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Abstract

We study the convergence of the shuffling gra-
dient method, a popular algorithm employed to
minimize the finite-sum function with regular-
ization, in which functions are passed to apply
(Proximal) Gradient Descent (GD) one by one
whose order is determined by a permutation on
the indices of functions. In contrast to its easy im-
plementation and effective performance in prac-
tice, the theoretical understanding remains lim-
ited. A recent advance by (Liu & Zhou, 2024b)
establishes the first last-iterate convergence re-
sults under various settings, especially proving
the optimal rates for smooth (strongly) convex op-
timization. However, their bounds for nonsmooth
(strongly) convex functions are only as fast as
Proximal GD. In this work, we provide the first
improved last-iterate analysis for the nonsmooth
case demonstrating that the widely used Random
Reshuffle (RR) and Single Shuffle (SS) strate-
gies are both provably faster than Proximal GD,
reflecting the benefit of randomness. As an impor-
tant implication, we give the first (nearly) optimal
convergence result for the suffix average under
the RR sampling scheme in the general convex
case, matching the lower bound shown by (Koren
etal., 2022).

1. Introduction

This work considers a common machine learning problem,
minimizing a finite-sum function with regularization, i.e.,

xcRd

min F(z) £ f(z) + 1 (x) where f(x) = %Zfz(m),
i=1

in which f; and ¢ are convex and potentially satisfy other
properties, e.g., Lipschitz continuity. Due to the famous
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empirical risk minimization framework (Shalev-Shwartz &
Ben-David, 2014), such a problem arises in a wide range of
applications (e.g., SVMs (Cortes & Vapnik, 1995)) and has
been extensively studied in the past few years.

Two text-book level algorithms for solving the problem are
Proximal Gradient Descent (GD) and its variant Proximal
Stochastic Gradient Descent (SGD) (Nemirovski & Yudin,
1983; Nesterov et al., 2018; Bubeck et al., 2015; Lan, 2020),
where the former requires a true gradient in every step in
contrast to the latter only computing the gradient of a sin-
gle function selected based on a random index uniformly
sampled from [n] = {1,--- ,n}.

Whereas neither of the above classic algorithms is widely
adopted in practice since, when n is large (the standard sce-
nario nowadays), Proximal GD incurs large computational
overhead and Proximal SGD suffers from cache misses. In-
stead, the shuffling gradient method is arguably the most
popular and practical choice, in which functions (or data
points) are passed to apply (proximal) gradient descent one
by one whose order is determined by a permutation on
[n]. In particular, three shuffling strategies named Random
Reshuffle (RR), Single Shuffle (SS), and Incremental Gra-
dient (IG) are mostly used, where the permutation varies
randomly in every epoch (containing n steps) for RR, is ran-
domly sampled at the beginning and employed through all
updates for SS, and is deterministically picked in advance
for 1G.

Compared to its easy implementation, lightweight com-
putation, and effective performance (Bottou, 2009; 2012;
Bengio, 2012), the theoretical understanding of the shuffling
gradient method remains limited, especially for the most
common output, the last iterate. A recent advance by (Liu
& Zhou, 2024b) establishes the first last-iterate convergence
results measured by the function value gap under various
settings, particularly, proving the optimal rates for smooth
(strongly) convex optimization under the RR/SS/IG sam-
pling schemes mentioned before. However, their bounds
for nonsmooth (strongly) convex functions are proved for
any kind of shuffling strategy (not limited to RR/SS/IG)
and only as fast as Proximal GD, leaving the following un-
addressed research question as also mentioned by (Liu &
Zhou, 2024b):
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Table 1. Summary of our new convergence rates and the best-known upper/lower bounds under different settings when 7" = Kn where
K € N. All results use the function value gap as the convergence measurement. In the "Shuffling" column, ANY means the rate in
the same row holds for any type of shuffling scheme not limited to RR/SS/IG. In the "Rate" column, D, £ ||z, — 21| denotes the
Euclidean distance (or any upper bound on it) from the optimal solution . and the 1n1t1a1 pomt x1. A and V indicate min and max

operations, respectively. In the last column, miﬁ% 1 =

average iterate and the suffix average of the last one epoch.

1 Kn
R oo @er1 and TG £

suffix Z e in—nt1 Ti+1 Tespectively refer to the

F = f 4 where f = % >, fi, each f; is convex and G-Lipschitz, and 1 is p-strongly convex
Setting | Shuffling Reference Rate Output
ANY (Liu & Zhou, 2024b) o) ( <p. ) Tronit

(Koren et al., 2022) o) QS?J?) b a3

RR Ours (Theorem 4.2) 9] (nlcff\;?) ¢ TRnt1

Ours (Corollary 4.3) 9] (%) oSy

=0 (Koren et al., 2022) o) (% v L. )" 229
SS Ours (Theorem 4.5) O (% \Y, %) TRnt1

Ours (Theorem 4.6) O (% A Cj/%* )” TRl

RR/SS (Koren et al., 2022) (o) asuffx

ANY (Liu & Zhou, 2024b) 0 ( 1Dy f—;) P

w>0 RR Ours (Theorem 4.4) 0) (nzKQ + ufK> Trnil
SS Ours (Theorem 4.7) O (nsz + ur + GQ) Trnt1

“The same rates hold for the last iterate of Proximal GD when the gradient budget is K'n. Also, we remark that these rates cannot
apply to our Algorithm 1 once ¢ # 0 due to the difference from the method studied in (Liu & Zhou, 2024b). See Section 3 for details.
bThese rates are proved under ¢» = Ic where I¢ is the characteristic function for the nonempty closed convex set C in R%.

GD,
nl/4/K

“This rate can automatically improve to O (

), i.e., no extra logarithmic factor, if K = Q(logn).

9This bound is built under G = 4, D, = 1, and ¢» = I for C being the unit ball centered at 0. See also discussions in Subsection 1.2.

For nonsmooth (strongly) convex optimization, can we
prove better last-iterate convergence rates than Proximal
GD for RR/SS to reflect the benefit of randomness?

1.1. Our Contributions

We answer the question affirmatively by establishing the
first improved last-iterate convergence rates for nonsmooth
(strongly) convex optimization under both RR and SS sam-
pling schemes, as summarized in Table 1.

For RR, our new rates are better than the best-known bounds
in (Liu & Zhou, 2024b) by up to a factor of ©(n~/*) in
the general convex case and a factor of ©(n~'/2) in the
strongly convex case. As such, our results provide the first
concrete evidence indicating that the RR sampling scheme
indeed converges faster than Proximal GD, reflecting the
benefit of randomness. As an important implication, we give
the first provable and (nearly) optimal convergence result
for the suffix average of the last n points in the optimization

trajectory, matching the lower bound shown by (Koren et al.,
2022) and thus filling in the gap.

For SS, our new rates are better than the bounds in (Liu
& Zhou, 2024b) when the time horizon is below a certain
threshold. Specifically, suppose 7' = Kn where K € N,
then there exists a critical value K, € (1,n] such that once
K < K, our bounds decay faster than (Liu & Zhou, 2024b)
(and also Proximal GD) for both general and strongly convex
optimization. In the special case of constrained optimization
(i.e., v = I where I is the characteristic function for
the nonempty closed convex set C in R?), we sharpen our
bound further and obtain an improved rate better than (Liu
& Zhou, 2024b) for any K € N. These results suggest that
the SS strategy also beats Proximal GD (at least partially),
demonstrating the benefit of using random permutations.

We also highlight that our results (except Theorem 4.6) hold
for any T' € N, which as far as we know is new in the litera-
ture on shuffling gradient methods for convex optimization.
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Moreover, we propose a novel sufficient condition to guar-
antee the last-iterate convergence when the index is selected
in a general manner, not limited to shuffling-based methods.

1.2. Related Work

Due to limited space, we will only review the study of
shuffling-based gradient methods for nonsmooth (strongly)
convex optimization. For details and progress in smooth
optimization, the reader could refer to (Gurbuzbalaban
et al., 2019; Giirbiizbalaban et al., 2021; Ying et al., 2018;
Haochen & Sra, 2019; Nagaraj et al., 2019; Rajput et al.,
2020; Safran & Shamir, 2020; Ahn et al., 2020; Mishchenko
et al., 2020; Nguyen et al., 2021; Safran & Shamir, 2021;
Rajput et al., 2022; Mishchenko et al., 2022; Tran et al.,
2022; Cha et al., 2023; Cai et al., 2024; Cai & Diakonikolas,
2025) for the convex case and (Solodov, 1998; Li et al.,
2019; Mishchenko et al., 2020; Nguyen et al., 2021; Tran
et al., 2021; Pauwels, 2021; Lu et al., 2022b; Mohtashami
et al., 2022; Lu et al., 2022a; Li et al., 2023; Nguyen &
Tran, 2023; Yu & Li, 2023; Qiu et al., 2023; Koloskova
et al., 2024; Qiu & Milzarek, 2024; Josz et al., 2024) for the
nonconvex case.

In the following, we assume the time horizon 7' = Kn
where K € N for simplicity and only focus on the depen-
dence of n and K in the convergence rate.

Upper Bound. In the general convex case, the first

o) (%E) rate is established by (Nedic & Bertsekas, 2001)
for IG when ¢ = Ic. Later in (Bertsekas, 2011), the re-
quirement ¢ = I¢ is relaxed to ¢ = ¢ + Iz where ¢ needs

to be Lipschitz on C. (Shamir, 2016) studies the general-
ized linear model and provides the O ( f) upper bound for

RR/SS when K = 1. As for general objectives and general
K € N, (Koren et al., 2022) is the only work showing the

O ( 1/4W> rate for RR and the O (W Y ﬁ) rate
for SS, both under v = Ic. However, all the results men-
tioned until now only work for the average iterate. Recently,
(Liu & Zhou, 2024b) gives the first last-iterate convergence

result O ( f) being applied to any convex 1 and any type
of shuffling strategy not limited to RR/SS/IG.

In the strongly convex case, (Kibardin, 1979; Nedi¢ & Bert-
sekas, 2001) show the |G sampling scheme guarantees the
0] (%) convergence measured by the squared distance from
the optimal solution and the last iterate, assuming strongly
convex f and ¢ = I¢. (Liu & Zhou, 2024b) proves a similar
O () rate for strongly convex 1 with improvements in two
aspects: one is using a stronger criterion, the function value
gap, to measure convergence, the other is that their result
holds for any shuffling scheme not restricted to RR/SS/IG.

Lower Bound. The lower complexity bound of shuffling

gradient methods for nonsmooth (strongly) convex optimiza-
tion is a long-open problem. The first insightful observation
is by (Nagaraj et al., 2019) pointing out that any lower bound
established for the deterministic case is also valid here as
one can take f; = f and ¢» = I where C is a certain convex
set (usually a ball in R? centered at 0). Such a reduction
immediately implies two results (not limited to the last it-

erate) working for any shuffling strategy, i.e., 2 ( W)

for the general convex case and 2 (nT() for the strongly
convex case (Nemirovski & Yudin, 1983; Nesterov et al.,
2018; Bubeck et al., 2015).

Though these two lower bounds may be too optimistic
for shuffling-based gradient methods, no further progress
has been made until (Koren et al., 2022), showing that
both RR and SS sampling schemes with a constant step-
size 7 in the general convex case admit the lower bound

9) (min {1, /5 +n+ WLK}) for the suffix average

1 K-1 n
» Tn 2uj=K—J Yo Tjntit1)-

Noticing Q (17\/?—&- WLK) > 0 (m) and
9) (77 + W+K) > Q (ﬁ), we hence can simplify the
bound into (

plies the 2 ( 1/4f
last one epoch as listed in Table 1.

of the last J epochs (i.e.

Sioe T e )- Especially, this im-

) barrier for the suffix average of the

However, whether the (2 ( 74 \F) bound also holds for

the last iterate under RR/SS is still unclear. Furthermore,
whether the general lower bound Q2 (3= ) for the strongly
convex case mentioned above is tight for shuffling gradient
methods remains unknown as well.

2. Preliminary

Notation. N is the set of all positive integers and [m] =
{1,...,m},¥m € N. a A band a V b respectively indicate

min {a, b} and max {a,b}. X 2 Y means that two random
variables X and Y have the same probability distribution.
(-,-) denotes the Euclidean inner product on R?. |[|-|| £
v/ (-, ) is the 2-norm. Given an extended real-valued con-
vex function i : R? — R where R £ (—o0, +00], domh £
{x e R?: h(x) < +o0}. For any & € domh, Oh(z) £
{geRY: h(y) > h(z) + (g, y —x),Vy € R?} is the
set of subgradients at xz. We denote by VA(x) an element in
Oh(x) when Oh(x) # @. Throughout the paper, C always
denotes a nonempty closed convex set in R? and I repre-

'A subtle point is that this lower bound is established for
strongly convex f instead of v, not strictly fitting our Assumption
2.1. However, by slightly modifying the existing proof (Bubeck
etal., 2015) to make it work for the first-order algorithm containing
a proximal update step, we can show the same bound still holds
for strongly convex 1. See Appendix D for details.
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sents its characteristic function, i.e., Ic(x) = 0if & € C,
—+00 otherwise.

In this work, we study the following optimization problem

zERY

min F(e) 2 f() + b(x) where f(z) £ 3" (@),

Our analysis relies on two mild assumptions.

Assumption 2.1. Each f; : R? — R is convex. ¢ :
R? — R is proper, closed, and convex. Moreover, there
exists u > 0 such that ¥ (x) — ¥ (y) — (VU (y),z —y) >
Lz —y|? Ve € Ry € domyp, Vii(y) € dv(y)
whenever 0y (y) # @.

Under Assumption 2.1, 9 f;(x) is always nonempty for any
x € R?and i € [n] since domf; = R%

Assumption 2.2. Each f; is G;-Lipschitz on domy for
some G; > 0.

We remark that Assumption 2.2 only requires f; to be Lips-
chitz on dom1) instead of the whole space R, Hence, it is
also possible to consider the case of strongly convex f; or
f without the domain issue pointed out by (Nguyen et al.,
2018). However, to keep it simple, we only focus on the
situation of v being possibly strongly convex.

