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ABSTRACT

Gradient clipping is key mechanism that is essential to differentially private training
techniques in Federated learning. Two popular strategies are per-sample clipping,
which clips the mini-batch gradient, and per-update clipping, which clips each
user’s model update. However, there has not been a thorough theoretical analysis
of these two clipping methods. In this work, we rigorously analyze the impact
of these two clipping techniques on the convergence of a popular federated learn-
ing algorithm FedAvg under standard stochastic noise and gradient dissimilarity
assumptions. We provide a convergence guarantee given any arbitrary clipping
threshold. Specifically, we show that per-sample clipping is guaranteed to con-
verge to the neighborhood of the stationary point, with the size dependent on the
stochastic noise, gradient dissimilarity, and clipping threshold. In contrast, the
convergence to the stationary point can be guaranteed with a sufficiently small
stepsize in per-update clipping at the cost of more communication rounds. We
further provide insights into understanding the impact of the improved convergence
analysis in the differentially private setting.

1 INTRODUCTION

Federated learning (FL) is an essential distributed learning scheme where workers collaboratively train
a model without sharing their data (Acar et al., 2021; Kairouz et al., 2019; Karimireddy et al., 2019;
McMahan et al., 2016). One of the popular federated optimization methods is FedAvg (McMahan
et al., 2016), where locally trained models are averaged on a central server in a series of rounds.
However, existing works have shown that vanilla FedAvg is vulnerable to inference attacks as sensitive
information can be extracted from the learned model parameters (Carlini et al., 2018; Fredrikson
et al., 2015; Nasr et al., 2018; Melis et al., 2018). Therefore, ensuring the model parameters do not
reveal input data distribution has attracted considerable interest (Andrew et al., 2021; McMahan et al.,
2018; Choudhury et al., 2019; Wei et al., 2019; Geyer et al., 2017).

Since each training example can leave a footprint on the gradients (Nasr et al., 2018), one way to
mitigate the risk of information leakage is to bound the gradients (Andrew et al., 2021; McMahan
et al., 2018) via gradient clipping (Zhang et al., 2022; Koloskova et al., 2023). Two popular clipping
strategies in FL are per-sample clipping (Liu et al., 2022) and per-update clipping (McMahan et al.,
2018; Andrew et al., 2021; Geyer et al., 2017; Wei et al., 2019). In each local iteration, per-sample
clipping limits the norm of the mini-batch gradient. In contrast, per-update clipping limits the overall
local update in each round, which is the product of the stepsize and the sum of the mini-batch
gradients. Per-sample (when the batch size is 1) and per-update clipping are commonly used to
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achieve example-level (Abadi et al., 2016; Choudhury et al., 2019) and user-level (McMahan et al.,
2018; Geyer et al., 2017) differential privacy.

While tremendous efforts have been made to understand the influence of clipping on the convergence
of optimization algorithms (Zhang et al., 2020b; Koloskova et al., 2023; Zhang et al., 2020a; Mai
& Johansson, 2021; Zhang et al., 2022; Liu et al., 2022), existing methods often imply a specific
choice of c to guarantee convergence (Zhang et al., 2020b). To address this issue, Koloskova et al.
(2023) studied the convergence behavior for clipped mini-batch SGD under any arbitrary clipping
threshold on stochastic non-convex functions and established a tight convergence guarantee. However,
the impact on federated learning is not yet known. Besides, prior theoretical results usually rely
on uniformly bounded stochastic noise (Zhang et al., 2020b;a; Crawshaw et al., 2023; Liu et al.,
2022) and bounded gradients (Zhang et al., 2022) assumptions, which do not necessarily hold in
practice, especially in the training of deep neural networks (Gorbunov et al., 2020; Simsekli et al.,
2019; Krizhevsky et al., 2012). Moreover, a formal theoretical analysis comparing the convergence
behavior of these two commonly used clipping operations in federated learning remains unexplored.

In this work, we precisely characterize the impact of the two commonly used clipping techniques:
per-sample and per-update clipping, on the convergence of a popular federated optimization algorithm
FedAvg (McMahan et al., 2016), under the standard bounded variance σ2 (Koloskova et al., 2023)
and gradient dissimilarity ζ2 (Woodworth et al., 2020; Reddi et al., 2020) assumptions to include
heavy-tailed noise (Simsekli et al., 2019) and data heterogeneity scenarios (Kairouz et al., 2019).

We prove that per-sample clipping is guaranteed to converge to a neighborhood with the size dependent
on the stochastic noise σ, gradient dissimilarity ζ and the clipping threshold c. Specifically, the
assurance of attaining any desired level of accuracy can only be achieved by selecting a sufficiently
large value for the clipping threshold. This result is consistent and is an extension of the work
from Koloskova et al. (2023), which studied the convergence behavior of clipped mini-batch SGD in
a single worker. Conversely, given any arbitrary clipping threshold, per-update clipping can converge
to any accuracy level by choosing the appropriate stepsizes. We show that the main reason for the
different behaviors is the incorporation of an inner stepsize in per-update clipping. Consequently, one
can develop a better per-sampling clipping algorithm based on this insight.

Contributions: we summarize our main contributions as below:

• We rigorously analyze the impact of two popular clipping strategies: per-sample and per-update
clipping, on the convergence of FedAvg, under standard bounded variance and gradient dissimilar-
ity assumptions.

• We precisely characterize the impact of stochastic noise σ2 and data heterogeneity ζ2 on the
clipped FedAvg. Specifically, we show that per-sample clipping is guaranteed to converge to a
neighborhood of the stationary point, with the size being O

(
min(σ + ζ, σ2+ζ2

c )
)
. We provide

examples to show the tightness of the neighborhood size. On the other hand, given arbitrary
clipping threshold c, per-update clipping can converge to any accuracy by picking the inner
stepsize to be smaller than O

(
c√

τσ+τζ

)
where τ is the number of local steps.

• We extend our theoretical results into the differentially private setting where a stochastic noise
is injected into each step. We provide insights into understanding the impact of the σ and ζ
for determining the appropriate stepsize and clipping thresholds to achieve better privacy-utility
trade-off.

• We experimentally validate our theoretical statements under different levels of data heterogeneity.

1.1 RELATED WORK

Clipping in centralized learning: Clipping is a popular technique that can enhance the stability of
the optimization process (Dosovitskiy et al., 2020; Mai & Johansson, 2021; You et al., 2017; Pascanu
et al., 2012b;a; Steiner et al., 2021). Recently, numerous efforts have been made to understand
clipping theoretically. Inspired by the practical observations from DNN training, Zhang et al.
(2020b) proposed a new (L0, L1)-smoothness assumption and justified that gradient clipping can
accelerate the convergence of SGD. Zhang et al. (2020a) and Mai & Johansson (2021) then extended
the analysis to incorporate momentum methods for non-smooth functions. However, the above
theoretical results rely on a strong assumption, namely every stochastic gradient falls into a ball
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Table 1: Convergence rate of for non-convex function f : Rd → R, with L described the smoothness, given c
as the clipping threshold, η as the stepsize in per-sample clipping, ηl and ηg as the inner and outer stepsize in
per-update clipping, F0 := f(x0)− f(x⋆), τ as the number of local steps, n as the number of workers, R as
the number of communication rounds, and T := R · τ as the total number of iterations.

Algorithm Convergence Assumptions

Per-sample: mint∈[1,T ] E[||∇f(x̄t)||]
SGD Koloskova et al. (2023)
(single worker)

O
(√

F0

ηT +
√
ηL σ√

B

)
-

Clipped-SGD Koloskova et al. (2023)
(single worker)

O
(√

F0

ηT + F0

ηTc +
√
η(L0 + cL1)

σ√
B
+min(σ, σ2

c )
)

Assumption 1

LocalSGD Koloskova et al. (2020)
(n workers)

O

(√
F0

ηT +
√

ηL
n σ + ηL

√
τ2ζ2 + τσ2

)
Assumption 1,2

Clipped LocalSGD
(homogeneous Liu et al. (2022))

O
(√

F0

ηT +
√

ηL0

n σ + ηL0τσ

)
Assumptions 3, 4, 5

FAT clipping-PI
(β-moment Yang et al. (2022))

O
(√

F0

ηlηgT
+Gβc1−β + LηlτG

β
2 c1−

β
2 +

√
Lηlηg

n G
β
2 c1−

β
2

)
, β ∈ (1, 2] Assumption 7

Ours
(per-sample)

O

(√
F0

ηT
+

F0

ηcT
+

√
η(L0 + cL1)(σ2 + ζ2)

n

+ (L0 + cL1)ηmin
(
τ
√

σ2 + ζ2, c
)
+min

(
σ + ζ,

σ2 + ζ2

c

)) Assumption 1-3

Per-update: minr∈[1,R] E[||∇f(xr)||]
FedAvg Karimireddy et al. (2019)
(n workers)

O

(√
F0

ηlηgτR
+
√

ηlηgLσ2

n + ηlτLζ

)
Assumption 1,2

Clipped-FedAvg Zhang et al. (2022)
(per-update)

O

(√
F0

ηlηgτR
+ ηl

√
Lτ(σ2 + τζ2) +

√
ηlηgLσ2

n
+

√√√√G2
1

R

R∑
r=1

E[
1

n

n∑
i=1

(|αr
i − α̃r

i |+ |α̃r
i − ᾱr

i |)]

+

√√√√ηgηlLτG2
1

R

R∑
r=1

E[
1

n

n∑
i=1

(|αr
i − α̃r

i |+ |α̃r
i − ᾱr

i |)]

) Assumption 1, 4, 6

FAT clipping-PR
(β-moment Yang et al. (2022))

O

(√
F0

ηlηgτR
+ LηlτG+ τGβc−(β−1) +

√
Lηlτ2G1+βc1−β +

√
Lηgηl
n

(τGβc2−β), β ∈ (1, 2] Assumption 7

Ours
(per-update)

O

(
1c≥O(ηl

√
τσ+ηlτζ)

{√ F0

ηlηgτR
+

√
ηlηgτL

n
(
σ√
τ
+ ζ) + ηlτLζ +

ηlτ

c
(
σ2

τ
+ ζ2)

}
+

F0

cηgR
+ 1c≤O(ηl

√
τσ+ηlτζ){

σ√
τ
+ ζ}

) Assumption 1-3

4 Bounded gradient assumes ||∇Fi(x)|| ≤ G for all i ∈ [n] and x ∈ Rd.
5 Uniformly bounded noise assumes ||∇Fi(x)−∇fi(x)|| ≤ σ2 for all i ∈ [n] and x ∈ Rd.
6 Bounded dissimilarity assumes ||∇fi(x)−∇f(x)|| ≤ ζ2 for all i ∈ [n] and x ∈ Rd.
7 β-moment assumes E[||∇Fi(x)||β ] ≤ Gβ for all i ∈ [n] and x ∈ Rd, and it implies ||∇f(x)|| ≤ G.
8 αr

i := c
max(c,ηl||

∑τ
k=1

∇Fi(y
r
i,k

)||) , α̃r
i := c

max(c,ηl|| E[
∑τ

k=1
∇Fi(y

r
i,k

)]||) and ᾱr := 1
n

∑n
i=1 α̃

r
i .

with a radius of σ to the true (expected) gradients, which can hardly hold in many practical DNN-
based applications (Simsekli et al., 2019; Zhang et al., 2020c; Krizhevsky et al., 2012; Vaswani
et al., 2017). Therefore, Gorbunov et al. (2020) relaxed this by introducing bounded variance in
expectation to include heavy-tailed noise. Nevertheless, the convergence guarantee above usually
implies and requires a specific value of the clipping threshold c, meaning c must be tuned carefully
to achieve the suggested convergence. Tuning clipping threshold, however, may raise other privacy
concerns (Andrew et al., 2021). Therefore, Koloskova et al. (2023) provided a convergence guarantee
of using clipped SGD given any arbitrary clipping threshold to address this issue. In a stochastic
setting, they demonstrated that the clipping bias can hamper the convergence to the true optimum.

Clipping for privacy protection in FL: Recent works have shown that vanilla FL algorithms are
vulnerable to adversary attacks as it is possible to extract information from the participating users by
looking at the parameters of a trained model (Fredrikson et al., 2015; Carlini et al., 2018; Melis et al.,
2018). Therefore, providing a certain level of privacy guarantee is crucial Wei et al. (2019); Abadi
et al. (2016); McMahan et al. (2018). To make such promises, each data point (user) ’s maximum
contribution needs to be bounded (Bassily et al., 2019; Wang et al., 2018; Das et al., 2022; Amin et al.,
2019), which is usually achieved by projecting larger updates back to a ball of norm c using clipping.
Two popular clipping operations are per-sample clipping and per-update clipping. Per-sample clipping
clips the gradient of each data point to limit its influence on the model parameters, (Liu et al., 2022),
which can protect example-level privacy (Abadi et al., 2016). Per-update clipping restricts the local
model update (Geyer et al., 2017), which is the product between the sum of mini-batch gradient and
the stepsize (McMahan et al., 2016; Karimireddy et al., 2019; Acar et al., 2021). Per-update clipping
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is an essential tool for preserving user-level privacy (Geyer et al., 2017; Zhang et al., 2022; McMahan
et al., 2018), which provides stronger privacy guarantee than example-level privacy.

To theoretically understand the effect of clipping in the federated optimization, Zhang et al. (2022)
and Liu et al. (2022) presented the convergence guarantee of per-update and per-sample clipping,
requiring the bounded gradient assumption. Despite the success of these algorithms, the convergence
behavior of clipping in federated learning, especially the differences between different clipping
methods, has yet to be well explored. We aim to fill this gap in this paper.

2 PROBLEM FORMULATION

We formalize the problem as minimizing a sum of stochastic functions with only access to stochastic
samples:

f⋆ := min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
, fi(x) := Eξ∼DiFi(x, ξ),

where fi : Rd → R are distributed among n workers and Di is the distribution of data ξ on worker i.
For our theoretical results, we make the following assumptions.

We first assume bounded variance in expectation following Koloskova et al. (2023) to incorporate
heavy-tailed stochastic noise (Gorbunov et al., 2020) in Assumption 1. As data heterogeneity in
unavoidable in FL, we assume gradient dissimilarity following Woodworth et al. (2020); Reddi et al.
(2020); Yuan et al. (2016) in Assumption 2. If all the objective functions are identical (homogeneous
workers), fi = fj ,∀i, j, then the gradient dissimilarity is 0.

Assumption 1 (bounded variance). We assume that there exists a σ2 such that ∀x ∈ Rd, we have:

Eξ||∇Fi(x, ξ)−∇fi(x)||2 ≤ σ2 .

Assumption 2 (gradient dissimilarity). We assume there exist a ζ2, such that, ∀x ∈ Rd, we have:

Ei||∇fi(x)−∇f(x)||2 ≤ ζ2 .

We propose an adaptation of the (L0, L1)-smoothness assumption from Zhang et al. (2020b);
Koloskova et al. (2023); Zhang et al. (2020a) that is tailored to distributed setup as our smoothness
assumption can account for data heterogeneity and facilitate proof:

Assumption 3 (distributed (L0, L1)-smoothness). We assume there exists L0 and L1 such that {fi}
is (L0, L1)-smooth ∀x,y ∈ Rd with ||x− y|| ≤ 1

L1
:

||∇fi(x)−∇fi(y)|| ≤ (L0 + L1||∇f(x)||)||x− y|| . (1)

This assumption introduces a coupling of heterogeneity and smoothness of the function. Under
standard individual (L0, L1)-smoothness (Zhang et al., 2020b;a) and gradient dissimilarity, this
assumption is always satisfied. Similar to the non-distributed setting, Assumption 3 recovers the
standard L-smoothness from Nesterov (2018) when L1 = 0. When L1 > 0, Assumption 3 is weaker
than the standard L-smoothness assumption as it can include a group of simple and important
functions that do not necessarily satisfy global L-smoothness under any L, e.g. polynomial function
f(x) = x4. See Appendix A.1.1 for a discussion on the implication of Assumption 3.

3 ALGORITHMS AND CONVERGENCE RESULTS

In this section, we first describe the FedAvg algorithm (McMahan et al., 2016). FedAvg mainly
has two steps: local model updating on each worker and model aggregation on the server. FedAvg
initializes the server with a server model x. Then each participating worker receives a copy of the
server model x and performs τ steps of (stochastic) gradient descent (SGD). The updated local
models are then communicated to the server for aggregation, finishing one communication round.
This process is repeated for R rounds or until we have reached the target accuracy. However, it
has been observed that adversarial servers can extract sensitive information from the learned model
parameters (Carlini et al., 2018; Zhang et al., 2022; Fredrikson et al., 2015; Melis et al., 2018).
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Algorithm 1 Per-sample clipping
1: procedure PER-SAMPLE CLIPPING
2: Initialize stepsize η
3: for r = 1, . . . , R do
4: Send server model x to all clients
5: for client i = 1, . . . , n in parallel do
6: initialize local model yi ← x
7: for k = 1, . . . , τ do
8: gi ← min

(
1, c

||∇Fi(yi)||

)
∇Fi(yi)

9: yi ← yi − ηgi

10: end for
11: Communicate yi to the server
12: end for
13: x← x+ 1

n

∑
i(yi − x)

14: end for
15: end procedure

Algorithm 2 Per-update clipping
1: procedure PER-UPDATE CLIPPING
2: Initialize local and global stepsize ηl, ηg
3: for r = 1, . . . , R do
4: Send server model x to all clients
5: for client i = 1, . . . , n in parallel do
6: initialize local model yi ← x
7: for k = 1, . . . , τ do
8: yi ← yi − ηl∇Fi(yi)
9: end for

10: ∆i ← yi − x

11: ∆i ← min
(
1, c

||∆i||

)
∆i

12: Communicate ∆i to the server
13: end for
14: x← x+ ηg

1
n

∑
i ∆i

15: end for
16: end procedure

Therefore, we next describe two popular clipping methods, which are critical to regularize each user’s
contribution and thus facilitate the analysis of differential privacy.

3.1 PER-SAMPLE CLIPPING

Following Liu et al. (2022), we clip the mini-batch gradient at every local iteration (see Algo-
rithm1). Throughout this section, we denote M := maxt{||∇f(x̄t)||} and adopt the virtual sequence
definition x̄t := 1

n

∑n
i=1 yi,t with x̄t = xt when t mod (τ + 1) = 0 from Stich (2019). See

Appendix A.1.1 for the discussion of the M parameter and Appendix D for the proof.

Theorem I (per-sample clipping). Suppose functions {fi} satisfy Assumption 1 to 3. If we run
Algorithm 1 for T := R · τ steps with R communication rounds, τ local steps, clipping threshold c,
and stepsize η ≤ 1

14Lτ with L := L0 +min(c,M)L1 and M := maxt{||∇f(x̄t)||}, then it holds
that:

min
t∈[1,T ]

E||∇f(x̄t)|| ≤ O

(
F0

ηcT
+

√
F0

ηT
+

√
ηL(σ2 + ζ2)

n

+ ηLmin
(
τ
√

σ2 + ζ2, c
)
+min

(
σ + ζ,

σ2 + ζ2

c

))
,

(2)

where F0 := f(x0)− f⋆

The convergence criterion on the left-hand side, the minimum gradient norm, could also be replaced
with the average of the expected gradient norm of the virtual iterates. When there is no stochastic
noise and heterogeneity (σ2 = 0, ζ2 = 0), the first two terms control the convergence and can
decrease with the increasing number of iterations T . The third term indicates a linear speedup in the
number of workers (take square for both sides). The last bias term can decrease with a larger clipping
threshold assuming the σ2 and ζ2 are fixed and are larger than zero. We provide concrete examples
similarly to Koloskova et al. (2023) considering τ = 1 to illustrate that the neighborhood size is tight,

i.e., E ||∇f(x̄t)|| = Ω

(
min

(
σ + ζ, σ2+ζ2

c

))
, ∀t ≥ 1 together with the proof in Appendix B.

Comparison to the unclipped FedAvg: Under Assumptions 1–2 and standard L-smoothness
assumption, the unclipped FedAvg has the following convergence rate mint∈[1,T ] E||∇f(x̄t)|| ≤

O
(√

F0

ηT +
√

ηLσ2

n + Lη
√
τσ2 + τ2ζ2

)
. Comparably, the most notable difference is the bias term

O
(
min

(
σ + ζ, (σ2 + ζ2)/c

))
, which can decrease with increasing c. When c→∞, the radius is 0

as no gradients get clipped. (See Theorem IV in Appendix D for recovering FedAvg when c is large).

Corollary I. Suppose functions {fi} satisfy Assumption 1 to 3, if we add random Gaussian noise zi,t
to gi,t in Algorithm 1, such that zi,t ∼ N

(
0, σ2

DP/dId
)
, and run it for T := R · τ steps with stepsize
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η ≤ 1
14Lτ and L := L0 +ML1, and define F0 := f(x0)− f⋆, then we have:

min
t∈[1,T ]

E||∇f(x̄t)|| ≤ O

(
F0

ηcT
+

√
F0

ηT
+

√
ηL(σ2 + ζ2)

n
+ Lηmin

(
τ
√

σ2 + ζ2, c
)

+min

(
σ + ζ,

σ2 + ζ2

c

)
+

ηLσ2
DP

nc
+

√
ηL

n
σDP

)
.

(3)

Extension to privacy-preserving FedAvg: We extend our algorithm to make it suitable for pre-
serving privacy for each individual data point in some scenarios. Specifically, we update the local
model following yi ← yi − η(gi + zi) where zi ∼ N (0, σ2

DP/dId) and d is the dimensionality of
the parameters. When batch size is 1, this updating rule protects example-level privacy for each
client (Abadi et al. (2016)) and achieves local differential privacy. The updated convergence result is
shown in Corollary I. Compared to the convergence result from Theorem I, we have extra terms that
are dependent on the variance of the added Gaussian noise and are decreasing with a larger number
of clients n. See the privacy discussion in section 3.3 for the connection to centralized DP-SGD.

Privacy discussion We consider the scenario where the server might be malicious. Following Abadi

et al. (2016), the variance of the added noise σ2
DP needs to be Ω

(
c2d log(1/δ)T

N2ε2DP

)
to achieve example-

level (εDP, δ)-local differential privacy, where N := mini{|Di|} is the minimum number of data
points among all the clients and mini-batch size is one on each client. We require the definition of N
as the record that differs between the neighboring dataset is one example in the training data for each

client (Abadi et al., 2016). When Θ(σ2 + ζ2) is small, the optimal utility after T = Θ

(
τnN2ε2DP
d log(1/δ)

)
iteration is O

(
d log(1/δ)
nN2ε2DP

)
by choosing c = Θ

(√
d log(1/δ)
nN2ε2DP

)
and η = Θ(1/(τL)). We obtain

optimal iteration complexity T when τ = 1, which shows no benefits in doing multiple local steps
from the analysis. When Θ(σ2+ ζ2) dominates the convergence, we need to pick larger c and smaller
η to reach the optimal utility. See Appendix D.5 for a more detailed discussion and the proof.

