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ABSTRACT

Training Deep Neural Networks (DNNs) places immense compute requirements
on the underlying hardware platforms, expending large amounts of time and en-
ergy. An important factor contributing to the long training times is the increasing
dataset complexity required to reach state-of-the-art performance in real-world
applications. To this end, we propose to reduce training runtimes by combin-
ing a subset of inputs in the training dataset via an interpolation operation. The
goal is for training on the interpolated input to achieve a similar effect as train-
ing separately on each the constituent inputs that it represents. This results in a
lower number of inputs (or mini-batches) to be processed in each epoch. However,
we find that naively interpolating inputs leads to a considerable drop in learning
performance and model accuracy. This is because the efficacy of learning on in-
terpolated inputs is reduced by the interference between the forward/backward
propagation of their constituent inputs. We propose two strategies to address this
challenge and realize training speedups with minimal impact on accuracy. First,
we reduce the impact of interference by exploiting the spatial separation between
the features of the constituent inputs in the network’s intermediate representations.
We also adaptively vary the weightage of constituent inputs based on their loss in
previous epochs. Second, we propose loss-based metrics to automatically iden-
tify the subset of the training dataset that is subject to interpolation in each epoch.
For ResNets of varying depth and MobileNetV2, we obtain upto 1.6× and 1.8×
speedups in training for the ImageNet and Cifar10 datasets, respectively, on an
Nvidia RTX 2080Ti GPU, with negligible loss in classification accuracy.

1 INTRODUCTION

The success of deep neural networks has led to their widespread application in several domains of
machine learning involving images (Krizhevsky et al., 2017), videos (Ng et al., 2015), text (Zhou
et al., 2015) and natural language (Goldberg & Hirst, 2017). However, this success has come at the
cost of rising dataset and model complexities. For example, the ImageNet-1K dataset (Deng et al.,
2009) contains over 1.2 million training images, while the larger ImageNet-21K dataset contains
around 14.2 million images. This is supplemented by a growth in model complexity (He et al., 2015;
Tan & Le, 2021) required to achieve improved performance. Together, these factors contribute to
the rapid increase in the computational requirements of DNN training, with the impact being felt
both monetarily (cost to train) and environmentally (CO2 emissions) (Strubell et al., 2019). A study
from OpenAI (Amodei et al., 2018) reports that training costs have been doubling every 3.5 months,
easily outpacing improvements in hardware capabilities.

Prior Efforts on accelerating DNN Training: Several methods have been proposed to accelerate
DNN training. We divide them into a few broad categories, such as improved optimization algo-
rithms (Kingma & Ba, 2015; Zhang & Mitliagkas, 2018), enabling the use of large-scale parallelism
(e.g., hundreds or thousands of servers) in DNN training (You et al., 2017a; Goyal et al., 2017; You
et al., 2017b), training on reduced-resolution inputs (Touvron et al., 2020; Tan & Le, 2021), training
at reduced precision (Sun et al., 2019), pruning to reduce the model size during training (Lym et al.,
2019; Huang et al., 2016), and instance skipping strategies (Jiang et al., 2019; Zhang et al., 2019).

InterTrain: Accelerating DNN Training with Input Interpolation: Complementary to previous
efforts, we propose the use of input interpolation to accelerate DNN training. Consider training
inputs x1, .. xN . An interpolation function F, is applied to x1, .. xN to produce a interpolated
input X . The interpolated input can be thought of as a point in the input space that combines
information from all of the constituent inputs that it represents. From the functional perspective,
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training on an interpolated input must produce a similar effect on the model as training on the
individual constituent inputs. On the other hand, from a computational viewpoint, interpolation
reduces the number of input samples that need to be processed during training. This reduction in
the effective size of the training dataset leads to fewer mini-batches each epoch, thereby resulting
in lower training time. Due to the nature of input interpolation, it is complementary to, and can be
combined with, the other approaches to accelerate training described above. In InterTrain, we adopt
computationally lightweight interpolation operators that have been utilized for a different purpose,
viz. data augmentation (Zhang et al., 2017; Yun et al., 2019), which we henceforth refer to as
LinAvg and RandPatch, respectively.

Realizing training speedups through input interpolation raises interesting questions, such as how
to train networks on interpolated samples, which samples to interpolate, etc. We observe that in-
discriminate application of interpolation leads to a considerable drop in learning performance and
model accuracy. Comparing the classification performance of networks trained with and without
interpolation, we find that the efficacy of learning on interpolated inputs is adversely impacted due
to interference between the processing of the constituent inputs within each interpolated input. To
preserve accuracy, we therefore propose techniques to mitigate this interference.

Due to the spatial locality preserving nature of the RandPatch interpolation operator on account of
how convolutions operate, we find that the network’s internal features preserve separation between
the constituent inputs within an interpolated input. However, this separation is no longer maintained
in the final network layers. Based on these insights, we propose split propagation of interpolated
inputs. The output of the final convolutional layer is separated into parts that pertain to each con-
stituent input, and these parts are processed separately (during forward and back propagation) by the
subsequent pooling and classifier layers of the network. We find that split propagation largely reme-
dies the interference between the constituent inputs within an interpolated input. In contrast, with
the LinAvg operator, spatial separation between the constituent inputs is not maintained. Here, we
mitigate the impact of interference through adaptive interpolation, where we vary the weights of
the constituent inputs based on their loss in previous epochs. Taken together, split propagation and
adaptive interpolation vastly improve the ability of the network to learn on interpolated inputs.