3. General Proximal Gradient Method

Algorithm 1 General Proximal Gradient Method
Input: initial point ; € dom, stepsize n; > 0,Vt € [T].
fort =1to 7T do

Generate an index i(t) € [n]

[l —a.|*

@1 = argmingcpat(x) + (V fipy (@), ) + o
Output: x4

Remark 3.1. Algorithm 1 is also known as Incremental
Subgradient-Proximal Method (Bertsekas, 2011). However,
we use a different name here to distinguish it from the term
Incremental Gradient in the literature.

The algorithmic framework studied in the paper, General
Proximal Gradient Method (Bertsekas, 2011), is provided
in Algorithm 1. We highlight three key differences from the
prior proximal shuffling gradient methods (Kibardin, 1979;
Mishchenko et al., 2022; Liu & Zhou, 2024b; Josz et al.,
2024). First, Algorithm 1 is more general since the genera-
tion process of i(¢) is not limited to shuffling-based. Second,
Algorithm 1 works for any 7' € N, in contrast to T' = Kn
where K € N required in the studies mentioned above.
Moreover, the proximal update in Algorithm 1 happens in
every step instead of at the end of every epoch (containing
n gradient descent steps) in the existing algorithms.

Now we provide some concrete examples of how to generate
the index i(¢). The first one is Example 3.2, showing that
Proximal SGD is a special case of Algorithm 1.

Example 3.2. When i(1) to i(T") are mutually independent
random variables uniformly distributed on [n], Algorithm 1
recovers the famous Proximal SGD algorithm.

Next, to formally define different shuffling strategies, we
require some new notations. Henceforth, r(t) denotes the
modulo operation of n, i.e., r(t) £ ¢ mod n, where we use
the convention Kn mod n = n, VK € N. In addition, we
let q(t) be the smallest integer greater than or equal to % ie.,
q(t) £ [ L] where [-] is the ceiling function. Remarkably,
the equation ¢ = (q(t) — 1)n + r(t), V¢t € N always holds.
Lastly, we denote by S,, the symmetric group of [n], i.e.,
the set containing all permutations of [n].

Equipped with these notations, we introduce the commonly
used RR/SS/IG shuffling schemes as follows.

Example 3.3. When i(t) = w;((ft)) where 71 to mq() are
mutually independent random permutations uniformly dis-

tributed on S,,, it is called the RR sampling scheme.

Example 3.4. When i(t) = 7"® where 7 is a random
permutation uniformly distributed on S,,, it is called the SS
sampling scheme.

Example 3.5. When i(¢) = 7"(!) where 7 is a deterministic
permutation in .S,,, it is called the IG sampling scheme.

4. Improved Last-Iterate Convergence Rates

In this section, we provide our improved last-iterate con-
vergence rates for Algorithm 1 under both RR and SS
sampling schemes. To simplify the notation, we define

Gi1 = %Z?Zl G;and Gpo = 1/%2?:1 G2, respec-

tively representing the arithmetic mean and the root mean
square of Lipschitz parameters. Notably, the following in-
equality always holds

Gp1 < Gra <vnGy;. (1

Next, to make easy and fair comparisons to the best exist-
ing convergence results of shuffling gradient methods for
nonsmooth (strongly) convex optimization (Koren et al.,
2022; Liu & Zhou, 2024b), we make two extra assumptions
here. One is the existence of a point x, € R? attaining the
minimum value of F, i.e., F(x,) = F, = inf cgs F(x).
Under this assumption, let D, £ ||z, — ;|| denote the dis-
tance between the optimal solution and the initial point. The
other is assuming the time horizon satisfies 7' > n (or one
can simply think 7' = Kn for K € N as in prior works).

Remark 4.1. We clarify that the above assumptions are both
unnecessary in the full statement of every theorem (except
Theorem 4.6). Concretely, for any reference point z € R?
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and T' € N, the gap E [F(zr41) — F(z)] can always be
properly upper bounded. See Appendix A for details.

In addition, following the convention in nonsmooth opti-
mization for the general convex case (Nesterov et al., 2018;
Lan, 2020), the value of 7 used in the stepsize 7; in Theo-
rems 4.2, 4.5, and 4.6 has been optimized to obtain the best
dependence on problem-dependent parameters, e.g., G5 1,
Gy,2, and D,. Rates working for arbitrarily picked 7 are de-
ferred to the corresponding full version of each theorem in
Appendix A, in which the precise logarithmic factor hidden
in the O notation is also provided.

4.1. RR Sampling Scheme

This subsection will focus on the RR sampling scheme. As
the reader will see, our new last-iterate bounds are always
better than the best-known results in (Liu & Zhou, 2024b).

Theorem 4.2. Under Assumptions 2.1 (with u = 0) and
2.2, suppose the RR sampling scheme is employed with one
of the following three stepsizes n:,Vt € [T):

a(T)—a(t)+1
a(T)VT

D, .
n1/4\/Gf,IGf,2(1+;O(gT;L)

D,
n1/4\/GfY1Gf12(1+logT) ’

N =" andn:

s = 2 andn =

D,

ey = Landn= ——=0—.
"=V g nl/4\/Gs1Gy 2

Then Algorithm I guarantees

~ (Y4 /G 1G 2D,
]E[F(a:TH)—F*]gO(n L £ )

VT

If additionally assuming T = Q(nlogn), then the first
stepsize choice achieves the following improved rate

n1/4 GflegD*
E[F - F]<0 = .
[F(z741) ] ( T

We start with the general convex case and discuss Theo-
rem 4.2 in detail here. As far as we know, the best and
only last-iterate bound that can be applied to the same set-

ting is O (GfﬁD) for T = Kn where K € N (Liu &

Zhou, 2024b). In that case, Theorem 4.2 achieves the rate

0 (m) Note that by (1), there s

nl/4V/K

VGra1Gyr2Dye jGyiD, 1 |Gyo [y
WAVE VR ai\[ Gy S i)
Therefore, our new result is always better than (Liu & Zhou,
2024b) by up to a factor of ©(n~1/4).

In particular, the ©(n~'/4) improvement can be achieved

when G; = G, leading to the rate O (nlcjf \;?) Remark-
ably, such a rate is as fast as the previously best-known

bound established only for the average iterate x5 o =

= ng; x;41 when ¢ = I (Koren et al., 2022).

An important implication of Theorem 4.2 is to provide the

ix & T
convergence of z§MX £ LS~ @,y as follows.

Corollary 4.3. Under the same setting in Theorem 4.2
(using the third stepsize), Algorithm 1 guarantees

) ~ 14 JGr1G 2D,
ey -] <02/

VT

Proof. Due to the convexity of F', E [F(w%‘ﬁ'i‘) — F*} <

1 ZthT—n-H E[F(x¢1+1) — F,]. We conclude from Theo-

rem 4.2 and the inequality 1 ZtT:T_n_H % < % O

To our best knowledge, Corollary 4.3 is not only the first
provable but also the first optimal rate for the suffix average
since when T' = Kn and G; = G, it matches the lower

bound (m
(Koren et al., 2022) proved for ¢» = I.. However, the
careful reader may argue that Corollary 4.3 is not convinc-
ing because the original lower bound is established for the
constant stepsize 1, = 7 and has a stronger version de-
pending on the value of 7 (see Subsection 1.2). In Corol-

lary A.2, we close the gap by giving E [F(a$) — F,] <

0] <D3 + n\/ﬁGf,le’g) whenn; =nand T > 2(n — 1),

) (up to logarithmic factors) shown by

nT
which perfectly matches the original lower bound in (Koren
et al., 2022) by up to logarithmic factors.

Moreover, we want to talk about the first stepsize choice
— pa@—a®)+1 ioh IS inspi :

M= N VT which is inspired by (Liu & Zhou,

2024b) who showed that the stepsize schedule proportional

to K — k + 1 in the k-th epoch when 7' = Kn can remove

any extra logarithmic factor in the final rate. Here, we prove

this strategy can also be applied to arbitrary 7" € N but will
logn
q(gT)
the order of O(+/logn) and is automatically shaved off once
q(T) = Qlogn) < T = Q(nlogn). We emphasize that,
though the principle of our first stepsize is highly similar
to (Liu & Zhou, 2024b), showing it indeed works for any
T e N requires a refined analysis, for example, see Lemma
C.1 in the appendix.

incur an additional O ( ) factor, which is at most in

Theorem 4.4. Under Assumptions 2.1 (with i > 0) and
2.2, suppose the RR sampling scheme is employed with the
stepsize 0y = = ,Y't € [T, then Algorithm I guarantees

nt?
~ (nD? nGs1G
E[F($T+l)_F*]<O<MT2 +f;j£ f,2>.
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Now we turn our attention to the strongly convex case. As
before, we first check the case T' = Kn, under which

uD? GinGy2
Rzt e ) In

comparison, the only last-iterate bound in the same setting
is O (” D Gf ! ) (Liu & Zhou, 2024b). As one can see,

Theorem 4.4 gives us the rate 0] (

the higher order term achieves acceleration by a factor
Gf 1 ny 2

of O(n~

p/nK
always faster due to G ¢ 2 < VNG .1 in the aforementioned
inequality (1). If further assuming G; = G, Theorem 4.4

: A(_a
yields the rate O (M NS

D
2K2

). Notably, the lower order term is also

) (suppose K is large for simplic-
. . . . . ~ 2 .
ity) significantly improving upon the bound O (;%() in
(Liu & Zhou, 2024b) by a factor of ©(n~1/2).

In addition, we also extend the convergence result to the
stepsize 1y = Mﬂt for any m € N like (Liu & Zhou, 2024b).
The interested reader could refer to Theorem A.3 for details.

Before ending this subsection, we should mention that
though both Theorems 4.2 and 4.4 improve upon (Liu &
Zhou, 2024b) and indicate that RR enjoys faster conver-
gence than Proximal GD suggesting the benefit of ran-
domness, these results are however still slower than Prox-
imal SGD, whose last iterate is known to converge in
0 (537) i (1
functions, respectively (Harvey etal., 2019; Jain et al., 2021;
Orabona, 2020; Liu & Zhou, 2024a). Whether RR can be
proved to guarantee the same rates is unclear?.

) for general and strongly

4.2. SS Sampling Scheme

We study the SS sampling scheme in this subsection. Unlike
the always faster rates achieved by RR presented before,
our new results for SS are better than (Liu & Zhou, 2024b)
only when a certain condition is met.

Theorem 4.5. Under Assumptions 2.1 (with p = 0)
and 2.2, suppose the SS sampling scheme is employed
with the stepsize = L NVtoe [T] and =

, then Algorithm 1

\/(q(T G2, v,/nq(T Gy 1G“) 1+log T)

guarantees
VG 1Gy 2Dy G oD,
E[F(zryq) — F ( 7t i/ﬁ .

We begin with the general convex case in Theorem 4.5.
To understand how the above rate compares to the bound

(0] (G’:’/IFD*) when T' = Kn where K € N (Liu & Zhou,

2024b), we introduce a critical value K, £

nG?l

which
Gia”

2We incline to a negative answer at least for the general convex
case. See our discussion after Corollary A.2 for why.

falls into (1, n] due to (1). If K < K, we notice the rate in

Theorem 4.5 equals o) (W) and is faster than

0] (M) Otherwise, the rate in Theorem 4.5 equals

VK
O (ijED*) and is slower than O (G{’/%D* ) This observa-

tion suggests an interesting convergence phenomenon for
the SS sampling scheme, that is the function value gap will

. ~ (\/G1GraD, .
decay in the rate no slower than O (M) during

Gy2Dy

the first © (K, ) epochs until reaching the O ( G

regime. We emphasize that this does not necessarily im-
ply the SS strategy must bear constant optimization error
since Theorem 4.5 only states a convergence upper bound.
In other words, Theorem 4.5 improves upon (Liu & Zhou,
2024b) when K is small. Especially, if G; = G, the rate in
Theorem 4.5 and the threshold K, = n match the conver-
gence behavior of w?{'?l 41 When ¢ = I proved in (Koren
et al., 2022).

) error

The reader may not feel satisfied with Theorem 4.5 since
the rate does not vanish as 1" becomes larger and could ask
whether this is an inherent issue of Algorithm 1 under SS.
The answer turns out to be negative. A simple but important
observation is that when ¢y = 0 and T' = Kn, Algorithm 1
with shuffling-based i(¢) and the algorithm studied in (Liu
& Zhou, 2024b) are actually the same method. We recall a
key fact that the rate O (Gj/%D ) in (Liu & Zhou, 2024b)
is proved for any shuffling type as mentioned in Subsection
1.2 (or see Table 1). Hence, at least in the case of 1) = 0
and T' = Kn, we should expect a refined upper bound that
converges to 0 when K approaches infinity.

Built upon this thought, we prove the following sharper rate
when ¢ = I (i.e., constrained optimization) and 7' = Kn.

Theorem 4.6. Under Assumptions 2.1 (with ¢ = I¢) and
2.2, suppose T = Kn where K € N and the SS sampling
scheme is employed with the stepsize 1; = ik Yt € [T]

D, , then Algorithm
\/(\/nKnyle,g/\nG?I)(lJrlog nkK)
A GraDs
vK |

1 guarantees

Remarkably, the above result integrates the advantages of
Theorem 4.5 and (Liu & Zhou, 2024b) and is thereby faster
than both. One point we remind the reader is that the existing
analysis in (Liu & Zhou, 2024b) immediately invalids once
C # R? (equivalently v # 0) since in that case Algorithm 1
is no longer the same as the method in (Liu & Zhou, 2024b)
due to different places for the proximal update as discussed
in Section 3. Therefore, a more careful analysis is required
to overcome this issue. We also mention that the condition

andn =

VG1GraD,

nl/AK1/4

E[F(zrni1) — F] < (
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1) = I¢ can be further relaxed to ¢ = ¢ + I¢ for ¢ being
Lipschitz on C (see Lemma B.3 for details) as previously
assumed in (Bertsekas, 2011). However, how to extend
Theorem 4.6 to any general ¢ and 7' € N is unknown to us
currently, which is left as an important future work.

Theorem 4.7. Under Assumptions 2.1 (with u > 0) and
2.2, suppose the SS sampling scheme is employed with the
stepsize 1; = %, Vt € [T, then Algorithm 1 guarantees

~(uD?  GraGra  Gio
E[F —F< Sl 2
[F@rs) ]—O<T2+ P

Lastly, we move to the strongly convex case. When
T = Kn where K € N, one can check the critical time

2
nCLL ¢ (1,n].