3.2 PER-UPDATE CLIPPING

Per-update clipping aims to bound the influence of any user in FedAvg by clipping the model update
∆i The complete theorem with client sampling and its proof can be found in Appendix C.3. Through-
out this section, we assume L1 = 0 and let L := L0 (using the standard smoothness assumption) for
clarity of presentation. A complete version can be found in Theorem III in Appendix C.1.
Theorem II (per-update clipping). Under Assumptions 1 to 3, consider Algorithm 2 with stepsizes
ηl ≤ 1

32τL and ηlηgτL ≤ 1
10 . If c < O(ηl

√
τσ + ηlτζ), then after R rounds, it holds that:

min
r∈[1,R]

E[||∇f(xr)||] ≤ O

(
F0

cηgR
+

σ√
τ
+ ζ

)
, (4)

If c ≥ Θ(ηl
√
τσ + ηlτζ), let ηg ≥ 2

√
n and then it holds that:

min
r∈[1,R]

E[||∇f(xr)||] ≤ O

(√
F0

ηlηgτR
+ τLηlζ +

√
ηlηgτL

n

( σ√
τ
+ ζ
)

︸ ︷︷ ︸
FedAvg term

+
F0

cηgR
+

ηlτ

c

(σ2

τ
+ ζ2

)
︸ ︷︷ ︸

clipping term

)
.

(5)
where F0 := f(x0)− f⋆.
When the clipping threshold c is larger than Θ(ηl

√
τσ+ ηlτζ) (Eq.(5)), the exact convergence to any

accuracy ε can be achieved by choosing a sufficiently small ηl to reduce the clipping bias, which is in
contrast to Algorithm 1 where the convergence is only guaranteed with a sufficiently large clipping
threshold. However, when ηl > Θ

(
c√

τσ+τζ

)
(Eq.(4)), Algorithm 2 is only guaranteed to converge to

a neighborhood of a stationary point, with size Ω( σ√
τ
+ ζ). We illustrate that this neighborhood size

is tight with an example following Koloskova et al. (2023) given τ = 1 in Appendix B.

Comparison to the unclipped FedAvg. Apart from the additional clipping terms, Eq. 5 contains the

standard FedAvg terms (Karimireddy et al., 2019, Theorem V), except for
√

ηlηgτL
n ζ. We prove that
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it disappears as long as c is large enough such that c ≥ Θ(ηl
√
τσ + ηlτ

√
nζ) (see Appendix C.3 for

more details). Therefore, the convergence rates of unclipped FedAvg can be recovered as c→∞.

Extension to differentially private FedAvg. We here extend the convergence result to differentially-
private FedAvg (DP-FedAvg) that protects user-level local privacy(McMahan et al., 2018; Geyer
et al., 2017; Zhang et al., 2022). Before sending ∆i to the server, we add additional noise such that
∆i = ∆i + zi, where zi ∼ N (0, σ2

DP/dId). We summarize the convergence rate of DP-FedAvg in
Corollary II. Compared with Theorem II, DP-FedAvg has two additional terms that depend on the
privacy noise σ2

DP and are decreasing with larger number of clients.

Privacy discussion: Corollary III protects user-level privacy, where the record that differs between
neighboring dataset is the combination of all the training examples from a single client (Ponomareva
et al., 2023). Following Abadi et al. (2016), to achieve (εDP, δ)-differential privacy, the variance
of the added noise σ2

DP needs to be Ω(c2d log(1/δ)R/ε2DP) (full client participation). Compared
with Corollary I, σ2

DP does not depend on τ as clipping is performed every τ local steps. When
Θ(σ2/τ + ζ2) is small with relatively low privacy-budget, we obtain the optimal privacy-utility

bound O
(

d log(1/δ)
nε2DP

)
after running R = Θ

(
nε2DP

d log(1/δ)

)
rounds by choosing c = Θ

(√
d log(1/δ)

nε2DP

)
,

ηl = Θ( 1√
nτL

) and ηg = Θ(
√
n). Due to the more practical bounded variance assumption, our

optimal utility bound is the square of the standard local DP utility O(
√

d log(1/δ)
nε2DP

) which assumes
bounded gradient. Increasing n can linearly reduce the reached optimal error. Differently from
Corollary I, increasing local steps τ does not impact the number of rounds R to reach the optimal
utility trade-off. When Θ(σ2/τ + ζ2) is large, the utility error increases as σ and ζ increases. See
Appendix C.6 for detailed discussions and proofs. While Algorithm 2 can converge to any accuracy,
it has to pay the price for larger DP noise as σDP is proportional to R. Consequently, the overall
privacy-utility trade-off is no better than Algorithm 1 (N2 does not appear in the denominator due to
a stronger privacy notion).
Corollary II. Under Assumptions 1 to 3, consider DP-FedAvg with stepsizes ηl ≤ 1

32τL , ηlηgτL ≤
1
10 . Let F0 := f(x0)− f⋆. If c < O(ηl

√
τσ + ηlτζ), then after R rounds, it holds that:

min
r∈[1,R]

E[||∇f(xr)||] ≤ O

(
F0

cηgR
+

Lηg
cn

σ2
DP +

σ√
τ
+ ζ

)
. (6)

Suppose c ≥ Θ(ηl
√
τσ + ηlτζ). Let ηg ≥ 2

√
n. Then it holds that:

min
r∈[1,R]

E[||∇f(xr)||] ≤ O

(√
F0

ηlηgτR
+ τLηlζ +

√
ηlηgτL

n

( σ√
τ
+ ζ
)

︸ ︷︷ ︸
FedAvg term

+
F0

cηgR
+

ηlτ

c

(σ2

τ
+ ζ2

)
︸ ︷︷ ︸

clipping term

+

√
Lηg
nηlτ

σ2
DP +

Lηg
cn

σ2
DP︸ ︷︷ ︸

DP noise term

)
.

(7)

3.3 COMPARISON BETWEEN PER-SAMPLE AND PER-UPDATE CLIPPING

While per-update and per-sample clipping are designed to protect different levels of privacy, they
share some similarities from the pure algorithmic point of view as discussed below.

Special case τ = 1: Accuracy: when τ = 1, η = ηlηg , and cper_sample = cper_update/ηl given cper_sample
and cper_update as the clipping thresholds, the two algorithms are the same and the clipping bias for

both algorithm can be simplified as O
(
min

(
σ + ζ, ηl(σ+ζ)

cper_update

))
(see Appendix E for the proof and

the simplification of the convergence rate). Therefore, in this special case, we can adjust cper_sample in
per-sample clipping to reach any accuracy, which is essentially equivalent to the strategy of adjusting
inner stepsize ηl (adjusting the magnitude of the local updates before clipping) to reach any accuracy
in per-update clipping (Appendix E). Per-sample clipping recovers clipped mini-batch SGD:
When τ = 1, ζ = 0 and the mini-batch size is one on each client, Theorem I recovers Theorem
3.3 from Koloskova et al. (2023) by discussing the relation between c and σ. See Appendix E for

7
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the proof. Privacy-utility trade-off: When the mini-batch size is one on each client and ζ = 0,
Algorithm 1 and 2 with DP-noise are equivalent to the centralized DP-SGD Koloskova et al. (2023)
algorithmically (except that one algorithm uses two stepsizes). Note that the DP notion is slightly
different from before. See Appendix C.6 and D.5 for more details. In this case, we prove that

both algorithms achieve the same privacy-utility bound O
(

d log(1/δ)
N2

totalε
2
DP

)
with T = Θ

(
N2

totalε
2
DP

Ld log(1/δ)

)
iterations, where Ntotal being the total number of data points. Due to the use of the bounded variance
assumption 1, our utility bound is slightly worse (higher order) than existing works (Kifer et al.,
2012; Wang et al., 2018) which assume bounded gradient and prove the optimal utility bound as

O
(√

d log(1/δ)

NtotalεDP

)
.

Arbitrary choices of c: We can always adjust the inner stepsize ηl in per-update clipping to change
the norm of the model update ∆i := −ηl

∑
∇Fi(yi) such that it might not get clipped and can reach

any accuracy. However, we cannot adjust the norm of the mini-batch gradient in per-sample clipping
and thus have a chance of converging to the neighborhood (see Appendix B and E for examples).

Stepsize: When L1 > 0, we can use a larger stepsize η ≤ O (1/((L0 + cL1)τ)) when c < M in
Theorem I than in Theorem III as Theorem III requires the maximum norm of the gradient due to the
use of Assumption 3. More detailed discussions can be found in Appendix A.1.1.

More local steps τ : Compared to Algorithm 1, larger local step τ can reduce the influence of the
stochastic noise σ2 by a factor of 1

τ in Algorithm 2.

3.4 PRACTICAL IMPLICATIONS

In practice, Algorithm 1 and 2 are parallel from privacy perspective. Algorithm 1 limits the contri-
bution of (individual) training example on the client model update, whereas Algorithm 2 controls
the contribution of all the training examples from a client on the server model update. Therefore,
depending on the specific definition of neighboring dataset Ponomareva et al. (2023), we should
select different algorithm. We next discuss the practical implications based on our results. We
refer McMahan et al. (2018); Zhang et al. (2022); Liu et al. (2022); Yang et al. (2022) for an extensive
experimental study of the similar algorithms as we study in this paper.

Accuracy perspective: Suppose there is no DP noise. Theorem II suggests that a higher accuracy
can be achieved by picking a sufficiently small inner stepsize ηl ≤ O( c√

τσ+τζ
). As this can slow

down the training, one can pick ηg to be as large as Θ(1/(ηlτL)) to accelerate the training process.

For per-sample clipping, we need to set c ≥ Θ
(

σ2+ζ2

ε

)
to guarantee the convergence to ε-accuracy.

We refer to Appendix C.5 and D.4 where more explicit formulas of the stepsizes can be found.

Privacy perspective: We provide insights in understanding the impact of the stochastic noise σ2 and
ζ2 on the choices of stepsize and clipping threshold for obtaining optimal privacy-utility bound in
Appendix D.5 and C.6. While per-update clipping can converge to any accuracy by adjusting the
inner stepsize, it is no better than per-sample clipping in terms of the optimal privacy-utility trade-off
seeing that the added noise needs to proportional to the number of communication rounds.

Limitation The observations in Theorem II suggest that one can improve per-sample clipping by
incorporating both inner and outer stepsizes into Algorithm 1 so that the clipping bias can be reduced
by decreasing the inner stepsize Addtionally, both algorithms with DP noise can require the maximum
norm of the gradient for determining the stepsize, which can be less practical.

4 EXPERIMENTAL RESULTS

As the effect of stochastic noise has been thoroughly evaluated experimentally Koloskova et al. (2023),
we here mainly focus on demonstrating the impact of the data heterogeneity ζ2 on the convergence.
Our main findings are: 1) when the data heterogeneity is low, per-sample and per-update clipping
have similar convergence behaviour2) when the data heterogeneity is high, per-sample clipping can
converge to a neighborhood of the target accuracy. However, this neighbourhood size is reducing
as clipping threshold c increases 3) Per-update clipping can reach the target accuracy at the cost of
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Figure 1: The number of communication rounds to reach target accuracy ||∇f(xt)|| = 0.18 (dotted line in
(c)) using per-sample clipping. No.classes represents the number of classes in each worker. When the data
heterogeneity is high (a), we can hardly reach ε when c = 1.5. However, the neighborhood size O

(
ζ2/c

)
gets

smaller as we increase the clipping threshold and we can reach ε with larger clipping threshold. (c) shows that
the gap between when c→∞ and c = 1.5 does not decrease with larger R.
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Figure 2: The number of communication rounds to reach target accuracy ||∇f(xt)|| = 0.18 (dotted line in (c))
using per-update clipping. Given fixed clipping thresholds and high data heterogeneity (a), we require more
rounds to reach the target accuracy as the number of local steps increase. (c) shows that when the clipping
threshold is large, we can slowly arrive at the target accuracy eventually.

more communication rounds. See Appendix G for experimental setup and Appendix I for a more
complicated NN experiment on CIFAR10 dataset.

Experimental results: We tune the stepsize for all the experiments to reach the desired target
accuracy ε := ||∇f(xt)|| with the fewest rounds. We show the required number of communication
rounds to reach the target accuracy ε = 0.18 using per-sample clipping in Fig. 1 and per-update
clipping in Fig. 2. We observe that when the data heterogeneity is low (Fig. 1 (b) and Fig. 2 (b)), both
clipping operations can easily reach the ε accuracy. However, when the data heterogeneity is high
such that each worker only has images from a single class, comparably, we can hardly reach ε with
per-sample clipping when the clipping threshold is 1.50. (Fig. 1 (a)). The gap between when c = 1.5
and c → ∞ is clearly non-decreasing as shown in Fig. 1 (c). However, we can reach the target
accuracy with a larger clipping threshold. When we use per-update clipping, even when the clipping
threshold is small, we can slowly but eventually converge to the required ε accuracy (Fig. 2(a)).

5 CONCLUSION

In this paper, we have rigorously analyzed the impact of two popular clipping strategies: per-sample
and per-update clipping, on the convergence of FedAvg under any clipping threshold. Comparably, as
per-update clipping interacts with the stepsize, adjusting stepsize accordingly can lead to convergence
eventually, but at the cost of more communication rounds. We note that the conclusions drawn in this
paper are tied to the specific specifications of the procedures. It is possible that by introducing an
additional stepsize in per-sample clipping, a different trade-off between accuracy and convergence
rate can be achieved. Our work provide a better theoretical understanding of two clipping strategies in
federated learning. We have established a precise impact of data heterogeneity on the convergence of
clipping-based FedAvg. As preserving user privacy becomes more important, our work can facilitate
the analysis of differential privacy in federated learning and open up future directions for tackling the
unfavourable influence of data heterogeneity in the field of privacy-friendly federated learning.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

Bo Li, Mikkel N. Schmidt, and Tommy S. Alstrøm thank for financial support from the European
Union’s Horizon 2020 research and innovation programme under grant agreement no. 883390
(H2020-SU-SECU-2019 SERSing Project) and Pioneer Centre for AI, DNRF grant number P1.
Sebastian Stich thanks for partial financial support from a Meta Privacy Enhancing Technologies
Research Award 2022. The authors thank Anastasia Koloskova for the discussion.

REPRODUCIBILITY STATEMENT

We refer to Appendix G for the implementation of the two clipping methods as well as the hyperpa-
rameter choices and software. We refer to Appendix C and D for the detailed proof.

REFERENCES

Martín Abadi, Andy Chu, Ian J. Goodfellow, H. B. McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep
learning with differential privacy. Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and Venkatesh Saligrama.
Federated learning based on dynamic regularization. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=B7v4QMR6Z9w.

Kareem Amin, Alex Kulesza, Andres Munoz, and Sergei Vassilvtiskii. Bounding user contributions: A bias-
variance trade-off in differential privacy. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 263–271. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/
amin19a.html.

Galen Andrew, Om Thakkar, Hugh Brendan McMahan, and Swaroop Ramaswamy. Differentially private learning
with adaptive clipping. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=
RUQ1zwZR8_.

Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Thakurta. Private stochastic convex optimization
with optimal rates. CoRR, abs/1908.09970, 2019. URL http://arxiv.org/abs/1908.09970.

Nicholas Carlini, Chang Liu, Jernej Kos, Úlfar Erlingsson, and Dawn Song. The secret sharer: Measuring
unintended neural network memorization & extracting secrets. CoRR, abs/1802.08232, 2018. URL http:
//arxiv.org/abs/1802.08232.

Olivia Choudhury, Aris Gkoulalas-Divanis, Theodoros Salonidis, Issa Sylla, Yoonyoung Park, Grace Hsu, and
Amar Das. Differential privacy-enabled federated learning for sensitive health data. CoRR, abs/1910.02578,
2019. URL http://arxiv.org/abs/1910.02578.

Michael Crawshaw, Yajie Bao, and Mingrui Liu. EPISODE: Episodic gradient clipping with periodic resampled
corrections for federated learning with heterogeneous data. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=ytZIYmztET.

Rudrajit Das, Satyen Kale, Zheng Xu, Tong Zhang, and Sujay Sanghavi. Beyond uniform lipschitz condition in
differentially private optimization, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. CoRR, abs/2010.11929, 2020.
URL https://arxiv.org/abs/2010.11929.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, pp. 1322–1333, New York, NY, USA, 2015. As-
sociation for Computing Machinery. ISBN 9781450338325. doi: 10.1145/2810103.2813677. URL
https://doi.org/10.1145/2810103.2813677.

Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client level
perspective. CoRR, abs/1712.07557, 2017. URL http://arxiv.org/abs/1712.07557.

10

https://openreview.net/forum?id=B7v4QMR6Z9w
https://proceedings.mlr.press/v97/amin19a.html
https://proceedings.mlr.press/v97/amin19a.html
https://openreview.net/forum?id=RUQ1zwZR8_
https://openreview.net/forum?id=RUQ1zwZR8_
http://arxiv.org/abs/1908.09970
http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/1910.02578
https://openreview.net/forum?id=ytZIYmztET
https://arxiv.org/abs/2010.11929
https://doi.org/10.1145/2810103.2813677
http://arxiv.org/abs/1712.07557


Published as a conference paper at ICLR 2024

Eduard A. Gorbunov, Marina Danilova, and Alexander V. Gasnikov. Stochastic optimization with heavy-tailed
noise via accelerated gradient clipping. ArXiv, abs/2005.10785, 2020.

William H. Greene. Econometric Analysis. Pearson Education, fifth edition, 2003. ISBN 0-13-066189-9. URL
http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution
for federated visual classification. CoRR, abs/1909.06335, 2019. URL http://arxiv.org/abs/
1909.06335.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira,
Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B.
Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin
Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz
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A TECHNICALITIES

A.1 ASSUMPTIONS

Assumption A-1 (individual gradient dissimilarity). If Assumption 2 holds, we assume there exist ζ2i such that
∀x ∈ Rd:

||∇fi(x)−∇f(x)||2 ≤ ζ2i , ζ2max := max
i

ζ2i ≤ nζ2 .

Proof. According to Assumption 2, the maximum of gradient dissimilarity on a single worker is nζ2 when we
consider the gradient dissimilarity on the rest of n− 1 workers as 0. Therefore, ζ2max ≤ nζ2

Note that we use Assumption 2 throughout the proof. We only use Assumption A-1 when we demonstrate that
we can recover the convergence rate of the unclipped FedAvg when the clipping threshold is large.

Proposition 1 (Relation to standard (L0, L1)-smoothness Zhang et al. (2020b;a)). If Assumption 2 and the
standard (L0, L1)-smoothness assumption holds, such that ||∇fi(x)−∇fi(y)|| ≤ (L0+L1||∇fi(x)||)||x−y||
for all x ∈ Rd and ||x− y|| ≤ 1

L1
, then we have:

||∇fi(x)−∇fi(y)|| ≤ (L0 + L1||∇fi(x)||)||x− y||︸ ︷︷ ︸
standard(L0,L1)−smoothness

≤ (L0 + L1ζmax + L1||∇f(x)||)||x− y|| . (A.1)

Proof. According to Assumption 2, we have:

||∇fi(x)|| ≤ ||∇fi(x)−∇f(x)||+ ||∇f(x)|| ≤ ζmax + ||∇f(x)|| .

The first inequality uses triangle inequality. The second inequality uses Assumption A-1. Considering the
standard smoothness assumption from Koloskova et al. (2023); Zhang et al. (2020b) for every worker i:

||∇fi(x)−∇fi(y)|| ≤ (L0 + L1||∇fi(x)||)||x− y||
≤ (L0 + L1ζmax + L1||∇f(x)||)||x− y|| .

Proposition 2 (Implication of the distributed (L0, L1)-smoothness). If Assumption 3 holds, then for any
x,y ∈ Rd with ||x− y|| ≤ 1

L1
:

||∇fi(x)−∇fi(y)|| ≤ (L0 + L1||∇f(x)||)||x− y||

If the above assumption holds, then:

fi(y) ≤ fi(x) + ⟨∇fi(x),y − x⟩+ L0 + L1||∇f(x)||
2

||x− y||2 .

A.1.1 DISCUSSION ON THE IMPLICATIONS OF THE DISTRIBUTED (L0, L1)-SMOOTHNESS

Note that the standard (L0, L1)-smooth assumption (Zhang et al., 2020b;a) requires ||x − y|| ≤ 1
L1

for any
x,y ∈ Rd. Consequently, if we run the standard gradient descent without clipping: xt+1 = xt − η∇f(xt),
then it must hold that η =

||xt+1−xt||
||∇f(xt)|| ≤

1
L1||∇f(xt)|| for any t ≥ 0. Therefore, to guarantee convergence, the

stepsize has to satisfy

η ≤ 1

L0 + L1 maxt{||∇f(xt)||}
.

Therefore, setting the stepsize that depends on the maximum gradient norm is, in fact, necessary in some
scenarios. See also the discussion regarding (Zhang et al., 2020b, Assumption 4).

A.2 SOME TECHNICAL LEMMAS

Lemma 1. For any α > 0 and u ∈ Rd, the following holds:

−∇f(x)Tu = −α

2
||∇f(x)||2 − 1

2α
||u||2 + 1

2α
||u− α∇f(x)||2 . (A.2)
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Lemma 2 (triangle inequality). For arbitrary set of n vectors {vi}Ni=1 with vi ∈ Rd, the following holds:

||
N∑
i=1

vi||2 ≤ N

N∑
i=1

||vi||2 . (A.3)

||vi + vj ||2 ≤ (1 + α)||vi||2 + (1 + α−1)||vj ||2, ∀α > 0 . (A.4)

Lemma 3 (projection lemma Koloskova et al. (2023)). Given c as a constant and clipc(x) := min
(
1, c

||x||

)
x,

we have:
||clipc(x)− clipc(y)||

2 ≤ ||x− y||2 . (A.5)

Proof. clipping is a projection onto a convex set (ball of radius of c), and thus is Lipschitz operation with
Lipschitz constant with 1.

Lemma 4 (Implication of Assumption 3). If each function fi is (L0, L1)-smooth, then function f is also
(L0, L1)-smooth such that, ∀x,y ∈ Rd with ||x− y|| ≤ 1

L1
, we have:

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L0 + L1||∇f(x)||
2

||x− y||2 . (A.6)

Proof. If each function fi is (L0, L1)-smooth, we have:

fi(y) ≤ fi(x) + ⟨∇fi(x),y − x⟩+ L0 + L1||∇f(x)||
2

||x− y||2 .

Take the expectation w.r.t i, we have:

E[fi(y)] ≤ E[fi(x)] + ⟨E[∇fi(x)],y − x⟩+ L0 + L1||∇f(x)||
2

||x− y||2

≤ f(x) + ⟨∇f(x),y − x⟩+ L0 + L1||∇f(x)||
2

||x− y||2 .

B EXAMPLES FOR ILLUSTRATING THE NEIGHBORHOOD SIZE IS TIGHT

We present examples with considering the gradient dissimilarity ζ given τ = 1 to illustrate the neighborhood
size is tight similarly as Koloskova et al. (2023) in the following sections.

B.1 PER-SAMPLE CLIPPING NEIGHBORHOOD SIZE

We here first provide an example that illustrates the neighborhood size is tight for per-sample clipping, i.e.,
E||∇f(x̄t)|| = Ω

(
min

(
σ + ζ, σ2+ζ2

c

))
,∀t ≥ 1 and show the proof.