Additionally, we explore applying interpolation selectively, i.e., only for a subset of training inputs
in each epoch. The amenability of a training input to interpolation is measured using its classi-
fication loss. We find that inputs at the two ends of the loss distribution, i.e., with very low and
very high loss magnitudes, are amenable to interpolation. Hence, these inputs are interpolated those
with moderate loss are processed without interpolation. Low-loss inputs are interpolated because
their functional performance remains largely unaffected by interpolation. In contrast, we interpolate
samples with high loss because a considerable percentage of such samples are unlikely to exhibit im-
proved performance even without interpolation. For example, the ResNet50 network incurs nearly
24% Top-1 error after standard SGD training on the ImageNet dataset. A good fraction of training
inputs, which occupy the higher end of the loss distribution, remain incorrectly classified through
the end of training. Interestingly, interpolating such inputs allows the network to focus more on the
incorrect samples with moderate loss, that actually contribute to final accuracy. We hence design a
loss-driven metric to identify the training samples that are amenable to interpolation in each epoch.

Contributions: The key contributions of this work can be summarized as follows. To the best of
our knowledge, InterTrain is the first effort to reduce the complexity of DNN training by combining
inputs via interpolation. We propose two strategies to achieve runtime benefits from interpolation
while maintaining accuracy. First, we propose split propagation and adaptive interpolation to reduce
the impact of interference between the constituent inputs in an interpolated sample. Second, samples
are interpolated selectively in a loss-driven manner, i.e., a loss-based amenability metric determines
which samples are interpolated in epoch of epoch. It is worth noting that we add absolutely no
hyper-parameters on top of baseline SGD, and that the proposed method can be combined with
other training speedup techniques. For image recognition CNNs (including ResNet18/34/50 and
MobileNet) trained on the ImageNet and Cifar10 datasets, we demonstrate up to 1.6× and 1.8×
improvement in training time, respectively, for∼0.2% Top-1 accuracy loss on a Nvidia RTX 2080Ti
GPU.

2 INPUT INTERPOLATION: PRELIMINARIES
Input interpolation is an operation that takes multiple inputs and combines them into a composite,
or interpolated, input, which combines information from each of the constituent inputs.
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InterTrain utilizes two interpolation operators — LinAvg (Zhang et al., 2017) and
RandPatch (Yun et al., 2019). Let us consider inputs x1, .. xN that are vectors comprised of
scalar elements. In the case where the inputs are images, the elements represent their pixels. Both
operators combine the corresponding scalar element (pixel) from each of the constituent inputs to
produce an element of the interpolated input. The value of element j in the interpolated input can
thus be expressed as follows:

Xj = α1x1,j + . . . + αNxN,j (1)
where α1, . . . αN are in coefficients that add up to 1. The two interpolation operators differ in the
further constraints placed on the values of α1, . . . αN . For LinAvgα1, . . . αN are real-valued
constants belonging to the range [0, 1]. The interpolated input is thus a linear combination of the
constituent inputs with the relative values of α1, . . . αN determining the contribution from each
constituent input. In contrast, RandPatch allows only one among α1, . . . αN to have a value
of 1 for a pixel, while all others are set to 0 (i.e., the values are one-hot coded). Each pixel of
the interpolated input is thus exactly equal to the corresponding pixel from one of the constituent
inputs. Generally, contiguous elements in the interpolated input are selected from one randomly
chosen constituent sample. This is equivalent to selecting random patches from the constituent input
to form the interpolated sample. The interpolated input contains information from the constituent
inputs, in a ratio determined by the relative area of the random patches. In this work, we restrict
interpolation to two constituent input samples (N = 2) and combine them in a ratio of r : 1 - r with
r ∈ [0,1]. Thus, for LinAvg, α1 = r and α2 = 1 - r while for RandPatch, the ratio of number of
pixels with α1 = 1 and α2 = 1 is r/(1− r).
Consider constituent samples (x1, y1) and (x2, y2) interpolated to produce interpolated input X .
Here, y1 and y2 are the target labels of x1 and x2 respectively. The loss of the constituent input is
expressed using Equation 2, where Loss refers to categorical cross-entropy loss.

Loss(xi, yi) = Loss(X, yi) (2)

During training, the loss of the interpolated input, which takes into account the relative contributions
of each constituent input as given by the following equation, is minimized:

Loss(X) = r ∗ Loss(X, y1) + (1− r) ∗ Loss(X, y2) (3)

Input interpolation has previously been applied for data augmentation, wherein randomly selected
training input samples are combined through different interpolation operators (Zhang et al., 2017;
Yun et al., 2019; Verma et al., 2019; Kim et al., 2020) and added to the training set. Training
on the randomly combined input samples has a regularization effect, as the model is exposed to
new training samples in each epoch. These efforts are focused on improving generalization, often
achieved at the cost of increased training time. Specifically, the total number of input samples in each
epoch of training after interpolation remains the same. Further, in order to realize improvements in
accuracy, these techniques often require 2-3× more training epochs than baseline SGD (Yun et al.,
2019; Zhang et al., 2017; Kim et al., 2020).

3 InterTrain: ACCELERATING DNN TRAINING VIA INPUT INTERPOLATION

The key idea in InterTrain is to improve the overall training time by dynamically applying the
interpolation operators, LinAvg and RandPatch, on the training dataset D, to reduce the number
of samples in each epoch. However, naive interpolation, e.g., where random pairs of input samples
are interpolated in each training epoch to reduce the number of training samples by half, negatively
impacts classification accuracy (Fig. 1(a)). The following subsections discuss the two key strategies
that are critical to the overall success of InterTrain, namely, reducing the impact of interference
between constituent inputs and selective interpolation.

3.1 REDUCING IMPACT OF INTERFERENCE WHEN TRAINING WITH INTERPOLATED INPUTSS

In this subsection, we discuss the primary cause affecting the accuracy of training with naive interpo-
lation, i.e., interference between constituent inputs, and propose techniques to mitigate the accuracy
loss.