GZ
f,2
~ 2 2
Consequently, compared to O (” KD; C:L’}(l) (Liu & Zhou,

2024b), Theorem 4.7 outperforms in the regime K < K,.

to balance the last two terms is still X, =

One may expect that when 7" is a multiple of n and v sat-
isfies certain conditions, we can again obtain an improved
rate better than both Theorem 4.7 and (Liu & Zhou, 2024b).
However, even under some additional assumptions, the best
improvement upon Theorem 4.7 we can obtain currently is

~ n 2
the rate O (%)3 (suppose K is large enough). Unfortu-

~ 2
nately, this is worse than O (%) in (Liu & Zhou, 2024b).

Therefore, we simply leave Theorem 4.7 in its current form
without providing any further refined result and hope that
a bound faster than both Theorem 4.7 and (Liu & Zhou,
2024b) could be found in the future.

Like the strongly convex case for RR, the stepsize in Theo-
rem 4.7 can also be generalized to 1; = % forany m € N.
For details, see Theorem A.6.

To summarize, this subsection provides a new picture for
the last-iterate convergence of the SS sampling scheme.
Precisely, we show SS indeed boosts the convergence lead-
ing to a faster rate than Proximal GD at least in the early
optimization phase, which partially improves upon (Liu &
Zhou, 2024b) and reflects the benefit of randomness. In the
special case of constrained general convex optimization, we
give an even sharper bound demonstrating that SS provably
beats Proximal GD no matter how long the time horizon is.
In contrast, such information is missed in the best previous
bounds (Liu & Zhou, 2024b). However, the same as the RR
strategy, there is still a gap between SS and Proximal SGD.
Understanding this difference is an important future work.

3The reader who wonders why we cannot do better could refer
to the discussion of Lemma B.3.

5. Key Ideas and Proof Sketch

This section describes our key ideas in the analysis, provides
the most important Lemma 5.1, and then uses it to sketch
the proof. Any omitted detail can be found in the appendix.

5.1. The Existing Analysis Misses Randomness

Before talking about our analysis, we first provide an in-
tuitive explanation for why (Liu & Zhou, 2024b) can only
achieve the same rate as Proximal GD. Roughly speaking,
this is because (Liu & Zhou, 2024b) analyzes the shuffling
gradient methods in a way similar to Proximal GD. More
technically, their analysis views one whole epoch as a single
update step (this also explains why their proximal step hap-
pens at the end of every epoch) and then measures how close
the progress made in every epoch is to Proximal GD (see
their Lemmas D.1 and D.3). Afterwards, they follow the
way developed in (Zamani & Glineur, 2023; Liu & Zhou,
2024a) to prove the last-iterate convergence rate.

However, one key point missed in (Liu & Zhou, 2024b)
is the randomness. Precisely, their proof for the nons-
mooth case goes through whenever the index i(t) satis-
fies {i((k—1)n+1),---,i(kn))} = [n],Vk € [K] if
T = Kn where K € N (this also explains why their rates
work for any shuffling scheme not limited to RR/SS/1G).
As such, results in (Liu & Zhou, 2024b) cannot reflect any
potential benefit for randomly generated i(¢).

5.2. Our Analysis Considers Randomness

Due to the above discussion, a natural thought arises, iden-
tifying the role of randomness for RR/SS and trying to
integrate it into the analysis.

Let us first understand what randomness RR and SS have.
A simple but important observation is that for both of them,
regardless of the dependence between indices, every i(t) has
the same distribution as the random variable uniformly dis-
tributed on [n], i.e., i(t) 2 Uniform [n],Vt € [T]. Hence,
we can make an abstraction here, i.e., consider any possible
random process i(t) satisfying i(t) 2 Uniform [n],Vt €
[T'] instead of limited to RR/SS.

Next, we think about how to inject this abstraction into a
concrete analysis. A potential template we can try to follow
is the last-iterate analysis for the standard Proximal SGD
method (Liu & Zhou, 2024a), where indices i(1) to i(T') are
exactly mutually independent random variables uniformly
distributed on [n], which can be recognized as the extreme
case. Moreover, note that Proximal SGD converges for any
T € N, it is hence a perfect candidate to help us remove
the requirement 7' = Kn for K € N used in prior works.
Unfortunately, proofs in (Liu & Zhou, 2024a) cannot work
directly due to the potential dependence between every i(t)
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in the general case. Thus, our analysis contains careful
changes and naturally diverges from (Liu & Zhou, 2024a).

In brief, our plan is to analyze the last-iterate conver-

gence of Algorithm 1 (for general indices satisfying i(t) z
Uniform [n], V¢ € [T]) in a manner inspired by Proximal
SGD instead of Proximal GD. We clarify that though some
analyses motivated by SGD have also appeared in (Nagaraj
et al., 2019; Koren et al., 2022) before, there are however
many differences. The first and most important one is that
they only focus on shuffling-based methods without further
abstraction on i(t). Moreover, their goal is to establish con-
vergence for the average iterate in contrast to the harder last
iterate. In addition, both of them only take ¥ = I (i.e.,
constrained optimization) into account instead of general ¥
studied by us. Even more, (Nagaraj et al., 2019) additionally
requires smoothness on f;, (Koren et al., 2022) only has re-
sults for the general convex case, and both of them assume
G; = G. As the reader will see, our core Lemma 5.1 holds
for general i(¢) and gives a novel sufficient condition for
the last-iterate convergence working any 1 under minimal
conditions, Assumptions 2.1 and 2.2. Hence, although the
high-level idea may sound similar, our analysis significantly
differs from theirs.

5.3. A New Sufficient Lemma for the Last-Iterate Rate

Due to limited space, we will not provide formal analysis
but only state the core result, Lemma 5.1, a new sufficient
lemma giving the last-iterate convergence rate.

Lemma 5.1. Under Assumptions 2.1 and 2.2, suppose the
following three conditions hold:

1. The index satisfies i(t) 2 Uniform [n], V¥t € [T).

2. The stepsize g, Vt € [T is non-increasing.

3. [E[Q(xs)]| < P, Vt € [T], s € [t] where () £
fixy() — f(-),Vt € [T] and & > 0 is a constant
probably depending on T, n, u, and G1 to G,

Then Algorithm I guarantees
E[F(xr4i1) — Fi
D3 ~
SO =—+(G72+9))  ———
= T f2 T ?
(Zt_l Ve t=1 Zszt Vs
where y; 2 TI'Z (1 + pns), vt € [T + 1],

Remark 5.2. We again assume the existence of an optimum
x, € R? and use the notation D, = ||z, — x1||. See
Lemma B.2 for the full version valid for any z € RY,

We first talk about the three conditions in Lemma 5.1. Condi-
tion 1 is from the abstraction of the randomness in RR/SS

mentioned before. Condition 2 is satisfied by almost all com-
mon stepsizes. However, we remark that it is actually not
necessary and only for simplicity. Even without it, the rate
still holds with the only change 77 to 7;(1; \VV 4+1). Condi-
tion 3 is the most important. Intuitively, it says that even i(t)
and x; are possibly dependent leading to E [Q;(x)] # 0
(equivalently, E [ f,;)(zs)] # E [f(x5)]), Algorithm 1 still
guarantees the last-iterate convergence once |E [Q;(x;)]]
can be controlled by the value of 1 with another multiplica-
tive factor & > 0. Notably, the smaller @ is, the better the
convergence rate is. As a sanity check, we consider Proxi-
mal SGD and notice that & = 0 in this case. Then Lemma
5.1 recovers the existing bound in (Liu & Zhou, 2024a).

Armed with Lemma 5.1, to prove a last-iterate convergence
rate for Algorithm 1 employing any general random index
i(t), it is sufficient to find the corresponding constant ®.
Here we claim that under the same setting of every theorem
in Section 4, there is always

o S} (\/ﬁGﬁleg) for RR
T 0 (VTG1aGra+263,) forss

With these two values of ® and the inequality (1), i.e.,
Gy1 < Gy < /nGy1, we immediately conclude The-
orems 4.2, 4.4, 4.5, and 4.7 after plugging in the stepsize.
However, we remark that finding these two values is not
a trivial task for RR/SS. Though some clues on how to
bound |E [Q;(x;)]| can be found in prior works (Nagaraj
et al., 2019; Koren et al., 2022), our goal is more general
and hence harder since we need to bound |E [Q;(xs)]| by a
time-dependent stepsize 1 for any s < ¢. More importantly,
our fine-grained analysis on G¢; and G5 is the key to
establishing the superiority of our convergence results over
(Liu & Zhou, 2024b), which cannot be found in (Nagaraj
et al., 2019; Koren et al., 2022) due to their simpler settings
as mentioned earlier.

Lastly, we briefly discuss Theorem 4.6. Due to the depen-
dence on T in ® for SS, the above analysis is inadequate.
However, as hinted by (Liu & Zhou, 2024b) (though algo-
rithms are different), one should expect that SS at least
provably converges as fast as Proximal GD when T' = Kn
for K € N. As such, we will combine some other tech-
niques to obtain Theorem 4.6 and not discuss them here.

6. Conclusion and Future Work

We provide improved last-iterate convergence rates for non-
smooth (strongly) convex optimization under both RR and
SS sampling schemes, showing they are faster than Prox-
imal GD (conditionally for SS) and enjoy the benefit of
randomness. Two valued problems are left to be addressed
in the future. One is to explore whether our rates for RR are
tight. The other is to prove better bounds for SS if possible.
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A. Full Theorems

In this section, we provide the full version of each theorem presented in Section 4 and the corresponding proof. The proofs
of lemmas used in the analysis are deferred to Sections B and C later. One point here we want to remind the reader is that
our new last-iterate results (except Theorem A.5) hold for any 7" € N instead of only 7' = Kn for K € N used in most of
the existing works for shuffling gradient methods mentioned in Subsection 1.2.

A.1. RR Sampling Scheme

We first consider the general convex case in Theorem A.1. One notable thing is that, under the first stepsize choice, the extra
logarithmic factor can be shaved off once q(7') = Q(logn) < T = Q(nlogn) as previously mentioned in Theorem 4.2.
Finding a stepsize that can remove any extra logarithmic factor without requiring T = 2(n log n) will be an interesting task.
Theorem A.l. (Full version of Theorem 4.2) Under Assumptions 2.1 (with ;1 = 0) and 2.2, suppose the RR sampling
scheme is employed:

a(T)—q(t)+1
a(T)VT

|z — x| logn 1
E[F(xr41) — F(2)] <O ((77 + n\/ﬁGf,le,z (1 + q(T))) \FT) .

* Taking the stepsize n, = 1 ,Vt € [T), then for any z € R?, Algorithm I guarantees

l|lz—z1]]
mGraGra ()

Setting n = to optimize the dependence on parameters.

e Taking the stepsize n; = %, Vt € [T, then for any z € RY, Algorithm 1 guarantees

Iz — 2

5/~

E[F(xry1) — F(2)] <0 << +nvnGy1Gya(1+log T))

) |

llz— |
n1/4\/Gf11Gf12(1+10g T)

Setting 1 = to optimize the dependence on parameters.
e Taking the stepsize n, = %, Vt € [T), then for any z € R%, Algorithm 1 guarantees

|z — o

3/~

E[F(zry1) — F(2)] <0 << +1vVnGs1Gya(1 + log T))

) |

Proof. Note that the RR sampling scheme satisfies i(t) 2 Uniform [n],Vt € [T], and all these stepsizes listed are non-
increasing. Hence, Conditions 1 and 2 in Lemma B.2 are fulfilled. If Condition 3 also holds, i.e., |E [Q:(xs)]| < P, VE €
[T], s € [t] for some ® > 0, we can invoke Lemma B.2 to obtain for any z € R<,

Setting n = lz—e |
n

1/4 /Gf’le’2

to optimize the dependence on parameters.

2 T
E[F(zr41) — F(2)] <O <|Z9”1” (G, e) Y Wl?)

T T
Zt:l YTt t=1 Zs:t VsTls
T
- T ,2 T )
D1 123 Dsmt s

where the second line is by v; = Ht";ll(l + uns) = 1,Vt € [T + 1] since p = 0 now.
Our next task is to find a constant ® > 0 satisfying
B [Qu(a)]| < B, ¥t € [T],5 € [1].

For all stepsizes listed, we claim
® =4(G75+2vnGs1Gypo) . 3)
To prove our statement, we apply Lemma B.4 with 1 = 0 to have:
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o If s € [(q(t) — 1)n], there is
E [0 (1)) = 0 = [E[94(2,)] = 0 < B,

o If s € [t]\ [(q(t) — 1)n] (which implies q(s) = q(t)), there is

\/§G2 s—1 2\/§G G s—1 s—1
IR [t D DI D DN L

n

j=(a(t)—1)n+1 i*(q(t)—l)n+1 J=i
(@) V2G> S 2v2G1G
f2 Z f1Gf2 -
e R S R
" Jj=(a(t)-1)n+1 " i= —1)n+1

) V2 (G?,Q + QﬁGf,le,z) S

< ,

< - >, “
j=(a(t)=1)n+1

where (a) is because 7; is non-increasing and (b) is due to vs —i < /s — (q(t) —L)n—1 = /r(s) =1 < y/n
when i € {(q(t) —1)n+1,---,s—1}. Note that if s = (q(t) — 1)n + 1, |E [Q(xs)]] = 0 < ®n,. Hence, we
assume (q(t) — 1)n + 2 < s < ¢ in the following.

— For the stepsize satisfying 7; = 7(q(¢)~1)n+1, Vt € [T'] (the first two), we observe that (q(t) — 1)n+1 < j <
s —1=1; = ng@)—1)n+1 = Ns. Therefore,

s—1

> my=(r(s) = s < . ©)

J=(q(t)—1)n+1
Thus, there is

#),05) 3)
Ef@)] € VE(Gha+2V/iGraGra)n. < O
— For the stepsize 17, = %, Yt € [T], we know

s—1

S onen ¥ \[_77/ 20(v/5 =1~ /al®) ~ Dn)
i=(a(t)=1)n+1 j=(a(t)=1n+1 i Vi
2 1 2 -1
LOE) LOEENC ©
\/s—1+\/ —1)n \/5—1+\/(q(t)— n
where the last step is by —2(&-"DVE <9 -n < 2v/2n when s > (q(t) — 1)n + 2 > 2. Thus, there is

Vs—=T+4/(at)-1)n —
(4),(6) 3
E[Q(z,)] < 4(G3,+2vnGr1Gra)n, 2 O

By (2) and (3), we have for all these stepsizes

2 T 5
E[F(zrq1) - F(z)] <O <||z—Ta:1|| + (G2 +VnGy1Gy o) Z 7@)

D=1t 7 =1 Demt s
|z — 2|
<0 +vVnGs1Gyo ;
< Zt 1™ z:: 5= ﬂ?s

where the last step is by noticing G2 < /nGy 1.