Example 1 (similar to Koloskova et al. (2023)). Scenario 1 (ζ > 0, σ = 0, τ = 1): Case 1: For any
ζ > 0, c < 5

4
ζ, there exists a function f(x) with heterogeneity ζ2 such that there exists a fixed point x⋆ 1of

Algorithm 1 with ||∇f(x⋆)|| ≥ 1
20
ζ. For example, considering f(x) = 1

3

∑3
i=1 fi(x), where f1(x) =

1
2
x2,

f2(x) =
1
2
x2, f3(x) = 1

2
(x + 3a)2 and a > 0. We note that x⋆ = − c

2
is a fixed point of Algorithm 1 but

∇f(x⋆) > 1
10
a > 1

20
ζ. Case 2: For any ζ > 0, c ≥ 5

4
ζ, there exists a function f(x) with heterogeneity

ζ2 such that there exists a fixed point x⋆ of Algorithm 1 with ||∇f(x⋆)|| ≥ 9ζ2

16c
. For example, considering

f(x) = 1
n

∑n
i=1 fi(x), where fi(x) = 1

2
x2 for i ≤ n − 1 and fn(x) = 1

2
(x + na)2 with a > 0 and

n − 1 = 10
⌈
c2

ζ2

⌉
. We note that x⋆ = − c

n−1
is a fixed point of Algorithm 1 but ∇f(x⋆) > ζ2

50c
. Scenario 2

(ζ = 0, σ > 0, τ = 1): We can derive the corresponding neighborhood size following Theorem 3.1 and 3.2
from Koloskova et al. (2023).

Example 1, Scenario 1 (ζ > 0, σ = 0, τ = 1), Case 1::

1By fixed point, we mean the algorithm does not move away from x⋆ if it is initialized at x⋆

15
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Proof. According to the definition of ζ2 (Assumption 2), we have ζ2 = 1
3

∑3
i=1 ||∇fi(x) − ∇f(x)||

2 =
a2+a2+4a2

3
= 2a2. Since we assume c < 5

4
ζ, we get c < 5

√
2

4
a. Let x⋆ = − c

2
. We obtain

||∇f2(x⋆)|| = ||∇f1(x⋆)|| = ||x⋆|| = || − c

2
|| < c .

and
||∇f3(x⋆)|| = ||x⋆ + 3a|| = || − c

2
+ 3a|| > − c

2
+

3
5
4

√
2
c > c .

Therefore,∇f1(x⋆) and∇f2(x⋆) are not clipped while∇f3(x⋆) gets clipped. This implies that

Ei[clipc(∇fi(x
⋆))] = − c

2
− c

2
+ c = 0 .

Hence, for any stepsize η > 0, we have η Ei[clipc(∇fi(x
⋆))] = 0 and thus x⋆ is a fixed point of Algorithm 1

(when Algorithm 1 is initialized at x⋆, it will not move). However, the error is as large as the following:

||∇f(x⋆)|| = ||x⋆ + a|| = || − c

2
+ a|| > −

5
4

√
2

2
a+ a >

1

10
a >

1

20
ζ .

Example 1, Scenario 1 (ζ > 0, σ = 0, τ = 1), Case 2::

Proof. According to the definition of ζ2 (Assumption 2), we have ζ2 = 1
n

∑n
i=1 ||∇fi(x) − ∇f(x)||

2 =
(n−1)a2+(n−1)2a2

n
and thus ζ =

√
n− 1a. Since we assume that c ≥ 5

4
ζ and that n − 1 = 10⌈ c

2

ζ2
⌉. we get

n > 10. Let x⋆ = − c
n−1

. We obtain that

||∇fi(x⋆)|| = ||x⋆|| = || − c

n− 1
|| < c, ∀i ≤ n− 1 .

and that
||∇fn(x⋆)|| = || − c

n− 1
+ na|| .

Using our assumption that n− 1 ≥ c2

ζ2
, it holds that

√
n− 1 ≥ c

ζ
⇒ (n− 1)a ≥ c⇒ − c

n− 1
+ na ≥ c .

Equivalently,
||∇fn(x⋆)|| ≥ c .

Therefore, for any i ≤ n− 1,∇fi(x⋆) is not clipped while∇fn(x⋆) gets clipped. This implies that

Ei[clipc(∇fi(x
⋆))] = −(n− 1)

c

n− 1
+ c = 0 .

Hence, x⋆ is a fixed point of Algorithm 1. But note that the error can be as large as

||∇f(x⋆)|| = − c

n− 1
+ a

= − c

n− 1
+

ζ√
n− 1

= − c

10⌈ c2
ζ2
⌉
+

ζ√
10⌈ c2

ζ2
⌉

≥ − ζ2

10 1
2
c
+

ζ2√
10 ∗ 2c

≥ ζ2

50c
.

Example 1, Scenario 2 (ζ = 0, σ > 0, τ = 1):

Proof. Let us assume for simplicity fi = f = F (x, ξ) for any i ∈ [n]. By picking the functions indicated in
Theorem 3.1 and 3.2 from Koloskova et al. (2023). We end up with the same order of the neighborhood size.
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B.2 PER-UPDATE CLIPPING NEIGHBORHOOD SIZE

We here provide an example to highlight the bias term from Corollary II (Eq. 4) is tight for when ηl ≥
O
(

c√
τσ+τζ

)
Example 2 (similar to Koloskova et al. (2023)). Scenario 1 Let τ = 1 and σ = 0. For any ζ > 0,
c < 5

4
ηlζ, there exists a function f(x) with heterogeneity ζ2 such that there exists a fixed point x⋆ of

Algorithm 2 with ||∇f(x⋆)|| ≥ 1
20
ζ. For example, considering f(x) = 1

3

∑3
i=1 fi(x) where f1(x) =

1
2
x2,

f2(x) = 1
2
x2, f3(x) = 1

2
(x + 3a)2 and a > 0. We note that x⋆ = − c

2ηl
is a fixed point of Algorithm

2 but ∇f(x⋆) > 1
10
a > 1

20
ζ. Scenario 2 When τ = 1 and ζ = 0, a similar argument can be made with

f1(x) = f2(x) = f(x) where f(x) is defined as above.

Example 2, Scenario 1 (ζ > 0, σ = 0, τ = 1)

Proof. According to the definition of ζ2 (Assumption 2), we have ζ2 = 1
3

∑3
i=1 ||∇fi(x) − ∇f(x)||

2 =
a2+a2+4a2

3
= 2a2. Since we assume c < 5

4
ηlζ, we get c < 5

√
2

4
aηl. Let x⋆ = − c

2ηl
. We obtain

||ηl∇f2(x⋆)|| = ||ηl∇f1(x⋆)|| = ||η;x⋆|| = || − c

2
|| < c .

and
||ηl∇f3(x⋆)|| = ||ηlx⋆ + 3aηl|| = || −

c

2
+ 3aηl|| > −

c

2
+

3
5
4

√
2
c > c .

Therefore, ηl∇f1(x⋆) and ηl∇f2(x⋆) are not clipped while ηl∇f3(x⋆) gets clipped. This implies that

Ei[ηlclipc(∇fi(x
⋆))] = − c

2
− c

2
+ c = 0 .

Hence, for any outer stepsize ηg > 0, we have ηg Ei[ηlclipc(∇fi(x
⋆))] = 0 and thus x⋆ is a fixed point of

Algorithm 2 (when Algorithm 2 is initialized at x⋆, it will not move). However, the error is as large as the
following:

||∇f(x⋆)|| = ||x⋆ + a|| = || − c

2ηl
+ a|| > −

5
4

√
2

2
a+ a >

1

10
a >

1

20
ζ .

Example 2, Scenario 2 (ζ = 0, σ > 0, τ = 1)

Proof. Let f = 1
2

∑2
i=1 fi(x) and fi = f . Further let f be the same function defined in Example 2, Scenario

1. The same argument can be made with ζ replaced with σ.
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C PER-UPDATE CLIPPING

In this section, we consider DP-FedAvg algorithm with the following update rule.{
yr−1
i,0 = xr−1,yr−1

i,k = yr−1
i,k−1 − ηl∇Fi(y

r−1
i,k−1)

xr = xr−1 +
ηg
S

∑
i∈Sr−1

(
clipc(y

r−1
i,τ − yr−1

i,0 ) + zr−1
i

)
.

(C.1)

where zr−1
i ∼ N (0,

σ2
DP
d
I) for all i ∈ [n] and r ∈ N+.

In round r, we sample Sr−1 ⊆ [n] clients with |Sr−1| = S and then perform τ local steps starting from the
shared model xr−1. Then we clip each local model update and add DP noise. After that, we aggregate the
updates from each client and compute the new global parameter xr .

C.1 FULL STATEMENT OF THE CONVERGENCE RESULT

In this section, we state our main theorem for DP-FedAvg (C.1) (per-update clipping). Compared with the
theorem provided in the main paper, Theorem III includes client sampling as well as the discussion on the case
of the large clipping threshold with c ≥ Θ(ηl

√
τσ + ηlτζmax).

Theorem III (Per-update clipping). Under Assumption 1, 2 and 3, consider DP-FedAvg with update
rule (C.1) and step sizes ηl ≤ 1

32τL
, ηlηgτL ≤ 1

10
and ηg ≤ 4

5
1

maxi,r{||zri ||L1}
where L := L0 +

L1 maxi,k,r{||∇Fi(y
r−1
i,k )||, ||∇f(xr−1)||}. If c < O(ηl

√
τσ + ηlτζ), then after R rounds, it holds that:

min
r∈[0,R]

E[||∇f(xr)||] ≤ O

(
f(x0)− f∗

cηg(R+ 1)
+

Lηg
cS

σ2
DP +

σ√
τ
+ ζ

)
. (C.2)

If c ≥ Θ(ηl
√
τσ + ηlτζ), then it holds that:

min
r∈[0,R]

E[||∇f(xr)||] ≤ O

(
f(x0)− f⋆

cηg(R+ 1)
+

Lηg
cS

σ2
DP +

√
f(x0)− f⋆

ηlηgτ(R+ 1)
+

√
Lηg
Sηlτ

σ2
DP√

ηlηgτL

S

( σ√
τ
+
√
ℓζ
)
+ τLηl

( σ√
τ
+ ζ
)
+

ηlτ

c

(σ2

τ
+ ζ2

))
,

(C.3)

where ℓ =

{
1− S

n
if c ≥ Θ(ηl

√
τσ + ηlτζmax)

1 otherwise
.

Corollary III. Under the setting of Theorem III, if c ≥ O(ηl
√
τσ + ηlτζ) and 1

maxi,r{||zri ||L1}
≥ 2
√
S, then

with global step size ηg ≥ 2
√
S, it holds that:

min
r∈[0,R]

E[||∇f(xr)||] ≤ O

(
f(x0)− f⋆

cηg(R+ 1)
+

Lηg
cS

σ2
DP +

√
f(x0)− f⋆

ηlηgτ(R+ 1)
+

√
Lηg
Sηlτ

σ2
DP√

ηlηgτL

S

( σ√
τ
+
√
ℓζ
)
+ τLηlζ +

ηlτ

c

(σ2

τ
+ ζ2

))
.

(C.4)

In Corollary III, if we let c→∞ and σ2
DP = 0, then ℓ = 1− S

n
and thus (C.4) recovers the standard convergence

result of FedAvg Karimireddy et al. (2019).

Discussion on the L parameter: When L1 ̸= 0, L depends on the largest gradient norm. This seems cannot be
avoided since Algorithm 2 requires multiple local steps before getting clipped. To ensure a sufficient decrease,
the stepsize has to be dependent on the largest gradient norm. See section A.1.1 for detailed explanations.

C.2 PROOF SKETCH

In section C.3, following Karimireddy et al. (2019), we first provide a lemma (Lemma 5) that quantifies the
progress of DP-FedAvg (C.1) for each round where the discussion on different cases for the clipping threshold is
also included. Based on this decrease lemma, we give the proof for Theorem III and Corollary III. In section
C.4, we provide useful lemmas that we frequently use for the proof of Lemma 5. The main challenge appears in
the case when c is large. Note that the local update ηl

∑τ
k=1∇Fi(y

r
i,k) always has a chance to be clipped since

we only assume E||∇Fi(x, ξ)−∇fi(x)||2 ≤ σ2. But ηl
∑τ

k=1∇fi(y
r
i,k) can be smaller than a large c almost

surely due to the finite sum structure. Hence, one needs to carefully disentangle the effect caused by σ and ζ
when estimating the variance term. The key lemma for recovering unclipped FedAvg is provided in Lemma 10.

18



Published as a conference paper at ICLR 2024

C.3 PROOF OF CONVERGENCE

From here on, we use Er−1 to denote the expectation conditioned on all the randomness generated before the
round r.

Lemma 5 (one round progress). Under Assumption 1, 2, and 3, the updates of Algorithm (C.1)
with step sizes ηl ≤ 1

32τL
, ηlηgτL ≤ 1

10
and ηg ≤ 4

5
1

maxi,r{||zri ||L1}
where L := L0 +

L1 maxi,k,r{||∇Fi(y
r−1
i,k )||, ||∇f(xr−1)||} satisfy:

case1: c ≤ ||ηlτ∇f(xr−1)||, ||ηlτ∇f(xr−1)|| ≥ 64ηl
√
τσ + 64ηlτζ:

E[||∇f(xr−1)||] ≤ 20(E[f(xr−1)]− E[f(xr)])

cηg
+

10Lηg
cS

σ2
DP . (C.5)

case2: c
2
≤ ||ηlτ∇f(xr−1)|| ≤ c and c ≥ 64ηl

√
τσ + 64ηlτζ:

E[||∇f(xr−1)||2] ≤
4
(
E[f(xr−1)]− E[f(xr)]

)
ηgηlτ

+
2Lηg
Sηlτ

σ2
DP . (C.6)

case3: ||ηlτ∇f(xr−1)|| ≤ c
2

and c ≥ 64ηl
√
τσ + 64ηlτζ:

E[||∇f(xr−1)||2] ≤
4
(
E[f(xr−1)]− E[f(xr)]

)
ηgηlτ

+
2Lηg
Sηlτ

σ2
DP + (192τ2L2η2

l )(
σ2

τ
+ ζ2)

+
16ηlηgτL

S
(
σ2

τ
+ ℓζ2) +

2720η2
l τ

2

c2
(
σ4

τ2
+ ζ4) .

(C.7)

where ℓ =

{
1− S

n
if c ≥ 64ηl

√
τσ + 64ηlτζmax

1 otherwise
.

Proof. Let ur−1
i := clipc(ηl

∑τ
k=1∇Fi(y

r−1
i,k−1)). Using the upper bound of ηl and ηg , we have

|| 1
S

∑
i∈[S] u

r−1
i || ≤ 1

S

∑
i∈[S] ||ηl

∑τ
k=1∇Fi(y

r−1
i,k−1)|| ≤

1
32L1

and ||ηg 1
S

∑
i∈[S] z

r−1
i || ≤ 4

5L1
. It

follows that: ηg|| 1S
∑

i∈[S](u
r−1
i + zr−1

i )|| ≤ 1
L1

. Plugging the update rule (C.1) into the definition of
(L0, L1)-smoothness 3 and let Lr−1 := L0 + L1||∇f(xr−1)||, we have:

f(xr) ≤ f(xr−1)− ηg⟨∇f(xr−1),
1

S

∑
i∈[S]

(ur−1
i + zr−1

i )⟩+ η2
g
Lr−1

2
|| 1
S

∑
i∈[S]

(ur−1
i + zr−1

i )||2 . (C.8)

Using the fact that zr−1
i is Gaussian noise with mean zero and variance σ2

DP, we can take expectation on both
sides conditioned on filtration r − 1 and use the fact that L ≥ Lr−1 to obtain:

Er−1[f(x
r)] ≤ f(xr−1)− ηg Er−1[⟨∇f(xr−1),

1

S

∑
i∈[S]

ur−1
i ⟩]+

L

2
η2
g Er−1[||

1

S

∑
i∈[S]

ur−1
i ||2] + L

2S
η2
gσ

2
DP .

(C.9)

Case 1: c ≤ ||ηlτ∇f(xr−1)|| and ||ηlτ∇f(xr−1)|| ≥ 64ηl
√
τσ + 64ηlτζ. We start by using Lemma 7 to

obtain:

Er−1[−⟨ηlτ∇f(xr−1),
1

S

∑
i∈[S]

ur−1
i ⟩] = Er−1[−⟨ηlτ∇f(xr−1),ur−1

i ⟩] ≤ − 1

10
c||ηlτ∇f(xr−1)|| .

(C.10)

Since c ≤ ηlτ ||∇f(xr−1)||, it follows that:

Er−1[||
1

S

∑
i∈[S]

ur−1
i ||2 ≤ 1

S

∑
i∈[S]

Er−1[||ur−1
i ||2] ≤ c2 ≤ c||ηlτ∇f(xr−1)|| . (C.11)

We conclude by plugging (C.10) and (C.11) into (C.9), rearranging and taking expectation.
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Case 2: c
2
≤ ||ηlτ∇f(xr−1)|| ≤ c and c ≥ 64ηl

√
τσ + 64ηlτζ. We use Lemma 1 with α = 1 on

−Er−1[⟨ηlτ∇f(xr−1), 1
S

∑
i∈[S] u

r−1
i ⟩] and this leads to:

− Er−1[⟨ηlτ∇f(xr−1),
1

S

∑
i∈[S]

ur−1
i ⟩]

= −1

2
||ηlτ∇f(xr−1)||2 − 1

2
Er−1[||

1

S

∑
i∈[S]

ur−1
i ||2] + 1

2
Er−1[||ηlτ∇f(xr−1)− 1

S

∑
i∈[S]

ur−1
i ||2]

≤ −1

2
||ηlτ∇f(xr−1)||2 − 1

2
Er−1[||

1

S

∑
i∈[S]

ur−1
i ||2] + 1

2
Er−1[||ηlτ∇f(xr−1)− ur−1

i ||2] .

(C.12)
We now use Lemma 8 to bound the last term:

Er−1[||ηlτ∇f(xr−1)− ur−1
i ||2]

≤ 16τ2L2η2
l ||ηlτ∇f(xr−1)||2 + (16τ4L2η4

l + 2τ2η2
l )ζ

2 + (8τ3L2η4
l + τη2

l )σ
2

≤ 1

64
||ηlτ∇f(xr−1)||2 + η2

l τ
2
(
(16η2

l τ
2L2 + 2)ζ2 + (

8τ2L2η2
l

τ
+

1

τ
)σ2
)

≤ 1

64
||ηlτ∇f(xr−1)||2 + η2

l τ
2(
9

4
ζ2 +

9

8τ
σ2)

≤ 1

64
||ηlτ∇f(xr−1)||2 + η2

l τ
22

c2

642η2
l τ

2

≤ 1

64
||ηlτ∇f(xr−1)||2 + η2

l τ
22

4η2
l τ

2||∇f(xr−1)||2

642η2
l τ

2

≤ 1

2
||ηlτ∇f(xr−1)||2 ,

(C.13)

where we recursively use the assumption that ηlτL ≤ 1
32

, c ≤ 2||ηlτ∇f(xr−1)|| and c ≥ 64ηl
√
τσ + 64ηlτζ.

Plug (C.13), (C.12) into (C.9), we have:

Er−1[f(x
r)] ≤ f(xr−1)− ηgηlτ

4
||∇f(xr−1)||2 + (

L

2
η2
g −

ηg
2ηlτ

)Er−1[||
1

S

∑
i∈[S]

ur−1
i ||2] + L

2S
η2
gσ

2
DP

≤ f(xr−1)− ηgηlτ

4
||∇f(xr−1)||2 + L

2S
η2
gσ

2
DP ,

(C.14)
where we use the assumption that ηgηlLτ ≤ 1. Take expectation on both sides and rearrange gives the result.

Case 3: ||ηlτ∇f(xr−1)|| ≤ c
2

and c ≥ 64ηl
√
τσ + 64ηlτζ. We use Lemma 1 with α = 1 on

−⟨ηlτ∇f(xr−1),Er−1[
1
S

∑
i∈[S] u

r−1
i ]⟩ and this leads to:

− Er−1[⟨ηlτ∇f(xr−1),
1

S

∑
i∈[S]

ur−1
i ⟩]

= −1

2
||ηlτ∇f(xr−1)||2 − 1

2
||Er−1[

1

S

∑
i∈[S]

ur−1
i ]||2 + 1

2
||ηlτ∇f(xr−1)− Er−1[

1

S

∑
i∈[S]

ur−1
i ]||2

= −1

2
||ηlτ∇f(xr−1)||2 − 1

2
||Er−1[u

r−1
i ]||2 + 1

2
||ηlτ∇f(xr−1)− Er−1[u

r−1
i ]||2 .

(C.15)
Besides, we separate the mean and variance of the last term:

Er−1[||
1

S

∑
i∈[S]

ur−1
i ||2] = ||Er−1[u

r−1
i ]||2 + Er−1[||

1

S

∑
i∈[S]

ur−1
i − Er−1[u

r−1
i ]||2] . (C.16)

Apply Lemma 10 and 9 and plug (C.15) and (C.16) into (C.9) and use the assumption that ηlηgτL ≤ 1
10
≤

min( S
10
, 1), we get:

Er−1[f(x
r)]− f(xr−1)

≤ −( ηg
2ηlτ

−
5Lη2

g

2S
||ηlτ∇f(xr−1)||2 + (

L

2
η2
g −

ηg
2ηlτ

)||Er−1[u
r−1
i ]||2 + noise

≤ − ηg
4ηlτ
||ηlτ∇f(xr−1)||2 + noise .

(C.17)
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where noise = Aσ2

τ
+Bζ2 + CH+Dσ2

DP and

A = ηlηgτ(48η
2
l τ

2L2 + 4
ηlηgLτ

S
)

B = ηlηgτ(48η
2
l τ

2L2 + 4
ℓηlηgLτ

S
)

C = η2
l τ

2
[ ηg
ηlτ

+ L
S
η2
g

]
= ηlηgτ(1 +

Lηlηgτ

S
) ≤ 2ηlηgτ

D = L
2S

η2
g = ηlηgτ(

Lηg
2Sηlτ

)

H =
340η2

l τ
2

c2
(σ

4

τ2 + ζ4) .

(C.18)

We use the assumption ηlτL ≤ 1
32

in above inequalities. Rearranging and taking expectation gives the result.

Proof of Theorem III. We first prove the case where c < O(ηl
√
τσ + ηlτζ). If minr∈[0,R] ||ηlτ∇f(xr)|| ≤

64ηl
√
τσ+64ηlτζ, then the inequality (C.2) trivially holds. Otherwise, we can use (C.5) in Lemma 5. Average

over 1 ≤ r ≤ R+ 1 gives:

1

R+ 1

R+1∑
r=1

E[||∇f(xr−1)||] ≤ 20(f(x0)− f∗)

cηg(R+ 1)
+

10Lηg
cS

σ2
DP . (C.19)

We next prove the case where c ≥ O(ηl
√
τσ+ ηlτζ). Since the upper bound (C.6) in the second case is always

better than the third case (C.7), we consider only two situations henceforth. Define J1 to be the set of indices
with ||ηlτ∇f(xr)|| > c and J2 to be the set of indices with ||ηlτ∇f(xr)|| ≤ c.