We begin by analyzing the ability of a network trained with interpolation to correctly classify
the constituent inputs of an interpolated sample. At different stages of training (different train-
ing epochs), we identify the set of training samples that the network classifies correctly without
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Figure 1: Classification performance with interpolation

interpolation. These inputs are
then interpolated in pairs (r = 0.5),
and the network accuracy with the
use of interpolation on these in-
puts is recorded. Five such runs
are conducted to allow for dif-
ferent random input combinations
and the results are averaged and
presented in Fig. 1. Surprisingly,
when interpolation is applied, the
network correctly classifies less
than half of the inputs that were correctly classified without interpolation (green and blue dotted
curves in Fig. 1(b)), even in the final epochs of training. On further investigation, it is found that
for many interpolated inputs, the network is able to correctly classify only one of the constituent
inputs. The golden label of the other constituent input often does not appear even amongst the Top-5
predictions made by the network (further quantitative details in Sec. 7.4). This leads to increased
loss for one of the constituent samples, consequently impacting training performance and the final
validation accuracy1. It is thus critical to develop techniques that effectively learn on all constituent
samples of an interpolated input. We next describe our approach to addressing this challenge.

Split Propagation: We identify two factors that contribute to the poor classification accuracy of
an interpolated input’s constituent inputs in the case of RandPatch interpolation. Due to the
random nature of the patch selected from a constituent input, it is possible to miss the corresponding
constituent inputs’ class object. Second, there may be interference between the features of the
constituent inputs when the network processes the interpolated sample. To design effective strategies
that improve overall classification performance, it is important to understand the individual effect
of each factor. We study the impact of the first factor by passing random patches from the inputs
through the network; however, instead of interpolation, random patches amounting to half the input
area are zeroed-out. As shown using the solid orange curve (ZeroPatch) in Fig. 1(b), the drop in
accuracy is only ∼16%, and is significantly lower compared to actual interpolation. This indicates
that it is the interference between the constituent inputs that is the primary factor causing degradation
in classification performance.
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Figure 2: Training Interpolated Inputs

Examining the intermediate representations of the network while processing interpolated inputs
sheds some light on this interference. By virtue of the nature of convolutions, the spatial separa-
tion between constituent inputs in the interpolated input is maintained through many layers of the
network. For example, in Fig. 2, the right half of the features in the final convolution layer’s output
pertain to the right half of the interpolated input. The spatial distinction between the features is
maintained until the last convolutional layer, but is lost after the averaging action of the final pool-
ing layer. As a result, we observe that the fully connected layer correctly classifies only one of the
constituent inputs.

To aid the network in classifying both constituent inputs correctly, we propose split propagation of
constituent features after the final convolution layer. As shown in Fig. 2, we identify the region in
the final convolutional layer’s output maps pertaining to each constituent input, and pass the features
separately through the remaining layers of the network. Both constituent inputs of interpolated sam-

1(Zhang et al., 2017; Yun et al., 2019) resolve this issue by exposing the constituent inputs twice in each
epoch through two different interpolated inputs. While this improves accuracy, it defeats our objective of
improving training runtime
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ples are now classified correctly, leading to a significant improvement in classification performance
(solid blue curve in Fig. 1(b)). During back-propagation, the output errors of each constituent input
are propagated separately until the average pooling layer. The error tensors obtained at the input
of the average pooling layer are then concatenated and propagated backwards across the rest of
the network. The classification loss for the constituent inputs improves, thereby improving overall
validation accuracy (Fig. 1(a)). We note that the split propagation of the constituent inputs can be
performed in parallel. Thus, the runtime overheads of this scheme are negligible, accounting for <
3% of overall training time.

Adaptive Interpolation: Unlike RandPatch, the LinAvg operator averages each element of the
constituent inputs prior to processing the network. Therefore, the network’s internal representations
do not exhibit any spatial separation between the constituent inputs. We thus devise alternative
strategies to mitigate the impact of inter-input interference. It appears from Fig. 1(a) that the val-
idation accuracy with LinAvg is even lower compared to RandPatch , due to a slower rate at
which training loss improves for the interpolated inputs. Naturally, a simple boost in performance
can be achieved by atleast improving the loss for one of the constituent inputs of the interpolated
input. We thus adapt the weight (r) of constituent inputs so as to favour the more difficult input, as
identified by the loss in the previous epoch. Specifically, as shown below, we set r as the ratio of the
losses of the constituent samples in the previous epoch. As seen in Fig. 1(a), this provides a boost in
classification accuracy.

rE+1 =
Loss of constituent input 1 in epoch E
Loss of constituent input 2 in epoch E

Note that there is still some gap between the accuracy with and without interpolation even after the
use of split propagation and adaptive interpolation, which we address next.

3.2 SELECTIVE INTERPOLATION

We explore a second strategy, selective interpolation, to further improve accuracy when training
with interpolated inputs. Here, the general principle is to dynamically identify a subset of the
training dataset in each epoch for which interpolation does not have a negative impact on overall
classification performance. We achieve this through the design of a loss-based amenability metric
that determines, for each epoch, the subset of samples Sint that can be interpolated in subsequent
epochs. Samples that are not amenable to interpolation are added to set SnoInt. The training dataset
is thus formed using samples in SnoInt as is, and interpolating pairs of samples in Sint.
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Figure 3: Overview of Selective Interpolation

Overview: The proposed selective interpolation strategy consists of three steps as shown in Fig. 3.
At every epoch, the reduced dataset is divided into mini-batches and fed to the network. The net-
work performs the forward and backward passes on each mini-batch. Once the forward pass for a
particular mini-batch is complete, the loss of each constituent input is computed. This is used to de-
termine the amenability of each constituent input to interpolation in the next epoch E+1, subsequent
to which it is added appropriately to Sint or SnoInt. Finally, the batch-sampler forms mini-batches
for the epoch E+1 by randomly drawing samples from either Sint or SnoInt.