. T . . T
* For the steps1ze N = n% Yt € [T, by applying Lemma C.1 with ), = W, we know >, 7 > g

and 3, Z T S 2\f (1 + lof?) which implies

E[F(ers) - F(2)] <O ((”‘f” F G Gya (14 Lé’;)) %) |
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llz—z|l

nlm\/cﬁlcfg(y¥ﬁgy

Setting n = to obtain

)

VA /GaGyalz — |

E[F(ars) - F(2)] <O N

Particularly, if q(7") = Q(logn) < T = Q(nlogn), there is

E[F(zr41) — F(2)] <O <n1/4\/m||z - $1||> .

VT

For the stepsize 1, = %, vt € [T], we know

T 9 T

no N n(l+logT)
;ZZ:H]S \Fz:: _t+1_ ﬁ .

Hence, we have

5=

E[F(xry1) — F(2)] <0 <<||z—77scl| +nVnGy1Gya(1+ logT)) ) .

|z—1]|
nt/4\/G1Gy2(1+logT)

Setting n = to obtain

1/4 G G . T 1 T
E[F(xr41) — F(2)] <O (n VGiaGralz — W) '

VT

For the stepsize n, = %, Vt € [T'], we know for any ¢ € [T,

\[7

T T 1 T+1 1 \[
Ns =1 —217/ —ds=2n(vT+1—Vt),
2ome=nd pzn gl =l )

which implies

T T T T
ZLWZ— VTTM/Q??ZE
T — =~
t:lzs:tns t:1t<\/T+ —1 t(T'+1—1t) t:lt(T+1_t>
I oS SRS S (E3 5V}
T+14At T+1-t VT +1

Hence, we have

|z — a1 1
E[F(x —F(2)] <0 _— Gs1Gro(l +logT) | — | .
[F(x111) (2)] < (( 7 NVnGra1Gyal ogT) JT
Setting = 77”/4“‘2;;:“@ - to obtain
/4 /G;1Ga ||z — x| (1 +1og T)
E[F(x —F(2)] <0 : . .
[F(xr41) — F(2)] < < =
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Built upon Theorem A.1, we give the following rate for m%ﬁ'{ =z Z =T g1 Tt41-

Corollary A.2. (Full version of Corollary 4.3) Under Assumptions 2.1 (with 1 = 0) and 2.2, suppose T' > n and the RR
sampling scheme is employed:

e Taking the stepsize n; = 1,¥t € [T), then for any z € RY, Algorithm 1 guarantees (additionally assuming T >
2(n —1)%)

2
E [F(a:;“f{) - F(z)} <0 (”zn;l” + VG 1Gra(l +log T)) .

* Taking the stepsize n, = Vt € [T), then for any z € RY, Algorithm 1 guarantees

\[7

E|F(2f) - F(z)] < ((” p =l e Gf1Gf2<1+1ogT>> %)

Proof. Both results are directly implied by Theorem A.1.
* For the stepsize 1, = 7, Vt € [T], we invoke the second result in Theorem A.1 (under changing 7 to 7v/T in it) to

obtain
—

E[F(zry1) — F(z)] < (” T + 1vVnGs1Gya(1 + log T)) .

Note that the above result actually holds for any 7" € N. Hence, there is by convexity

T T
1 1 z—x
E F(m%‘jﬁ'j‘)fF(z)} <= E[F(zi41) — F(2)] < ~ Z (” 1k +n\/ﬁGf,1Gf,2(1+1ogt)>.
nt:T—n+1 n t=T—
Moreover, we have
T T
1 1 1 (a) 2 1
- Il < Z d — 1+1logt<1+logT
n Z t_T—n—i—l_Tan n Z tlogts 1+logd,
=T—n+1 t=T—n+1

where we use T' > 2(n — 1) in (a). Finally, we obtain
suffixy H £L‘1|| lee.
E F(CIZT+1) F(z)| < T +nvn t1Gf2(1+1ogT) | .

* For the stepsize 1y = %, vt € [T], we invoke the third result in Theorem A.1 and follow almost the same steps for
proving Corollary 4.3 to conclude.

We emphasize two important implications of Corollary A.2.

The first one is that under the same setting in the proof of lower bound (Koren et al., 2022), i.e., ¥ = Iz where C is the unit
ball, G; =4,T = Kn, 1 = 0, the existence of x, € argminmeRdF(:c), and 7; = 7, we have

! 1
where F, = F(x,). In addition, notice that now

suffix
LTrnt1 — LTk

F(a3f,) - F, = f@) - f(2.) < Gy |

= O(1).
“This requirement can be further relaxed to 7 > (1 + ¢)(n — 1) for any ¢ > 0. We simply choose ¢ = 1 here.
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We hence obtain

E [F(a:igﬁ'il) } <0 <min {1, WLK +nvn(l + lognK)}) : (7

Remarkably, this rate matches the lower bound 2 (min {1, m+K +nv/n }) of the suffix average for the last one epoch
exactly by up to an extra logarithmic factor. Therefore, we (almost) close the gap.

The second one is related to the discussion in Footnote 2, which is that we suspect the rate O ( ) (or O (m) when
T = Kn where K € N) is tight for the last iterate under the RR sampling scheme in the general convex case. By the first
implication above, one can see our last-iterate bound 0] (T%T + n\/ﬁ) for the constant stepsize 7, = 1 (we only include 7,

n, and T' in the rate for simplicity) is almost tight by up to extra logarithmic factors. This is because if one can establish the
following bound

BlF(@ra) ~ R <o (Vi)

then, using the same proof of (7), there will be
E [F(:c%“ﬁ'f) - F} <o (mm{ — +nvn })

which contradicts the lower bound {2 (min {1, WLK +nyv/n }) in (Koren et al., 2022). Hence, at least in the case n, = 7,
our last-iterate result O ( +nvn ) should be tight, which immediately implies that 9} ( T ) is also tight by picking the

1/4
optimal 7. As such, we conjecture that the rate O ( T ) is tight for RR in the general convex case though we cannot prove

it when the stepsize is not constant.

Next, Theorem A.3 shows the convergence rate when ) is p-strongly convex, e.g., the common regularizer ¢)(x) = & ||:13||2

Theorem A.3. (Full version of Theorem 4.4) Under Assumptions 2.1 (with 1 > 0) and 2.2, suppose the RR sampling
scheme is employed with the stepsize ny = %, Vt € [T] where m € N, then for any z € RY, Algorithm 1 guarantees

plz =21 |*  mynGpiGra(l +logT)
E[F(@rs1) — F(2)] <O ( o e .

m

Proof. Note that the RR sampling scheme satisfies i() 2 Uniform [n],Vt € [T, and the stepsize r, = |} is non-increasing.

Hence, Conditions 1 and 2 in Lemma B.2 are fulfilled. If Condition 3 also holds, i.e., |E [Q:(x)]| < ®ns, Vt € [T], s € [t]
for some ® > 0, we can invoke Lemma B.2 to obtain for any z € R4,

E[F(zrs1) — F(2)] <O (M +(Ghy + D) XT: Wﬁ) ®)
< 2 ’
>t Ve = s
where 3 = [T.2; (1 + pms), VE € [T + 1.
When n, = 1, Vt € [T7, there is
t—1
s+m  (m+t—1)! m+t—1
= = = Ve T +1],
n H s ml(t — 1)! m €lr+1
s=1
which implies
(m+t—1)! m 1/m+t—-1
St 7L vt e [T7]. 9
Ve m'(tfl)' ut 1 m—1 ’ E[ ] ( )

Therefore, we know

a 1 m+t—1 1o (m+t m+t—1 1[/m+T
i - == -1, 10
Yoo (") =i () - () =)
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and

2m(1+1logT)

D >
t < -4 < (11)
T — _ _ _ — 9
t=1 Es:t VsTls t=1 t + 1 t=1 M t+ 1 T + 1 t:l t T + 1 t M(T + 1)

where (a) is because ;7 is non-decreasing in ¢ as shown in (9). We combine (8), (10) and (11) to have

2
ulz—a)? ™ (GRa+®) (1+1ogT)

E[F(xry1) — F(2)] <0 (12)
[F(ars1) - F(2) = 7
Our last task is to find a constant & > 0 satisfying
[E [Q:(xs)]| < Pns, VE € [T],s € [t].
Here we claim
® = V2G5, +2V2nG1Gyo. (13)
To prove our statement, we use Lemma B.4 to have:
o If s € [(q(t) — 1)n], there is
E[Q(@,)] = 0= [E[Q(@.)]| = 0 < &n.
o If s € [t]\ [(a(t) — 1)n], there is
V262 = n 2V2G.G 7
f:2 Vi 1952 7] ]]
D D > Z
Jj=(a(t)=1)n+1 i=(q(t)—1)n+1 \ j=t¢
(b) \/§G2 s—1 2\/§G G s—1 s—1
D =D SN 3
j=(()—1n+1 i=(q(t)-n+1 \ j=i
(c)
< (V2G3 2 +2v20G11Gra) ns 2 @n,
where (b) holds by 7;& < ns,¥j € [s — 1] since 77 is non-decreasing as shown in (9) and (c) is due to
s—1
> ne=(r(s) = s <
J=(a(®)—1L)n+1
s—1 5
> Se- ¥ vimcain
i=(q(t)—1)n+1 \ j=i i=(q(t)—1)n+1
By (12) and (13), we finally have
2 m(G3,+vnGi1Gra) (1 +1logT)
plz =l | ™ (G 121G
E[F F <
[ (mT+1) (Z)} = O (mn_l,;T) + MT
<otz x| n my/nG1Gyra(l +logT)
B (") nr
where the last step is by using G2 < v/nGy 1. O
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A.2. SS Sampling Scheme

First, Theorem A.4 below gives the convergence guarantee for general convex functions (i.e., 4 = 0). Unlike the previous
Theorem A.1, we currently do not know how to design a proper stepsize to get rid of the extra logarithmic factor, which we
leave as a future direction. Another crucial fact is that we also have no idea how to set a time-varying stepsize. Loosely
speaking, this is because ¢ depends on 7' now. See our analysis for details.

Theorem A.4. (Full version of Theorem 4.5) Under Assumptions 2.1 and (with pn = 0) and 2.2, suppose the SS sampling
scheme is employed with the stepsize n, = %, Yt € [T), then for any z € R, Algorithm 1 guarantees

[E

E[F(-’BT+1)—F(Z)]§O<< ;

+n (q(T)G%Q v \/nq(T)Gf,leﬁz) (1+ logT)) \/1?> .

llz—]]

V(8163 v /raD6 146 .2) (14108 T)

Setting n = to optimize the dependence on parameters.

Proof. Similar to (2), if we can find a constant & > 0 such that
[E [Q:(xs)]| < Pns, VE € [T],s € [t].

Then there is

Iz —z:l* | o ~ 7
E[F(zr.) — F(2)] <O ( + (G + @)Y —— ], (14)
St T ; S ms
Here, we claim
® =8q(T)G7 4 +21/2nq(T)Gy1Gyo. (15)

To prove our statement, we invoke Lemma B.6 with 4 = 0 to have for any ¢ € [T] and s € [t],

s—1

E ()] <47, S (1) =t + L)
n s—1 nG2 _ G2
+ % ; Gi g ] (G?,z +GIL[(G) = r()] + — 221 () # r<t)1>

a(T)n

<i6%s 3 0y (1) = (o) +

Jj=1

1r(j) # r(t)])

n—1

a(T)n

2 <l ’ nG%, — G?
+= PN IR (ch,g + G [r(j) = r(t)] + —L2—
i=1 j=1

n—1

LIr(j) # r(ﬂ])» (16)

where the second step is by s < q(s)n < q(T")n. Note that when the stepsize is constant, there are

a(T)n . a(T)n .
; nj (11 [r(5) = r(&)] + W) = 1, ; (]1 r(j) = r(8)] + W) (T, (17)
and
a(T)n nG2 ,— Gf
Z m (G?,z +GILr() = r(t)] + ;;_ —1[r(j) # r(t)])
a(T)n nG2 ,— a2
=n; (G?,z +GELIG) = ()] + —2 21 () # r(t)]) = 2nq(T)G7 5113 (18)
j=1

19



Improved Last-Iterate Convergence of Shuffling Gradient Methods for Nonsmooth Convex Optimization

Combine (16), (17) and (18) to obtain

(15)

E[Q(@,)]| < (8a(T)GF 2 +2/20a(T)G G2 ) ns E @i,

By (14) and (15), we have

E[F(mT+1)_F(z)]go<|z—w1| (Gf2+q )G% 5+ \/ng Gfleg)Z i )

T

Ethlnt t=1 Zs tns
@ ([ z = i
<o(lz_=l | 2+ V/na(T)Gr1Gys
( 23:1771‘/ ( >;ZS s
®) B 2 1
So( (=20 sy (amicts + VialTicncra) (0 + logﬂ) )

T

_0 ((”z—ml + (q(T)G%2 v \/WT)GMGM) (1+ logT)> 1) :

where (a) is due to 1 < q(7") and (b) holds by plugging in n; = %,Vt € [T].

llz—]l

\/(q(T)G?gV\/nq(T)Gf,le,z)(1+log T)

Va(T)G% oV /na(T)GriGyoa |2 — 2| VT Tog T
VT

n1/4 G 1G 2 G ,2 G
_O(( VGG, Vﬁﬂf L2 ) |z —ai|1+1gT ),  (19)

to obtain

Finally, setting n =

E[F(eri1) — F(2)] <

—~
N

VT Vi

where (c) is by noticing q(7T") < % + land G2 < /nGj 1, together implying
T)G} 4V V/na(T)G Gy < <:G3‘,2 + G?ﬂ) VVT +nG1aGra
-0 <:G§7Q G2,V (x/me 1Gy, 2))
<0 (ZG%Q VGGV (\/me,le))

T
=0 (ﬁaf,lam VVTG1Gya v nafm) :

When T > n, we observe that \}/4 < Zi71, (19) thus reduces to the following form used in Theorem 4.5
VGriGra G
E[F(zri1) — F(2)] < << iV |z — x| v/1+1ogT

O

The above Theorem A.4 (or see (19) for the final bound) is not very satisfying as the rate will be blocked at O ( \F) even

if T approaches +oo. As discussed in the main text, if ¢ = Iz and T = Kn where K € N, we actually can do better.
Note that ¢ = I¢ can be further relaxed to ¢ = ¢ + I¢ for ¢ being G-Lipschitz on C. However, this will introduce new
parameters GG, in the final rate. Instead, we choose to keep the following simple form. For why the relaxation holds, see
Lemma B.3.
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Theorem A.S. (Full version of Theorem 4.6) Under Assumptions 2.1 (with v = I¢) and 2.2, suppose T = Kn where
K € N and the SS sampling scheme is employed with the stepsize 1, = %, Vt € [T, then for any z € RY, Algorithm 1
guarantees

Iz — @ 2 1
— < o= =n .
E[F(xgnt1) — F(2)] <O << , +7n (VnKGf71Gf,2 /\ntJ) (1+1lognK) Tk
|z—1]|
(\/nKnylerg/\nG?I)(LHognK)

Setting n = \/ to optimize the dependence on parameters.

