation process, W ∗ = Ik∗ and n follows a standard Gaussian
distribution, it is reasonable to assume that W and V become diagonal matrices after learning as
α → ∞, i.e., the off-diagonal elements of Q and E become zero. Under this assumption, the
following can be derived from the saddle-point equations:

ml =
mlρ

βVAE + (m2
l b

2
l − 1)η + b2l (m

2
l ρ+ βVAE(η + ρ))

, ∀l ∈ [k]

bl =
ηρbl + (ml − b(m2

l + βVAE))ρ
(

βVAE

m2
l +βVAE

+ b2l (η + ρ)
)

η(βVAE − η + b2l (m
2
l + βVAE)(η + ρ))

, ∀l ∈ [k].

This system of equations admits both the posterior-collapse solution m = 0k, b = 0k and the
Learnable solution m =

√
ρ+ η − βVAE1k, b =

√
ρ+η−βVAE/ρ+η1k. Since these equations are

decoupled for each l, we focus below on analyzing the linear stability of the posterior-collapse
solution for a specific l. Linearizing around the posterior-collapse solution, we obtain the following:(

δml

δbl

)
=

ρ

βVAE − η

(
1 0
1/η 1

)(
δml

δbl

)
.

The condition where the Jacobian eigenvalue becomes 1 corresponds to the destabilized region. The
threshold, as in the case of k = k∗ = 1, is given by βVAE = ρ+ η.
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D.5 DERIVATION OF CLAIM 6.2

We first notice that rate and distortion can be expressed as

R = EDR(Ŵ (D), V̂ (D), D̂(D)) =
1

2

(
ρb2 + ηE +

βVAE

Q+ βVAE
− 1− log

βVAE

Q+ βVAE

)
, (27)

D = EDD(Ŵ (D), V̂ (D), D̂(D)) =
1

2

(
ρ+ η − 2(ρmb+ ηR) +Q

(
(ρb2 + ηE) +

βVAE

Q+ βVAE

))
,

(28)

respectively. Then, substituting Eq. (23) and (23) into Eq. (27) and Eq. (28), one can obtain

R =

{
1
2 log

η+ρ
βVAE

ρ+ η ≤ βVAE

0 ρ+ η > βVAE
,

D =

{βVAE

2 ρ+ η ≤ βVAE
ρ+η
2 ρ+ η > βVAE

.

From these equations, one obtains

R(D) =

{
1
2 log

ρ+η
2D 0 ≤ D < η+ρ

2

0 D ≥ ρ+η
2

.

E EXPERIMENT DETAILS

E.1 DETAILS ON REAL DATA AND VAES SIMULATIONS

This section provides detailed information on the experiment with real dataset and non-linear VAEs
as shown in Fig. 5. All experiments were conducted using a Xeon(R) Gold 6248 CPU with 26 threads
and a Tesla T4 GPU.

Preprocessing The MNIST (Deng, 2012) and Fashion MNIST (Xiao et al., 2017) dataset were
preprocessed by flattening the images into vectors and normalizing the pixel values by dividing each
value by 255 rescaled pixel.

Architecture For the MNIST and Fashion MNIST, we employed a multi-layer perceptron varia-
tional autoencoder (MLPVAE) implemented in Pytorch. The MLPVAE was designed to handle
input data of dimension 784, corresponding to 28 × 28 pixel images flattened into a single vector.
The encoder architecture comprised a linear transformation, Linear(784, 128), followed by
a ReLU activation function, and then two linear layers, Linear(128, 2), which output the
mean µ(z) ∈ R2 and logarithm of the variance log σ2(z) ∈ R2 of the latent space. The decoder
reconstructs the input by performing a linear transformation, Linear(2, 128), followed by a
ReLU activation function and a final linear layer, Linear(128, 784), to generate the output.

Training The MLPVAE model was trained using the mini-batch Adam optimizer (Kingma &
Welling, 2013), with a learning rate of 0.001, a weight decay of 0.0001, and a mini-batch size of 256.
The model was then trained for 30 epochs.

FID estimation To quantitatively evaluate the quality of images generated by the MLPVAE model
on the MNIST and Fashion MNIST datasets, we employed the Fréchet Inception Distance (FID)
(Heusel et al., 2017). The FID score is a well-established metric for assessing the similarity between
two sets of images, measuring the quality of generated images relative to real ones. It achieves this by
comparing the distributions of features extracted from an Inception v3 model (Szegedy et al., 2015)
for both real and generated images, with lower FID scores indicating higher similarity and better
image quality. For the FID calculation, we utilized torchmetrics.image.fid, which provides
an implementation of the FID computation.
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Figure 6: (Left) signal recovery error as a function of sample complexity α for fixed λ = 0 and
varying λ. (Middle) The summary statistics m with fixed λ = 0 for different βVAE. (Right) RD curve
for λ = 0 with various values of α. The dashed line represents the curve in the limit of infinite α.