The first and the third steps are straight-forward. In the following sub-section, we elaborated on the
second step, i.e., determining the amenability of a sample to interpolation, in greater detail.
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3.2.1 EVALUATING AMENABILITY TO INTERPOLATION IN EPOCH E

A suitable loss-based amenability metric must estimate the subsets Sint and SnoInt every epoch,
such that no negative impact on accuracy is suffered. We design such a metric by studying trends in
the loss of a sample prior to and after interpolation, at different stages of the training process.

Consider models trained with LinAvg and RandPatch at three different training epochs as shown.
At each selected epoch, we compute theL1 difference of the loss of every sampleAwith and without
interpolation, i.e., lossint(A) and loss(A) respectively. lossint(A) is computed using Equation 2.
We observe that lossint(A) deviates and increases further away as loss(A) increases, consistently
across the benchmarks analyzed for both operators (Fig. 4(a) depicts the same for RandPatch). In
other words, the graph indicates that as loss(A) increases, its amenability to interpolation decreases.
Furthermore, we inspect the samples in the low loss regime prior to interpolation, and find that a
majority are correctly classified. From Fig. 4(b) for the RandPatch operator it is seen that their
accuracy is reasonably maintained after interpolation as well.
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Figure 4: Analyzing amenability to interpolation

Hence, for samples that are not interpolated in epoch E, we determine their amenability to inter-
polation in the next epoch based on the particular region of the loss distribution it belongs to2. As
illustrated in Fig. 4(c), the loss distribution is divided into three regions that utilize a different cri-
teria for gauging amenability. We now discuss the criteria for each region, and the conditions for
continuing interpolation in subsequent epochs.

Region 1 corresponds to the area in the loss distribution where a majority of the correctly classified
samples are located. From Fig. 4(b) we know that the loss, and to a certain extent the classification
accuracy of such samples remains largely unaffected by interpolation and are hence interpolated
aggressively. Next, we consider the portion of the loss distribution occupied by the incorrect samples
and divide this space into two regions. Region 2 comprises of incorrect samples with moderate loss.
To avoid any negative impact on accuracy, we avoid interpolating these samples. Moving on to
Region 3, these are samples the network finds very difficult to classify as characterized by their high
loss magnitudes. We find that the training effort can be reduced on samples that consistently occur
in Region 3 by interpolating them, as they are unlikely to contribute to final classification accuracy.

The separations in the loss distribution are realized using simple linear clustering techniques that
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Figure 5: Efficacy of threshold Lmid

correlate the loss of a training sample in some epoch E to
classification accuracy, based on trends in previous epochs.
Let Lcorr and Lincorr represent the running average of the
correct and incorrect samples in SnoInt respectively (cal-
culated from epoch 0 to E-1), and let Lmid denote the av-
erage of the two quantities, i.e.,

Lmid = 0.5 ∗ (Lcorr + Lincorr) (4)

Lmid acts as a boundary between the correct and incorrect
samples, effectively creating two clusters whose centroids
are given by Lcorr and Lincorr. Thus, samples with loss
less than Lmid in epoch E can be identified as Region 1
samples, as they are likely to be correct. Fig. 5 plots the efficacy of Lmid across different epochs

2In Sec. 7.5, we find that classification loss does not change rapidly across epochs. Sample amenability in
epoch E+1, can thus be determined based on classification loss in epoch E
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(fraction of correct inputs under Lmid). As desired, a majority of the correct samples (> 95%)
fall in Region 1, while only including a negligible fraction of incorrect samples (< 10%). In fact,
we find that interpolating correct samples with loss > Lmid has an adverse effect on accuracy, as
they represent outliers in the distribution. Furthermore, samples with loss greater than Lincorr in a
particular epoch are in the upper percentile of the loss distribution of the incorrect samples. Lincorr

can hence used to create Region 2 and Region 3 as shown. We note that loss thresholds of better
quality can potentially be identified using other techniques, such as by introducing hyper-parameters.
However, tuning these hyper-parameters for each network separately is a costly process, diminishing
the runtime benefits achieved by reducing training complexity.

We will now discuss the amenability criteria designed for samples belonging to Regions 1 and 3.

Amenability Criteria for Region 1: Consider a sample A belonging to Region 1 in epoch E, i.e.,
LossA < Lmid. From Figure 4(b) it is known that samples in Region 1 are likely to be correctly
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classified prior to interpolation. We interpolate such samples
as long as their loss does not exceed Lmid at some later epoch
E

′
, i.e., likely to be classified incorrectly. After epoch E

′
,

they are shifted to SnoInt. Fig. 6 illustrates the temporal vari-
ation in the number of samples that are in Sint, and from
Region 1 of the loss distribution. As can be seen, the num-
ber of such samples increases across epochs. This is because
as epochs progress classification accuracy improves, thereby
resulting in more samples having loss below Lmid, i.e., be-
longing to Region 1. The graph also depicts the fraction of
samples that deflect to SnoInt every epoch, which is a very
small fraction of the samples that are interpolated. This justi-
fies the design of the amenability rule for Region 1.