Proof. Under the stepsize 1, = %, Vt € [T, we first know by Theorem A.4,

E[F(zr:1) - F(z)] <O ((”z‘“" +1(a1)G3 0 v Vna(T)G Gy ) (1+ 1ogT)>

n

)

;o (20

5l

2
= E[F(zxni1) — F(2)] <O ((”anl' +n (KG?2 \Y \/’I’LKGf’lGﬁg) (1 —i—lognK))

N——

1
vnK
where in the second line we use q(T) = K when T = Kn.

Next, note that the SS sampling scheme and the stepsize 7, = Vt € [T respectively satisfy Conditions 1 and 2 in

f7
Lemma B.3. Moreover, we can take ¢ = 0 and G, = 0 in Condition 3. Hence there is almost surely for any z € R4,

z—x 1

0 ((”Z_:”” + G2, (1 + logK)>

IN

1
m>’

which implies

E[F(wxns1) ~ F()] < O ((”‘n‘”” G (1+ logm) wi?) . e

We combine (20) and (21) to obtain

E[F(zxni1) — F(2)] <O ((”Z—wl” + ((KG;2 v \/nT(Gf,le,z) A nG;l) (1+ log nK)> ! )

n vnK
[ERs I~ > 1
=0 —_— nKG;1Gro AnG 1+lognKkK ,
(( n n ( 19 f2 f,l) ( g ) \/’I’L?
where we use the fact (a V Vab) A b = Vab A b fora = KG3, and b = nG3,. Finally, Setting =
=== to obtain |

V (VAR Gy1Gy2AnG3 | ) (1+l0g nK)

E[F(xgnt1) — F(z)] < (( VnSZvll(?/ff ?/E) |z — x| V1 + 1ognK>

O

Finally, we establish the convergence upper bound for strongly convex functions in Theorem A.6. As mentioned after
Theorem 4.7, we actually can improve the rate further to avoid the O (%) barrier when 1" = Kn where K € N and

¥ = ¢ + I for ¢ being Lipschitz on C. However, the rate in that case will be in the order O (%) for larger K, which is still
slower than the bound O () in (Liu & Zhou, 2024b). Therefore, we do not provide it here. See Lemma B.3 for why we
can do at most O ().

21



Improved Last-Iterate Convergence of Shuffling Gradient Methods for Nonsmooth Convex Optimization

Theorem A.6. (Full version of Theorem 4.7) Under Assumptions 2.1 (with . > 0) and 2.2, suppose the SS sampling
scheme is employed with the stepsize ny = %, Vt € [T| where m € N, then for any z € R?, Algorithm 1 guarantees

pllz =@ |>  m+logT) (VaGsiGra  GpiGra Gy
_ < ) ) ) s ) .
E[F(zri1) — F(2)] <O < ) + ; Tt e,

m

Proof. Note that the SS sampling scheme satisfies i(t) 2 Uniform [n],Vt € [T], and the stepsize ), = 7 is non-increasing.
Hence, Conditions 1 and 2 in Lemma B.2 are fulfilled. If Condition 3 also holds, i.e., |E [Q:(z;)]| < ®n,,Vt € [T],s € [t]
for some ® > 0, we can invoke Lemma B.2 and follow the same steps of proving (12) to obtain for any z € R¢,

pliz —ai)? | ™ (GFa+®) (14 1087)
(m+T> ‘uT ’

m

E[F(zr41) — F(2)] <0

(22)

and know
1/m+t-1
Ve = ( ),Vt e [T]. (23)
u\ m-—1
Our last task is to find a constant ® > 0 satisfying
|E [Q:(x5)]| < §ns, VE € [T],s € [t].
Here we claim

T
d=8 <n+1) G724+ 2V2(T +n)Gy1Gypa. (24)

To prove our statement, we invoke Lemma B.6 to have for any ¢ € [T] and s € [t],

E [Q(x)]| <4G7 Z%m ( j :r(t)]+]l[r(j)7ér(t)])

n—1

- nG, — G )
+23°G, Z”;"f (G?QJFGQ ) = rle)] + 2 n[ro)sér(t)])
i=1

j=1 s

<4Gf277€i]l[r(]) = +w

23 nG2 —GZQ
”ZG ZG FG2Lr(j) = r(t)] + —L2 1

LIr(5) # r(®)], (25)

n—1

where the last step is due to A’;ﬂ < ns,Vj € [s — 1] because 71 is non-decreasing in ¢ as shown in (23). Note that
s < q(s)n, we therefore have

s—1 . a(s)n .
S 1) = i)+ HZIOL Sy gy gy HOZ 0D g 26)
Jj=1 j=1
and
s—1 nG 5 — GQ
4 (Giz +GRLIG) = r(B) + — 221 () # r<t>}>
q(s)n nG2 5 — G2
<D Gha+ GILIG) = r(0] + — 22— [r()) # r(0)
:2nq(s)G?c,2. 27
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Combine (25), (26) and (27) to obtain

21)s
B [2(@.)]| < 8a()GF ome + =2 3 Giy/2mal:)G., = (8a()6% > + 2/2nq(5)G 11 G2 ) ms
T 24
< <8 (n + 1) G?,Q +2/2(T + n)Gfﬁleg) ns = Pns,

N

where the second inequality holds by q(s) < q(T) < = + 1.

By (22) and (24), we finally have

3

1z — w1||2 m (G?’Q + (% + 1) G?Q +VT1T + nt,1Gf,2> (1+1ogT)

E[F - F <O
[F(z741) (z)] < (m+T) uT
m
e — a2 ™ (Gl VG AGra +VTGraGra+ TG2 ) (1+1ogT)
=0 = +
(") ur

ZofrlE—ml®  m(tloeT) (ViGpiGrs | GraGra , Cho

=Tl I T v T))
where the last step is by G2 < /nGy,1. To recover the rate stated in Theorem 4.7, we only need to take m = 2 and
observe that g < ﬁ when T > n. O

B. Theoretical Analysis

This section includes our theoretical analysis in detail.

B.1. General Lemmas

As mentioned in 5, the high-level idea is inspired by (Liu & Zhou, 2024a). However, several important modifications are
required to circumvent the potential issue caused by the general i(¢) considered in our setting. To begin with, we first
characterize the progress made in every single step, provided in the following Lemma B.1. Note this result holds for any i(¢)
even if it does not equal Uniform [n] in distribution.

Lemma B.1. Under Assumptions 2.1 and 2.2, for any t € [T] and y € RY, Algorithm 1 guarantees

2
)Hy — Zi|

2
—
Pl - Ply) < 20— gy 222
t

2 2 _
50 + 1 (Gi(t) + Gf,1) + Q(y) — Qie(z1),

where Q;(y) = fiy(y) — fly),Vy € R,

Proof. Lett € [T be fixed. If y ¢ doma), then the inequality holds automatically since F'(y) = +oo and F(x¢11) < +00
almost surely. Thus, we only need to consider the case y € domt. By the convexity of f;;), we have

fi(t) (x¢) — fi(t) (y) < <vfi(t)(mt)7wt - y> = <Vﬁ(t)(ﬂ3t),ﬂ’»'t+1 - y> + <vfi(t)(mt)7-73t - l‘t+1> . (28)
According to the update rule of x; 1, there exists Vi) (xs11) € O1(@441) such that

T — X ry — &
0 = Vi(xit1) + V firy (@) + % = Vfiw (@) = tTtH = Vip(xi41),
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which gives us

<vfi(t)(mt)amt+1 - y> = (e — @1, @1~ Y) +(VY(xi41), Yy — Tig1)

Tt
2 2 2
— X — — X — || — &
_ ly ¢l ly 2t;t1|| 2411 ¢l + (V(Tis1), Y — Tos1)
2 2 2
< ”y_th _ (1+/Jf77t)Hy_wt+1” _ ||wt+1 _th _’_w(y) _w(thrl) (29)
=" o, 21y, 21 ’

where the last step holds by the u-strong convexity of . In addition, there is

<vfi(t) (-’Bt)a Ty — CCt+1> = <vfi(t) (337:) - Vf(fct-s-l),ﬂ?t - th+1> + <Vf(l‘t+1),$f, - $t+1>
< (Vi (@) = VI(@s1), e — Tpg1) + f(xe) — f(@i41), (30
where the last inequality is due to the convexity of f.

Plug (29) and (30) back into (28) and rearrange terms to get (recall ;(-) = fi»)(-) — f(-))

||y - thQ _ (1 + ,LL?’]t) Hy - mt+1||2
2, 2,

+ (Vi) (@) = Vf(@g1), e — @yy1) —

F(xi,) — F(y) < + Qu(y) — Qu(@:)

2
i1 — |
21,

2
— &
vzl b (G + G3) + )~ ulay)

2
)Hy — x|
2ny

b 21

where the last line follows by
<vfi(t) (wt) - vf<33t+1)> Ly — $t+1>

(a) (b)
< Hvﬁ(t)(wt) - Vf(wt+1)H |Ter1 — xel| < (Gigy + Grn) wes1 — |

2

(2)77'5 (Gi(t) + Gf’l) les 1 — thH2
+

- 2 2n,

i1 — wt||2
2ny

b

<m (G;Q(t) + G?‘,l) +

where (a) is due to Cauchy-Schwarz inequality, (b) is because fi;) and f are respectively Lipschitz on doms) with the
parameter Gj(;y and G'y,1, and (c) is by AM-GM inequality. O

Next, we are ready to prove our core last-iterate result, Lemma B.2, which provides new sufficient conditions for the

last-iterate convergence rate. We remind the reader again that Condition 2 is actually not necessary since we can simply stop
the proof at the equation (46) and change 7n? to 7;(1; V 1;+1) in the final bound.

Lemma B.2. (Full version of Lemma 5.1) Under Assumptions 2.1 and 2.2, suppose the following three conditions hold:

1. The index satisfies i(t) 2 Uniform [n],Vt € [T).
2. The stepsize nt, V't € [T is non-increasing.

3. [E[Q(zs)]| < Pns, Vit € [T],s € [t] where @ > 0 is a constant probably depending on T', n, u, and G1 to G,

Then for any z € RY, Algorithm 1 guarantees

E[F(ars1) — F(2)] <O <|z—‘”1”2 (62,1 ) ZT: Wﬁ)
< , ’
ZtT:l TNt t=1 Zz:t VsMs

where Q(-) is defined in Lemma B.1 and ~; = Hi;ll(l + uns), vVt € [T +1].
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Proof. It is enough to only consider the case z € dom). In the following proof, we fix a point z € dom. By Lemma B.1,

the following inequality holds for any ¢ € [T] and y € R?,
2

-z
PEE

ly — wt||2
F - F <= —(1+
(®t41) (y) < 20 ( ) 2

 (GRy +Ga) + uly) — e,

Multiplying both sides by ~;7; yields (note that (1 + pn:)y: = Y41, VE € [T))
o (G2 + Gy ) + () — Qulw). G

2 2
< Ve lly — 2el]” — veq1 |y — Tega ||
- 2

e (F(xe+1) — F(y))
Next, inspired by (Liu & Zhou, 2024a), we first define the following non-decreasing sequence
v 2 T vte [T+ 1\ 1], (32)
D smt—1 VsTs
nLuy= (33)
Zszl VsNs
and then introduce
t—1
22Dy Y B T By e T+ 1). (34)
V¢ — (%
(35)

Note that z; also falls in dom as it is a convex combination of points in domt and admits

v v
Zegr = — Zt+(1t )azt,Vt€[T].
Vt+1 Vt+1

For any ¢ € [T], we invoke (31) with y = z;41 to obtain
Ve (F(@e41) — F(2e41))

S,Yt [ = th2 - ztﬂ [0 = thHQ + %nf (Giz(t) + G?,l) + 90 (Qe(ze41) — Qe(@1))
+ven; (GiQ(t) + Gfu) + e (Q(ze41) — Qulze)),

2 2
oo 120 = 2™ = veq1 | ze01 — 2ega |
2
|z; — @||* due to

(36)

— _Vt

2 2
sz = all? + (1 - 525 ) e — @l = 52

— Vt+1

where the second inequality is by ||z¢41 — x¢]|* <
the convexity of ||-||* and (35). Multiply both sides of (36) by v, and sum up from ¢ = 1 to T to obtain

Vt
<

T
Z%mvtﬂ(F(thH) = F(z41))
t=1
yv1 |21 — @* = yravrga zro - 2rall’ | -~ 2 2
< 9 + Z’Yﬂ?t Vt41 (Gi(t) + Gf,l) +Yeneves1 (Qe(ze41) — Q1))
t=1
(G20 + G5 1) + vmven (=) — (@)
(37

2 T
v Z1— X
UL L ” 12 dl + Z%ﬂfvtﬂ
t=1
anullz -zl | <~ s > 2
S 4> ytuen (Gi(t) + Gf,l) + Yenvi1 (e (Zeg1) — Q).

2
t=1
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Now we focus on the term Zthl Vi1 (2441) and observe that