We preprocessed images from both MNIST and FashionMNIST datasets to align with the input
requirements for FID calculation. This preprocessing included resizing the images to 299×299 pixels
and converting them to three-channel RGB format. Since MNIST and Fashion MNIST images are
originally in grayscale, we converted them to RGB by replicating the single grayscale channel three
times. Additionally, we normalized the images using the mean and standard deviation values typically
employed for pre-trained models. The FID calculation involved two primary steps. First, we prepro-
cessed both the real and generated images. The real images were sourced directly from the dataset,
while the generated images were produced by the trained MLPVAE model. We used 750 samples
each from the real and generated images to estimate the FID score. This sample size was determined
to be sufficient for obtaining a reliable estimate, ensuring robust and meaningful comparisons be-
tween the real and generated image distributions. Second, we computed the FID score using these
preprocessed images. We set the feature parameter to 64 in the FrechetInceptionDistance.
This parameter defines the number of features to extract from the images using the Inception network,
with 64 features providing a sufficient representation for accurate FID calculation while balancing
computational efficiency.

Noise strength estimation In our theoretical analysis, we assume SCM, i.e., described by proba-
bilistic PCA (Tipping & Bishop, 1999) for the data model, which forms the basis for our estimation
of the noise strength η. Given this assumption, we employs PCA to estimate η̂, which represents the
average variance of the reconstructed data after dimensionality reduction. For both the MNIST and
Fashion MNIST datasets, we follow a consistent procedure. We start flatten and normalize them.
Applying PCA to these preprocessed images allows us to identify the principal components that
capture the majority of the variance in the data. By examining the cumulative variance ratio, we
determine the number of principal components required to account for 80% of the total variance then
transform the data into the rest of 20%, bulk and reconstruct them. η̂ are estimated by the empirical
standard deviation of this reconstructed data in bulk.

F ADDITIONAL RESULTS

F.1 EVALUATION OF SIGNAL RECOVERY ERROR AND RD CURVE IN VAE WITHOUT WEIGHT
DECAY

This section investigates the signal recovery error and RD curve in the VAE without weight decay
when ρ = η = 1. Fig. 6 (Left) demonstrate the dataset-size dependence of the signal recovery error
εg under different βVAE with λ = 0. Fig. 6 (Middle) shows the dataset-size dependence of the
summary statistics m under varied βVAE with λ = 0. Similar to the results with λ = 1 in Sec. 6.1,
these results indicate that a peak emerges at α = 1, and the summary statistics m gradually decreases
when βVAE ≥ 2, leading to posterior collapse. It is important to note that posterior collapse occurs in
VAEs even at λ = 0 when βVAE = ρ+ η, as α approaches infinity because Claim 6.1 consistently
holds for any λ. Subsequently, Fig. 6 (Middle) demonstrates that the RD curve both for the large α
limit and for finite α at λ = 0. As observed with the RD curve at λ = 1 in Sec. 6.4, achieving the
optimal RD curve in regions of smaller distortion necessitates a large dataset.
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F.2 REPLICA PREDICTION AGAINST CIFAR10 AND CONVOLUTIONAL NEURAL NETWORKS

10 2 10 1 100 101 102 103

VAE

250
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D

= 5
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= 20

Figure 7: FIDs as a function of βVAE for
the CIFAR10 dataset and the CNN. The
error bars represent the standard devia-
tions of the results.

In this section, in addition to the experiments in Section
6.5, we present numerical results using a more realistic
setting with CIFAR10 color images (Krizhevsky, 2009)
and convolutional neural networks (CNNs). The evalua-
tion methods for FID follow the procedures outlined in
Section E.1.

CIFAR10 images were kept as 3-channel images
due to the use of convolutional neural networks.
Rescaling was performed in the same way as with
MNIST and FashionMNIST. We implemented a
convolutional VAE using Pytorch, specifically de-
signed to handle images with three channels. The
encoder architecture starts with a series of convolu-
tional layers: Conv2d(3, 32, kernel_size=4,
stride=2, padding=1) and Conv2d(32, 64,
kernel_size=4, stride=2, padding=1),
each followed by a ReLU activation function. The output is then flattened into a vector, which is
further processed by two linear layers, Linear(4096, 128), that produce the 128-dimensional
mean µ(z) and the 128-dimensional logarithm of the variance log σ2(z) of the latent space. The
decoder reconstructs the input by performing a linear transformation Linear(128, 4096), then
reshaping the result into a 3D tensor. This is followed by a series of transposed convolutional
layers: ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1)
and ConvTranspose2d(32, 3, kernel_size=4, stride=2, padding=1) to
generate the output.

Figure 7 presents the FID scores as a function of βVAE under various sample complexities α = 5, 10
, and 20. The errors represent the standard deviation across three seeds. These results suggest that, as
in the results obtained by the replica analysis, the optimal βVAE shifts toward smaller values as the
training data increases. Moreover, over around βVAE ≈ 2.62× 101, posterior collapse is observed,
with no change in performance for larger βVAE values. This observation supports the robustness of
our theoretical results, even for complex architectures like CNN-based VAEs.
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