1

R+ 1
(
∑

(r−1)∈J1

cE[||∇f(xr−1)||] +
∑

(r−1)∈J2

ηlτ E[||∇f(xr−1)||2])

≤ 20(f(x0)− f⋆)

ηg(R+ 1)
+

12Lηg
S

σ2
DP + ηlτ(

16ηlηgτL

S
)(ℓζ2 +

σ2

τ
)

+ ηlτ(192τ
2L2η2

l )(ζ
2 +

σ2

τ
) + ηlτ

2720η2
l τ

2

c2
(
σ4

τ2
+ ζ4) .

(C.20)

This implies that:

1

R+ 1

∑
(r−1)∈J1

E[||∇f(xr−1)||]

≤ 20(f(x0)− f⋆)

cηg(R+ 1)
+

12Lηg
cS

σ2
DP +

ηlτ

c
(
16ηlηgτL

S
)(ℓζ2 +

σ2

τ
)

+
ηlτ

c
(192τ2L2η2

l )(ζ
2 +

σ2

τ
) +

ηlτ

c

2720η2
l τ

2

c2
(
σ4

τ2
+ ζ4) ,

(C.21)

and that:

1

R+ 1

∑
(r−1)∈J2

E[||∇f(xr−1)||2]

≤ 20(f(x0)− f⋆)

ηlηgτ(R+ 1)
+

12Lηg
Sηlτ

σ2
DP +

16ηlηgτL

S
(ℓζ2 +

σ2

τ
)

+ 192τ2L2η2
l (ζ

2 +
σ2

τ
) +

2720η2
l τ

2

c2
(
σ4

τ2
+ ζ4) .

(C.22)

Denote right hand side of (C.22) to beQ. We simplify (C.22) as following:

|J2|
R+ 1

(
1

|J2|
∑

(r−1)∈J2

√
E[||∇f(xr−1)||2])2 ≤ |J2|

R+ 1

1

|J2|
∑

(r−1)∈J2

E[||∇f(xr−1)||2] ≤ Q

1

|J2|
∑

(r−1)∈J2

E[||∇f(xr−1)||] ≤ 1

|J2|
∑

(r−1)∈J2

√
E[||∇f(xr−1)||2] ≤

√
Q(R+ 1)/|J2|

∑
(r−1)∈J2

E[||∇f(xr−1)||] ≤
√
Q(R+ 1)|J2| ≤

√
Q(R+ 1) .

(C.23)
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Combine (C.23) and (C.21), we arrive at:

1

R+ 1

R+1∑
r=1

E[||∇f(xr−1)||]

≤ 20(f(x0)− f⋆)

cηg(R+ 1)
+

12Lηg
cS

σ2
DP +

√
20(f(x0)− f⋆)

ηlηgτ(R+ 1)
+

√
12Lηg
Sηlτ

σ2
DP

+
ηlτ

c

16ηlηgτL

S
(
σ2

τ
+ ℓζ2) +

√
16ηlηgτL

S
(
σ√
τ
+
√
ℓζ) +

ηlτ

c

2720η2
l τ

2

c2
(
σ4

τ2
+ ζ4)

+
ηlτ

c
192τ2L2η2

l (
σ2

τ
+ ζ2) + 20τLηl(

σ√
τ
+ ζ) +

60ηlτ

c
(
σ2

τ
+ ζ2)

≤ 20(f(x0)− f⋆)

cηg(R+ 1)
+

12Lηg
cS

σ2
DP +

√
20(f(x0)− f⋆)

ηlηgτ(R+ 1)
+

√
12Lηg
Sηlτ

σ2
DP

+

√
32ηlηgτL

S
(
σ√
τ
+
√
ℓζ) + 24τLηl(

σ√
τ
+ ζ) +

100ηlτ

c
(
σ2

τ
+ ζ2) ,

(C.24)

where we use the assumption that c ≥ 64ηl
√
τσ + 64ηlτζ and ηl ≤ 1

32τL
, which implies ηlτ

c
(ζ2 + σ2

τ
) ≤

1
64
(ζ + σ√

τ
), 2720η2

l τ
2

c2
(σ

4

τ2 + ζ4) ≤ (σ
2

τ
+ ζ2).

Proof of Corollary III. It can be shown that 24τLηl ≤
√

32ηlηgτL

S
in equation (C.24).

C.4 USEFUL LEMMAS

In this section, we provide useful lemmas that we frequently use for the proof of Theorem III.

Lemma 6 (bounded drift (Karimireddy et al. (2019))). Under Assumption 1, 2, and 3, for any r ≥ 1 and τ ≥ 1,
the updates (C.1) with step size ηl ≤ 1

2τL
where L := L0 +L1 maxi,k{||∇Fi(y

r−1
i,k )||, ||∇f(xr−1)||} satisfy:

τ∑
k=1

Er−1[||yr−1
i,k−1 − xr−1||2] ≤ 8τ3η2

l ||∇f(xr−1)||2 + 8τ3η2
l ζ

2 + 4τ2η2
l σ

2 . (C.25)

Proof. If τ = 1, then the lemma trivially holds since yr−1
i,0 = xr−1 for all i ∈ [n]. Assume τ ≥ 2. Recall that

yr−1
i,k = yr−1

i,k−1 − ηl∇Fi(y
r−1
i,k−1), we obtain:

Er−1[||yr−1
i,k − xr−1||2]

= Er−1[||yr−1
i,k−1 − xr−1 − ηl∇Fi(y

r−1
i,k−1)||

2]

(1)
≤ Er−1[||yr−1

i,k−1 − xr−1 − ηl∇fi(yr−1
i,k−1)||

2] + η2
l σ

2

(A.4)
≤ (1 +

1

τ − 1
)Er−1[||yr−1

i,k−1 − xr−1||2] + τη2
l Er−1[||∇fi(yr−1

i,k−1)||
2] + η2

l σ
2

≤ (1 +
1

τ − 1
)Er−1[||yr−1

i,τ−1 − xr−1||2] + 2τη2
l Er−1[||∇fi(yr−1

i,k−1)−∇fi(x
r−1)||2]

+ 2τη2
l Er−1[||∇fi(xr−1)||2] + η2

l σ
2

(3)
≤ (1 +

1

τ − 1
)Er−1[||yr−1

i,k−1 − xr−1||2] + 2τη2
l (L0 + L1||∇f(xr−1)||)2 Er−1[||yr−1

i,k−1 − xr−1||2]

+ 2τη2
l Er−1[||∇fi(xr−1)||2] + η2

l σ
2

(2)
≤ (1 +

2

τ − 1
)Er−1[||yr−1

i,k−1 − xr−1||2] + 2τη2
l (||∇f(xr−1)||2 + ζ2) + η2

l σ
2 ,

(C.26)

where in the second inequality we separate the mean and the variance, in the third inequality, we used Lemma
2, in the fifth inequality, we used Assumption 3 and in the last inequality, we used the upper bound of ηl and
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Assumption 2. Unrolling the recursion gives:

Er−1[||yr−1
i,k − xr−1||2] ≤

k−1∑
q=0

(
(2τη2

l (||∇f(xr−1)||2 + ζ2) + η2
l σ

2) (1 + 2

τ − 1
)q

≤ 8τ2η2
l ||∇f(xr−1)||2 + 8τ2η2

l ζ
2 + 4τη2

l σ
2 ,

(C.27)

where in the last inequality, we use the fact that:
∑k−1

q=0 (1 + 2
τ−1

)q =
(1+ 2

τ−1
)k−1

2/(τ−1)
≤ 4τ for all k ≤ τ − 1.

Summing over k gives:

τ∑
k=1

Er−1[||yr−1
i,k−1 − xr−1||2] ≤ 8τ3η2

l ||∇f(xr−1)||2 + 8τ3η2
l ζ

2 + 4τ2η2
l σ

2 . (C.28)

Lemma 7. Under Assumption 1, 2, and 3 and suppose that c ≤ ||ηlτ∇f(xr−1)|| and that
||ηlτ∇f(xr−1)|| ≥ 64ηl

√
τσ + 64ηlτζ, the updates of (C.1) with step size ηl ≤ 1

32τL
where L :=

L0 + L1 maxi,k{||∇Fi(y
r−1
i,k )||, ||∇f(xr−1)||} satisfies:

Er−1[−⟨ηlτ∇f(xr−1), clipc(ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1))⟩] ≤ −

1

10
c||ηlτ∇f(xr−1)|| . (C.29)

Proof. Let αr−1
i = min(1, c

||ηl
∑τ

k=1
∇Fi(y

r−1
i,k−1

)||
). We can write the above inner product as:

− ⟨ηlτ∇f(xr−1), clipc(ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1))⟩

= −αr−1
i ||ηlτ∇f(xr−1)||2 − αr−1

i ⟨ηlτ∇f(xr−1), ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1)− ηlτ∇f(xr−1)⟩

≤ −αr−1
i ||ηlτ∇f(xr−1)||2 + αr−1

i ||ηlτ∇f(xr−1)|| ||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)− ηlτ∇f(xr−1)|| .

(C.30)

We further upper bound ||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)− ηlτ∇f(xr−1)|| by:

||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)− ηlτ∇f(xr−1)||

≤ ||ηl
τ∑

k=1

(∇Fi(y
r−1
i,k−1)−∇f(y

r−1
i,k−1))||+ ||ηl

τ∑
k=1

(∇f(yr−1
i,k−1)−∇f(x

r−1))||

(3)
≤ ||ηl

τ∑
k=1

(∇Fi(y
r−1
i,k−1)−∇f(y

r−1
i,k−1))||+ ηlL

τ∑
k=1

||yr−1
i,k−1 − xr−1|| .

(C.31)

Next, we show the probability that (C.31) is larger than 8ηl
√
τσ + 8ηlτζ + 1

2
ηlτ ||∇f(xr−1)|| is small.

Pr(||ηl
τ∑

k=1

(∇Fi(y
r−1
i,k−1)−∇f(y

r−1
i,k−1))||+ ηlL

τ∑
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||yr−1
i,k−1 − xr−1|| ≥ 8ηl

√
τσ (C.32)

+ 8ηlτζ +
1

2
ηlτ ||∇f(xr−1)||)

≤ Pr(2||ηl
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(∇Fi(y
r−1
i,k−1)−∇f(y
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i,k−1))||

2 + 2η2
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l τ
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2||∇f(xr−1)||2)

(2)+(1)
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4
η2
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≤ 4η2
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≤ 4η2
l τ(σ

2 + ζ2) + 16η4
l τ

4L2ζ2 + 8η4
l τ

3L2σ2

64η2
l τσ

2 + 64η2
l τ

2ζ2
+

16η4
l τ

4L2||∇f(xr−1)||2
1
4
η2
l τ

2||∇f(xr−1)||2

≤ 1

16
+

1

2048
+

1

64
≤ 2

25
.

In the first inequality, we square both sides and use triangular inequality. The second inequality is due to
Markov’s inequality and Assumption 2 and 1. The third inequality is due to Lemma 6 and the fifth is due to
the assumption that ηlτL ≤ 1

32
. Therefore, with high probability, ||ηl

∑τ
k=1∇Fi(y

r−1
i,k−1)− ηlτ∇f(xr−1)||

is upper bounded by 8ηl
√
τσ + 8ηlτζ + 1

2
ηlτ ||∇f(xr−1)||. In this case, we can plug the upper bound into

(C.30):

− ⟨ηlτ∇f(xr−1), clipc(ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1))⟩ (C.33)

≤ −αr−1
i ||ηlτ∇f(xr−1)||2 + αr−1

i ||ηlτ∇f(xr−1)||(8ηl
√
τσ + 8ηlτζ +

1

2
ηlτ ||∇f(xr−1)||) (C.34)

≤ −αr−1
i ||ηlτ∇f(xr−1)||2 + αr−1

i ||ηlτ∇f(xr−1)||(1
8
+

1

2
)ηlτ ||∇f(xr−1)|| (C.35)

≤ −3

8
αr−1
i ||ηlτ∇f(xr−1)||2 , (C.36)

where the second inequality is due to the assumption that ||ηlτ∇f(xr−1)|| ≥ 64ηl
√
τσ + 64ηlτζ. We can

further lower bound αr−1
i by:

αr−1
i = min(1,

c

||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)||

)

≥ min(1,
c

||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)− ηlτ∇f(xr−1)||+ ||ηlτ∇f(xr−1)||

)

≥ 8c

13||ηlτ∇f(xr−1)|| .

(C.37)

The last inequality is because of the assumption that ||ηlτ∇f(xr−1)|| ≥ c. Combine (C.36) and (C.37), we
have:

−⟨ηlτ∇f(xr−1), clipc(ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1))⟩ ≤ −

3c

13
||ηlτ∇f(xr−1)|| . (C.38)

In the other case where ||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)− ηlτ∇f(xr−1)|| > 8ηl

√
τσ + 8ηlτζ +

1
2
ηlτ ||∇f(xr−1)||,

we have:

−⟨ηlτ∇f(xr−1), clipc(ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1))⟩ ≤ c||ηlτ∇f(xr−1)|| . (C.39)

We conclude by using the law of total expectation:

Er−1[−⟨ηlτ∇f(xr−1), clipc(ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1))⟩] ≤ c||ηlτ∇f(xr−1)|| 2
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3

13
c||ηlτ∇f(xr−1)||

≤ − 1

10
c||ηlτ∇f(xr−1)|| .

(C.40)

Lemma 8. Under Assumption 1, 2, and 3 and suppose that ||ηlτ∇f(xr−1)|| ≤ c and that ηl ≤ 1
2τL

where
L = L0 + L1 maxi,k{||∇Fi(y

r−1
i,k )||, ||∇f(xr−1)||}, the updates of (C.1) satisfies:

Er−1[||u−ηlτ∇f(xr−1)||2] ≤ 16τ4L2η4
l ||∇f(xr−1)||2+(16τ4L2η4

l +2τ2η2
l )ζ

2+(8τ3L2η4
l + τη2

l )σ
2 .

(C.41)
where u = clipc(ηl

∑τ
k=1∇Fi(y

r−1
i,k−1)).

Proof. Since ||ηlτ∇f(xr−1)|| ≤ c, we have that ηlτ∇f(xr−1) = clipc(ηlτ∇f(x
r−1)). By the fact that

clipping is Lipschitz operator with constant 1, it follows that:

Er−1[||u− ηlτ∇f(xr−1)||2] (C.42)

≤ Er−1[||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)− ηlτ∇f(xr−1)||2] (C.43)
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(1)
≤ η2

l

(
Er−1[||

τ∑
k=1

∇fi(yr−1
i,k−1)− τ∇f(xr−1)||2] + τσ2

)
(C.44)

≤ η2
l

(
Er−1[||

τ∑
k=1

∇fi(yr−1
i,k−1)− τ∇fi(xr−1) + τ∇fi(xr−1)− τ∇f(xr−1)||2] + τσ2

)
(C.45)

≤ η2
l

(
2Er−1[||

τ∑
k=1

(∇fi(yr−1
i,k−1)−∇fi(x

r−1))||2 + 2Er−1[||τ(∇fi(xr−1)−∇f(xr−1))||2] + τσ2

)
(C.46)

(3)+(2)
≤ η2

l

(
2τL2

τ∑
k=1

Er−1[||yr−1
i,k−1 − xr−1||2]) + 2τ2ζ2 + τσ2

)
(C.47)

≤ η2
l

(
2τL2(8τ3η2

l ||∇f(xr−1)||2 + 8τ3η2
l ζ

2 + 4τ2η2
l σ

2) + 2τ2ζ2 + τσ2

)
(C.48)

≤ 16τ4L2η4
l (||∇f(xr−1)||2 + ζ2) + 8τ3L2η4

l σ
2 + 2τ2η2

l ζ
2 + τη2

l σ
2 , (C.49)

where in the second inequality, we separate the mean and the variance, in the last third inequality, we use
assumption 2 and 3 and in the last second inequality, we apply Lemma 6.

Lemma 9. Under Assumption 1, 2, and 3 and suppose that ||ηlτ∇f(xr−1)|| ≤ 1
2
c, ηl ≤ 1

32τL
where

L = L0 + L1 maxi,k{||∇Fi(y
r−1
i,k )||, ||∇f(xr−1)||} and that c ≥ 64ηl

√
τσ + 64ηlτζ, the updates of (C.1)

satisfies:

||Er−1[u]− ηlτ∇f(xr−1)||2 ≤ 1

3
η2
l τ

2||∇f(xr−1)||2 + 96η4
l τ

4L2(
σ2

τ
+ ζ2) +H . (C.50)

where u = clipc(ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)) and higher order termH =

340η4
l τ

4

c2
(σ

4

τ2 + ζ4).

Proof.

||Er−1[u]− ηlτ∇f(xr−1)||2

= ||Er−1[u]− ηl Er−1[

τ∑
k=1

∇fi(yr−1
i,k−1)] + ηl Er−1[

τ∑
k=1

∇fi(yr−1
i,k−1)]− ηlτ∇f(xr−1)||2

≤ 2||Er−1[u]− ηl Er−1[

τ∑
k=1

∇fi(yr−1
i,k−1)]||

2 + 2||ηl Er−1[

τ∑
k=1

∇fi(yr−1
i,k−1)]− ηlτ∇f(xr−1)||2

= 2||Er−1[u]− ηl Er−1[

τ∑
k=1

∇fi(yr−1
i,k−1)]||

2 + 2||ηl
τ∑

k=1

Er−1[∇fi(yr−1
i,k−1)−∇fi(x

r−1)]||2

(3)
≤ 2||Er−1[u]− ηl Er−1[

τ∑
k=1

∇fi(yr−1
i,k−1)]||

2 + 2τL2η2
l

τ∑
k=1

Er−1[||yr−1
i,k−1 − xr−1||2]

≤ 2||Er−1[u]− ηl Er−1[

τ∑
k=1

∇fi(yr−1
i,k−1)]||

2 + 2τL2η2
l (8τ

3η2
l ||∇f(xr−1)||2 + 8τ3η2

l ζ
2 + 4τ2η2

l σ
2) ,

(C.51)

where in the second equality, we use the fact that Er−1[∇fi(xr−1)] = ∇f(xr−1), in the last second inequality,
we use Assumption 3 and apply Jensen’s inequality on the squared norm function, and in the last inequality, we
apply Lemma 6. We next bound the first term in (C.51) by showing the probability that ηl

∑τ
k=1∇Fi(y

r−1
i,k−1)

gets clipped is low because ||ηlτ∇f(xr−1)|| is sufficiently smaller than c. Note that:

||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)||

≤ ηl||
τ∑

k=1

(∇Fi(y
r−1
i,k−1)−∇f(y

r−1
i,k−1))||+ ηl||

τ∑
k=1

(∇f(yr−1
i,k−1)−∇f(x

r−1))||+ ηlτ ||∇f(xr−1)||

(3)
≤ ηl

(
||

τ∑
k=1

(∇Fi(y
r−1
i,k−1)−∇f(y

r−1
i,k−1))||+ L

τ∑
k=1

||yr−1
i,k−1 − xr−1||+ τ ||∇f(xr−1)||

)
.

(C.52)
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By the assumption that ||ηlτ∇f(xr−1)|| ≤ 1
2
c, it follows that:

||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)|| ≤

1

2
c+ηl

(
||

τ∑
k=1

(∇Fi(y
r−1
i,k−1)−∇f(y

r−1
i,k−1))||+L

τ∑
k=1

||yr−1
i,k−1−x

r−1||
)
. (C.53)

Define δr−1 = 1{||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)|| > c}. We can compute an upper bound of Er−1[δ

r−1] by:

Er−1[δ
r−1]

= Pr[||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)|| > c]

(C.53)
≤ Pr

[
||

τ∑
k=1

(∇Fi(y
r−1
i,k−1)−∇f(y

r−1
i,k−1))||+ L

τ∑
k=1

||yr−1
i,k−1 − xr−1|| > c

2ηl

]
≤ Pr

[
2||

τ∑
k=1

∇Fi(y
r−1
i,k−1)−∇f(y

r−1
i,k−1)||

2 + 2L2τ

τ∑
k=1

||yr−1
i,k−1 − xr−1||2 >

c2

4η2
l

]
≤ 4η2

l

c2

(
2Er−1[||

τ∑
k=1

∇Fi(y
r−1
i,k−1)−∇f(y

r−1
i,k−1)||

2] + 2L2τ

τ∑
k=1

Er−1[||yr−1
i,k−1 − xr−1||2]

)
(1)+(2)
≤ 4η2

l

c2

(
4τ(σ2 + ζ2) + 2L2τ(8τ3η2

l ||∇f(xr−1)||2 + 8τ3η2
l ζ

2 + 4τ2η2
l σ

2)
)

=
16η2

l τ + 32L2τ3η4
l

c2
σ2 +

16η2
l τ + 64L2τ4η4

l

c2
ζ2 + 32η2

l τ
2L2 η

2
l τ

2||∇f(xr−1)||2

c2
.

(C.54)

The first inequality is due to (C.53). The last second inequality is due to Markov’s inequality and we apply
Lemma 6 to the last inequality. Recall that we assume c ≥ 64ηl

√
τσ + 64ηlτζ and therefore we have

c2 ≥ 642η2
l τσ

2 + 642η2
l τ

2ζ2. Using ηlτ ||∇f(xr−1)|| ≤ 1
2
c and ηl ≤ 1

32τL
, it follows that:

Er−1[δ
r−1] ≤ 32

642
+

1

4 ∗ 32 ≤
1

64
, and Er−1[δ

r−1] ≤
17η2

l τ
2(σ

2

τ
+ ζ2)

c2
+ 8η2

l τ
2L2 . (C.55)

We are now ready to upper bound ||Er−1[u]− ηl Er−1[
∑τ

k=1∇fi(y
r−1
i,k−1)]||

2. Plug in the definition of u, we
obtain:

||Er−1[u]− ηl Er−1[

τ∑
k=1

∇fi(yr−1
i,k−1)]||

2 (C.56)

= ||ηl Er−1[

τ∑
k=1

∇fi(yr−1
i,k−1)]−

(
Er−1[clipc(ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1))(δ

r−1 + 1− δr−1)]
)
||2 (C.57)

= ||ηl Er−1[

τ∑
k=1

∇fi(yr−1
i,k−1)]−

(
Er−1[

ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)

||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)||

cδr−1 + (1− δr−1)ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1)]

)
||2

(C.58)

= ||Er−1[(1−
c

||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)||

)ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1)δ

r−1]||2 (C.59)

= ||Er−1[(1−
c

||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)||

)ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1)|δ

r−1 = 1]Pr(δr−1 = 1)||2 (C.60)

≤ Er−1[||(1−
c

||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)||

)ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1)||

2|δr−1 = 1]Pr(δr−1 = 1)2 (C.61)

≤ Er−1[||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)||

2|δr−1 = 1]Pr(δr−1 = 1)2 (C.62)

= Er−1[||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)||

2δr−1] Pr(δr−1 = 1) (C.63)

≤ Er−1[||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)||

2] Pr(δr−1 = 1) . (C.64)

In the fourth equality, we apply the law of total expectation. In the last third inequality, we apply
Jensen’s inequality to the squared norm function and in the last second inequality, we use the fact that
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c ≤ ||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)|| given that δr−1 = 1. The last inequality is due to the fact that δr−1 ≤ 1.