T

T
Y vemevenQ(zen) =Y vemvee (fiy (zee1) = f(2e41))
t=1 t=1

T t

< e (i (2) + Y (vsr1 — vs) fig () — Ut+1f(zt+1)]
= L s=1

T r t

DS i {01(Qu(2) + 1(2)) + 3 (0ar — v) (@) + () - vmf(ml)]

t=1 s=1

t=1 s=1

T ¢
=3 e [10(2) + Y (veg1 — Us)Qt(st)]

t
+ Z%nt vif(2)+ Y (vsp1 —vs) f (=) — Ut+1f(zt+1)] ; (3%)
t=1 s=1

where (a) is due to fiy)(z¢41) < o fi w(z)+ Zzzl us;r;—lvs fit) () by the convexity of fi(;) and the definition of 2z,

in (34) and (b) holds by recalling that Q(-) = fi»)(-) — f(-).
Combine (37) and (38) to have

v ||z —x
D e (F(@e) = F(ze41)) < w + Z%m Vt+1 (G?(t) + G?‘,l) +0U+ M, (39)
= =1
where
T ¢
D2 e [012(2) + Y (ver1 = v5)Qu(ws) - Ut+19t(wt)] ; (40)
t=1 s=1
T ¢
ms Z%m [Ulf(z) + Z( Vsy1 — V) f(®s) — Ut+1f(zt+1)] - (41)
t=1 s=1

‘We bound term M as follows

T i t
u= Z’Yﬂh Ul(F(Z) - ¢(Z)) + Z(Us+1 - ’US)(F({BS) - Ql)(ws)) — Ut+1(F(Zt+1) — w(zt+1))]
. - s=1 t
=> e |0 F(z) + Z (Vst1 = vs) F(@s) — vep1 F(2e41) + 0419 (2241) Z (Vs1 — vs)h(s) — Uﬂ/J(Z)]
(¢) :
<D | (z) + Z Us+1 — Ts) — vir1F(2e41)
T - t
=D e | D (vse1 = vs)(F(®s) = F(2)) = vera (F(2e11) — F(2))
t; . Ls= ;
=3 (Z %Ut) (Vo1 = V) (F(@s) = F(2)) = Y v (F(ze41) — F(2))
s=1 \t=s t=1
@ Z%_ms_ws(F(ws) - F(z)) - Z Yeneve+1(F(ze41) — F(2)), (42)
s=2 —

where (c) holds by ¥(z:41) <

—U+1

(34) and (d) is by noticing that

P(z) + S0, L% g (z,) due to the convexity of 1 and the definition of ;1 in

V41
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cifs=1,
vy — v, 2 0; (43)

e ifse [T]\[1],

; b @ yrnr NPT Ys—1Ms—1 (32) Vs—17s—1Vs
s+1 7= Us — T T =T - T T - T )
DRG0/ T R 12/ R O W 17/ 51 O SR 2/ 13 Do Vet

which implies

T
(Z "Ytnt> (vs—i-l - Us) = Ys—1Ms—1Vs. (44)
t=s

We then plug (42) back into (39) and rearrange terms to get

2 T
v z— X
yrnrvr1 (F(@r1) — F(2)) < w +) v (G?(t) + G?‘,l) + 0.

t=1

Take expectations and divide by y7n7 on both sides and then use v741 2 1 and 71 = 1 to obtain

B(F(ora) - () < 2=l s~ (g [62,] +63.) + =12

2yrnr = i YT
< ullz— le Z yentven B[O 45)
2yrnr = T 7T77T

where the last line holds due to i(t) 2 Uniform [n] , ¥t € [T] = E [G%’(t)} — Ly G2=G2,and Gy, < Gya.

Lastly, we note that
(40) :
E[O Z%nt [vﬂE [2(2)] + Y (0511 = vs)E[Q(,)] = vei E [Qt(mt)]]
s=1
® z o [
(f)
z o [

(Vs+1 — vs)E[Q(25)] — ve1 E [Qt(wt)]l

t

(Vs41 — Us) - s + vy - ént]
=1

T T T
= Z (Z ’Vtﬂt) (Vs41 — vs)ns + Z’Vtﬂ?%+11
s=1 \t=s t=1
34 5 d d
= [Z Vs—1Ms—1VsT)s + Z’Ytnt 'Ut+1‘| (46)
s=2 t=1
(i) o 5
<2 Z Vel Ve (47)
t=1

where () is due to E [ (2)] = E [fi1)(2) — f(z)] = 0,V € [T] since i(t) 2 Uniform [n],Vt € [T], (f) holds by the
condition of |E [Q:(z,)]] < Pns, ¥Vt € [T],s € [t], and (g) is by the condition of the non-increasing 7, vVt € [T]. We
thereby finish the proof by plugging (47) back into (45) and applying the definition of v, in (32) and (33). O

Though Lemma B.2 is enough for the RR case, as the reader already has seen, it is inadequate for the SS case. So what do
we miss? The problem is that we never use the fact {i((k — 1)n 4+ 1),--- ,i(kn)} = [n],Vk € [K]if T = Kn for K € N,
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which is the major factor employed in the analysis of (Liu & Zhou, 2024b). So similar to (Liu & Zhou, 2024b), we may also
hope for a last-iterate convergence bound that holds almost surely. However, due to a different structure in our Algorithm
1, i.e., the place for the proximal update, the existing analysis and rates in (Liu & Zhou, 2024b) are immediately invalid.
Hence, it is unknown whether Algorithm 1 still guarantees a last-iterate rate in the same order as (Liu & Zhou, 2024b) (or
equivalently, Proximal GD).

Fortunately, we can still prove a similar almost surely convergence bound with two extra requirements Conditions 2 and
3. Condition 2 here is standard if we consider the whole epoch as a single update like (Liu & Zhou, 2024b). In contrast,
Condition 3 is more artificial and makes the rate depend on a new parameter G,. We currently do not know whether it can
be removed or not.

Lastly, we point out that, if ignoring G, (or one can think it is smaller than G'¢ ;), the rate in Lemma B.3 for the general
convex case is in the same order as (Liu & Zhou, 2024b). This is why we can obtain the improved result in Theorem A.S.
However, for the strongly convex case, Lemma B.3 is worse than (Liu & Zhou, 2024b) because the parameter p in our 7y, is
worse than a factor of n compared to (Liu & Zhou, 2024b) (in other words, they have nu). This crucial point leads us to a
worse rate O (1) (e.g., setting 77, = %, Vk € [K]) than Proximal GD. We currently do not know whether it is fixable. If it
is, one can improve Theorem A.6 to show SS also beats Proximal GD for any K € N (again, ignoring G ).
Lemma B.3. Under Assumptions 2.1 and 2.2, suppose T' = Kn where K € N and the following three conditions hold:

1. The index satisfies {i((k — 1)n+1),--- ,i(kn)} = [n],Vk € [K].

2. The stepsize satisfies 1y = 1q(1), Vt € [T'] where 0y, Vk € [K] is another positive sequence.

3. 1 =@+ Ic where ¢ : RY — R is convex and G -Lipschitz on domy) = C.

Then for any z € R?, Algorithm 1 guarantees almost surely

s ol € s
F(®gn+1) = F(z) <0 <~~ +n (G}, +GY) f~> ;
nzi‘;l Tk kZ:I Zf:k Yene

where 7, = ng;ll(l + pne), Vk € [K 4 1].

Proof. Given y € domi = C, for any t € [T, we have by (29)

2 2 2
|y — x| — (1 + pmy) |y — @esa | _ i1 — |
21, 21 21
Combine the above inequality with (28) to obtain

fiy(@e) + Y(xi41) = finy (y) — ¥(y)

(Vi (@), @1 —y) < +Y(y) — Y(®r41)-

Hy—thIQ ||y—a:t+1||2 2441 *$t||2
<(V} Ty — UL Sd2 -
<V fiwy (), 2 — @1 11) + o (1+ pne) o o
2
ly — a¢||” ly — el | MGigy
<tg =t q 48

where the second step is by applying Cauchy-Schwarz inequality, Assumption 2.2 and AM-GM inequality to have

2
1Gicr) + o1 — x|
2 2m, .

(Vi (@), @ — ®eq1) < ||V firy (@) || 20 — 141 ]| < Gigyy | — @i || <

We sum up (48) from ¢t = (k — 1)n + 1 to kn for a fixed k € [K] and notice 1, = 7, by Condition 2 to obtain

kn
S fiw(@) + (@) — fin(y) — ¢(y)
t=(k—1)n+1
Hy_w(k—l)n+1H2 — (1 + pm) Hy_wk:nJrlHQ Nk i 2
< 5 T > Gy
Nk
t=(k—1)n+1

28



Improved Last-Iterate Convergence of Shuffling Gradient Methods for Nonsmooth Convex Optimization

One more step, by Condition 1, we can rewrite the above inequality into

||y—sc(;€ 1)n+1|| (1 + pk) ||y—wkn+1|| sz
F(xy - F
(Tkn+1) (y) < i + 5
kn
1
+o Z fiey(@kn+1) = fiwy (@) + D(®pnt1) — P(Te41)- (49)
t=(k—1)n+1
We now prove bound on |11 — @ there is
2
. T — x5
Ls+1 = a‘rgmlnweRdw(m) + <Vf|(s)(xs)a SC> + ”27’”
2
& — x|
= argmin - p(x) + <Vf,(3 Ts) m> + 2 ,

which implies that, by the optimality condition, there exists V(xs11) € dp(xs11) such that for any z € C,
Toi1 — Ty
<V<,0(l's+1) + V figs) (@s) + %7 Tsy1 — Z> <0.
In particular, set z = x4 to have
|Zs+1 — $s||2 < s <V<P(ms+1) + Vi) (®s), s — xs+1>
= ||ms+1 - ms” S Ns ||V‘P(me+1) + vfl(s) (ms)H S ﬁk (Gw + Gl(s)) 3 (50)

where in the last step we use n; = 7, when s € {(k —1)n+1,--- , kn} by Condition 2 and ¢ is G-Lipschitz on C by
Condition 3.

Now notice that

kn

Z fiy(@rng1) — fie) ()
t=(k—1)n+1
(a) kn
< Y Gllmk — @l < Z ZG ) lZst1 — |
t=(k—1)n+1 =(k—1)n+1 s=t
kn kn 22 2
(50) n*G4%, — nG
< Giy (Go + Gigs)) < ik [ n2G1Gy + — L1 12 51
< t_(;l:)m;m ity (Gy + Gigs)) < e (n 751Gy + 5 ; (51)

where (a) is by Assumption 2.2. Moreover, there is

kn
Z Y(@nt1) — V(@e41)

t=(k—1)n+1
kn kn—1
= Y @) —e@) = D @(@rntr) — p(@ira)
t=(k—1)n+1 t=(k—1)n+1
(b) kn-1 kn—1
<Gy Z [Tknt1 — Ter1] < Gy Z Z lzst1 — s
t=(k—1)n+1 t=(k—1)n+1s=t+1
(50) kn—1 kn G?p
<Gy D D W (GutGiy) Sin(n—1) | 22+ GG |, (52)
t=(k—1)nt1 s=t+1

where (b) is by Condition 3.
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Combine (49), (51) and (52) to have for any y € domy = C and k € [K],

< Hy - w(kfl)nﬂHQ — (L + pne) |ly — xkn+1||2
B 2

F(zpni1) — F(y) + ik (G + Gy)

Note that this inequality also holds for y ¢ C. Hence, the above result is true for any y € R%. We can then follow similar
steps of proving Lemma B.2 to finally obtain for any z € R¢,

|z — 2 | ~
F(@pny1) — F(z) <O ( +n (G +Gy) > k)

K ~ ~ K ~ ~
nZk:1 VeNk k=1 Zg:k Yene
K ~
|z - 3’31”2 2 2 ’Yk;?%

—o| 2 (@2 @2y e

K ~ ~ ,1 P K ~~ |»
(n D1 VkTIk kz::l Doy Velle

where 75, 2 [15=, (1 4 pije), Vk € [K +1]. O

B.2. Analysis for the RR Sampling Scheme

Due to Lemma B.2, our task reduces to bound |E [ (x;)]|,Vt € [T],s € [t]. In this subsection, we will show how to
bound it under the RR sampling scheme. The main idea is inspired by (Bassily et al., 2020; Sherman et al., 2021; Koren
et al., 2022), where they only bound |E [Q;(x:)]|,Vt € [T] in a simpler setting, i.e., ) = I¢, G; = G, and constant stepsize.
Here, we provide a fine-grained analysis for |E [Q,(x,)]|, V¢ € [T], s € [t] working for the broader setting considered in
our paper. As mentioned, the finer dependence on G',; and G'¢ > is the key to help us obtain improved results over (Liu &
Zhou, 2024b).

Lemma B.4. Under Assumptions 2.1 and 2.2, suppose the RR sampling scheme is employed, then for any t € [T] and
s € [t], let @ = q(t), Algorithm | guarantees

* [E[2(zs)]| = 0if's € [(q — D)nl;

V2G3 -1 i 2V2G A G -1 19202,
e E;:(qfl)nJrl ’Y’Jy?] + e Zf:(qfl)nJrl Z;:i % if s € [t]\[(a—1)nl;

© [E[Q(zs)]| <
where Q,(+) and ~y; are defined in Lemmas B.1 and B.2, respectively.

Proof. Let F; = o(i(1),---,i(t)),Vt € [T] denote the natural filtration and F, be the trivial o-algebra. Note that
x; € Fi_1,Vt € [T]. Additionally, we use r = r(s) in the following.

* Given s € [(q — 1)n], we know xs € Fq_1), and i(t) 2 Uniform [n] conditioned on F(4_1),, under the RR sampling
scheme. Therefore, E [ fi) (s) | Fiq-1)n] = = iy fi(®s) = f(@s), which implies

E[Q(zs)] = E [fi(t)(wS) - f(ms)} =E [E [fi(t)(CCS) | ]:(q—l)n] - f(ms‘)] =0.