Amenability Criteria for Region 3: Samples in Region
3 have high loss (loss > Lincorr), and are generally very difficult to classify by the network even
if they are trained without interpolation. In fact, we observe that a considerable fraction of samples
that consistently occur in Region 3 across epochs remain incorrect at the end of the training process.
Let I denote the set of such samples that are incorrect when training concludes. We plot a histogram
of the number of epochs samples in I occupy Region 3 across training in Fig. 7(a). Clearly, it is
observed that over half the samples in I consistently occur in Region 3 for over 70% of the training
process. It can thus be argued from a practical runtime efficiency perspective that training effort on
such samples can be reduced using interpolation.
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Figure 7: Loss dynamics of samples in set I and set C

Some challenges however
persist. Essentially, we
cannot naively interpo-
late all samples in Re-
gion 3. Furthermore, clas-
sification statistics evolve
during training rendering
it difficult to determine
which samples to inter-
polate at earlier epochs,
without negatively affect-
ing final classification ac-
curacy. Consider set C, which comprises of samples that are correctly classified at the end of train-
ing. In Fig. 7(b), it is seen that around 4% of the samples in C occur in Region 3 for over 60% of the
training process, with their classification accuracy improving only in the later stages of training. We
thus stipulate criteria to identify the desired subset of Region 3 samples, and interpolate these only
for some epochs. In addition to belonging to Region 3, if a sample’s loss increases over consecu-
tive epochs (i.e., become increasingly difficult) it is interpolated for the next epoch, ensuing which
it is brought back to SnoInt. In Fig. 8(b), we find that increasing the period of time k for which
the difficult samples must exhibit increasing loss and subsequently be interpolated, only marginally
improves the accuracy and runtime benefits. We hence use k = 1 for all our experiments thereby
eliminating our dependence on any hyper-parameters.
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The temporal variation in the fraction of Region 3 samples interpolated every epoch is de-
picted in Fig. 8(a). This fraction decreases across epochs, since several samples in Region 3
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Figure 8: Amenability for samples in Region 3

shift to Region 1 as accuracy improves. Inter-
estingly, interpolating difficult samples provides
∼ 0.2% boost in classification performance over
the overall validation set across all our bench-
marks, as opposed to training them without inter-
polation. We believe this has the effect of allow-
ing the network to focus on samples with moder-
ate loss, that are more likely to contribute to fi-
nal accuracy. Finally, we highlight the advantage
of interpolating such difficult samples instead of
skipping them in Sec. 7.8.

Determining sample amenability every epoch adds not more than 2% overhead in runtime on aver-
age. The proposed amenability criteria thus help us successfully realize selective interpolation, i.e.,
achieve a competitive runtime efficiency versus accuracy trade-off. In Sec. 7.7 we underscore the
efficacy of our criteria by comparing against different metrics.

4 EXPERIMENTAL RESULTS

In this section, we showcase the runtime benefits achieved by InterTrain across a suite of image-
recognition DNNs, viz. ResNet18, ResNet34, ResNet50 (He et al., 2015) and MobileNetV2 (Sandler
et al., 2018), for the ImageNet dataset (Deng et al., 2009). All experiments are conducted on a server
with 4 Nvidia RTX 2080Ti GPUs with the batch size set to 64 per GPU, unless otherwise mentioned.
We focus on the ImageNet results in this section. Our Cifar10 results, experimental methodology
details, and extensive quantitative comparisons and ablation studies are presented Section 7.

4.1 EXECUTION TIME BENEFITS

Table 1 presents the training performance of baseline SGD and InterTrain on different bench-
marks in terms of the Top-1 classification error and speed-up. On average, across all benchmarks,

Table 1: ImageNet

Network Training Strategy Top-1
Error

Speed-
Up

Baseline SGD 30.2% 1×
ResNet18 InterTrain-RandPatch 30.44% 1.51×

InterTrain-LinAvg 30.6% 1.32×
Baseline SGD 26% 1×

ResNet34 InterTrain-RandPatch 26.25% 1.54×
InterTrain-LinAvg 26.4% 1.37×
Baseline SGD 24.3% 1×

ResNet50 InterTrain-RandPatch 24.45% 1.56×
InterTrain-LinAvg 24.6% 1.41×
Baseline SGD 28.5% 1×

MobileNetV2 InterTrain-RandPatch 28.76% 1.52×
InterTrain-LinAvg 29% 1.3×

InterTrain interpolates nearly
48% and 68% of the train-
ing dataset per epoch with
LinAvg and RandPatch re-
spectively. As can be seen,
RandPatch achieves a
slightly superior trade-off than
LinAvg across all benchmarks,
achieving upto 1.6× reduction
in runtime compared to to the
baseline, while sacrificing only
∼0.2% loss in Top-1 accuracy.
This is primarily because interfer-
ence between constituent samples
is better mitigated through split
propagation, thereby resulting in
more inputs being interpolated.
Fig. 10 in Sec. 7.2 illustrates the validation curves for the ResNet benchmarks when trained with
InterTrain using the RandPatch operator and baseline SGD. InterTrain clearly outperforms the
baseline, consistently achieving better accuracy at iso-runtime across training.

4.2 QUANTITATIVE COMPARISON STUDY
We compare the performance of InterTrain against competing state-of-the-art methods, depicted in
Fig. 9. We consider representative works from different categories of techniques that broadly explore
input approximations for training acceleration, specifically (i) instance skipping strategies, and (ii)
training with reduced resolution. Additional comparisons against some model size reduction efforts
are provided in Sec. 7.10.