We next unroll Er−1[||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)||

2] and it holds that:

Er−1[||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)||

2]

≤ 4Er−1[||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)−∇fi(y

r−1
i,k−1)||

2 + 4Er−1 ||ηl
τ∑

k=1

∇fi(yr−1
i,k−1)−∇f(y

r−1
i,k−1)||

2

+ 4η2
l τ

τ∑
k=1

Er−1[||∇f(yr−1
i,k−1)−∇f(x

r−1)||2] + 4η2
l τ

2||∇f(xr−1)||2

≤ 4η2
l τ(σ

2 + ζ2) + 4η2
l τL

2
τ∑

k=1

Er−1[||yr−1
i,k−1 − xr−1||2] + 4η2

l τ
2||∇f(xr−1)||2

≤ (4η2
l τ

2 + 32η4
l τ

4L2)||∇f(xr−1)||2 + (4η2
l τ + 16η4

l τ
3L2)σ2 + (4η2

l τ + 32η4
l τ

4L2)ζ2 .
(C.65)

Plug (C.55) and (C.65) into (C.64) and use ηl ≤ 1
32τL

gives:

||Er−1[u]−ηl Er−1[

τ∑
k=1

∇fi(yr−1
i,k−1)]||

2 ≤ 1

8
η2
l τ

2||∇f(xr−1)||2+
170η4

l τ
4(σ

4

τ2 + ζ4)

c2
+40η4

l τ
4(
σ2

τ
+ζ2) .

(C.66)
We conclude by plugging (C.66) into (C.51) and using ηl ≤ 1

32τL
.

Lemma 10. Under Assumption 1, 2, and 3 and suppose that ||ηlτ∇f(xr−1)|| ≤ 1
2
c, ηl ≤ 1

32τL
where

L = L0 + L1 maxi,k{||∇Fi(y
r−1
i,k )||, ||∇f(xr−1)||} and that c ≥ 64ηl

√
τσ + 64ηlτζ, the updates of (C.1)

satisfies:

Er−1[||
1

S

∑
i∈[S]

ur−1
i − Er−1[u

r−1
i ]||2] ≤ 1

S
[5η2

l τ
2||∇f(xr−1)||2 + 8η2

l τ
2 σ

2

τ

+ 8ℓη2
l τ

2ζ2 +
680η4

l τ
4

c2
(
σ4

τ2
+ ζ4) ,

(C.67)

where ur−1
i := clipc(ηl

∑τ
k=1∇Fi(y

r−1
i,k−1)) and ℓ =

{
1− S

n
if c ≥ 64ηl

√
τσ + 64ηlτζmax

1 otherwise
.

Proof. Case1: c ≥ 64ηl
√
τσ + 64ηlτζmax. We use Eσi to denote taking the expectation conditioned on the

randomness i and all the randomness generated before the round r. Consider the following split:

Er−1[||
1

S

∑
i∈[S]

ur−1
i − Er−1[u

r−1
i ]||2]

= Er−1[||
1

S

∑
i∈[S]

ur−1
i − 1

S

∑
i∈[S]

Eσi [u
r−1
i ] +

1

S

∑
i∈[S]

Eσi [u
r−1
i ]− Er−1[u

r−1
i ]||2]

≤ 2Er−1[||
1

S

∑
i∈[S]

ur−1
i − 1

S

∑
i∈[S]

Eσi [u
r−1
i ]||2] + 2Er−1[||

1

S

∑
i∈[S]

Eσi [u
r−1
i ]− Er−1[u

r−1
i ]||2]

≤ 2

S
Er−1[||ur−1

i − Eσi [u
r−1
i ]||2] + 2(1− S

n
)
1

S
Er−1[||Eσi [u

r−1
i ]− Er−1[u

r−1
i ]]||2] ,

(C.68)

where in the last inequality, we used the fact that:

Er−1[Eσi,σj [⟨u
r−1
i − Eσi [u

r−1],ur−1
j − Eσj [u

r−1]⟩]]] = 0 , (C.69)

and the property of sampling without replacement. We next bound the terms from (C.68) separately.

Er−1[||ur−1
i − Eσi [u

r−1
i ]||2]

= Er−1[||ur−1
i − ηl

τ∑
k=1

∇fi(yr−1
i,k−1) + ηl

τ∑
k=1

∇fi(yr−1
i,k−1)− Eσi [u

r−1
i ]||2]

≤ 2Er−1[||ur−1
i − ηl

τ∑
k=1

∇fi(yr−1
i,k−1)||

2] + 2Er−1[||ηl
τ∑

k=1

∇fi(yr−1
i,k−1)− Eσi [u

r−1
i ]||2] .

(C.70)
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By our assumption that c ≥ 64ηlτζmax, it holds that ||∇fi(x)|| ≤ c
ηlτ

for all x ∈ Rd since ||∇fi(x)|| ≤
||∇fi(x)−∇f(x)||+ ||∇f(x)|| ≤ ζmax+

c
2ηlτ
≤ 3c

4ηlτ
. Therefore, we have: ||ηl

∑τ
k=1∇fi(y

r−1
i,k−1)|| ≤

3c
4

.
We next follow the same proof technique used in Lemma 8 and 9. The first term can be bounded by:

Er−1[||ur−1
i − ηl

τ∑
k=1

∇fi(yr−1
i,k−1)||

2]

≤ Er−1[||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)− ηl

τ∑
k=1

∇fi(yr−1
i,k−1)||

2]

≤ η2
l τσ

2 .

(C.71)

To bound the second term in (C.70), we first show that ||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)|| ≤ c with high probability.

Note that ||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)|| ≤ ||ηl

∑τ
k=1∇Fi(y

r−1
i,k−1)−ηl

∑τ
k=1∇fi(y

r−1
i,k−1)||+

3c
4

. Define δr−1 =

1{||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)|| > c}. We can compute an upper bound of Eσi [δ

r−1]:

Eσi [δ
r−1]

= Pr[||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)|| > c]

≤ Pr
[
||ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1)− ηl

τ∑
k=1

∇fi(yr−1
i,k−1)|| >

c

4

]
= Pr

[
||ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1)− ηl

τ∑
k=1

∇fi(yr−1
i,k−1)||

2 >
c2

16

]
≤ 16η2

l τσ
2

c2
.

(C.72)

It follows that:

||ηl
τ∑

k=1

∇fi(yr−1
i,k−1)− Eσi [u

r−1
i ]||2

= ||ηl
τ∑

k=1

∇fi(yr−1
i,k−1)− Eσi [clipc(ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1)(δ

r−1 + 1− δr−1)]||2

= ||ηl
τ∑

k=1

∇fi(yr−1
i,k−1)− Eσi [

ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)

||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)||

cδr−1 + ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1)(1− δr−1)]||2

= ||Eσi [(1−
c

||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)||

)ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1)δ

r−1]||2

= ||Eσi [(1−
c

||ηl
∑τ

k=1∇Fi(y
r−1
i,k−1)||

)ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1)|δ

r−1 = 1]Eσi [δ
r−1]||2

≤ Eσi [||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)||

2]Eδi [δ
r−1] .

(C.73)
We can now bound the second term in (C.70) by plugging in (C.73) and (C.72):

Er−1[||ηl
τ∑

k=1

∇fi(yr−1
i,k−1)− Eσi [u

r−1
i ]||2 ≤ Er−1[Eσi [||ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1)||

2]Eδi [δ
r−1]]

≤ Er−1[Eσi [||ηl
τ∑

k=1

∇Fi(y
r−1
i,k−1)||

2]
16η2

l τσ
2

c2
]

=
16η2

l τσ
2

c2
Er−1[||ηl

τ∑
k=1

∇Fi(y
r−1
i,k−1)||

2]

≤ 16η2
l τσ

2

c2
[5η2

l τ
2||∇f(xr−1)||2 + 5η2

l τ
2(
σ2

τ
+ ζ2)] ,

(C.74)
where the last inequality is due to (C.65). It remains to bound the second term in (C.68).

Er−1[||Eσi [u
r−1
i ]− Er−1[u

r−1
i ]]||2]

≤ 2Er−1[||Eσi [u
r−1
i ]− ηlτ∇f(xr−1)||2] + 2Er−1[||ηlτ∇f(xr−1)− Er−1[u

r−1
i ]]||2]

≤ 2Er−1[||ur−1
i − ηlτ∇f(xr−1)||2] + 2||ηlτ∇f(xr−1)− Er−1[u

r−1
i ]]||2 ,

(C.75)
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where in the last line we used Jensen’s inequality since the squared norm is a convex function. Applying Lemma
8 and 9 and wrapping up yields:

Er−1[||
1

S

∑
i∈[S]

ur−1
i − Er−1[u

r−1
i ]||2]

≤ 1

S
[3η2

l τ
2||∇f(xr−1)||2 + 4η2

l τ
2 σ

2

τ
+

320η4
l τ

4

c2
(
σ4

τ2
+ ζ4)]

+ (1− S

n
)
1

S
[2η2

l τ
2||∇f(xr−1)||2 + 4η2

l τ
2(
σ2

τ
+ ζ2) +

340η4
l τ

4

c2
(
σ4

τ2
+ ζ4)]

≤ 1

S
[5η2

l τ
2||∇f(xr−1)||2 + 8η2

l τ
2 σ

2

τ
+ (1− S

n
)8η2

l τ
2ζ2 +

680η4
l τ

4

c2
(
σ4

τ2
+ ζ4)] .

(C.76)

Case2: 64ηl
√
τσ + 64ηlτζ ≤ c ≤ 64ηl

√
τσ + 64ηlτζmax.

Er−1[||
1

S

∑
i∈[S]

ur−1
i − Er−1[u

r−1
i ]||2]

≤ 1

S
Er−1[||ur−1

i − Er−1[u
r−1
i ]||2]

≤ 2

S
Er−1[||ur−1

i − ηlτ∇f(xr−1)||2] + 2

S
Er−1[||ηlτ∇f(xr−1)− Er−1[u

r−1
i ]||2] .

(C.77)

Applying Lemma 8 and 9 and merging two cases concludes the proof.

C.5 ACCURACY PERSPECTIVE

In this section, we discuss how to choose the stepsizes to reach ε-accuracy for Algorithm 2
(minr∈[1,R] E[||∇f(xr)||] ≤ ε). According to Theorem II, we obtain the following convergence result when
ηl ≤ O( c√

τσ+τζ
) (by taking the square on both sides):

min
r∈[1,R]

E[||∇f(xr)||2] ≤ O

(
F0

ηlηgτR
+ τ2L2η2

l ζ
2 +

ηlηgτL

n

(σ2

τ
+ ζ2

)
+

F 2
0

c2η2
gR2

+
η2
l τ

2

c2

(σ4

τ2
+ ζ4

))
.

Since the second, the third and the last terms do not depend on R, we have to pick ηl and ηg such that each
individual term is less than ε2. From the second and the last terms, we deduce:

ηl ≤ min

{
O
( ε

τLζ

)
,O
( cε

τ(σ
2

τ
+ ζ2)

)
,O( c√

τσ + τζ
)

}
:= A . (C.78)

It remains to deal with the third term. Recall that ηg ≥ Θ(
√
n) and ηlηgτL ≤ O(1).

case1: Θ(A
√

nτL
n

(σ
2

τ
+ ζ2)) > Θ(ε): we need to set

ηl ≤ O
( √

nε

τL(σ
2

τ
+ ζ2)

)
, ηg = Θ(

√
n) . (C.79)

case2: Θ(A
√

nτL
n

(σ
2

τ
+ ζ2)) ≤ Θ(ε): we can choose ηg to be as large as possible:

ηl = Θ(A), ηg = min

{
Θ

(
nε

AτL(σ
2

τ
+ ζ2)

)
,Θ(

1

AτL
)

}
. (C.80)

Finally, we can compute the required communication rounds R by plugging in the respective choices of ηl and
ηg and letting the first and the fourth terms be less than ε2.

C.6 PRIVACY-UTILITY DISCUSSION

C.6.1 LOCAL DP GUARANTEE

Assume that the server might be malicious, DP-FedAvg with update rule C.1 (per-update clipping with DP noise)
aims at protecting each user’s data by providing the formal DP guarantee for the clipped model updates between
every two rounds. Note that, for each client, the neighboring dataset in DP-FedAvg is defined by any alterations
made to the data points within that specific dataset. In other words, we can treat the whole dataset of each client
as one data point. To achieve the formal DP guarantee, the variance σ2

DP should satisfy the following condition.
(Note the DP noise in update rule C.1 is set to zri ∼ N (0,

σ2
DP
d
I) for all i ∈ [n] and r ∈ N.)
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Theorem 11 (Abadi et al. (2016)). For any εDP ≤ O(S
2

n2 R), 0 < δ < 1 and R > 0, DP-FedAvg with update
rule C.1 achieves (εDP, δ)-local differential privacy for any client i ∈ [n] if we choose

σ̄DP = Ω

(
cS
√

log(1/δ)R

nεDP

)
. (C.81)

where σ̄DP := σDP√
d

.

Proof. Let q := S
N

. According to the analysis from Abadi et al. (2016), suppose ∆i at round r satisfies
(ε′, δ′)-DP for any r = 0, ..., R − 1 and any i ∈ [n], then the total privacy guarantee after R rounds is(
O(q
√
Rε′),O(δ′)

)
. It follows from the Gaussian mechanism (and let εDP = q

√
Rε′, δ = δ′) that, each σ̄DP

should satisfy

σ̄DP = Ω

(
∆q
√

log(1/δ)R

εDP

)
. (C.82)

where ∆ is ℓ2-sensitivity of the algorithm output for which the server receives at each communication round,
and can be bounded by 2c since ||clipc(x)− clipc(y)|| ≤ 2c for any x,y ∈ Rd.

C.6.2 OPTIMAL PRIVACY-UTILITY TRADE-OFF AND CHOICES FOR HYPER-PARAMETERS

Based on the privacy budget εDP and δ, the ideal approach involves an initial selection of a clipping threshold
with the aim of achieving a good privacy and utility trade-off. Subsequently, the noise scale σDP can be set based
on Theorem 11. The final step entails choosing appropriate step sizes to attain the optimal iteration complexity.
We next provide the theoretical good choices of hyper-parameters including c, ηl and ηg to obtain the optimal
privacy-utility trade-off and the communication rounds R.

Throughout this section, we assume Θ(σ
2

τ
+ ζ2) ≥ Θ( σ√

τ
+ ζ). A similar argument can also be made if the

other way around. Let A :=
√
F0Lν√

n
, B := σ4

τ2 + ζ4 and Nr := minr∈[1,R] E[||∇f(xr)||2].

Let c ≥ Θ(ηl
√
τσ + ηlτζ). We recall the constraints on the stepsizes ηlτ ≤ O( 1

L
), ηlηgτL ≤ O(1) and

ηg ≥ Θ(
√
n).

Taking the square of (7) on both sides and plugging σ2
DP = Θ(νc2R) into the convergence rate, where

ν = d log(1/δ)

ε2
(suppose full client participation, i.e. S = n), we obtain

Nr ≤ O

(
(

F0

ηlηgτR
+

Lηg
nηlτ

νc2R) + (
F 2
0

c2η2
gR2

+
L2η2

g

n2
ν2c2R2) + η2

l L
2τ2ζ2 +

ηlηgτL

n
(
σ2

τ
+ ζ2) +

η2
l τ

2

c2
B

)
.

(C.83)

We minimize the first four dominating terms w.r.t ηgR by picking R = Θ
( √

F0n

cηg
√
Lν

)
and (C.83) thus reduces to:

Nr ≤ O

(
c

ηlτ
A+A2 + η2

l L
2τ2ζ2 +

ηlηgτL

n
(
σ2

τ
+ ζ2) +

η2
l τ

2

c2
B

)
. (C.84)

Case 1: Θ(A) ≥ Θ(B)

It is clear that A2 dominates the error terms. Therefore, to reduce the number of rounds R, we should pick the
largest cηg in the denominator of R. Note ηg ≤ O( 1

ηlτL
), by picking ηg = Θ( 1

ηlτL
), it remains to find the

largest number for c
ηlτL

. It is clear that we can pick c
ηlτL

as large as A
L

from the first term in (C.83). For that,
we can pick ηl = Θ( 1√

nτL
) and c = Θ( A√

n
) so that ηg ≥ Θ(

√
n) to finally achieve the guarantee. By these

choices of hyper-parameters, the optimal privacy-utility trade-off is then:

Nr ≤ O
(
A2) = O(F0Lν

n

)
with R = Θ

( √
F0n

A
√
Lν

)
= Θ

(
n

Lν

)
. (C.85)

Case 2: Θ(A) < Θ(B)

To balance c
ηlτ

A and η2
l τ

2

c2
B, we let c

ηlτ
= B1/3

A1/3 . It follows that cηg = B1/3

A1/3 ηlτηg . Therefore, to reduce the
number of communication rounds R, we need to maximize ηlτηg under the constraints of:
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η2
l L

2τ2ζ2 ≤ B1/3A2/3 and
ηlηgτL

n
B1/2 ≤ B1/3A2/3 . (C.86)

With additional constraints on the stepsizes: ηg ≤ O( 1
ηlτL

) and ηlτ ≤ O( 1
L
). The largest ηlηgτ we can obtain is

D1 := 1
L
min

(
1, A2/3n

B
1
6

)
. To obtain this bound, we can let ηg = Θ(

√
n) and let ηl = Θ

(
1
τ
min

(
D1√
n
, D2

))
where D2 := 1

L
min

(
B1/6A1/3

ζ
, 1
)

. By these choices of hyper-parameters, the privacy-utility trade-off is then:

Nr ≤ O(B1/3A2/3) with R = Θ

( √
F0nL

B1/6 min
(
B1/6

A1/3 , A
1/3n

)√
ν

)
. (C.87)

C.6.3 IMPLICATION

Let us begin by examining Case 1 characterized by a relatively low privacy budget, with σ and ζ being relatively
small. Plugging ν = d log(1/δ)

ε2DP
(suppose full client participation, i.e. S = n) into C.85, we obtain the optimal

privacy-utility trade-off as well as the best communication rounds as follows:

min
r∈[1,R]

E[||∇f(xr)||2 ≤ O

(
F0Ld log(1/δ)

nε2DP

)
, R = Θ

( nε2DP

Ld log(1/δ)

)
, (C.88)

by choosing

c = Θ

(√
F0Ld log(1/δ)√

nεDP

)
, ηl = Θ

( 1√
nτL

)
, ηg = Θ(

√
n) . (C.89)

Due to the relaxed assumption on bounded variance, the optimal utility is of order O
(

d log(1/δ)

nε2DP

)
which is the

square of the standard utility O
(√

d log(1/δ)
√
nεDP

)
for local DP under the bounded stochastic gradient assumption.

Since the ratio between the number of client n and (εDP, δ) is unchanged, increasing n can still linearly decrease
the utility error. Further, the effective stepsize ηlηg = Θ( 1

τL
) decrease as τ increases and R does not depend on

τ . This implies that performing τ local steps is equivalent to using one local step with effective stepsize Θ( 1
L
).

Hence, under the current analysis, we cannot prove effectiveness for doing multiple local steps when the privacy
budget ε and δ are relatively small.

Let us now consider Case 2 where we have large stochastic noise and heterogeneity. Assume σ and ζ is large
enough such that B1/6 ≥ A2/3n. Plugging ν = d log(1/δ)

ε2
(suppose full client participation, i.e. S = n)

into C.87, we obtain the optimal privacy-utility trade-off as well as the best communication rounds as follows:

min
r∈[1,R]

E[||∇f(xr)||2 ≤ O

((
F0Ld log(1/δ)

) 1
3

n
1
3 ε

2
3
DP

(σ 4
3

τ
2
3

+ζ
4
3

))
, R = Θ

( ε
3
4
DP(F0L)

1
3

n
1
3 (d log(1/δ))

2
3

(
σ

2
3

τ
1
3
+ ζ

2
3

)),
(C.90)

The utility error increases as σ and ζ become larger. While local steps can reduce the stochasticity coming
from the noise σ2, the error caused by heterogeneity can not be reduced. However, this phenomenon is not only
related to DP training but is also known for the common local SGD methods for solving heterogeneous systems.

C.6.4 CONNECTION TO CENTRALIZED DP-SGD

While DP-FedAvg with update rule C.1 is a federated learning algorithm that aims at protecting user-level
privacy, it is still comparable with centralized DP-SGD from a pure algorithmic point of view when τ = 1.

Let us now forget about the federated learning setting and think about DP-FedAvg in a centralized manner. Let
ζ = 0 and τ = 1. It is clear that conceptually, DP-FedAvg is equivalent to DP-SGD with both inner and outer
stepsizes, and n becomes the size of the minibatch:

xr+1 = xr − ηg
1

n

n∑
i=1

[
clipc

(
ηl∇Fi(xr)

)
+ zi

]
. (C.91)
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Suppose the size of the whole dataset is Ntotal. Then the target optimization problem becomes:

f(x) :=
1

Ntotal

Ntotal∑
j=1

Fj(x) . (C.92)

with
Ej [||∇Fj(x)−∇f(x)||2] ≤ σ2 . (C.93)

Essentially, the analysis in section C.6.2 recovers this special case. However, the notion of DP is no longer the
same as before. In the centralized setting, DP-SGD considers the global DP guarantee. In other words, what we
should protect is the averaged clipped gradients 1

n

∑n
i=1 clipc

(
ηl∇Fi(xr)

)
rather than each individual update.

Therefore, if running R steps, in order to achieve (ε, δ)-DP guarantee, the noise σDP should satisfy (by treating
1
n

∑n
i=1 zi as a single noise):

σ2
DP

n
= Var(

1

n

n∑
i=1

zi) =
dc2 log(1/δ)R

N2
totalε

2
DP

. (C.94)

From the formula of σ2
DP, we obtain ν = dn log(1/δ)

N2
totalε

2
DP

. Following the same discussion as in Section C.6.3, suppose
σ is relatively small, then we obtain the following optimal privacy-utility trade-off and required number of
iterations:

min
r∈[1,R]

E[||∇f(xr)||2 ≤ O

(
F0Ld log(1/δ)

N2
totalε

2
DP

)
, R = Θ

( N2
totalε

2
DP

Ld log(1/δ)

)
. (C.95)

The obtained trade-off is the same as DP-SGD with a single stepsize. Introducing an inner stepsize to the
clipping operator could potentially drive convergence towards any desired accuracy level. However, it is crucial
to note that this may come at the cost of an increased total number of iterations, consequently amplifying the
associated noise levels.
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D PER-SAMPLE CLIPPING

We first present our more refined convergence result formally, then prove the results for the convergence.

D.1 CONVERGENCE RESULT

Theorem IV (Per-sample clipping). Suppose function fi satisfies Assumption 1 to 3, then if we run Algorithm 1
for T := R · τ steps with R communication rounds, τ local steps, clipping threshold c, and step size η ≤ 1

14Lτ
with L := L0 +min(c,M)L1 and M := maxt ||∇f(x̄t)||, then it holds that:

min
t∈[1,T ]

E||∇f(x̄t)|| ≤ O

(
f(x0)− f∗

ηcT
+

√
f(x0)− f∗

ηT

+

√
ηLσ2

n
+

√
ηLζ2

n
1c<O(σ+ζmax)

+min
(
Lη
√

τ̂σ2 + τ2ζ2, c
)
+min

(
σ + ζ,

σ2 + ζ2

c

))
.