* Given s € [t]\[(q — 1)n], we know i(t) and i(s) have the same distribution conditioned on F,_; under the RR
sampling scheme. Hence, there is

E [fl(t)(ms) | fs—l] =E [fl(s)(:cs) | fs—l] =E [fl(t)(ms)] =E [fi(s)(ws)] =E [Qt($s)] =E [Qs(ws)] . (53)

Note that q(s) = q when s € [t] \ [(q — 1)n]. Thus, the index i(s) satisfies

i(s) = mos) = (54)
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Therefore, we know
1 n
f(ws) 72]61 :BS = Zf‘:ﬁ ws Ez.fw;(ws)
1=r

-2 Z Fri(@s) + "—TVH]E [y | o]

(54 1 n—r+1
Zfﬂ' xs [fl s)(ws)|]:s 1}
1 n—r+1
> Elf(@,)] = > S [frs(@)] + “——E [fi) ()]
i=1
1 r—1 54) 1 r—1
= E[(@)] = ~ D E [fin @) ~ frs(@)] © =S E[fry (@) — fua(@2)] (55)
i=1 i=1
Now for any fixed i € [r — 1], we introduce 7q(r, i), which is generated by exchanging 7}, and 7, in 7, i.c.,
%Q(rvi) = (ﬂ-q17 e 77T37177T;77Té+13 e ,ﬁ;il,ﬂé,ﬂ';rl’ e 77T;L)' (56)

We then define the following sequence of points,

i(qfl)n+1(r7i) £ L(q—1)n+1> (57)
~ NP
~ : : - , T — Tq—1)n+;(r 1) ,
T(q—1)nt14;(r, 1) = argming cpath(z) + <Vf%g(r7i)(w(q_1)n+j(r,Z)), :c> + I 2(q )n+j I Ve lr—1].
N(q—1)n+j
(58)

By Lemma C.3, 7, 2 Tq(r, ), which implies (7q, ) L (7q(r,4), Zs(r,i))°. Hence,
B[ fry(@s)] = E [ fagen @s(,0)] = B [ £ @ (r,0)]
which gives us
Elf(e,)] 2 B0, @) 2 Zﬂ«: (@) = Fry(as)] = ZE [y (@2) = Fry @s(r,))]

r—1

iZE [ = fr@atr)]] € 238 [ e, — @t ]
E w:ﬂ ,

IN

= [E[Q(z,)]|

—ZE[GWE[Hxs—ms(r i) | = } 2 —ZIE

where (a) is because fr; is G -Lipschitz and (b) is due to Holder’s inequality. Finally, we invoke Lemma B.5 to have

-1 42 2
Bl < Z]E Vaea, Yar et ettty g oy, |5 Yame ot

Vs =i V3

r—1 r—1 r—1 -2 2
V263, 3 Va-Dn+ila—1n+i | 2V2G 721Gy S Ya—D)n+iMa—1)n+j
oon Vs " n P 7

i=1 j=i

V2G5, X ym V265G = e
_ f:2 Vi 14,2 7 J
== 2 = > Z

j=(a—Dn+1 ® i=(q—1)n+1

>Strictly speaking, this equation requires that for any i € [n] and & € R?, V f;(x) is deterministically picked from the subgradient set
df;:(x), which possibly contains more than one element. We assume it holds since this is realistic.
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where we use the fact (q — 1)n + r = s in the final step.

Lemma B.5. Under the same settings in Lemma B.4, let T4(r, 1) be the point defined by (57) and (58), then we have

~2 2 4 =12 2 _
E[llz, = ,(r, )| | mp| < 262, SO lamntt g a8 ) 3 et fasnt,

2
S j = ,YS

where 7, is defined in Lemma B.2.

Proof. Note that ) = 7J(r, i) for all j € [i — 1] by the definition of 74(r, ) (see (56)) and & (q_1)n11 = Z(q—1)n+1(r, %)

by the definition (see (57)). Thus, by the definition of i(q—l)n-i-l-i-j (see (58)), there is
L(q-1)n+j = i(qfl)n+j(ra Z),V] S [Z] .

In the following, we denote by y; £ (q_1yn+; and §; = T(q_1yn+;(r,i),Vj € {i,--- ,r}. Note that there is y; = ;.

By Lemma C.2,

(56) MNq—1)n+i

Y, — @i - 77(q—1)n,+i(vf7rg; (y;) — Vf?r;(r,i) @Z))H B Ng—1)n+i Vfwg (y;) — Vf?r;(r,i) (y:)
1+ M (q—1)n+i 1+ KN (q—1)n+i

vf‘n’é (yz) - Vf?ra (yz) < n(q71)n+i(Gﬂ-é + Gﬂ—é)

1+ HN(q—1)n+i a 1+ KM (q—1)n+i

||yi+1 - @iﬂH <

) (39)
where the last step is by the Lipschitz property of f;. We invoke Lemma C.2 again to obtain forany i + 1 < j <r —1,

Hyj - @j - 77(q—1)n+j(vfﬂg (y]) - vf%g(r,i)(aj))H
L+ pnq—1)n+j

Yyjs1 — U <

(56) Hyy —Y; - n(qfl)nﬂ(vfﬂg (y;) - Vf,rg (?AJJ))H
L+ png—1)n+j

which implies

2
= 950" = 20015 (uy = B0 Vg W) = Vg (@) + s |Vt ) = V£ @))|

~ 2
g1 = Bl < (L + png-1yn+4)?

~ 12
ly; —,lI” + 477(2q71)n+jG72rg
(1 + ,U/T](qfl)nJrj)2

: (60)

where the last line is by

= =R Assumption 2.1
(v =9, Vi) - VE,@)) = o,

2 Assumption 2.2

Vi) - vig@)| s ac,

q
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Finally, unrolling (60) recursively to obtain

Hyi—H - @i+1 H2 — 477(2q—1)n-~-jG3rJ
Ilmio (L mmqvnie)? 570 TS (14 pig-1ynte)?
2 77(q ngi(Grg + Gm)® -1y Coy
P 1(1 + ung-vn+e)® 550 He;;(l + Wn(g-1)nte)?
277(q 1)n+z(G2 + Gz’) — 477(2q 1)n+jG2

q
H@ 7,(1 + /.N](q 1)n )2 Jj=i+1 HZ—](l + ,LU’] (q9— 1)n+£)

ly, —g.I* <

r—1

2 2
< 2n(q—1)n+iGﬂa n Z 477 (9—-1 nﬂG
— r—1

HZ:i(l + /u’n(q—l)n-‘rf) He ] 1 + /“7(q 1)n+€)

Therefore, we know

r— 2 2 r
277(2q—1)n+iG72r{4 . 477(q71)n+j]E [ng | ”q}
r—1 r—1

=i (LA png—1yn+e)® 555 Ty (1 + mmgg—1yn+e)?

~ 12
Elly, - 5" | 5] <

2 2 r—1 2 2

@  2Mg-1yntiCGry 8Ma—1)n+;G7,2
- r—1 r—1

=i (L png—yn+e)® 5= Tz (1 + mng-1yn+e)?

2 2 2 r—1 2 2
® 27<q*1)n+i’7(q*1>n+iGﬂa 8'V(q Dn+jla-1 n+aG
) 2 +Y ,

V3 = 72

where (a) is by (w.l.o.g., we assume n > 2 now, otherwise, our final bound holds automatically when n = 1 since
s = Zs(r,4) in that case)

S, nG% , — Gﬂy nG3 , .
B 6% I = P Sy S0V
and (b) is due to ; = [['Z} (1 + uns), Vt € [T + 1]. We hence obtain the desired bound on E |||&, — &4(r,7)]|” | Ty | as
Yr = L(q-1)n+r = Ls and '?J\r = i(q—l)n—i-r(rai) = %s(l’,i). O

B.3. Analysis for the SS Sampling Scheme

This subsection helps us to bound [E [Q:(x,)]|,Vt € [T],s € [t] for the SS sampling scheme. The proof is inspired by
(Koren et al., 2022). Again, our result can be viewed as a finer generalization than theirs and hence requires more careful
analysis.

Lemma B.6. Under Assumptions 2.1 and 2.2, suppose the SS sampling scheme is employed, then for any t € [T and
s € [t], let r = r(t), Algorithm | guarantees

I [0 ()] <G> 2Z%< : :“W)
2 n s—1 72772 nG%Q—G? ‘
+ﬁi:1 G; ; JS] <G2 + G2 [r(j) = r]+n_1]1[r(j)7gr]>’

where Q4(-) and ~; are defined in Lemmas B.1 and B.2, respectively.

Proof. Under the SS sampling scheme, for any ¢ € [T'], x; can be recognized as being generated by a deterministic map
A;° from the permutation 7 to R¢ when the initial point x; and the stepsize 7, V¢ € [T] are fixed. In other words, we can

SSame as Footnote 5, we also assume V f;(z) is deterministically picked from df;(z) for any i € [n] and & € R
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write

Ty = .At(ﬂ'),vt S [T] .

We also recall the following fact about the index

i(t) =7 =", (61)
Hence, there is
E [fi)(®s)] = E[frr(As(m))] = ZE [fi(As(m))L [r" = 4]} .

For any ¢ € [n], let 7(r,*;) denote the permutation obtained by exchanging 7" and 7*¢ where *; is the unique index
satisfying 7* = 4. By applying Lemma C.4 with ¢(-) = f;(As(-)), there is

E[fi(As(m)1 [r" = i]] = %E [fi(As(@(r, %i)))], Vi € [n],

which implies

B [fign (20)] = DB A ML =il = = 3 ELfi(AR(r%)))]
Therefore,
(0 (x.)]| = ‘fl S E (AR ) = A < 5 S BIAHARE)) ~ LA
< LS B G A x) ~ A = & D GBI (rx) — ],
i=1 i=1

where (a) is because f; is G;-Lipschitz on dome) and Z4(r, ;) is the output of running Algorithm 1 with the same initial
point x; and the stepsize 1, V¢ € [T'] under the SS sampling scheme but using the permutation 7(r, x;), i.e.,

Ty (r, %) £ @1, (62)

[ — 2 (r, %)

2
ij-ﬁ-l(r’ *i) = a‘rgminweRdw(az) + <Vf%'(f)(r,*i)(§j(rv*i))v 2II> + 2n; Vi€ [S - 1] : (63)
J

Finally, by Lemma B.7, we have

S GERIIE(x) — ] <2 3G 2 (Gp + G Y U (]1 () =]+ W)

i=1 =1 s n—1
n s—1 _2 9 2 2
1 V51 : nGy, -G
+EZGi'2 Z Jgj (G?,Q"‘G?ﬂ [r(])zr]—i—:flll[r(j)#r})
i=1 j=1 's
s—1 .
M , L[r(j) # 1]
=2 (fo,1 + G?,z) . ,] (]l [r(j) =r] + a1
j=1 "
n s—=1 2,2 2 2
2 Rk . nGi, — G;
OB DBy (G%,z +GALIG) =+ — L2 ) # r1>.
n “ ‘ 0 F n—1
i=1 j=1
The proof is completed by using the fact Gy < Gy 0. O
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Lemma B.7. Under the same settings in Lemma B.6, let T4(r,*;) be the point defined by (62) and (63), then we have

E(llze — & (r, %)l <2(Gpa+Gi) Lfy"j (]l rG) =r+ W)
j=1 "
s=1 2.2 nG2, — G?
o ’V;ZJ <G%2 + G2 [r(j) = 1] + %1 [r(j) # r]),
]:1 S

where v, is defined in Lemma B.2.

Proof. For simplicity, we denote 8, 2 ||z, — &4(r, *;)|| , Vs € [t]. Moreover, let'i(s) represent the index trajectory generated
under the permutation 7(r, *;), i.e.,

~

i(s) 27 (r,%;),Vs € [t —1]. (64)
By Lemma C.2, we have

6? — 25 <33S - is(l’,*i), vfl(s) ((L’S) - vf,\(s) (%S(I’, *i))> + 77? vfl(s)(wS) - va(S)(is(ﬂ*i))Hz
(1 + pms)?

2
Vit (@s) = Vi @s(r,0)) |

2
6s+1 S

)| 0s +nZ
(14 pms)?
)
)?

(2) (53 + 21 Vfi(s)(ws) Vf(é (x5

Vi) (@s) = V g (s
(1 + fns

5 + 202 (G?()+GI2(S)

(b) (52 + 2,
S ) (65)

where (a) is by
(@ = Bo(r,%0), Vi) (@) = Vi) (@s(r,%0)) )
= <a:5 —Z(r, %), VfT(s)(:cs) — VfT(S)(fc\s(r,*i))> + <a:s —Z4(r, %), V fis) (xs) — Vﬁi(s) (a;s)>

Assumption 2.1

=0 (@ = B,(rx0), Vi (@) = Vi @) = = [ Vi (@) = Vi (@)
and (b) holds due to

ds,

Assumption 2.2

HWi(s)(ws) = Vi (@s(r, *z-))H < Gig + Gy = HVfi(s) CHE VfT(s)@s(r»*i))H (G.<s + Gﬁs)) :

Now recall that vy, = Hi;ll (1 + uns),Vt € [T + 1]. Multiply both sides of (65) by 72, ; to obtain

Vo) (@) = Vi (@s) | 360, + 29202 (G2 + G2,

7§+153+1 < Y262 4 27415

= ’Ys+153+1 < 7151 22%7}; val(g) wy) Vf(]) T H 71 j + 2’73 77] (G.(J) + GTQ(j))

Jj=1

- 227.7173 val(_]) m]) vf(J) L H rYJ i+ 27_] 77] (G|(j) + G?(j)) ) (66)

where the last equation is by 01 = ||z — Z1(r, ;)| = @y

Next, we use induction to prove

Vfigy (5) = V iy (25)

s—1
V25 <A v ’ + 2477 " ( Tk G,(J)) Vs € [t]. (67)
=1

For s = 1, (67) holds as 6; = 0. Suppose (67) is true for all indices in [s] where s € [t — 1]. Then for s + 1,
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e ify2, 102, < maxgepy 7707, we know
2 2 252
Var10511 < gg%;]( Vici;

(67)

2
= | Z%"JHW'(” 23) = V(@) +Z4Wb (6% +62,)

2
<4 Z'Yﬂb val(_]) -'BJ Vf () :cj H +Z471773 ( i(7) +G72(j));

o ify2, 162, > maxgepy 7707, we know

79+159+1 < ZQ"Y]T]J val(]) CC]) Vf :I}] H’Y](s +2’-an] (GI(]) +G,?(j))