8



Under review as a conference paper at ICLR 2022

Instance Skipping: In these techniques samples that the network finds easy to classify, as identified
by low classification loss, are skipped during later epochs, thereby resulting in fewer mini-batches
as training proceeds. As a representative of instance-skipping, we specifically consider AutoAssist
(Zhang et al., 2019). Two issues are typically encountered by instance skipping techniques. First,
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Figure 9: Comparison against exist-
ing efforts

as no training is conducted on the samples that are skipped
every epoch, this subset is often a small, conservative frac-
tion of the training dataset. Second, additional overhead is
incurred in each epoch to determine this subset, as it is non-
trivial to estimate the most recent loss of samples that had
been discarded in previous epochs. InterTrain achieves bet-
ter model accuracy and runtime benefits as the network is
ultimately trained on every input in each epoch. This allows
us to effectively reduce the minibatches more aggressively
compared to instance skipping, while incurring negligible
overheads incurred to form Sint and SnoInt. Further, inter-
polation allows us to extract additional benefits by approxi-
mating training on Region 3 samples, which instance skip-
ping strategies struggle to leverage (Sec. 7.8). In Sec. 7.9
we show that even when certain overheads associated with
instance skipping strategies are overlooked, InterTrain still achieves a superior trade-off.

Reducing Input Resolution: Input resolution has a direct impact on training runtime, with the latter
increasing with input resolution. However, in FixRes (Touvron et al., 2020), it is found that smaller
inputs result in poorer activation statistics. To restore accuracy, several epochs of fine-tuning are
performed after baseline SGD, thereby affecting runtime savings. At similar runtime, we clearly
achieve better accuracy, as illustrated in Figure 9.

5 RELATED WORK

This section discusses related research efforts to accelerate DNN training.

Hyper-parameter tuning: Many notable algorithmic efforts are directed towards achieving training
efficiency by controlling the hyper-parameters involved in gradient-descent, notably the learning rate
and momentum. (You et al., 2017a; Akiba et al., 2017; Goyal et al., 2017; You et al., 2017b) propose
learning rate tuning algorithms that achieve training in less than an hour with no loss in accuracy,
when distributed to over hundreds of CPU/GPU cores.

Input and model size reduction during training: Training runtimes are proportional to the in-
put resolution, due to larger activations observed across the network. In (Touvron et al., 2020),
the authors propose fine-tuning strategies that enable training at reduced resolution, while minimiz-
ing the loss in accuracy caused due to smaller activation sizes. In contrast, model size reduction
investigates dynamically pruning (Yuan et al., 2020) or quantizing (Sun et al., 2019) a model dur-
ing training itself. Training a reduced-capacity model, or with lower-precision results in training
speed-ups. Taking a slightly different approach (Huang et al., 2016) proposes stochastically drop-
ping residual blocks on extremely deep networks such as ResNet-1202, not only for training runtime
benefits but also better accuracies due to improved gradient strength.

Instance skipping strategies : Recent research efforts have discovered that not all training samples
are required for improving loss minimization during SGD training (Jiang et al., 2019; Zhang et al.,
2019). That is, a sizable fraction of the samples can be skipped during several epochs, depending
on their impact on the classification loss evaluated during . This translates to a reduction in mini-
batches, providing considerable runtime benefits.

6 CONCLUSION
In this paper, we introduce a new approach to improve the training efficiency of state-of-the-art
DNNs by utilizing input interpolation. We propose InterTrain that comprises of two strategies to
achieve an acceptable accuracy versus speed-up trade-off. First, we propose split propagation and
adaptive interpolation to reduce the impact of interference between the constituent inputs in an
interpolated sample. Second, we apply interpolation selectively, i.e., only on a subset of the training
dataset every epoch. Across DNNs trained on the Cifar10 and ImageNet datasets, we achieve upto
a 1.8× and 1.6× improvement in runtime respectively for around 0.2% loss in Top-1 accuracy.
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R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019. URL http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf.

10



Under review as a conference paper at ICLR 2022

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and seg-
mentation. CoRR, abs/1801.04381, 2018. URL http://arxiv.org/abs/1801.04381.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp, 2019.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalakshmi
Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating point
(hfp8) training and inference for deep neural networks. In NeurIPS, 2019.

Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training. CoRR,
abs/2104.00298, 2021. URL https://arxiv.org/abs/2104.00298.

Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-test resolution
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7 APPENDIX

7.1 EXPERIMENTAL SETUP

This subsection describes the experimental setup used for realizing the baseline and proposed train-
ing schemes, on the benchmarks specified in Section 4 of the main paper. We conduct our exper-
iments on the complete training and test datasets of each benchmark, using the PyTorch (Paszke
et al., 2019) framework.

Baseline: We consider SGD training as the baseline in our experiments. The hyper-parameters used
in SGD training of each of the benchmarks are described below.
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ImageNet: For experiments in Section 4.1 we utilize a batch-size of 64 per GPU, for all benchmarks.
For the ResNet18, ResNet34 and ResNet50 benchmarks the initial learning rate set to 0.025. The
learning rate is decreased by 0.1 every 30 epochs, for a total training duration of 90 epochs, and the
weight decay is 4e− 5. The MobileNetV2 benchmark utilizes an initial learning rate of 0.0125. We
use a cosine learning rate decay schedule, as in (Li et al., 2019) for 150 epochs. The weight decay
is set to 4e− 5. All benchmarks use an input size of 224*224*3.

Cifar10: All Cifar10 experiments utilize a batch-size of 64. The Cifar10 benchmarks are trained
with an initial learning rate of 0.05 that is decayed by 0.1 every 10 epochs, across 90 epochs. The
weight decay is set to 5e− 4. All benchmarks utilize an input size of 32*32*3.

InterTrain: InterTrain uses the same learning rate, weight decay, and number of epochs as baseline
SGD, requiring no additional hyper-parameters. We use the same random seed for both our baseline
and InterTrain experiments. Results in Sec. 4.1 are reported by averaging over 3 different training
runs.