(D.1)

where τ̂ := τ if c > O(σ + ζmax) else τ2

Theorem IV is a more refined convergence rate compared to Theorem I in the manuscript. In Theorem I,
we observe that even if when c → ∞, we cannot recover the unclipped convergence rate as demonstrated
in Koloskova et al. (2020) due to the terms O

(√
ηLζ2/n

)
and O

(
Lη
√
τ2σ2

)
. However, we can cancel

the influence of O(
√

ζ2/n) and show the influence of the noise as O(
√
τσ2) such that we can recover the

convergence rate provided in Koloskova et al. (2020) when c → ∞ based on a more refined analysis by
discussing the rate when c > O(σ + ζmax).

Note in practice, we can set the stepsize to be η ≤ O
(

1
14(L0+cL1)τ

)
to avoid knowing the maximum of the

norm of the gradient M . Since this stepsize can be smaller than the theoretical η defined in Theorem IV, the
convergence rate is also guaranteed.

We next give an updated Corollary which takes into account the differential private noise. After that, we give the
proof for Theorem IV in the following sections.
Corollary IV. Suppose function fi satisfies Assumption 1 to 3, then if we run Algorithm 1 with updating rule
yi ← yi − η(gi + zi) for T := R · τ steps with R communication rounds, τ local steps, clipping threshold c,
stepsize η ≤ 1

14Lτ
with L := L0 +ML1 and M := maxt ||∇f(x̄t)||, and σ2

DP as the variance of the added

Gaussian noise such that zi,t ∼ N
(
0,

σ2
DP
d
Id
)

, then it holds:

min
t∈[1,T ]

E||∇f(x̄t)|| ≤ O

(
f(x0)− f∗

ηcT
+

√
f(x0)− f∗

ηT

+

√
ηLσ2

n
+

√
ηLζ2

n
1c<O(σ+ζmax)

+min
(
Lη
√

τ̂σ2 + τ2ζ2, c
)
+min

(
σ + ζ,

σ2 + ζ2

c

)
+

ηLσ2
DP

nc
+

√
ηL

n
σDP

)
.

(D.2)

where τ̂ := τ if c > O(σ + ζmax) else τ2

Note the stepsize defined in the above Corollary has to depend on M instead of min(c,M). It cannot avoided
due to the conditions in Assumption 3 (see discussion in Appendix A.1.1), as the algorithm does not clip the
update after adding the noise.

Local SGD To facilitate the proof, we describe the Local SGD algorithm following Stich (2019). There are n
nodes in total. At iteration t in parallel on all the nodes i ∈ [n], we have:

gi,t = clipc(∇Fi(xi,t)) := min

(
1,

c

||∇Fi(xi,t)||

)
∇Fi(xi,t) . (D.3a)

If t+ 1 is a multiple of τ

xi,t+1 =
1

n

n∑
i=1

xi,t − ηgi,t global averaging . (D.3b)
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Otherwise:
xi,t+1 = xi,t − ηgi,t local step . (D.3c)

Additional definitions Following Stich (2019), we first define virtual sequence {x̄t}t≥0 as:

x̄0 = x0, x̄t =
1

n

n∑
i=1

xi,t . (D.4)

We then define the consensus distance between x̄t and xi,t as:

Rt :=
1

n

n∑
i=1

||x̄t − xi,t||2 . (D.5)

As we are discussing the convergence rate based on the norm of the gradient, to distinguish between different
cases, given c as the clipping threshold, we define:

Jc+ := {t; ||∇f(x̄t)|| ≥ c},J c
2
+ := {t; c

2
≤ ||∇f(x̄t)|| < c},J c

2
− := {t; ||∇f(x̄t)|| <

c

2
} . (D.6)

Specifically, we also define the following two sets to distinguish between the norm of the gradient within two
communication rounds given t− 1− kt as the index of the last communication round (kt ≤ τ − 1):

Jc+,t := {j; ||∇f(x̄j)|| ≥ c, j ∈ [t− 1− kt, t− 1]} (D.7a)
J c

2
+,t := {j; c/2 ≤ ||∇f(x̄j)|| < c, j ∈ [t− 1− kt, t− 1]} (D.7b)

J c
2
−,t := {j; ||∇f(x̄j)|| < c/2, j ∈ [t− 1− kt, t− 1]}, Jc−,t := J c

2
+,t ∪ J c

2
−,t (D.7c)

D.2 PROOF OF CONVERGENCE

When c < O(σ + ζmax)

We give the proof for the convergence of per-sample clipping in Local SGD. We first bound the difference
between the model update in Lemma 12. To give the convergence rate, we consider when the clipping threshold
is large c ≥ O(σ + ζ) and when the clipping threshold is small c ≤ O(σ + ζ). When the clipping threshold
is large, we present the convergence by discussing when the norm of the gradient is large in Lemma 13, is
intermediate large in Lemma 14, and is small in Lemma 15.
Lemma 12 (Difference). For η ≤ ηcrit =

1
14Lτ

with L := L0 +min(c,M)L1, it holds:

ERt ≤ min

(
c2

196L2
,

1

190L2τ

∑
j∈Jc+,t

c2 +
1

95L2τ

∑
j∈Jc−,t

||∇f(x̄j)||2 +
588η2τ

95

∑
j∈Jc−,t

(σ2 + ζ2)

)
.

(D.8)

Proof. Following Koloskova et al. (2020), we assume that there exists a kt ≤ τ − 1 such that:

Rt :=
1

n

n∑
i=1

||x̄t − xi,t||2 =
η2

n

n∑
i=1

||
t−1∑

j=t−1−k

(gi,j − ḡj)||2 ≤
η2

n

n∑
i=1

||
t−1∑

j=t−1−kt

gi,j ||2 . (D.9)

Due to the clipping operation, we know ||gi,t||2 ≤ c2. Therefore, given η ≤ 1
14Lτ

, we can bound Rt by:

ERt ≤
η2

n

n∑
i=1

||
t−1∑

j−1−kt

gi,t||2 ≤ η2τ2c2 ≤ c2

196L2
. (D.10)

We then give a more general bound for Rt given the definition of the set of indices Jc+,t and Jc−,t from
Eq. D.7:

Rt ≤
τη2

n

n∑
i=1

∑
j∈Jc+,t

||gi,j ||2 +
τη2

n

n∑
i=1

∑
j∈Jc−,t

||gi,j −∇f(x̄j) +∇f(x̄j)||2

≤ τη2
∑

j∈Jc+,t

c2 +
2τη2

n

n∑
i=1

∑
j∈Jc−,t

E||gij −∇f(x̄j)||2 + 2τη2
∑

j∈Jc−,t

||∇f(x̄j)||2

≤ τη2
∑

j∈Jc+,t

c2 +
2τη2

n

n∑
i=1

∑
j∈Jc−,t

E||∇Fi(xij)−∇f(x̄j)||2︸ ︷︷ ︸
A1

+2τη2
∑

j∈Jc−,t

||∇f(x̄j)||2 ,

(D.11)
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The first inequality uses the assumption that kt ≤ τ and Cauchy-Schwartz inequality. The second inequality
uses the condition that if ||∇f(x̄j)|| > c for j ∈ Jc+,t, then a tighter upper bound we can give for ||gij ||2 is to
simply to use the fact that ||gij || ≤ c. However, when ||∇f(x̄j)|| < c, we can give a more precise bound using
triangle inequality. The third inequality uses Lemma 3.

We next give the bound for A1 := E||∇Fi(xij)−∇f(x̄j)||2 using the (L0, L1)−smoothness assumption:

A1 ≤ 3E||∇Fi(xij)−∇fi(xij)||2 + 3E||∇fi(xij)−∇fi(x̄j)||2 + 3||∇fi(x̄j)−∇f(x̄j)||2

≤ 3σ2 + 3(L0 + L1||∇f(x̄j)||)2||xij − x̄j ||2 + 3||∇fi(x̄j)−∇f(x̄j)||2
(D.12)

Plug Eq. D.12 back to Eq. D.11, we have:

ERt ≤ τη2
∑

j∈Jc+,t

c2 +
2τη2

n

n∑
i=1

∑
j∈Jc−,t

(3σ2 + 3(L0 + L1||∇f(x̄j)||)2||xij − x̄j ||2 + 3||∇fi(x̄j)−∇f(x̄j)||2)

+ 2τη2
∑

j∈Jc−,t

||∇f(x̄j)||2

≤ τη2
∑

j∈Jc+,t

c2 + 6τη2
∑

j∈Jc−,t

(σ2 + ζ2) + 6τη2
∑

j∈Jc−,t

(L0 + ||∇f(x̄j)||L1)
2Rj + 2τη2

∑
j∈Jc−,t

||∇f(x̄j)||2

≤ τη2
∑

j∈Jc+,t

c2 + 6τη2
∑

j∈Jc−,t

(σ2 + ζ2) + 6τ2η2L2Rt + 2τη2
∑

j∈Jc−,t

||∇f(x̄j)||2 ,

(D.13)

In the last inequality, we use the definition that L := L0 +min(c,M)L1 and
∑

j∈Jc−,t
L0 + ||∇f(x̄j)||L1 ≤∑

j∈Jc−,t
L. We also uses the fact that ERj ≤ ERt, ∀j ∈ [t− 1− kt, t− 1]. With η ≤ 1

14Lτ
, we have:

ERt ≤
1

190L2τ

∑
j∈Jc+,t

c2 +
1

95L2τ

∑
j∈Jc−,t

||∇f(x̄j)||2 +
588τη2

95

∑
j∈Jc−,t

(σ2 + ζ2) . (D.14)

When c > O(σ + ζ)

Lemma 13 (descent lemma for ||∇f(x̄t)|| ≥ c). Under Assumption 1, 2, and 3, and ||∇f(x̄t)|| ≥ c with
stepsize η ≤ 1

14(L0+L1M)τ
, we have:

53c||∇f(x̄t)||
128

≤ f(x̄t)− f(x̄t+1)

η
. (D.15)

Proof. We start by using the smoothness of function f (Lemma 4) and taking the conditional expectation:

E[f(x̄t+1)] ≤ f(x̄t) + ⟨∇f(x̄t),E[∆x]⟩+ L0 + L1||∇f(x̄t)||
2

E||∆x||2 . (D.16)

We first look at the second term. Using Lemma 1 and letting α = c
||∇f(x̄t)|| , we have:

⟨∇f(x̄t),E[∆x]) = − η

n

n∑
i=1

E⟨∇f(x̄t),gi,t⟩

= − η

n

n∑
i=1

(
c

2
||∇f(x̄t)||+

1

2α
E||gi,t||2 −

1

2α
E||gi,t − clipc(∇f(x̄t))||2

)

≤ −ηc

2
||∇f(x̄t)|| −

η

2αn

n∑
i=1

E||gi,t||2

+
η

2α

1

n

n∑
i=1

(3σ2 + 3(L0 + L1||∇f(x̄t)||)2||xi,t − x̄t||2 + 3||∇fi(x̄t)−∇f(x̄t)||2)))

≤ −ηc

2
||∇f(x̄t)|| −

η

2αn

n∑
i=1

E||gi,t||2 +
3η(σ2 + ζ2)

2α
+

3η(L0 + L1||∇f(x̄t)||)2

2α
Rt

= −ηc||∇f(x̄t)||
2

(1− 3σ2

c2
− 3ζ2

c2
) +

3η(L0 + L1||∇f(x̄t)||)2

2α
Rt −

η

2αn

n∑
i=1

E||gi,t||2
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≤ −7ηc||∇f(x̄t)||
16

+
3η(L0 + L1||∇f(x̄t)||)2

2α
Rt −

η

2αn

n∑
i=1

E||gi,t||2

≤ −7ηc||∇f(x̄t)||
16

+
3η(L0 + L1||∇f(x̄t)||)2

2α

(
1

196(L0 +ML1)2
c2
)
− η

2αn

n∑
i=1

E||gi,t||2

≤ −7ηc||∇f(x̄t)||
16

+
3ηc||∇f(x̄t)||

392
− η

2αn

n∑
i=1

E||gi,t||2

≤ −337

784
ηc||∇f(x̄t)|| −

η

2αn

n∑
i=1

E||gi,t||2 .

The first equality uses the update rule E[∆x] := −ηEgi,t. The second equality uses Lemma 1 with
α = c

||∇f(x̄t)|| . The first inequality uses the projection Lemma 3 and follows the same procedure
as in bounding Eq. D.12 given Assumption 1, and 3. The second inequality uses Assumption 2 and
the definition of the consensus distance Rt := 1

n

∑n
i=1 ||xi,t − x̄t||2. The third inequality uses the

assumption that 3σ2+3ζ2

c2
≤ 1

8
. The fourth inequality uses Lemma 12, (L0 + L1||∇f(x̄t)||)2Rt ≤

min( c2

196
, 1
190τ

∑
j∈Jc+,t

c2 + 1
95τ

∑
j∈Jc−,t

||∇f(x̄j)||2 + 3
95τ

∑
j∈Jc−,t

(σ2 + ζ2)). The smallest value in

the second term will be 1
95τ

∑t−1
j=t−1−kt

||∇f(x̄j)||2 + 3
95·24c

2. For this term to be smaller than c2

196
, we would

require ||∇f(x̄j)||2 ≤ 9
25
c2, ∀j ∈ [t− 1− tk, t− 1]. However, the gradient norm for the current time step t is

larger than c, ||∇f(x̄t)|| > c, which makes the requirement of ||∇f(x̄j)||2 ≤ 9
25
c2, ∀j ∈ [t− 1− kt, t− 1]

difficult. Therefore, we here bound (L0 + L1||∇f(x̄t)||)2Rt ≤ c2

196
.

Take the above equation back to Eq. D.16 and with η ≤ 1
14(L0+ML1)τ

, we have:

f(x̄t+1) ≤ f(x̄t)−
53ηc||∇f(x̄t)||

128
− η||∇f(x̄t)||

2cn

n∑
i=1

E||gi,t||2 +
η2(L0 + L1||∇f(x̄t)||)

2n

n∑
i=1

E||gi,t||2

≤ f(x̄t)−
53ηc||∇f(x̄t)||

128
− η||∇f(x̄t)||

2cn

n∑
i=1

E||gi,t||2(1− η||∇f(x̄t)||L1) +
η2L0

2n

n∑
i=1

E||gi,t||2

≤ f(x̄t)−
53ηc||∇f(x̄t)||

128
− η

2n

n∑
i=1

E||gi,t||2(1− η||∇f(x̄t)||L1 − ηL0) ≤ f(x̄t)−
53ηc||∇f(x̄t)||

128
.

(D.17)

The third inequality uses the assumption that ||∇f(x̄t)|| > c. The last inequality uses the condition that
η ≤ 1

14(L0+ML1)τ
given τ ≥ 1.

Lemma 14. (descent lemma for c
2
≤ ||∇f(x̄t)|| < c) Under Assumption 1, 2, 3, and condition c

2
≤

||∇f(x̄t)|| < c with stepsize η ≤ 1
14Lτ

given L := L0 +min(c,M)L1, we have:

7c||∇f(x̄t)||
32

≤ f(x̄t)− f(x̄t+1)

η
+

3L2

2
Rt . (D.18)

Proof. The proof is very similar to the previous case, we again first look at the term ⟨∇f(x̄t),E[∆x]⟩:

⟨∇f(x̄t),E[∆x]⟩ = − η

n

n∑
i=1

E⟨∇f(x̄t),gi,t⟩ = −
η

2
||∇f(x̄t)||2 −

η

2n

n∑
i=1

E||gi,t||2 +
η

2n

n∑
i=1

E||gi,t −∇f(x̄t)||2

≤ −η

2
||∇f(x̄t)||2 −

η

2n

n∑
i=1

E||gi,t||2

+
η

2n

n∑
i=1

(3σ2 + 3(L0 + ||∇f(x̄t)||L1)
2||xi,t − x̄t||2 + 3||∇fi(x̄t)−∇f(x̄t)||2)

≤ −η

2
||∇f(x̄t)||2 −

η

2n

n∑
i=1

E||gi,t||2

+
3ησ2 + 3ηζ2

2
+

3η(L0 + ||∇f(x̄t)||L1)
2

2n

n∑
i=1

||xi,t − x̄t||2
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≤ −η

2
||∇f(x̄t)||2 −

η

2n

n∑
i=1

E||gi,t||2 +
3ησ2 + 3ηζ2

2
+

3(L0 + ||∇f(x̄t)||L1)
2η

2
Rt

≤ −ηc

4
||∇f(x̄t)||+

3ησ2||∇f(x̄t)||
c

+
3ηζ2||∇f(x̄t)||

c
+

3(L0 + ||∇f(x̄t)||L1)
2η

2
Rt −

η

2n

n∑
i=1

E||gi,t||2

= −ηc||∇f(x̄t)||
4

(1− 3σ2 + 3ζ2

c2
) +

3(L0 + ||∇f(x̄t)||L1)
2η

2
Rt −

η

2n

n∑
i=1

E||gi,t||2

≤ −7ηc||∇f(x̄t)||
32

+
3(L0 + ||∇f(x̄t)||L1)

2η

2
Rt −

η

2n

n∑
i=1

E||gi,t||2 .

The second equality uses Lemma 1 with α = 1. In the first inequality, we consider if ||∇f(x̄t)|| <
c, clipc(∇f(x̄t)) = ∇f(x̄t), so then ||gi,t − clipc(∇f(x̄t))|| can be bounded using Lemma 3 and Eq. D.12.
The fourth inequality uses the condition that if c

2
≤ ||∇f(x̄t)|| ≤ c, −||∇f(x̄t)|| ≤ − c

2
and 2||∇f(x̄t)||

c
≥ 1.

The fifth inequality uses the assumption that 3σ2+3ζ2

c2
≤ 1

8
. Take the above equation back in Eq. D.16 and given

the condition η ≤ 1
14Lτ

, we can obtain:

f(x̄t+1) ≤ f(x̄t)−
7ηc||∇f(x̄t)||

32
+

3(L0 + ||∇f(x̄t)||L1)
2

2
Rt −

η

2n

n∑
i=1

E||gi,t||2 +
η2(L0 + L1||∇f(x̄t)||)

2

1

n

n∑
i=1

E||gi,t||2

≤ f(x̄t)−
7ηc||∇f(x̄t)||

32
+

3(L0 + ||∇f(x̄t)||L1)
2

2
Rt −

η

2n

n∑
i=1

E||gi,t||2(1− ηL0 − η||∇f(x̄t)||L1)

≤ f(x̄t)−
7ηc||∇f(x̄t)||

32
+

3(L0 + ||∇f(x̄t)||L1)
2

2
Rt

≤ f(x̄t)−
7ηc||∇f(x̄t)||

32
+

3L2

2
Rt .

(D.19)

Lemma 15 (descent lemma for ||∇f(x̄t)|| < c
2

). Under Assumption 1, 2, 3, and the condition ||∇f(x̄t)|| < c
2

with stepsize η ≤ 1
14Lτ

given L := L0 +min(c,M)L1, we have:

1

4
||∇f(x̄t)||2 ≤

f(x̄t)− Ef(x̄t+1)

η
+

7

2
L2Rt +

16ηL

n
(σ2 + ζ2) +

72(σ2 + ζ2)2

c2
. (D.20)

Proof. In this case, we cannot prove it like in the previous cases. We start by defining an indicator function
δi,t := 1{||∇Fi(xit)|| > c}, which indicates that the stochastic gradient ∇Fi(xit) at time step t is clipped.
We first show the bound for E[δi,t] = Pr(δi,t = 1) as δi,t equals to 1 or 0.

E[δi,t] = Pr[δi,t = 1] = Pr[||∇Fi(xit)|| > c] ≤ Pr[||∇Fi(xit)−∇f(x̄t)|| >
c

2
] . (D.21)

We uses the condition that ||∇f(x̄t)|| < c
2

and triangle inequality. We then square both sides and obtain:

E[δi,t] ≤ Pr[||∇Fi(xi,t)−∇f(x̄t)||2 >
c2

4
]

≤ 4E||∇Fi(xi,t)−∇f(x̄t)||2

c2

≤ 4(3E||∇Fi(xi,t)−∇fi(xi,t)||2 + 3||∇fi(xi,t)−∇fi(x̄t)||2 + 3||∇fi(x̄t)−∇f(x̄t)||2)
c2

≤ 12σ2 + 12||∇fi(x̄t)−∇f(x̄t)||2

c2
+

12(L0 + ||∇f(x̄t)||L1)
2||xi,t − x̄t||2

c2
.

The second line uses Markov inequality. The third line uses Jensen inequality. The fourth line uses Assumption 1
and 3. As we have n workers, we next bound the term 1

n

∑n
i=1 E[δi,t].

1

n

n∑
i=1

E[δi,t] ≤
12(σ2 + ζ2)

c2
+

12(L0 + ||∇f(x̄t)||L1)
2Rt

c2
. (D.22)
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We next bound the differences between ||∇f(x̄t)− Egi,t||2. To approach the bound of ||∇f(x̄t)− Egi,t||2,
we first find the expression for Egi,t.

Egi,t = Eδi,t
c

||∇Fi(xi,t)||
∇Fi(xi,t) + E(1− δi,t)∇Fi(xi,t)

= Eδi,t
(

c

||∇Fi(xi,t)||
− 1

)
∇Fi(xi,t) +∇fi(xi,t) ,

Therefore:

||∇f(x̄t)−
1

n

n∑
i=1

Egi,t||2 = ||∇f(x̄t) +
1

n

n∑
i=1

Eδi,t
(
1− c

||∇Fi(xi,t)||

)
∇Fi(xi,t)−

1

n

n∑
i=1

∇fi(xi,t)||2

≤ 2

n

n∑
i=1

||Eδi,t
(
1− c

||∇Fi(xi,t)

)
∇Fi(xi,t)||2 + 2|| 1

n

n∑
i=1

∇fi(xi,t)−∇fi(x̄t)||2

≤ 2

n

n∑
i=1

(Pr(δi,t = 1))2E||
(
1− c

||∇Fi(xi,t)||

)
∇Fi(xi,t)|δi,t = 1||2

+
2

n

n∑
i=1

||∇fi(xi,t)−∇fi(x̄t)||2

≤ 2

n

n∑
i=1

Pr(δi,t = 1)δi,tE||∇Fi(xi,t)||2 + 2(L0 + ||∇f(x̄t)||L1)
2 1

n

n∑
i=1

||x̄t − xi,t||2

≤ 2

n
Pr(δi,t = 1)E||∇Fi(xi,t)||2 + 2(L0 + ||∇f(x̄t)||L1)

2Rt

≤ 2

n

n∑
i=1

Pr(δi,t = 1)(6σ2 + 6(L0 + ||∇f(x̄t)||L1)
2||x̄t − xi,t||2

+ 6||∇fi(x̄t)−∇f(x̄t)||2 + 2||∇f(x̄t)||2) + 2(L0 + ||∇f(x̄t)||L1)
2Rt

≤ 12

n

n∑
i=1

Pr(δi,t = 1)(σ2 + ζ2 + (L0 + ||∇f(x̄t)||L1)
2Rt)

+ 4Pr(δi,t = 1)||∇f(x̄t)||2 + 2(L0 + ||∇f(x̄t)||L1)
2Rt ,

The first inequality uses triangle inequality. The second inequality uses the rule that E||δX|| = Pr(δ =

1)E[X|δ = 1], ||E[δX]||2 = (Pr(δ = 1))2 ||E[X|δ = 1]||2. The third inequality uses the condition that
||∇Fi(xi,t)|| > c when δi,t = 1, and Jensen inequality for conditional expectation. The fourth inequality uses
the fact that δi,t is either 1 or 0. We next approach each term individually.