<2 273777

Vi @5) = Vi @) | vssaders + 29802 (G2 + G2

2
( ) 79 15€+1
+2 +2 Z’Yﬂh HVf,(]) x;) — Vf(J x; H + Z2’yj n; (G,(]) + Glz(] )
2
= 220020 <4 Y |V @) = Vi @)|| | + X4k (6 +62,).
j=1 Jj=1
where (c) is due to AM-GM inequality.
Therefore, we always have
S
Vorrbam <4 D v ||V (@) = Vi) (25) ‘ Z%m ( ot G?(j)) :
j=1
By induction, (67) holds for any s € [t], which implies
s—1 s—1
Vs0s <2 51 HVfi(j>(~’Dj) - VfT(j)(fBj)H +2, (> 2 <G2 +G )
j=1 j=1
s—1 s—1
= VB[] < 2E | 3 i [V (@) = Vi )| +2E ||| Yoz (G2, + 62, |- (68)
j=1 Jj=1

£0 £@

* For term O, note that if x; = r, then 7 = 7(r, %;) = V fi;)(z;) = VfT(j)(a:j),Vj € [s — 1]. So there is

vai(j)(xj) — Vi) (@)

’ = HVfi(j)(-’Ej) = Vi ()| L # 1]

Z HVf;(j)(wj) - VfT(j)(wj)H 1[nf=
ce[n)\{r}
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When 7 = i for some £ € [n] \ {r}, we observe that i(j) & 70 (r, £) = 70 = i(j) if r(j) # r and r(j) # ¢, which
implies
|V it (@) = V i (@)|| 1[5 = 1] = ||V iy (@1) = V(@) | 1 [+ = 1] 1[r(5) = ror 4
= |V fur(a)) = Vi)l L [x" =] L]r(j) = ror ]
< (Gu+ Gy 1 [t =i L[r(j) =ror{],

where the second to last step is by {I(]),T(j)} = {70, 7 (r,0)} = {n",i} under the events 7* = i and
r(j) = ror £. Thus, for any j € [s — 1],

vai(j)(wj) — Vi (®))

< Z (Gur +Gy) 1 [n" = 4] L [r(j) = ror {]

Len]\{r}
E [vaiu)(wj) - VfT(j)(wj)m < z [E];{ }IE: (G + G 1 [ =d]] 1 [r(j) = ror 4]
(@ nGe1—Gi | G o
) ee[n%}( Ty ) p) = o
~ (Gn+ 2260 (1) =+ HEE)
< @pa+60 (1) =+ HIEZ),

where (d) is by, for any fixed ¢ € [n]\ {r}, there are

EGrl[n'=i]]= Y GiP[r = k] = Z G, = "9 =G
n( nin—1)
ke[n]\{i} n\{i}
and
E[Ga[x =] = 2.
‘We thereby have
s—1 .
. 1ir r
0 (G104 6 Loy (100) =+ HELZT) )

j=1
For term @, for any fixed j € [s — 1], we claim the following three facts hold
i() 2 Uniform [n], i(j) = 1ifr(j) =r, i(j) 2 Uniform [n]\ {i} if r(j) #r

in which the first one follows by the definition of the SS sampling scheme, the second one is true by recalling
i) = @ 2 9 (r,%;) =4 if r(j) = r, and the third one is by (64) and Lemma C.5. Therefore, by Holder’s inequality

®< Z%%( ['(J):|+]E[G(]):|)

2 ’I’LG? 2 G22 .
—\Zvjnj 2 HGG) =+ — = 1Ir() #1 ). (70)
Finally, we conclude by plugging (69) and (70) back into (68) and dividing both sides by ~,. O
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C. Auxiliary Lemmas

This section includes some technical results applied in the analysis presented in the previous sections.

We first provide two algebraic inequalities for the stepsize proportional to q(7T') — q(t) + 1, which is used for the RR

sampling scheme in Theorem A.1.
Lemma C.1. Suppose n: = n,.(q(T) — q(t) + 1), Vt € [T] where . > 0 is a constant, then there are

T 2
« « I
Znt_nq and i 9n(a(T) +logn)
t= 125 s 2

Proof. Note that for any ¢ € [T, there is

T (a(T)—D)n a(t)n

T
Zns: Z Ns + Z T}s-‘r-ZT]S
s=t s=(q(T)—1)n+1 s=q(t)n+1 s=t
a(T)—1
=n (@ +n| D al) —j+1]+n—rt)+1D(a(T) —a(t)+1)
j=a(t)+1
= . [(T) + 3 (@(T) = () = D(@(T) —q(®) +2) + (0 =) + D@(@) —a@® + 1] . @D

In particular, for t = 1,
S [M(T) + 5(@(T) = 2)(a(T) + 1) + na(T)| = n. | Za(T)(@(T) +1) + (L) =n] .

« Ifq(T) = 1 (ie., T € [n]), we have
ins = n.:0(T) = nuq(T)T = %.

e Ifq(T) > 2 (i.e., T > n+ 1), we have

(a) n T
> =[Gl +1>+r<T>—n} 2 0. [ paE 41 +om) -]
(b)
{ Wsr) -] 2. [T 41 2 29D,
where (a) is by q(T") > L and (b) is due to q(7") > 2 now.
Hence, we always have
T
Zns > ﬁ*Q(T)T
s=1
Next, we observe
~ oy an S 1
o
oo = D,
t=1 Z =t 77s t:(q(T)fl)n+1 I'(T) - r(t) + 1
(T)-1
S (@) k +1)? R,
= r(T) + 5@ —k-=1)@T)—k+2)+(n—i+1)(q(T) - k+1)
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* For the first part in (72), we have

T

K1
Z '_(T)—:z:zﬁlJrlogr T).

t=(q(T)—1)n+1

* For the second part in (72), under relabeling the index, we have

Zn: (a(T) =k +1)*
= r(T) + 5T —k—=1)(qT) —k+2)+(n—i+1)(q(T) - k+1)
q(T) n 52 n 4 q(T) 92
:H; D)+ 30k -2k + D) ik~ 2erT)+2i 2« k—2)(k+1)
<2log (1+r(;)) +%(q(T)—2) < 2log (1+r(2;)> —I—g ( )—g
So there is
T 9 - .
t:Zl ngjt " < 1y _log r(T) + 2log <1 + r(2T)) + gq(T) - ;}

< e [210g(H(T) + 20) + Ga(T) -

2

[ 9 7
<1 |2logn + §q(T) +2log3 — }

< In:(a(T) +logn)
= 2 .

O

Next, we introduce Lemma C.2, which gives a general upper bound on the distance between two points output by different
proximal updates but using the same stepsize and plays a key role in bounding |E [Q;(z;)]|,Vt € [T], s € [t].

Lemma C.2. Under Assumption 2.1, given &,Y, 95,9y € R and n > 0, let

2
~ . i

2 argmingcpat(x) + (gz, ) + ”27’”,
o Iy ol
§ = argming cpat(y) + <gz7’y> + T’

then there is

Proof. By the definition of &, there exists V(&) € 0¢ (&) such that 0 = V(&) + g5 + ini, which implies

MV(2) +T,& —y) = (B — 19z T - 7).
Similarly, we have
V(@) + 9,9 —2) = (¥ — 1949 — &) .
Sum up the above two equations to obtain
(V@) — V(@) 2 - 9) + 2 - 91° = (2 -y~ n(gz — 95).2 — ).
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Note that Assumption 2.1 implies
- N s s S 2
(Vo(2) = Vo(y), 2 —y) > pllz -y~
Hence, there is
|z -9 —nlgz —gy)||
1+ un '

R N s T
1
+un

O

Finally, we provide some useful facts related to the random permutation inspired by (Sherman et al., 2021; Koren et al.,
2022). We recall that S,, is the symmetric group of [n], i.e., the set containing all permutations of [n].
Lemma C.3. Suppose m = (mt, -+, @) is uniformly distributed on S, for any r € [n] and i € [r — 1], we define 7(r, 1)
by exchanging 7" and 7" in T, then there is

7 2 3(r,9).

Proof. 1t is enough to prove that, for any fixed o € .S,,, there is
Plr = o] =P[7(r,i) = o],

which clearly holds as both sides equal % O
Lemma C.4. Suppose = (7', --- ") is uniformly distributed on Sy, for any r,i € [n), we define 7(r, ;) by exchanging
w" and 7 in ™ where x; is the unique index satisfying ™ = 1, then there is

Elp(ml[r" =i]] = *IE [o(@(r, %))l

where ¢ : S, — R can ba any deterministic map.

Proof. We observe that

n

E [p(7(r, %))] = Z¢ 7(x) [ =4]| =E Z¢(%<r,j))]1 (7 =i]| = E[pF(r, )1 [x) =i]]. (73)

Jj=1

For any fixed j € [n], let Ty, : S, — Sy, be the operation of exchanging the value of 0" and o’ for o € S,,. Then we know

E[o(F(n )L [0 =1]] = o 3 oTios o)L [0 =i = 25 3 6(Toes (01 [(Tins(0))' = ]

oES,L 0€S),
= =S G001 [0" =i = E[(m)1 [ = i, (74)
0€S,

where the second to last step is by {7r«;(0) : 0 € S, } = S,,. Combine (73) and (74) to finally obtain

I . 1 .
BiOr1 =)= 3L E[6(F(n N1 [r = ] = CElo(r )
O
Lemma C.5. Suppose w = (7', ,7«") is uniformly distributed on S,,, for any r,i € [n), we define 7(r, ;) by exchanging
" and ¢ in ™ where x; is the unique index satisfying T = i, then there is
7 (r,%;) 2 Uniform [n] \ {i},Vk € [n] ,k #r.
Proof. Givenk € [n] and k # r, let j € [n] be fixed. We define the function ¢(7) £ 1 [7* = j] and notice that
~ . ~ Lemma C.4 P . . 0 j=1
P [7(r, %) = ] = E[6(R(r, %)) "™ 4 0 [6(m)1 [ = i]] = nP [ = i, 7" = ] = { o
n—1
which concludes the result. O
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D. Lower Bound for Strongly Convex v
We present a lower bound that can be applied to the first-order algorithm containing a proximal update.

Given F = f + 1 : R¢ — R satisfying Assumptions 2.1 and 2.2 and an initial point 2; € R?, we consider a family of
algorithms obeying the following update rules in a total of 71" iterations,

Yit+1 €z + Span Use[t] {:Bs —T1,Ys — L1, vf(wé)a vf(yq)} ) (75)

I = o]

, 76
5 (76)

Typ1 = argmingegath () +

where y, = x1, Vf(z:) € 0f(2),Vt € [T] for z € {x,y}, and v, Vt € [T] is a positive sequence. Note that (75) can be
viewed as a generalization of the existing span assumption (Nesterov et al., 2018), as it contains more information based
on the output of the proximal update in (76). In particular, (75) and (76) recover Proximal GD with the stepsize sequence
ne, Vt € [T] by setting y, . = 1 + 2, — x1 — .V f(xy) = 2 — 1,V f(2) and v, = 7.

Now we are ready to prove the lower bound. As mentioned in Footnote 1, the proof is only a simple variation of the existing
analysis in (Bubeck et al., 2015).

Theorem D.1. For any given D, > 0, G > 0, u > 0, T' € N satisfying T > uf—;z — 1, d € N satisfyingd > T + 1, and

x1 € RY, there exist a function F = f + 1) : R? — R where f is convex and G-Lipschitz on R% and 1) is ji-strongly convex
on R? and a subgradient oracle NV f such that any algorithm in the form of (75) and (76) starting with x| has

G2
in I - F > —
& o) = FE) = gy

where x, = argming cpa F'(x) satisfying ||x, — x1|| < D,.
Proof. W.l.og., we assume x; = 0. For a general point z; € R?, one can change every x to © — x; in the following

definition of f and v and then conclude by similar steps.

The construction of the hard instance is essentially the same as (Bubeck et al., 2015). Let f(x) £ G max;e(r41) ® [j] and

Y(x) =L ||||?, where @ [5] is the j-th coordinate of z. Note that

Of(x) = G - Conv {ej 1 J € argmax;c(py1]T [z]} )

where e; € R? denotes the vector that takes 1 in the j-th coordinate and 0 in any other place. So f is G-Lipschitz on R?. ¢
is p-strongly convex on R? from its definition.

Next, we claim the minimum value F'(z,) = where x, satisfies

G2
T 2u(T+1)

m[]}: _ﬁ jG[T+1],
) 0 jeld\[T+1].

We consider two cases:

* max;c[r41] T [j] > 0. We observe 0 falls into this case and note that F'(x) > () > 0 = F(0).

* max;e[r41) T [j] < 0. We observe z, falls into this case. Now suppose max;e(r41] & [j] = —a for some a > 0, we
have |z [j]| > a,Vj € [T + 1]. Thus, there is

d T+1 d
1 : p 22, M ,
F(x)=~Ga+ 5> o[ =-Ga+ 5y [’ +5 > |l
j=1 j=1 J=T+2
w(T + 1)a? G?
> _ > — = F(x,).
Got =z @)
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We thereby have
G2
in F' =min{F(0), F =F = ——". 77
min F(z) = min {F(0). F(@.)} = Fle.) = 5z an
Moreover, ||z,|| = —2— < D, once T > -$=7 — 1
NEN= Lo = = D2
Because x1 = 0 now, we have y,,; € Span Uy {5, ¥, Vf(2s), Vf(y,)}. Moreover, we can explicitly write
Ty = argmin dw(:v)—i-iHmiytHHQ = argmin d,u||m||2 + Hwin_lHQ
t+1 zER 27 zER 2 27
= 1 € Span Usegy {@e, 3, VI (@), V()
L+ pye ) )
Now we define the subgradient oracle
Vf(z) £ e;, where j; = min argmax;e 1) [i] -
By induction, one can show Span Uecy {5, Yy, Vf(xs), Vf(y,)} € Span{es, -+, e}, Vt € [T]. Assuch, x4y €
Span{ey,---,e},Vt € [T], which implies F(z¢1+1) > f(xi41) > Gxeyr [t + 1] = 0, VE € [T]. We hence conclude
in F Fa) T &
min F(x — F(z, —.
te[T) (41) (@) 2 2u(T +1)
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