7.2 VALIDATION ACCURACY CURVES FOR IMAGENET

In this sub-section we illustrate the validation accuracy curves for InterTrain and compare the same
against baseline performance. Here, we have normalized the runtime to that of InterTrain on each
benchmark. Clearly, InterTrain achieves better accuracy for the same runtime across all epochs of
training. For example, in Fig. 10(b), we highlight that InterTrain completes epoch 30 far earlier than
baseline SGD.
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Figure 10: Validation Accuracy curves

7.3 EXPERIMENTAL RESULTS ON CIFAR10

Table 2: Cifar10

Network Training Strategy Top-1
Error

Speed-
Up

Baseline SGD 6.5% 1×
ResNet18 InterTrain-RandPatch 5.4% 1.74×

InterTrain-LinAvg 5.7% 1.69×
Baseline SGD 5.2% 1×

ResNet34 InterTrain-RandPatch 4.2% 1.78×
InterTrain-LinAvg 4.6% 1.71×

To underscore the wide applicability of InterTrain, we present our runtime and accuracy trade-off
achieved on the Cifar10 benchmarks in Table 2. Across our benchmarks, LinAvg achieves upto
1.7 × improvement in runtime, while RandPatch achieves a 1.8× runtime improvement. Both
techniques provide upto a 0.8-1% boost in accuracy, due to the imrpoved regularization provided
via interpolating samples.
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Figure 11: Top-5 classification accuracy of second constituent input

7.4 ANALYSIS OF TOP-5 ACCURACY WITHOUT INTERFERENCE REDUCTION

In Sec. 3.1 it is mentioned that the network is unable to detect both constituent inputs when interfer-
ence between them is not reduced. At most, the network detects only one of the constituent inputs,
with the second constituent rarely appearing in the Top-5 predictions made. We provide the Top-5
classification accuracy of the second constituent in Fig. 11 for the RandPatch operator, prior to
reducing interference - clearly, accuracy never exceeds 12%. This emphasizes the need for devising
strategies to reduce interference between the constituent inputs of a composite sample.

7.5 ANALYSIS OF LOSS ACROSS CONSECUTIVE EPOCHS

As mentioned in Sec. 3.2, we utilize the loss of a sample in epoch E to determine it’s amenability to
interpolation in epoch E+1. However, several mini-batches pass before a sample is trained again in
the next epoch. As the model undergoes many changes to its weights, it is possible that the loss of a
sample in epoch E might be quite substantially different from that in epoch E+1.

1.5

2.5

3.5

4.5

5.5

6.5

1 11 21 31 41 51 61 71 81

SGD Training Loss curve for 

ResNet34-ImageNet

Epochs →

Lo
ss

 →

Figure 12: Change in average loss across epochs

Fig. 12 plots the loss curve averaged across all training examples when trained with baseline SGD.
The loss appears to change rapidly only for the first few epochs, and later when the learning rate
changes. In other periods, changes in loss happen more gradually. We find that the same analysis
is generally applicable when samples are interpolated as well. This thus justifies using the loss in
epoch E to justify amenability in epoch E+1.

7.6 ABLATION STUDY

In this subsection we conduct an ablation analysis of InterTrain.

Contribution of key strategies: InterTrain uses two strategies to achieve an optimal accuracy ver-
sus runtime trade-off, i.e., reducing impact of interference between constituent inputs and selective
interpolation. Fig. 13(a) depicts the contribution of each strategy towards runtime savings, for the
RandPatch operator. The light blue markings indicate naive interpolation. Selective interpolation
automatically identifies a subset of training samples that can be interpolated every epoch such that
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Figure 13: Ablation analysis

classification accuracy is not impacted severely. However, if interference between the constituent
inputs is not mitigated, training performance on interpolated samples is poor (green markings). Con-
sequently, the selective interpolation strategy is forced to become conservative, identifying fewer
samples that can be interpolated every epoch without affecting accuracy severely. Reducing inter-
ference between the constituent inputs improves both accuracy by more than 1%, and speed-up by
10% (red markings).

Breakdown of selective interpolation: We breakdown selective interpolation by examining the
region of the loss distribution that provides the most benefits. From Fig. 13(b) (generated using
RandPatch) it is evident that Region 1 samples provide the bulk of our benefits on the ResNet18-
ImageNet benchmark, accounting for nearly 25% of the savings. This is because as training pro-
gresses, a majority of training samples fall in Region 1. Interpolating Region 3 samples, accounts
for additional 8% runtime savings.

7.7 ANALYZING EFFICACY OF AMENABILITY METRIC

As part of our key strategies to achieve a good accuracy versus runtime efficiency trade-off, we
propose selectively interpolating samples based on their amenability to interpolation in Section 3.2.
We take into consideration the region of the loss distribution where the sample occurs in epoch E
to appropriately decide whether the sample should be interpolated in the next epoch. Each region
differs based on the estimated impact interpolating a sample may have on accuracy. Consequently,
each region has its own criteria for gauging amenability for the next epoch.

In Table 3, we compare our proposed selective interpolation strategy against the following set of
rules to gauge amenability, using the RandPatch operator.

• First, we analyze the trade-off achieved when we interpolate inputs that were correctly
classified in previous epoch, instead of using Lmid as in Sec. 3.2. Essentially, only those
samples that are correct in epoch E are interpolated in the next epoch. We find that the
Lmid threshold (Row 1) achieves slightly better classification accuracy, as outlier inputs
with correct classification are avoided.

• Next, we compare against an average loss threshold, i.e., we calculate the running average
of the loss across all the samples in SnoInt. If a sample in epoch E has loss lower than
the running average, it is interpolated in the next epoch and vice-versa. As can be seen,
our Lmid threshold (Row 1) achieves better speed-ups for nearly the same classification
accuracy. Across epochs, classification accuracy improves and average loss reduces, often
with several correctly classified samples with loss above the average loss. This metric
thus loses the opportunity to approximate training effort on these these correctly classified
samples that are amenable to interpolation.