12

n

n∑
i=1

Pr(δi,t = 1)(σ2 + ζ2) ≤ 144(σ2 + ζ2)2

c2
+

144L2Rt(σ
2 + ζ2)

c2

≤ 144(σ2 + ζ2)2

c2
+

3L2Rt

4
,

12

n

n∑
i=1

Pr(δi,t = 1)(L0 + cL1)
2Rt ≤ (

3

4
+

144L2Rt

c2
)L2Rt

≤ (
3

4
+

144

196
)L2Rt ,

For both terms, we use the definition L := L0 + min(c,M)L1 and the condition L0 + ||∇f(x̄t)||L1 ≤ L.
We also assume that 12(σ2+ζ2)

c2
≤ 1

16
. For the second equation, we know that Rt is bounded by the minimum

between Eq. D.10 and Eq. D.14. We here choose to use the slightly larger bound from Eq. D.10 for Rt to
continue the proof. Now combining the results, we have:

||∇f(x̄t)−
1

n

n∑
i=1

Egi,t||2 ≤
144(σ2 + ζ2)2

c2
+ (

7

2
+

144

196
)L2Rt + (

1

4
+

12

49
)||∇f(x̄t)||2 . (D.23)

− 1

n

n∑
i=1

⟨∇f(x̄t),E[gi,t]⟩ = −
1

2
||∇f(x̄t)||2 −

1

2
|| 1
n

n∑
i=1

Egi,t||2 +
1

2
|| 1
n

n∑
i=1

∇f(x̄t)− Egi,t||2

≤ −1

4
||∇f(x̄t)||2 + (

7

4
+

72

196
)L2Rt +

72(σ2 + ζ2)2

c2
− 1

2
|| 1
n

n∑
i=1

Egi,t||2 .
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We next approach the term E|| 1
n

∑n
i=1 gi,t||2

1

2
E|| 1

n

n∑
i=1

gi,t||2 =
1

2
E|| 1

n

n∑
i=1

gi,t − Egi,t||2 +
1

2
|| 1
n

n∑
i=1

Egi,t||2 =
1

2n2

n∑
i=1

E||gi,t − Egit||2 +
1

2
|| 1
n

n∑
i=1

Egi,t||2

≤ 1

n2

n∑
i=1

E||gi,t −∇f(x̄t)||2 +
1

n2

n∑
i=1

||∇f(x̄t)− Egi,t||2 +
1

2
|| 1
n

n∑
i=1

Egi,t||2

≤ 1

n2

n∑
i=1

E||gi,t −∇f(x̄t)||2 +
1

2
|| 1
n

n∑
i=1

Egi,t||2

+
1

n

(
144(σ2 + ζ2)2

c2
+ (

7

2
+

144

196
)L2Rt +

48(σ2 + ζ2) + 48L2Rt

c2
||∇f(x̄t)||2

)
≤ 1

n
(3σ2 + 3ζ2 + 3L2Rt) +

1

2
|| 1
n

n∑
i=1

Egi,t||2

+
1

n

(
3(σ2 + ζ2)

4
+ (

7

2
+

144

196
)L2Rt + 12(σ2 + ζ2) + 12L2Rt

)
≤ 16(σ2 + ζ2)

n
+ (

37

2
+

144

196
)L2Rt +

1

2
|| 1
n

n∑
i=1

Egi,t||2 .

(D.24)

The first equality uses the fact that E 1
n

∑n
i=1 gi,t − Egi,t = 0 and the variance of the sum of independent

variables equal to the sum of the variance of the variables. The first inequality uses Jensen inequality. The
second inequality uses the result from Eq. D.22 and Eq. D.23. The third inequality uses Jensen inequality and
the assumption ||∇f(x̄t)|| ≤ c

2
.

Therefore, using the smoothness assumption and taking the conditional expectation, we have:

Ef(x̄t+1) ≤ f(x̄t)−
η

4
||∇f(x̄t)||2 +

415η

196
L2Rt +

72η(σ2 + ζ2)2

c2
− η

2
|| 1
n

n∑
i=1

Egi,t||2

+
16η2L(σ2 + ζ2)

n
+

3770η2L3

196
Rt +

η2L

2
|| 1
n

n∑
i=1

Egi,t||2

≤ f(x̄t)−
η

4
||∇f(x̄t)||2 + (

415

196
+

3770

196 · 14)ηL
2Rt

+
72η(σ2 + ζ2)2

c2
+

16η2L(σ2 + ζ2)

n
.

(D.25)

Rearrange the above equation and divide by η, we have:

1

4
||∇f(x̄t)||2 ≤

f(x̄t)− f(x̄t+1)

η
+

7

2
L2Rt +

16ηL

n
(σ2 + ζ2) +

72(σ2 + ζ2)2

c2
. (D.26)

Wrapping up

· When L2Rt ≤ 1
190τ

∑
j∈Jc+,t

c2 + 1
95τ

∑
j∈Jc−,t

||∇f(x̄j)||2 + 588τη2L2

95
(σ2 + ζ2)

Now, we wrap up the above three cases together. Given A3 :=

1
128T

(∑
t∈Jc+

c||∇f(x̄t)||+
∑

t∈J c
2
+
c||∇f(x̄t)||+

∑
t∈J c

2
−
||∇f(x̄t)||2

)
:

A3 ≤
f(x0)− f∗

28ηT
+

∑
t∈J c

2
+

3L2

56
Rt +

∑
t∈J c

2
−

7L2

64
Rt

+
ηL

2
(σ2 + ζ2) +

9(σ2 + ζ2)2

4c2

≤ f(x0)− f∗

28ηT
+

ηL

2
(σ2 + ζ2) +

9(σ2 + ζ2)2

4c2
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+
1

T

∑
t∈J c

2
+

3

56

 1

190τ

∑
j∈Jc+,t

c||∇f(x̄j)||+
1

95τ

∑
j∈J c

2
+,t

c||∇f(x̄j)||+
1

95τ

∑
j∈J c

2
−,t

||∇f(x̄j)||2


+

1

T

∑
t∈J c

2
−

7

64

 1

190τ

∑
j∈Jc+,t

c||∇f(x̄j)||+
1

95τ

∑
j∈J c

2
+,t

c||∇f(x̄j)||+
1

95τ

∑
j∈J c

2
−,t

||∇f(x̄j)||2


+

1

T

∑
t∈J c

2
+

3

56

588τη2L2

95

∑
j∈Jc−,t

(σ2 + ζ2) +
∑

t∈J c
2
−

7

64

588τη2L2

95

∑
j∈Jc−,t

(σ2 + ζ2)

≤ f(x0)− f∗

28ηT
+

ηL

2
(σ2 + ζ2) +

9(σ2 + ζ2)2

4c2

+
1

T

∑
t∈Jc+

7

64 · 190c||∇f(x̄t)||+
1

T

∑
t∈J c

2
+

7

64 · 95c||∇f(x̄t)||+
1

T

∑
t∈J c

2
−

7

64 · 95 ||∇f(x̄t)||2

+
13

19
τ2η2L2(σ2 + ζ2) .

In the last equality, each term at time step t in the parentheses can maximum appear kt times and kt ≤ τ − 1.
As for the coefficient for each term, we can simply bound it with the largest coefficient from when t ∈ J c

2
+ and

t ∈ J c
2
−. We can also verify this in an example later. Note the same terms appear both in the left-hand side

and the right-hand side of the equation, and the convergence behaviour between when t ∈ Jc+ and t ∈ J c
2
+ is

similar, so we can rearrange it:

1

152T

 ∑
t∈Jc+∪J c

2
+

c||∇f(x̄t)||+
∑

t∈J c
2
−

||∇f(x̄t)||2

 ≤ f(x0)− f∗

28ηT
+

ηL

2n
(σ2 + ζ2)

+
9(σ2 + ζ2)2

4c2
+

13

19
τ2η2L2(σ2 + ζ2) .

(D.27)

We know that x2 ≥ 2εx − ε2 for any ε, x > 0. Following Koloskova et al. (2023), we can get
1
T

∑
t∈J c

2
−
(2εE||∇f(x̄t)|| − ε2) ≤ A. letting A := f(x0)−f∗

η
+ (σ2+ζ2)2

c2
+ ηL(σ2+ζ2)

n
+L2η2τ2(σ2 + ζ2)

without considering the coefficient, and ε =
√
A, we have:

1

T

∑
t∈J c

2
−

||∇f(x̄t)|| ≤
√
A ≤

√
f(x0)− f(x∗)

ηT
+

σ2 + ζ2

c

+

√
ηL(σ2 + ζ2)

n
+
√

L2η2τ2(σ2 + ζ2) .

Summing up the two cases together, we have:

1

T

T∑
t=0

||∇f(x̄t)|| ≤
f(x0)− f(x∗)

cηT
+

√
f(x0)− f(x∗)

ηT
+

σ2 + ζ2

c

+

√
ηL(σ2 + ζ2)

n
+ Lητ

√
(σ2 + ζ2) .

(D.28)

· When L2Rt ≤ c2

196

If instead L2Rt is bounded by c2

196
,∀t ∈ [T ], then we would have a similar convergence rate as Eq. D.28 but

instead of the term Lητ
√

(σ2 + ζ2), we would have a term that is c.

1

T

T∑
t=0

||∇f(x̄t)|| ≤
f(x0)− f(x∗)

cηT
+

√
f(x0)− f(x∗)

ηT
+

σ2 + ζ2

c
+

√
ηL(σ2 + ζ2)

n
+ c . (D.29)
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Therefore, combining the above two cases from Eq. D.28 and Eq. D.29 together, we have:

1

T

T∑
t=0

||∇f(x̄t)|| ≤
f(x0)− f(x∗)

cηT
+

√
f(x0)− f(x∗)

ηT
+

σ2 + ζ2

c

+

√
ηL(σ2 + ζ2)

n
+min

(
Lητ

√
σ2 + ζ2, c

)
.

(D.30)

When c < O(σ + ζ)

In this part, we assume the clipping threshold is small c < 12σ + 12ζ and 20σ + 20ζ ≤ ||∇f(x̄t)||. Note, the
numerical value is chosen high here to make the proof simple and clean.

Lemma 16. (descent lemma for c2 ≤ O
(
σ2 + ζ2

)
) Under Assumption 1, 2, 3, and the condition that

c ≤ 12σ + 12ζ, and 20σ + 20ζ ≤ ||∇f(x̄t)||, we have:

c

11
||∇f(x̄t)|| ≤

f(x0)− f∗

η
. (D.31)

Proof. We again start by using (L0, L1)−smoothness:

Ef(x̄t+1) ≤ f(x̄t)−
η

n

n∑
i=1

E⟨∇f(x̄t),gi,t⟩+
η2(L0 + L1||∇f(x̄t)||)

2
E||gi,t||2

≤ f(x̄t)−
η

n

n∑
i=1

E⟨∇f(x̄t),gi,t⟩+
η2(L0 + L1||∇f(x̄t)||)c2

2

≤ f(x̄t)−
η

n

n∑
i=1

E⟨∇f(x̄t),gi,t⟩+
3η2(L0 + L1||∇f(x̄t)||)c

10
||∇f(x̄t)|| .

(D.32)

The second inequality uses the fact that after clipping, the norm of the stochastic gradients is smaller than c. the
last inequality uses the assumption that c < 3

5
||∇f(x̄t)||.

We then define an indicator function δc− := 1{||∇Fi(xi,t)−∇f(x̄t)|| > 12σ + 12||∇fi(x̄t)−∇f(x̄t)||+
(L0 + cL1)||xi,t − x̄||}. We will derive the convergence rate based on δc− next.

- When δc− = 0

If δc− = 0, then ||∇Fi(xi,t)−∇f(x̄t)|| ≤ 12σ+12||∇fi(x̄t)−∇f(x̄t)||+(L0+||∇f(x̄t)||L1)||xi,t−x̄t||.
This means that strong variance holds for some of the stochastic noises. Assuming αi := min

(
1, c

||∇Fi(xi,t)||

)
,

we have:

− 1

n

n∑
i=1

⟨∇f(x̄t),gi,t⟩ = −
1

n

n∑
i=1

⟨∇f(x̄t), αi∇Fi(xi,t)− αi∇f(x̄t) + αi∇f(x̄t)⟩

≤ − 1

n

n∑
i=1

αi||∇f(x̄t)||2 +
1

n

n∑
i=1

αi⟨∇f(x̄t),∇f(x̄t)−∇F (xi,t)⟩

≤ − 1

n

n∑
i=1

αi||∇f(x̄t)||2 +
1

n

n∑
i=1

αi||∇f(x̄t)||||∇f(x̄t)−∇F (xi,t)||

≤ − 1

n

n∑
i=1

αi||∇f(x̄t)||2

+
1

n

n∑
i=1

αi||∇f(x̄t)|| (12σ + 12||∇fi(x̄t)−∇f(x̄t)||+ (L0 + ||∇f(x̄t)||L1)||xi,t − x̄t||)

≤ − 1

n

n∑
i=1

αi||∇f(x̄t)||2

+

(
1

n

n∑
i=1

αi||∇f(x̄t)||

)(
1

n

n∑
i=1

12σ + 12||∇fi(x̄t)−∇f(x̄t)||+ (L0 + ||∇f(x̄t)||L1)||xi,t − x̄t||

)

≤ − 1

n

n∑
i=1

αi||∇f(x̄t)||2 +
1

n

n∑
i=1

αi||∇f(x̄t)||(12σ + 12ζ + (L0 + ||∇f(x̄t)||L1)ητc)

41



Published as a conference paper at ICLR 2024

≤ − 1

n

n∑
i=1

αi||∇f(x̄t)||2 +
1

n

n∑
i=1

αi||∇f(x̄t)||
(
3

5
||∇f(x̄t)||+

3

40
||∇f(x̄t)||

)

= − 13

40n

n∑
i=1

αi||∇f(x̄t)||2 .

We use triangle inequality in the third line. and 12(σ + ζ) ≤ 3
5
||∇f(x̄t)||, η ≤ 1

8(L0+min(c,M)L1)τ
in the

seventh inequality.

As αi := min
(
1, c

||∇Fi(xi,t)||

)
, we can bound 1

n

∑n
i=1 αi:

1

n

n∑
i=1

αi ≥
1

n

n∑
i=1

c

||∇Fi(xi,t)||
≥ c

1
n

∑n
i=1 ||∇Fi(xi,t)||

≥ c

12σ + 12ζ + η(L0 + ||∇f(x̄t)||L1)τc+ ||∇f(x̄t)||

≥ c
8
5
||∇f(x̄t)||+ 1

8
3
5
||∇f(x̄t)||

=
40c

67||∇f(x̄t)||
.

(D.33)

The second inequality uses ||∇fi(x̄t)|| ≤ 12ζ + ||∇f(x̄t)||, ||∇fi(xi,t)|| ≤ (L0 + ||∇f(x̄t)||L1)ητc +
||∇fi(x̄t)||, and ||∇Fi(xi,t)|| ≤ 12σ + ||∇fi(xi,t)||. The third line uses the condition η ≤

1
8(L0+min(c,M)L1)τ

, σ + ζ ≤ 1
20
||∇f(x̄t)||. Therefore, we can now bound the inner product:

− 1

n

n∑
i=1

⟨∇f(x̄t),gi,t⟩ ≤ −
13

67
c||∇f(x̄t)|| . (D.34)

- When δc− = 1

If δc− = 1, then some stochastic noises can be larger than the assumed variance. Therefore, we cannot bound
the inner product as before. Instead, we can use Cauchy-Schwarts inequality to bound:

− 1

n

n∑
i=1

⟨∇f(x̄t), αi∇Fi(xi,t)⟩ ≤ |
1

n

n∑
i=1

⟨∇f(x̄t), αi∇Fi(xi,t)⟩| ≤
1

n

n∑
i=1

||∇f(x̄t)||||αi∇Fi(xi,t)|| ≤ c||∇f(x̄t)|| .

(D.35)

We next derive the probability Pr(||∇Fi(xi,t) − ∇f(x̄t)|| > 12σ + 12||∇fi(x̄t) − ∇f(x̄t)|| + 12(L0 +
||∇f(x̄t)||L1)||xi,t − x̄t||

Pr(||∇Fi(xi,t)−∇f(x̄t)|| > 12σ + 12||∇fi(x̄t)−∇f(x̄t)||+ 12(L0 + L1||∇f(x̄t)||)||xi,t − x̄t||)

≤ E||∇Fi(xi,t)−∇f(x̄t)||
12σ + 12||∇fi(x̄t)−∇f(x̄t)||+ 12(L0 + ||∇f(x̄t)||L1)||xi,t − x̄t||

≤ 1

12
(D.36)

Therefore, combining the two cases, we have:

− 1

n

n∑
i=1

αi⟨∇f(x̄t),∇Fi(xi,t)⟩ ≤ −Pr(δc− = 0)
1

n

n∑
i=1

αiE[⟨∇f(x̄t),∇Fi(xi,t)|δc− = 0]

− Pr(δc− = 1)
1

n

n∑
i=1

αiE[⟨∇f(x̄t),∇Fi(∇xi,t)⟩|δc− = 1]

≤ (−11

12

13

67
+

1

12
)c||∇f(x̄t)|| ≤ −

1

11
c||∇f(x̄t)|| .

(D.37)

Ef(x̄t+1) ≤ f(x̄t)−
η

n

n∑
i=1

E⟨∇f(x̄t),∇Fi(x̄t)⟩+
3η2(L0 + L1||∇f(x̄t)||)

10
c||∇f(x̄t)||

≤ f(x̄t)−
ηc

11
||∇f(x̄t)|| .

(D.38)
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Rearrange the above equation, we have:

c

11
||∇f(x̄t)|| ≤

f(x̄t)− f(x̄t+1)

η
. (D.39)

Wrap up If there is at least one iteration such that the gradient norm is small ||∇f(x̄t)|| < O(σ + ζ), then it
simply holds that:

min
t∈[1,T ]

E||∇f(x̄t)|| ≤ O(σ + ζ) .

Otherwise, we can use Eq. D.38 to bound the gradient norm, combining the above two cases and averaging over
T iterations, we have:

min
t∈[1,T ]

E||∇f(x̄t)|| ≤ O
(
f(x0)− f(x∗)

ηcT
+ σ + ζ

)
. (D.40)

When c > O(σ + ζmax)

When we look at Theorem I and let c→∞, compared to the convergence rate from Koloskova et al. (2020), the

only terms that are different from the unclipped federated optimization convergence are: O(τ2σ2) andO(
√

ζ2

n
).

These two terms appear in the case discussion of when ||∇f(x̄t)|| < c
2

. Therefore, we mainly show the proof in
the case ||∇f(x̄t)|| < c

2
to illustrate that we can recover FedAvg.

For the remaining of the proof, it is important to note that when ||∇f(x̄t)|| < c
2

and c > 32 · 12(σ + ζmax),
we have:

||∇fi(x̄t)|| ≤ ||∇fi(x̄t)−∇f(x̄t)||+ ||∇f(x̄t)|| ≤ ζmax +
c

2
< c

We first give an updated difference lemma that recovers τσ2:
Lemma 17. For η ≤ 1

14(L0+min(c,M)L1)τ
and c > O(σ + ζmax), it holds:

ERt ≤
109τη2

99

∑
j∈Jc+,t∪J c

2
+,t

c2+
77η2τ

20

∑
j∈J c

2
−,t

||∇f(x̄j)||2+
288η(σ2 + ζ2)2

c2
+
436η2τ

99
σ2+

218η2τ2

99
ζ2

Proof.

1

n

n∑
i=1

||
∑

j∈J c
2
−,t

gi,j ||2 =
1

n

n∑
i=1

||
∑

j∈J c
2
−,t

gi,j − Egij ||2 +
1

n

n∑
i=1

||
∑

j∈J c
2
−,t

Egij ||2

≤
∑

j∈J c
2
−,t

1

n

n∑
i=1

||gi,j − Egi,j ||2︸ ︷︷ ︸
A2

+
1

n

n∑
i=1

||
∑

j∈J c
2
−,t

Egij ||2

︸ ︷︷ ︸
A3

.
(D.41)

The first equality uses mean variance separation. The second inequality uses the fact that the variance of the sum
of the independent variables equal to the sum of the variance. We next bound A2 and A3 separately.

A2 :=
1

n

n∑
i=1

||gij −∇fi(x̄j) +∇fi(x̄j)− Egij ||2

≤ 2

n

∑
||gij −∇fi(x̄j)||2 +

2

n

∑
||∇fi(x̄j)− Egij ||2

≤ 2

n

∑
||∇Fi(xij)−∇fi(x̄j)||2 +

2

n

∑
||∇fi(x̄j)− Egi,j ||2

≤ 4σ2 + 4(L0 + ||∇f(x̄j)||L1)
2Rj +

4

n

∑
Pr(δij = 1)||∇Fi(xij)||2 + 4(L0 + ||∇f(x̄j)||L1)

2Rj

≤ 4σ2 +
288(σ2 + ζ2)2

c2
+

(
19

2
+

72

49

)
L2Rj + (

1

4
+

96

196
)||∇f(x̄j)||2 ,

(D.42)

The first inequality uses the triangle inequality. The second inequality uses the projection Lemma 3. The third
inequality following the same procedure as in Eq. D.12. The last inequality uses the result from Eq. D.22, the
definition of L := L0 +min(c,M)L1 and the condition L0 + ||∇f(x̄j)||L1 ≤ L.