• Finally, we compare the efficacy of our Region 3 criterion. We observe the trade-off
achieved when all samples above Lincorr are interpolated, in addition to Region 1 ap-
proximations. Clearly, our proposed criterion attains better accuracy (Row 2).
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Table 3: Analyzing efficacy of our amenability metric

Benchmark Amenability Metric Top-1 err Speed-Up
Our Effort (Region 1 only) 24.56% 1.38
Our Effort (Regions 1 and 3) 24.45% 1.56

ResNet50 Threshold = Accuracy 24.80% 1.36
Threshold = Average Loss 24.50% 1.33
Region 1 and threshold = Lincorr for Region 3 25.14% 1.74

7.8 INTERPOLATING VERSUS SKIPPING DIFFICULT SAMPLES

In Sec. 3.2, we proposed the concept of interpolating difficult samples that consistently occur in
Region 3 of the loss distribution. These samples are likely to stay incorrect even at the final epochs
of training, and it is hence practical to reduce training effort on such samples. In this subsection,
we analyze the impact on accuracy and runtime if training effort was completely eliminated on such
samples, i.e., these samples are skipped for a few epochs, instead of interpolated.

We apply the same policy discussed in Sec. 3.2- if a sample in Region 3 of the distribution exhibits
increasing loss across k consecutive epochs, these samples are skipped for the next k epochs after
which they are trained without interpolation again. Table 4 highlights the accuracy versus runtime
trade-off achieved for different values of k. For a clearer comparison, we do not apply interpolation
in Region 1. Clearly, interpolating such samples is critical for achieving competitive accuracy.

Table 4: Comparing interpolation versus skipping Region 3 samples

Benchmark k Top-1 err
(SGD)

Speed-Up
(SGD)

Top-1 err
(Our Effort)

Speed-Up
(Our Effort)

1 24.05% 1.12 24.45% 1.08
ResNet50-ImageNet 2 25.41% 1.14 24.4% 1.1

3 25.74% 1.15 24.36% 1.11

7.9 COMPARATIVE ANALYSIS AGAINST INSTANCE-SKIPPING TECHNIQUES

In this sub-section, we further compare selective interpolation against selective skipping strategies.

In selective skipping strategies, a subset of the training dataset that can be skipped every epoch is
identified in a manner that does not impact accuracy. This results in fewer mini-batches every epoch,
thereby providing training runtime benefits. The samples discarded are typically those the network
finds easy to classify, and hence need not be included throughout training. In (Jiang et al., 2019),
the authors conduct forward propagation (FP) across all the training set examples every epoch.
At the end of FP, the loss of all samples are computed, and those in the lower percentile of the
loss distribution are skipped. Back-propagation (BP) is conducted only on the remaining samples.
(Zhang et al., 2019) alleviate the time required to perform FP on the easy samples, by using a light-
weight model to predict this subset every epoch- both FP and BP are now performed only on the
difficult samples. However, updating the light-weight model to match the evolving characteristics
of the main model trained incurs overhead.

As mentioned in Section 4, some drawbacks exist. First, the subset of samples that can be skipped is
often a small fraction of the dataset, so that accuracy is not affected. Second, additional overheads
are incurred in determining which samples to skip every epoch. We replicate instance selective
strategies and overlook one of the overheads, i.e., the overhead required to determine the samples
that can be skipped. Interestingly, we find that our proposed effort still achieves a superior runtime
versus accuracy trade-off.

Similar to (Jiang et al., 2019), we utilize FP to estimate the subset of easy samples every epoch.
Specifically, the loss of every sample computed after FP is compared against some threshold to
determine whether it can be skipped in the next epoch. We use Lcorr as the threshold, as Lmid

appears to severely impact accuracy. Importantly, we do not factor in the runtime to conduct FP on
samples that are discarded in the next epoch, akin to having a zero-cost oracle predict this subset.
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As shown in Tab. 5 for the ResNet50 network trained on the ImageNet dataset, our effort clearly still
achieves better accuracy and runtime savings.

Table 5: Comparing oracle-based skipping against our effort

Benchmark Training Strategy Top-1 err
(SGD)

Speed-Up
(SGD)

ResNet50-ImageNet Selective Interpolation 24.45% 1.56
Instance Skipping 25.12% 1.44

This can be chalked up to the fact that in InterTrain, some form of training is conducted across
all the samples in the dataset, resulting in better accuracy. In turn, this allows us to approximate
training effort on a larger fraction of samples (the green columns in Fig. 14 always remain shorter
than the yellow columns across all epochs). Furthermore, as discussed in the previous sub-section,
instance-skipping techniques are unable to leverage the classification performance and runtime bene-
fits accrued by skipping extremely difficult samples , i.e., Region 3 approximations. This experiment
underscores the importance of our effort towards accelerating DNN training. Interpolating a subset
of the training dataset every epoch thus provides a cheaper training alternative, without sacrificing
accuracy.
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Figure 14: Comparing oracle-based skipping against our effort

7.10 COMPARISON AGAINST ADDITIONAL EXISTING EFFORTS

In this subsection we compare InterTrain against some additional training acceleration techniques,
i.e., model size reduction techniques. We illustrate the same in Fig. 15.
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Figure 15: Comparison against existing efforts

We first analyze StocDepth (Huang et al., 2016), wherein the authors stochastically bypass residual
blocks by propagating input activations/error gradients via identity or downsampling transforma-
tions, thereby providing better runtime. However, the approach is targeted towards extremely deep
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networks, and incurs a noticeable accuracy loss on smaller networks such as ResNet50. (Yuan et al.,
2020) explores pruning during training by reducing the size of the weight and activation tensors in a
structured manner, providing speed-ups on GPU/TPU platforms. On complex benchmarks such as
ResNet50, such techniques incur a significant drop in accuracy.
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