A3 :=
1

n

∑
||
∑

j∈J c
2
−

Egij ||2 =
1

n

∑
||

∑
j∈J c

2
−,t

Egij −∇fi(x̄j) +∇fi(x̄j)||2
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≤ 2

n

∑
||

∑
j∈J c

2
−,t

Egij −∇fi(xj)||2 +
2

n

∑
||

∑
j∈J c

2
−,t

∇fi(x̄j)−∇f(x̄j) +∇f(x̄j)||2

≤ 2

n

∑
||
∑

j∈J c
2
−

δij∇Fi(xij) +∇fi(xij)−∇fi(x̄j)||2 + 2τ2ζ2 + 2τ
∑

j∈J c
2
−,t

||∇f(x̄j)||2

≤ 4

n

∑
n

∏
j

Pr(δij = 1)||
∑

j∈J c
2
−,t

∇Fi(xij)||2 + 4τ
∑

j∈J c
2
−,t

(L0 + ||∇f(x̄j)||L1)
2Rj + 2τ2ζ2 + 2τ

∑
j∈J c

2
−,t

||∇f(x̄j)||2

≤ 4τ

n

(
12(σ2 + ζ2)

c2
+

12(L0 + ||∇f(x̄j)||L1)
2Rj

c2

)τ ∑
i

∑
j∈J c

2
−

||∇Fi(xij)||2 + 4τ(L0 + ||∇f(x̄j)||L1)
2
∑

j∈J c
2
−,t

Rj

+ 2τ2ζ2 + 2τ
∑

j∈J c
2
−,t

||∇f(x̄j)||2

≤
(
48(σ2 + ζ2)

c2
+

48(L0 + ||∇f(x̄j)||L1)
2Rj

c2

)
1

n

∑
i

∑
j∈J c

2
−,t

||∇Fi(xij)||2 + 4τ(L0 + ||∇f(x̄j)||L1)
2
∑

j∈J c
2
−,t

Rj

+ 2τ2ζ2 + 2τ
∑

j∈J c
2
−,t

||∇f(x̄j)||2

≤ 288(σ2 + ζ2)2τ

c2
+

291L2

98

∑
j∈J c

2
−,t

Rj + (
145

196
+ 2τ)

∑
j∈J c

2
−,t

||∇f(x̄j)||2

+ 4τL2
∑

j∈J c
2
−,t

Rj + 2τ2ζ2

≤ 288τ(σ2 + ζ2)2

c2
+

291

98
L2

∑
j∈J c

2
−,t

Rj + (
145

196
+ 2τ)

∑
j∈J c

2
−,t

||∇f(x̄j)||2 + 4τL2
∑

j∈J c
2
−,t

Rj + 2τ2ζ2 ,

The first inequality uses triangle inequality. The second inequality uses Cauchy-Schwartz inequality. The third
inequality uses triangle inequality. The fourth inequality uses the result from Eq. D.22. The fifth inequality
uses the fact that aτ ≤ 1

aτ
when a < 1. The sixth inequality uses the definition L := L0 +min(c,M)L1 and

L0 + ||∇f(x̄j)||L1 ≤ L since j ∈ J c
2
−,t. Combining the above two equations, we have:

η2
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n∑
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||
∑

j∈J c
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(D.43)

ERt ≤ τη2
∑

j∈Jc+,t∪J c
2
+,t

c2 +
576η2τ(σ2 + ζ2)2

c2
+

1758η2τL2

98

∑
j∈J c

2
−,t
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+
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2
−,t

||∇f(x̄j)||2 + 4η2τσ2 + 2η2τ2ζ2 .

(D.44)
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Therefore, given η ≤ 1
14Lτ

, we have:

ERt ≤
109τη2

99

∑
j∈Jc+,t∪J c

2
+,t

c2+
77η2τ

20

∑
j∈J c

2
−,t

||∇f(x̄j)||2+
288η(σ2 + ζ2)2

c2
+
436η2τ

99
σ2+

218η2τ2

99
ζ2 .
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We next bound the term E|| 1
n

∑n
i=1 gi,t||2 given L := L0 +min(c,M)L1.

1

2
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n
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2
E|| 1

n

n∑
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2
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2n2
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2
|| 1
n
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Therefore, replacing the result of E||gi,t||2 from Eq. D.25 with the above updated result and replacing the
difference lemma with the updated difference lemma in Eq. D.27, with carefully tuned stepsize, we obtain:

min
t∈[1,T ]

E||∇f(x̄t)|| ≤ O

(
f(x0)− f∗

ηcT
+

√
f(x0)− f∗

ηT

+

√
ηLσ2

n

+min
(
Lη
√

τσ2 + τ2ζ2, c
)
+min

(
σ + ζ,

σ2 + ζ2

c

))
.

When c→∞, the above result recover the convergence rate provided in Koloskova et al. (2020).

D.3 EXTENSION TO DIFFERENTIALLY PRIVATE LOCAL SGD

In this section, we add random noise zi,t ∼ N (0,
σ2

DP
d
I) where d is the dimension of the parameter on the

clipped gradients. Therefore, the conditional expectation becomes:

f(x̄t+1) ≤ f(x̄t)−
η

n
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2
E|| 1
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E||zi,t||2
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E|| 1

n

n∑
i=1

gi,t||2 +
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2n
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The second inequality uses the fact that E[zit] = 0. The third inequality uses the fact that Var[zi,t] = σ2
DP. The

rest of the proof is the same as before.

45



Published as a conference paper at ICLR 2024

D.4 ACCURACY PERSPECTIVE

In this section, we discuss how to choose η and c to reach ε-accuracy for Algorithm 1
(mint∈[1,T ] E[||∇f(x̄t)||] ≤ ε). According to Theorem I, we obtain the following convergence result:

min
t∈[1,T ]

E||∇f(x̄t)|| ≤ O

(
F0

ηcT
+

√
F0

ηT
+

√
ηL(σ2 + ζ2)

n

+ ηLmin
(
τ
√

σ2 + ζ2, c
)
+min

(
σ + ζ,

σ2 + ζ2

c

))
.

Since the last three terms do not depend on T , we have to pick η and c such that each individual term is less than
ε. It is clear from the last term that we can pick c to be:

c = Θ
(σ2 + ζ2

ε

)
. (D.48)

Let A := min(τ
√

σ2 + ζ2, σ2+ζ2

ε
). Together with the constraint η ≤ O( 1

τL
), we obtain the choice for η as

follows:

η ≤ min

{
Θ
( nε2

L(σ2 + ζ2)

)
,Θ
( ε

LA

)
,Θ
( 1

τL

)}
. (D.49)

Finally, we can compute the required iteration T by plugging in the respective choices of η and c and letting the
first and the second terms be less than ε2.

D.5 PRIVACY-UTILITY DISCUSSION

D.5.1 LOCAL DP GUARANTEE

When the mini-batch size is one on each client, per-sample clipping with the DP-noise can limit the contribution
of each individual data point on the client model update, and achieve a certain level of differential privacy. Here,
the neighborhood dataset is defined such that two datasets only differ by one data point.

To proceed with the analysis, we assume the mini-batch size on each client is one and denote the minimum size
among all clients by N , i.e., ∀i ∈ [N ], we have:

fi(x) :=
1

Ni

Ni∑
j=1

Fi,j(x), N := min
i
{Ni}, (D.50)

Ej [||∇Fi,j(x)−∇fi(x)||2] =
1

Ni

Ni∑
j=1

||∇Fi,j(x)−∇fi(x)||2 ≤ σ2 . (D.51)

To achieve the formal local DP guarantee, the variance σ2
DP should satisfy the following condition. (Note the DP

noise is set to zi ∼ N (0,
σ2

DP
d
I) for all i ∈ [n].)

Theorem VI (Theorem I Abadi et al. (2016)). For any εDP ≤ O( τR
N2 ), 0 < δ < 1, τ ∈ N+, R ∈ N+,

Algorithm 1 with updating rule yi ← yi − η(gi + zi) with zi ∼ N (0,
σ2

DP
d
I) for all i ∈ [n] for T := R · τ

steps with R communication rounds, τ local steps, achieves (εDP, δ)-local differential privacy for any client
i ∈ [n] if we choose

σ̄DP = Ω

(
c
√

log(1/δ)T

NεDP

)
. (D.52)

where σ̄DP := σDP√
d

.

Proof. Let q := 1
N

. According to the analysis from Abadi et al. (2016), suppose yi,t satisfies (ε′, δ′)-DP for
any t = 0, ..., τR− 1 and any i ∈ [n], then the total privacy guarantee after R rounds is

(
O(q
√
τRε′),O(δ′)

)
.

It follows from the Gaussian mechanism (and let εDP = q
√
τRε′, δ = δ′) that, each σ̄DP should satisfy

σ̄DP = Ω

(
∆q
√

log(1/δ)τR

εDP

)
. (D.53)

where ∆ is ℓ2-sensitivity of the algorithm output at each iteration, which can be bounded by 2c since ||clipc(x)−
clipc(y)|| ≤ 2c for any x,y ∈ Rd. (Note for each client, the minibatch size is assumed to be 1.)
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D.5.2 OPTIMAL PRIVACY-UTILITY TRADE-OFF AND CHOICES FOR HYPER-PARAMETERS

In this section, we provide the choices of hyper-parameters including η and c to achieve the optimal privacy
utility trade-off and the optimal iteration complexity.

Let K := σ2 + ζ2 and take the square for both sides in Eq. 3, we have:

min
t

E||∇f(x̄t)||2 ≤ O
(

F 2
0

η2c2T 2
+

F0

ηT
+

ηLK
n

+ L2η2 min(τ2K, c2) + min

(
(σ + ζ)2,

K2

c2

)
+

η2L2σ4
DP

n2c2
+

ηL

n
σ2

DP

)

According to Theorem VI, in order to achieve (εDP, δ)-local DP for each client, the noise scale should satisfy
σ2

DP ≥ Ω(c2Tν) where ν = d log(1/δ)

N2ε2DP
. Plugging the bound for σDP into the previous display, and minimize

the first and the last two terms w.r.t c and η, we have T = Θ
( √

F0n

ηc
√
Lv

)
= Θ

(
B
ηc

)
where B :=

√
F0n√
Lv

. Let

A := F0
B

, we can then rewrite the above rate as:

min
t

E||∇f(x̄t)||2 ≤ O
(
Ac+

ηLK
n

+ L2η2 min(τ2K, c2) + min

(
(σ + ζ)2,

K2

c2

)
+A2

)
. (D.54)

Case 1: When A2 is larger than K such that O(Ac+A2) dominates the error, we can set c as large as A and
pick the stepsize as large as η = Θ

(
1
Lτ

)
to reduce the number of iterations T . We then obtain the privacy-utility

trade-off as:

min
t

E||∇f(x̄t)||2 ≤ O
(
F0Lv

n

)
, T = Θ

(
τ
√
F0nL

c
√
v

)
. (D.55)

Case 2: SupposeK2 is much larger than A such that min
(
(σ + ζ)2, K2

c2

)
dominates the error. AsO

(
(σ + ζ)2

)
is fixed, we can instead reduce the term O

(
K2

c2

)
by letting c = Θ

(
K2/3

A1/3

)
such that the rate from Eq. D.54 can

be reduced to:

min
t

E||∇f(x̄t)||2 ≤ O
(
ηLK
n

+ L2η2 min(τ2K, K
4/3

A2/3
) +K2/3A2/3

)
.

We can then pick η as large as η = Θ
(

A1/3

LτK1/3

)
to reduce the number of iterations T so that: O

(
ηLK
n

)
≤

O
(

A1/3K2/3

τn

)
≤ O

(
K2/3A2/3

)
and O(L2η2τ2K) ≤ O

(
A2/3K1/3

)
≤ O(K2/3A2/3). We then obtain

the privacy-utility trade-off as:

min
t

E||∇f(x̄t)||2 ≤ O

K2/3

(√
F0Lv

n

)2/3
 , T = Θ

(
τ(LKF0)

1/3n2/3

cv2/3

)
. (D.56)

D.5.3 IMPLICATION

Case 1: Let us begin by examining Case 1 characterized by a relatively low privacy budget, with σ and ζ being
relatively small. Plugging ν = d log(1/δ)

N2ε2DP
into D.55, we obtain the optimal privacy-utility trade-off as well as the

best iteration complexity as follows:

min
t

E[||∇f(x̄t)||2 ≤ O

(
d log(1/δ)

nN2ε2DP

)
, T = Θ

(
τnN2ε2DP

d log(1/δ)

)
, (D.57)

by choosing

c = Θ

(√
d log(1/δ)√
nNεDP

)
, η = Θ

( 1

τL

)
. (D.58)

Due to the weaker notion of neighboring dataset compared with per-update clipping, the optimal utility is N2

times better than O( d log(1/δ)

nε2DP
) obtained in Section C.6.3. Further, the best iteration complexity is achieved by

letting τ = 1 which is the same as per-update clipping. Again, under the current analysis, we cannot prove
effectiveness for doing multiple local steps when the privacy budget ε and δ are relatively small.
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Case 2: Let us now consider Case 2 where we have large stochastic noise and heterogeneity. Plugging in the
value ν = d log(1/δ)

N2ε2DP
, we then have:

min
t

E||∇f(x̄t)||2 ≤ O

(
(σ2 + ζ2)

2
3

(
d log(1/δ)

nN2εDP

) 1
3

)
, T = Θ

(
τ

(σ2 + ζ2)
1
3

√
nN2ε2DP

d log(1/δ)

)

by choosing:

c = Θ

(
(σ2 + ζ2)

2
3

(
nN2ε2DP

d log(1/δ)

)1/6
)
, η = Θ

(
1

τ(σ2 + ζ2)1/3

(
d log(1/δ)

nN2ε2DP

) 1
6

)

In this case, the higher stochastic noise σ2 and data heterogeneity ζ2 can worse the optimal utility. We

need to pick a slightly large clipping threshold and small stepsize seeing that c = Θ

(
(σ2 + ζ2)2/3

)
and

η = Θ

(
1

τ(σ2+ζ2)1/3

)
. Again, a larger number of local steps τ can increase the number of iterations T to reach

such utility. The optimal clipping threshold and stepsize in this case is a complicated interplay between σ2, ζ2,
problem dimension d, number of data point N , and the privacy cost (εDP, δ).

D.5.4 CONNECTION TO CENTRALIZED DP-SGD

Following the same discussion as presented in C.6.4, per-sample clipping (Algorithm 1 with DP noise) can also
be treated as a centralized algorithm when τ = 1 from a pure algorithmic point of view.

Again, let ζ = 0, τ = 1, and mini-batch size on each client to be one. It is clear that, Algorithm 1 with DP noise
is exactly equivalent to DP-SGD (where n can be interpreted as the mini-batch used in Koloskova et al. (2023)):

xt+1 = xt − η
1

n

n∑
i=1

[
clipc

(
∇Fi(xt)

)
+ zi

]
. (D.59)

Suppose the size of the whole dataset is Ntotal. Then the target optimization problem becomes:

f(x) :=
1

Ntotal

Ntotal∑
j=1

Fj(x) .

Essentially, the analysis in section D.5.2 recovers this special case. To guarantee the global DP guarantee, we
can use the noise bound derived in (C.94):

σ2
DP =

dnc2 log(1/δ)T

N2
totalε

2
DP

. (D.60)

From the formula of σ2
DP, we obtain ν = dn log(1/δ)

N2
totalε

2
DP

. Following the same discussion as in Section D.5.3, suppose
σ is relatively small, then we obtain the following optimal privacy-utility trade-off and required number of
iterations:

min
r∈[1,R]

E[||∇f(xr)||2 ≤ O

(
d log(1/δ)

N2
totalε

2
DP

)
, T = Θ

( N2
totalε

2
DP

d log(1/δ)

)
. (D.61)

by choosing

c = Θ

(√
d log(1/δ)

NtotalεDP

)
, η = Θ(

1

L
) . (D.62)

Many researches Wang et al. (2018); Kifer et al. (2012) have shown that the optimal utility bound for DP-SGD

under bounded stochastic gradient assumption is O
(√

d log(1/δ)

NtotalεDP

)
. We here obtain a slightly worse (higher

order) utility bound due to the use of the more practical bounded variance assumption, but still keeps the same
ratio between the privacy cost (εDP, δ), the problem dimension and the dataset size. The underlying reason is

due to the higher order term η2L2σ4
DP

n2c2
that appears when the gradient norm ||∇f(xt)|| is large.
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E CONNECTION BETWEEN ALGORITHM 1 AND ALGORITHM 2

Similarity in the special case: When τ = 1, the two algorithms are exactly the same given
η = ηlηg and cper_sample =

cper_update
ηl

. This is because, by definition, ηgclipcper-update
(ηl∇Fi(yi)) =

ηg min(1,
cper-update

ηl||∇Fi(yi)||
)ηl∇Fi(yi) = ηlηg min(1,

cper-sample
||∇Fi(yi)||

)∇Fi(yi) = ηclipcper-sample
(∇Fi(yi)). Theo-

rem I and II can be simplified and give the same convergence guarantee in this case, that is:

Theorem I: O
(√

F0
ηT

+ F0
ηgCT

+

√
ηL(σ2+ζ2)

n
+ ηLmin(

√
σ2 + ζ2, c) + min(σ + ζ, ηl(σ

2+ζ2)
cper_update

)

)
Theorem II: O

(√
F0
ηR

+ F0
ηgCR

+
√

ηL
n
(σ + ζ) + ηlLζ +min(σ + ζ, ηl(σ

2+ζ2)
cper_update

)

)
Except for the fourth term that is caused by different distance lemma, we obtain the same convergence guarantee.
Therefore, in this special case, we can adjust cper_sample to allow per-sample clipping converges to any accuracy,
which is essentially equivalent to the strategy of adjusting the inner stepsize in per-update clipping to reach any
accuracy.

Dissimilarity under arbitrary clipping threshold We here provide an example where per-sample only con-
verges to the neighborhood of the stationary point given arbitrary clipping threshold assuming τ = 1.

Let x =


1, p = 1/3

1, p = 1/3

−2, p = 1/3

, we here assume x is a random vector as the gradient is stochastic:

• For per-update clipping, for any cper_update > 0, we can always pick ηl ≤
cper_update

2
such that

E[ηgclipcper_update
(ηlx)] = 0.

• For per-sample clipping, suppose cper_sample = 1. Then for any η > 0, it holds that E[ηclipcper_sample
(x)] =

η
3
> 0.

Per-sample clipping recovers the result from Koloskova et al. (2023) when τ = 1 and ζ = 0

Let us consider the special case where τ = 1, and fi = f for any i ∈ [n]. Each client performs clipped
stochastic gradient descent with a minibatch size of 1. Then the resulting algorithm is equivalent to the
centralized mini-batch SGD with a mini-batch size of n. Note in this case, Theorem I can be simplified as:

O
(√

F0
ηT

+ F0
ηcT

+
√

ηLσ2

n
+ Lηmin(σ, c) + min(σ, σ2

c
)

)
where L := L0 + cL1.

Since η ≤ 1
14τL

, the last two terms become min(σ, c)+min(σ, σ2

c
). By simply discussing the relation between

σ and c, it holds that Θ(min(σ, c) + min(σ, σ2

c
)) = Θ(min(σ, σ2

c
)). Therefore, the resulting rate covers the

clipped mini-batch SGD rate as presented in Koloskova et al. (2023).

F COMPARISON AGAINST EXISTING WORKS

F.1 PER-SAMPLE CLIPPING

Our result covers the convergence rate of the centralized clipped mini-batch SGD (single worker, n = 1)
from Koloskova et al. (2023) when we assume ζ = 0 and communicates at every iteration (τ = 1), except for
the fourth term in Theorem I, which only mildly influences the convergence (Koloskova et al., 2020). Compared
to CELGC (Liu et al., 2022), we present the convergence rate given any arbitrary clipping threshold c with
heterogeneous workers (ζ2 > 0). Compared to Yang et al. (2022), we provide a more explicit influence of
stochastic noise and data heterogeneity on the convergence rate.

F.2 PER-UPDATE CLIPPING

Zhang et al. (2022) studied the same algorithm under uniformly bounded gradient dissimilarity (see Table
1). Note that Corollary 3.2.1 from Zhang et al. (2022) exactly recovers the standard FedAvg result under the
assumption that c > ηlτG. However, assuming the norm of the update ||ηl

∑τ
k=1∇Fi(x)|| ≤ ηlτG is always

smaller than c is strong and can hardly hold in practice. Yang et al. (2022) relaxed the assumptions by introducing
the bounded β moment (Zhang et al., 2020c). While ||∇Fi(x)|| is allowed to follow heavy-tailed distribution,
this assumption implies ||∇f(x)|| ≤ G for any x ∈ Rd which excludes some interesting functions. Moreover,
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the effect caused by the stochastic noise and heterogeneity are hidden in the G parameter. Comparably, we use
tighter Assumptions 1, 2 and our result is tight and interpretable.

G EXPERIMENTAL SETUP AND DETAILS

We illustrate the performance using multinomial logistic regression (Greene, 2003) on the MNIST dataset (LeCun
& Cortes, 2010). We use ten workers with full participation. We randomly subsample 1024 images into each
worker to use full-batch gradients (σ = 0). We vary the number of classes in each worker to simulate different
levels of data heterogeneity following Hsu et al. (2019). The data heterogeneity is highest when each worker
only has images from a single class. We tune the stepsize for all the experiments to reach the desired target
accuracy ε := ||∇f(xt)|| with the fewest rounds. See Appendix I for a more complicated NN experiment on
CIFAR10 dataset.

We implement all the models with PyTorch 1.7.1 and Python 3.7.9. We prepare the MNIST training dataset
by simply randomly subsampling 1024 images per digit. For per-update clipping, we experiment with using
stepsize from {0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2}. For per-sample clipping, we experiment with using
stepsize from {0.1, 0.2, 0.4, 0.8}. We choose the stepsize such that we can reach a specified norm of the
gradient ε := ||∇f(xt)|| with fewest communication rounds. For implementing the clipped FedAvg, the main
components are two functions where we apply per-sample and per-update clipping.

1 def per_sample_clipping(local_model, clipping_threshold):
2 """Args:
3 local_model: the local model $\yy_{i,k}$
4 clipping_threshold: constant, c
5 """
6 if clipping_threshold > 0:
7 grad_group = torch.cat([p.grad.data.detach().clone().view(-1)
8 for _, p in local_model.named_parameters()
9 if p.requires_grad and p.grad is not None],

10 dim=0)
11 grad_norm = torch.norm(grad_group)
12 coef = min(1, clipping_threshold / grad_norm.item())
13 if coef < 1:
14 for name, p in local_model.named_parameters():
15 if p.requires_grad:
16 p.grad.data *= coef
17 else:
18 coef = 1.0
19 return local_model, coef

1 def per_update_clipping(prev_s, current_l, clipping_threshold):
2 """Args:
3 prev_s: the server model from the previous round
4 current_l: the current updated local model
5 clipping_threshold: constant, c
6 """
7 diff = {}
8 for k in current_l.keys():
9 diff[k] = current_l[k].data - prev_s[k].data

10 diff_reshape = torch.cat([diff[k].detach().clone().view(-1) for k in
diff.keys()], dim=0)

11 diff_norm = torch.norm(diff_reshape)
12

13 coef = min(1, clipping_threshold / diff_norm.item())
14 for k in current_l.keys():
15 diff[k] *= coef
16 return diff, coef

H MNIST EXPERIMENT

We here show the server accuracy evaluated on the MNIST test dataset (10,000 images) for per-sample and
per-update clipping. Note, the test accuracy can be improved further with a bigger and/or deeper neural network.
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Figure H.1: Server test accuracy (local step τ = 7, the number of class per client is 1) using (a) per-sample
clipping and (b) per-update clipping.

I CIFAR10 EXPERIMENT USING PER-UPDATE CLIPPING

We conduct an experiment considering stochastic noise, local steps, data heterogeneity, non-convex neural
networks, different clipping threshold, and more complicated datasets. We use a simple deep neural network with
two convolution layers (32 and 64 channels) and two fully connected layers (hidden dimension 512) on CIFAR10
for classification. We split the CIFAR10 training data into 10 clients following Dirichlet distribution Kairouz
et al. (2019) with concentration parameter 0.1 (0.1 usually means that the client heterogeneity is high). We
use τ = 10 local steps, batch size of 1024, tune the stepsize from {0.05, 0.1, 0.2}. We here mainly performed
per-update clipping experiment as we would like to highlight the non-clipping-bias behaviour. We clearly show
that when the clipping threshold is small, we can still converge to a similar level as without clipping but at the
cost of more communication rounds.
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Figure I.1: Test classification loss and accuracy on the CIFAR10 dataset with per-update clipping. When the
clipping threshold is small, e.g., c=0.1, we can still obtain similar performance as vanilla FedAvg (c → ∞)
at the cost of more communication rounds. We can improve the classification accuracy by e.g., using more
advanced deep neural networks.
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